
lllllllll

i 0f OO :...: ::: |||||||||||| ||||
MUEGYETE 1782

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Automation and Applied Informatics

Distribution of processing at CERN

monitoring

TDK DISSERTATION

Author Supervisor
Daéniel Zolnai Dr. Péter Ekler

October 26, 2016

Table of contents

Abstract 3
1 Introduction 4
1.0.1 CERN e 4

1.0.2 CERN computing centre and the Worldwide LHC Computing Grid
(WLCG) . . .o o 4
1.0.3 ATLAS 5
1.04 PanDA 5
1.1 Monitoring at CERN and WLCG 6
1.1.1 Job Monitoring in WLCG 6
1.1.2 New Monitoring team Lo oL 6
2 Problem statement 8
2.1 Imntroduction of the problem 8
2.1.1 Tasks . .. oL 9
2.2 Proposed solution 9
3 Running Spark jobs 11
3.1 The evolution of our executor frameworks 11
3.1.1 Running manually L 11
3.1.2 The Python script L 11
3.1.3 The spark-job-runner package L. 12
3.1.4 Problems with the spark-job-runner 13
3.1.5 Evaluation of Mesos Chronos and Mesos Marathon 13

3.2 Selecting our build tool
3.3 Running applications in containers00
3.3.1 Building the Docker image,
3.3.2 Running the built image
3.4 Scheduling
3.4.1 Batch jobs in Chronos,

3.4.2 Streaming jobs in Marathon

Data retrieval and ingestion

4.1 Objective e

4.2 Input Sources
4.2.1 PanDA job database
4.2.2 Configuring the Flume agent for reading from PanDA
4.2.3 The query executed by the JDBC agent
4.2.4 Mapping from Flume event headers to output directions

4.3 Increasing the reliability of the Flume source

4.4 Kafka, the middleman L

4.4.1 Setting up and optimizing Kafka for monitoring data

Results and conclusion
5.1 Results. s

5.2 Future work

List of figures

Bibliography

Appendix

A.1 Mesos master puppet configuration,
A.2 Mesos worker puppet configuration L.

A.3 Example job configuration in Chronos

23

23

23

24

24

28

30

32

35

36

38

38

39

40

42

43

Abstract

This dissertation will be about my work done at CERN as a technical student. As part
of the monitoring team I was assigned to replace the system responsible for calculating
historical and real-time statistics of the jobs submitted to do physics simulation and
analysis tasks.

For this work we have chosen to use the Spark distributed processing framework, on
which I have implemented three different applications using the Scala programming
language. These applications were tested on internal clusters processing the same data as
the current live systems, and the results were compared to those.

Furthermore my work also included configuration of virtual machines and additional
software, such as Apache Flume, Apache Kafka, Mesosphere Marathon, Mesosphere

Chronos, and Docker.

In the first chapter I will give a short introduction on the context of my project,
and computing at CERN.

The second chapter will explain the history of running Spark jobs in our team, advancing
from the very basic manual submission to the dedicated frameworks.

Chapter 3 is all about collecting the necessary input data for further processing. There
will be a detailed intro to the usage of Flume to periodically fetch rows from databases,
and forward events to multiple output sources.

Finally, in chapter 4, I will draw a short conclusion about the work covered in this

dissertation.

Chapter 1

Introduction

In this chapter I would like to introduce the company I've spent one year at as part of an

internship and also the context of the work I’ve done there.

1.0.1 CERN

CERN (short for European Organization for Nuclear Research in French) is a research
organization located next to Geneva, on the Switzerland-France border. Its main goal is
to host particle accelerators to experiment with high-energy physics. As of now, its main
particle collider, the Large Hadron Collider (LHC)[15] is the largest of its kind in the
world.

To make the functioning of this giant machine possible, more than ten thousand people
work in different departments and groups day by day. The LHC has not been running for
many years yet, but it has already built a reputation by being the place where proof of
the existence of the Higgs Boson has been reported[11], or by hosting the first website
ever[19].

The laboratory will continue to operate for many more years, to provide a platform for

future physics experiments, maybe giving a way out of the Standard Model.

1.0.2 CERN computing centre and the Worldwide LHC Computing
Grid (WLCG)

CERN runs today two large data centers, one in Geneva and a second in Budapest,
providing over 120,000 cores, 180 PB of disk space, 100 PB of tape space, and 150 high
performance tape drives to serve CERN’s computing and storage needs. This capacity is
extended by the Worldwide LHC Computing Grid (WLCG)[3], providing resources from
different organizations around the globe, as CERN provides 20% of the total WLCG
resources. WLCG is a global collaboration of more than 170 computing centers in 42

countries, linking up national and international grid and cloud infrastructures, which

are divided into 3 tiers, with CERN being Tier 0 (in figure 1.1 one can see the Tier
1 sites as well). At any given time, there are typically more than 300,000 concurrent
computational jobs running and, on a daily basis, more than two million computational
jobs are submitted and multiple terabytes of data are transferred between sites. The
Monitoring team of the IT Compute and Monitoring (IT-CM) group is responsible for

providing monitoring solutions for these resources.

Tier-2 sites
(about 160)

Tier-1 sites

10 Gb/s links

fs

-3

Figure 1.1. The tiered subdivision of the WLCG sites.

1.0.3 ATLAS

ATLAS is a particle physics experiment at the Large Hadron Collider at CERN that is
searching for new discoveries in the head-on collisions of protons of extraordinarily high
energy.[2]

Two general purpose detectors, ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact
Muon Solenoid) have been built for probing p-p and A-A collisions. The ATLAS detector
represents the work of a large collaboration of several thousand physicists, engineers,
technicians, and students over a period of fifteen years of dedicated design, development,

fabrication, and installation.[12]

1.0.4 PanDA

The Production and Distributed Analysis (PanDA) system has been developed to meet

ATLAS production and analysis requirements for a data-driven workload management sys-

tem capable of operating at LHC data processing scale. ATLAS production and analysis
place challenging requirements on throughput, scalability, robustness, minimal operational
manpower, and efficient integrated data/processing management. PanDA was originally
developed for ATLAS and is being extended as a generic high level workload manager
usable by non-ATLAS OSG activities as well.[14]

Heterogeneous resources are distributed worldwide at hundreds of sites, thousands of physi-
cists analyze the data remotely, the volume of processed data is beyond the exabyte scale,
while data processing requires more than a few billion hours of computing usage per year.
The PanDA system was developed to meet the scale and complexity of LHC distributed
computing for the ATLAS experiment.[13] ATLAS fully relies on PanDA to handle the
experiment’s analysis and production workloads, and to date PanDA has successfully de-

livered without showing scalability issues.[10]

1.1 Monitoring at CERN and WLCG

The Monitoring team is responsible for checking the availability and status of each (vir-
tual) machine in the data centers of CERN and providing monitoring solutions to the
LHC experiments that cover all their computing activities in the Worldwide LHC Com-
puting Grid (WLCG), this includes their data distribution and access, computational job
processing and availability of their computing sites and services. Not only does it provide
software and tools for doing this, it also has to supply dashboards and other interfaces for
viewing and processing real-time and historical data. As part of the WLCG operations
there are also dashboards maintained where the performance and status of the computing
sites or the whole grid altogether can be checked upon. The monitoring team provides
generic solutions for a wide variety of hardware that can be used to monitor the nodes of

any computer centre and it is not coupled to the CERN data centre itself.

1.1.1 Job Monitoring in WLCG

The highly distributed infrastructure of WLCG is also heterogeneous with multiple mid-
dleware flavours, job submission and execution frameworks, and several methods of trans-
porting and accessing the data. The large scale activity and heterogeneity of the WLCG
increases the level of complexity of the system and, thus, increases the probability of fail-
ures or inefliciencies arising. Effective monitoring is essential for providing a comprehensive
way to identify and address any issues within such a highly distributed and heterogeneous

infrastructure. It is also a key factor in the effective utilization of the system.|[9]

1.1.2 New Monitoring team

Before January 2016, there were two teams working actively on monitoring: the Agile
Infrastructure Monitoring team was responsible for the nodes in the CERN Data Cen-

tre, and the WLCG Monitoring team for the WLCG infrastructure. In January, upper

management decided to merge these two teams, since their operation is similar, and the
combined knowledge could be used to provide better solutions. The merged team became
the IT Compute and Monitoring group, and was also given the task to iteratively replace

older technologies. My work was also part of this replacement project.

Chapter 2

Problem statement

This chapter will be about the original problem and the abstract overview of the proposed

solution. The next chapters will give a detailed walkthrough on this solution.

2.1 Introduction of the problem

When the new monitoring team was created by merging two similar teams together, it
was given a task: create a new architecture, which would be able to handle data coming
from all monitoring activities (WLCG and data center monitoring as well). Learning from
the mistakes and experiences the teams have made during the past years with monitoring,

the aim was to create an architecture which:

e Is scalable: we knew that the incoming data will continue to grow in the future. We
wanted a solution which works in a distributed way, and is not limited to a certain

throughput theoretically.

e Has a reduced single point of failure: We knew from experience, that things can go
wrong at a lot of places. But most of the times those failures could have been avoided
if the service or interface which failed had a fallback. Our goal was to even handle a
complete data center shutdown, since we had multiple data centers available where

we could deploy virtual machines (in Geneva and Budapest).

e [s maintainable: A frequently occurring problem with our old software was that
they were hard to maintain. There were multiple Perl scripts, C++ projects, highly
optimized Oracle databases which were hard to work on. Also there were in-house-
built software, which could have been replaced with open-source variants, giving us
an opportunity to help the open-source community, and also taking some of the

maintenance work off our backs.

e Is extensible: We wanted to have an architecture, which would allow other teams to

easily interact with it, and even allow users some freedom. For example, a common

request was to create specialized dashboards for users, but if they could do this

themselves, that would save time and effort.

The design, implementation and deployment of this new architecture was the work I have

been doing while I was a technical student at CERN.

2.1.1 Tasks

A lot of this work was a team effort. But I have been given four main tasks related to this

work, which I have completed during my time at CERN. These four tasks were:

1. Data retrieval and ingestion: Collecting all the necessary input data from sev-
eral sources, forwarding them to different storage systems, configuration of Apache

Flume.

2. Real-time enrichment: Enhancing data taken from the official PanDA database with

relevant information fetched from other external sources.

3. Accounting and validation: Streaming the output of the previous task, and storing
the current state in a global map. Taking and storing snapshots of this global state

at regular intervals.

4. Aggregations and statistics: Taking the enhanced data and the snapshots, aggregating
them together, computing statistics which can be visualized to the end users in the

form of dashboards.

Only the first task will be covered in this dissertation. The 3 latter ones are each a Spark
job I was able to write and run based on the completed work of the first task. Although
these jobs will not be covered, I will describe how we were able to run the Spark framework

in the new stack, and how it ties together with the other components.

2.2 Proposed solution

We chose open-source, well-known software for each component. The data ingestion part
will be done by deploying Flume agents, fetching the data constantly, and forwarding it to
ElasticSearch and HDFS through Kafka, a buffer with a retention period of a few hours.
The other three tasks will all be performed in separate Spark applications. For streaming
analytics, Spark will get the data from Kafka. For requesting information older than the
previous few hours, HDFS can be used, which also supports parallel access, allowing us to
increase performance by simply adding more executors.

Finally, Spark will write its results to Kafka. From there, the messages might be sent to
ElasticSearch, depending on the type. Every output will be archived on HDFS.

The results stored in ElasticSearch can also be visualized using Kibana, a platform for

CERN
Data
Centers

WLCG
Sites &
Services

ActiveMo

oY

§€ kafka

l‘@"%%sc:lmmp

¢, ¢ elastic

Spor‘l?z

Figure 2.1. The Monitoring architecture.

creating plots and dashboards accessible for the public.

This setup can be seen in figure 2.1. Note that this architecture is not only used for this

purpose, but for all the activities in our team. That is why there are some additional

technologies presented in the chart.

The overview of the part where we do job monitoring with Spark is described in figure

2.2. The arrows indicate the flow of data, and the grey boxes are the 3 Spark jobs I will

be implementing as part of my work.

Real-time
application

S—
PanDA
(Oracle)

AGIS and
PanDA HTTP
APIs

PanDA and AGIS data

Flume JDBC source

Enriched data

Recent enriched

Flume HTTP source

Recent enriched, pending and running

Streaming
accounting
application

Historical enriched

Pending and running

Flume HDFS sink

Streaming

Flume ElasticSearch sink

Hourly summaries

ElasticSearch

Batch
accounting
application

D
Historical enriched, pending and running

Figure 2.2. Job monitoring data flow diagram.

10

User-defined
Hadoop jobs

Chapter 3
Running Spark jobs

In this chapter I will detail the history of how we started using Spark, and how the
need for building, submission, and monitoring frameworks were developed in our team. 1
will introduce these software briefly, and also describe how we had to configure them to

cooperate with each other and cope with our requirements.

3.1 The evolution of our executor frameworks

This section will the demand for running Spark applications in our production environment

evolved, with high priority being on stability, and for one-click submission.

3.1.1 Running manually

When I came to CERN in September 2015, the team was only running 2 Spark jobs, both
once a month. But rather soon, the number of jobs grew. Submitting those two jobs once
a month was possible by having the sources of them available on one specific machine, and
then adding a cron job which schedules them. Quite soon, we had some Spark Streaming
jobs ready for deployment. Of course they ended up in the same machine, but no one knew
if they were running fine. They could die and one would notice it only a week thereafter.
The same applied to the non-streaming executors that were started by cron. We had no
way to know if they were running fine, unless we checked the output data, or the logs of

the jobs. Also there would have been loss of data if the streaming job had been terminated.

3.1.2 The Python script

We knew the manual way was not feasible for the long term, so we were in search for
something that would schedule the jobs for us and send notifications if there would be
any problems. However, we did not find such a thing, so we decided to develop our own

software for handling these.

11

First, we moved all our sources into a git repository, without the built artifacts. At the
time we only had Python jobs, which do not have to be compiled into a jar, that simplified
things. The first version was a very basic python script, which did the following;:

1. Clone the git repository containing the sources every 2 hours.

2. Check if there are new versions available, if yes, recompile the sources, and restart

the streaming jobs.
3. Also check for dead streaming jobs. Restart them if there were any.

4. If there are any new jobs, submit them, or kill the ones which are not in the repository

any more.

5. Add and remove cron jobs for the scheduled jobs.

As one can see from the list, our first Python script already supported compiling of sources

(both SBT and Maven), in case we had Java or Scala jobs to submit.

3.1.3 The spark-job-runner package

The Python script was clearly an improvement compared to the manual way, but it still

had some flaws:

e No support for High Availability (HA): If the machine running the script would be

having a failure, all jobs would not be running.

e Still no email notifications, if a job dies too frequently: If a streaming job were
misconfigurated, it would just be restarted every 2 hours, but it would not produce

any actual output.

e The Python script was distributed as a Puppet resource, which is not what Puppet
should be used for.

Together with some highly needed bug fixing, I addressed the aforementioned issues in the
next iteration of our script. First I converted it to a quite simple RPM package, called the
spark-job-runner, which just installs our script as a Python module. I also added a way to
store the timestamps when a job was restarted. A cron job would run every morning, and
send an email report about which jobs had failed the past day. Meanwhile my colleague
had just created a small Python module called master-slave. It is used to be installed on
multiple machines, which would then act in a master-slave hierarchy: of all the machines
which are registered to the same path, only one can be the master. If the health checks
fail on the machine, or it just does not send any heartbeats, a new slave will be elected
as master. The module was aimed to be multipurpose, so it could be reused for different
situations. One of these situations was the spark-job-runner. We put multiple machines
inside a hostgroup, deployed the master-slave packaged, and only the master was allowed

the execute the job runner workflow every two hours.

12

3.1.4 Problems with the spark-job-runner

The spark-job-runner had been running for quite some time, but it still had problems. To
be able to monitor each job, we would submit them using the client deploy, which means
that the driver process would stay on the local machine, giving us the ability to monitor
the job through its lifetime, and also terminate it easily by just killing the driver process.
However, these driver processes consumed a lot of memory, and there was the possibility
to not have enough memory on the runner machine to be able to execute all jobs (even
with extra large VMs). Also the monitoring consolidation happened at that time, which
meant that we had to find a way to run the WLCG and IT monitoring Spark jobs in the

same way.

3.1.5 Evaluation of Mesos Chronos and Mesos Marathon

After the migration, one of the first goals was to find a new way to submit Spark jobs.
This was required because development began on multiple data processing applications,
and by the time those are ready to be deployed, we should have something to submit
them to.

Initially, we browsed for alternatives. We were searching for something which should
be able to run both streaming and batch jobs. We found Mesos Marathon and Mesos
Chronos. Both of these take a command, which is executed on one of the predefined
machines. Marathon continually monitors the command, and expects it to be running
forever. If the command exits, Marathon automatically redeploys it on a different execu-
tor. Chronos does not monitor the command, but instead has an interface for defining
fine-grained execution times for tasks. In figure 3.1 you can see an example architecture,
which would benefit from using Chronos. Since it is running in a Mesos container, it can
be deployed remotely, while making use of databases and execution frameworks such as

MapReduce, Hive, Pig, or even Spark.

The two frameworks perfectly fitted our requirements, but had one limitation: they require
the commands and files to be present on the current executor. However, they both support
running Docker containers. Here we came up with the idea that we should bundle our jobs
inside Docker images.

The reasoning for it was that jobs would be perfectly abstracted from each other. Deploy-
ment of the jars and any additional resources would be done with the image. We can use
the Docker registry and its tags for having different versions of an application available.
I did the first tests, where I deployed Marathon and deployed the Chronos Docker image
inside it. Installing Marathon is as easy as registering the Mesos yumrepo and installing
the marathon package directly. Marathon can be started as a service. Marathon requires
the Java 8 SDK to be present, and since CentOS 7 comes with Java 7 by default, we had

to install a newer version explicitly, and set it to be the default one using alternatives.

13

-
A —
DB1
DB3
DB2

AN

[orare]
o]
L |
Mesos Master

Mesos Slaue

. %e

Elastic
MapReduce

Hive B] Fig D] Cascadin?] Cascaln?]

Figure 3.1. Chronos sample architecture[18].

When I instructed Marathon to start the Docker image of Chronos on any of the
Mesos slaves, it would complain that none of the workers were able to execute Docker
containers. Of course the slaves require the Docker daemon to be running, but that
seemed to work fine locally. The solution was to put the text "'docker,mesos" in the
file /etc/mesos/slave/executors. This would tell the Mesos slave service that it is able
to execute both Mesos and Docker containers. By default, it only accepts Mesos contain-
ers.

The next problem I faced was more complicated. Whenever I restarted Docker, and ran
the Chronos image, it would work fine for around 30 minutes. After that, connection to the
port would be refused, and it would only work again if the Docker service was restarted.
The root cause turned to be Puppet. Whenever a Puppet run happens (by default, each
hour), the iptables module clears all unknown rules from the INPUT chain. This chain
contained rules inserted by Docker, which rules would forward packets to the DOCKER
chain in some cases. The solution to this problem was defining the exact same forward rules
in the Puppet manifest, so they would not get purged. Finally, there were some simple
configuration tweaks required, as inserting our Zookeeper URL into the Marathon config-
uration files, and increasing the Marathon task timeouts so that an extra-long Docker pull
would not time out before it could start the container. The resulting Puppet manifest for

the Spark masters can be seen in the appendix, section A.1.

14

3.2 Selecting our build tool

When the two teams merged, we were using different ways to create Spark jobs. We were
using Python and Scala for writing applications, and Maven or SBT for building. While
all of these work fine, it was time to settle on one language and build tool. Scala was
quickly selected for the programming language, since the Java and Python API for Spark
and often quite behind, and have limited support compared to Scala. Also writing a data
processing application in Python for Spark is only preferred if its code can fit on a sheet
of paper. Else one is better off with Scala.

Selecting the build tool was not that easy. We decided to make a comparison between
all available options, and have a vote after the results are in. The three competitors were
Maven, SBT and Gradle.

The points of comparison included: build speed, shading and debugger support, parent
project support, and community usage.

It is hard to find a Scala project which is built with Gradle (probably because it is a
latecomer), but it surprised us how fast is was. Building an assembly jar was twice as fast
as SBT, which finished second. Maven was the only one which did not support iterative
compilation, which means that it did a full build even if only one source file changed.

All three supported parent projects and shading. Debugger support was perfect for SBT
and Gradle, but Maven was cumbersome in this aspect. The JVM args for an application
run could not be injected from the process arguments, but had to be explicitly declared in
the pom.xml. IDE integration was also limited: IntelliJ IDEA was missing the Scala SDK,
since that was added as a Maven dependency, instead of providing the one available on
the local machine.

Additionally, I did a subjective comparison on how simple the build files are: Gradle won
this by being the shortest and easiest to read.

In table 3.1 I listed the points of comparison and the results. Since SBT is also one of the
most popular build tool in open-source Spark projects, and performed quite well in our

tests, we settled on that.

Point of comparison Gradle Maven SBT

Speed Fastest Slow Fast

Incremental build Supported NOT supported Supported

Build file complexity Simple Complicated Complicated
Shading plugin shadow maven-shade-plugin sbt-assembly
Debugging support Flawless JVM args not set Flawless
Community Least used | Not updated anymore | Thriving community
Parent project support | Submodules | Parent pom files Multi-project builds

Table 3.1.

Comparison table of Gradle, Maven, and SBT

15

3.3 Running applications in containers

In this section I would like to give a short introduction on how we managed to package a

Spark job, ready for submission. First, let us list the files necessary for a job:

1. The Python script (if written in Python), or jar file (if written in Java or Scala)

containing the code written by us.

2. A keytab file for authenticating as the operations account, giving the job access to
the Kerberos-secured HDFS and YARN cluster.

3. Docker credentials, allowing the worker access to the private Docker registry.

4. Any additional configuration or supplementary files required by the job itself.

A major issue is that these files have to be available on every worker - since we do not
know on which one the job will be started (Marathon and Chronos select one based on
the offered resources by Mesos). For one job these might be easy to do, but when one has
10 different jobs to manage on the cluster, this can easily be a hard task: keeping files in
sync between machines and job versions can be quite a hassle. One would not also send
the keytab and Docker credentials around in the cluster or put them somewhere on the
web. And where would the jars or python files be stored?

A lot of these open problems and questions got solved by packaging our jobs in Docker

images. It has some minor drawbacks, but its advantages proved to be well-suited for us:
e We can package the job and its supplementary files inside the container. The files of
different jobs are clearly separated.

e The keytab and Docker credentials are distributed securely via Puppet, and are

mounted by the Docker job.

e Jobs are packaged as-is. We can add additional resources and even RPM packages

just for that specific job without bloating the configuration of all the workers.

e Since we use docker run, the logs of the application will be available as Docker
logs, and can be viewed very easily using docker logs. These logs are also stored

for exited containers, allowing us to see previous failure causes.
The main drawbacks we see, are:
e An extra layer of abstraction, which makes the jobs a bit less performant. This is not

effecting us entirely, since only the driver executor is running in Docker, the other

executors are running on the YARN or Mesos cluster, without the extra abstraction.

16

e Large image sizes can be a problem when distributing an image. Since it does not
only contain the job and its files, but also a full fledged operation system, it can be
several hundreds of megabytes large. However, since we have a private registry in
our own data center, downloading and uploading images this big is still just a few

seconds.

e We have to make sure that Docker is configured and running properly. This was
mostly a burden in the beginning. For example, we have found a rare case where
our job would hang when initiating any network connection, but just on some of the
workers. The root cause of this was that those workers had IPv6 addresses for the
DNS servers, and Docker was not prepared for that. Using a newer Docker version
downloaded from their official yum repos solved this problem (the CentOS repos are

months behind in the versions).

3.3.1 Building the Docker image

Our original idea for the base image was to start from a CERN CentOS 7 image. This
was required because it contained the Kerberos configuration to connect to the correct
realms. This is not the optimal solution, because the image is quite big compared to an
Arch Linuxr image with Java, but it was the perfect image for creating our first images.

The initial working Dockerfile was this simple:

FROM docker.cern.ch/linuxsupport/cc7-base

MAINTAINER it-dep-cm-mm-monitoring-all@cern.ch

RUN yum -y install java krb5-workstation.x86_64

COPY target/spark-ddm-#*-jar-with-dependencies.jar /monit/spark-ddm/

When the image was built, it was uploaded to the CERN Docker registry, under the team
organization (each Spark application has a different project in the organization). After
running jobs have been built with this Dockerfile for some months, we decided to optimize

it a bit. Its main problems were:

1. The image was very big (almost 1 Gb), because the official CERN base image was
700 Mb.

2. Mounting the Mesos library was not possible, because it had some .so files in the
\usr\1lib\ directory.

3. It did not have python-pip, which might be necessary for downloading some Python
dependencies if we are talking about a Python job. Of course these would only work
on the driver node, but that is fine for the preparation phase, or for jobs running

only in local mode.

17

4. Also we wanted to have a base image, which all of our Spark jobs can use, and have

fixes for all issues listed above.
A second version of the Dockerfile provided a solution for all of these problems:

FROM centos:7.2.1511

MAINTAINER it-dep-cm—-mm-monitoring-all@cern.ch

RUN rpm -iUh

— http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-7.noarch.rpm

&% rpm -Uh

< http://repos.mesosphere.com/el/7/noarch/RPMS/mesosphere-el-repo-7-2.noarch.rpm
&& yum -y install java-1.7.0-openjdk krbb5-workstation.x86_64 python-pip

— python-devel mesos

&% yum clean all

COPY krb5.conf /etc/

As one can see, we have installed python-pip and the Mesos package as well. By using
the original CentOS 7 image as the base, we shaved off a few megabytes (it takes up 562
Mb), while still adding features such as these new packages. The CERN specific Kerberos
config has to be explicitly provided though, since the defaults will not do. This image can
be used as a base image for any of our other images.

By building our images with the base image as the foundation, some core components
as Java and Mesos will be available inside the container. Others, which are configured
via Puppet (Spark and its Hadoop dependencies for example) are made available to the
container by mapping those directories to inside the images (using volumes). An overview
of how a job is running in a slave and which components are located where can be seen in
figure 3.2.

Slave VM

Docker

Job

Spark and Hadoop

Figure 3.2. Stack overview of a job deployed in a slave
A job image has to be run with some important arguments:

18

docker run --net=host -t -i \

-v /etc/hadoop/conf:/etc/hadoop/conf/ \

-v /usr/lib/spark:/usr/lib/spark \
docker.cern.ch/monitoring-service/spark-ddm:test \

/bin/bash -c "kinit -k -t /etc/hadoop/conf/monitops.keytab

— monitops@CERN.CH;/usr/lib/spark/bin/spark-submit --class

— ch.cern.monitoring.BatchJob --master yarn-client

< /monit/spark-ddm/spark-ddm-0.0.1-SNAPSHOT-jar-with-dependencies. jar

— ——job-argument value"

When the image has succeeded with building, we have to upload it to the CERN private
Docker registry. Authentication is handled via our LDAP credentials.

3.3.2 Running the built image

We have decided to use our Mesos worker machines for running the Docker images. After
numerous small fixes and fine-tuning we deployed the Puppet configuration in production,

which can be viewed in the appendix, section A.2.

As one can see, Chronos is deployed as a service in each worker, instead of launching it as

an application from Marathon. This was changed for the reasons below:

1. Running it as a Docker image from Marathon would result in a Docker image running

in a Docker image, which could lead to configuration issues.

2. When submitted from Marathon, it is running on one random machine. Only this
one machine can submit any task, which could be a bottleneck if there are multiple

Chronos submissions running in parallel.

3. If the worker machine running Chronos becomes unresponsive, there us a window of
a few minutes where Marathon has to recognize this and redeploy it on a different
machine. During this timeframe, a job submission might be missed. When running

as a service, the services on each worker communicate with each other via Zookeeper.

After the evaluation, a recurrent question was how we could supply secrets and passwords
to the Docker images, without exposing them in Puppet or inside Marathon/Chronos.

In Puppet, we have a module called teigi, which securely transports secrets and passwords
into files on the VM from an external store.

A secret is first added using the thag command-line utility as a key-value pair. When creat-
ing a new secret, one has to define a host or hostgroup to attach it to. It will only be visible
for that domain, and it checks in Active Directory if the current Kerberos credentials have
access to that domain. We define all our secrets for the monitoring hostgroup.

When Puppet runs, the teigi module will access this external store with the key defined

in the manifest, and will put its value in a file or fill its placeholder in a template.

19

We gave the instruction that these secrets should be in separate files such as
/etc/monit/monit_es or /etc/monit/monitops.keytab. The command running inside
Docker container has to read these passwords. To solve this, we mount the /etc/monit
to each container, so it will be visible as a directory there, and either read the files inside

the application, or create parameters for it:

docker run ... spark-submit application.jar --es-password $(cat

<« /etc/monit/monit_es)

The file /etc/monit/docker.tar.gz is the compressed version of the /.docker directory
after a login with our operations user account to our private Docker registry.

This file is provided to Marathon as a supplementary resource for each job which has to
pull an image from our registry. It will recognize the file as the authentication keys for our

registry and will use it for authenticating against the private Docker registry.[20]

3.4 Scheduling

The two scheduling types - batch and streaming, are very different. The former has to be
submitted at specific times, the latter has to be always running. We solved this by running

the two types in two different submission frameworks.

3.4.1 Batch jobs in Chronos

We defined batch jobs as applications which do not run for an infinite time, so they are
expected to finish sooner or later. Take for an example a data aggregation crawler, which
launches when a new day starts at midnight, and takes all files from the last day, and
compresses them. This way writing and reading those will be a grade slower, but they will
take up a lot less space on our storage systems.

We would just like to run this crawler once a day, exactly at midnight. It is not a viable
option to have someone there each night submit the job to the cluster. We could use a
cron job, but what if the VM becomes inaccessible while running the job, and it fails?
As I already described, we decided to use Mesos Chronos to do this. It provides a solution
for all these problems I mentioned.

Configuring a job in Chronos is a bit more challenging then it initially seems. Although
it is possible to create new entries from the web UL, it does not expose all fields (such as
Docker image, and other parameters, which are used infrequently), and it has a known
bug that changing properties via the web interface can not be trusted|6].

Instead, the REST API has to be used. For an example payload of creating a new appli-
cation in Chronos, see the JSON body in appendix A.3.

The latest status of the jobs can be inspected on the web interface, of which an example

of can be seen in figure 3.3.

20

NAME +

Daily clof

make-Isf-report

make-monthly-report

spark-jm-acc-batch

Figure 3.3. Chronos overview of defined jobs.

It is also possible to define dependencies between different jobs. E.g. to state the order of
running if two jobs would be submitted at the same times.

One may also notice on the screenshot, that we already have 6 entries in Chronos. This
is because we made this service available for other groups inside CERN, so they can run

their jobs on our Spark cluster.

3.4.2 Streaming jobs in Marathon

Streaming jobs are expected to run forever. If they would crash for any reason, they should
be immediately restarted, and they are required to continue their work where they left off,
meaning that the crash should not result in any data loss optimally (delays in the output
might happen though).

Our framework for running such jobs is Mesos Marathon. Its simple, yet elegant user-
interface, together with the plentiful options to schedule a job to the Mesos cluster made
us feel confident that Marathon was the right choice for running streaming jobs.
Compared to Chronos, the configuration of a new job is very similar in the terms of fields.
However, this can be also done on the web interface, which is quite easy to use. In figure
3.4 one can see how the dialog looks like. On the left menu the switch between the different

configuration sections can be done, most of them being optional to fill.

A nice feature of Marathon is the ability to do health checks on applications. This
means that at specified intervals, a given command or HTTP request is ran in the
Docker container. If the result is different from expected, it will mark the application as

unhealthy, and will restart the job.

21

New Application JSONMode @

| /spark-jm-realtime

CPUs

0.5

Commanc

Jusr/lib/spark/bin/spark-submit --master local[*] --conf spark.ui.port=$PORT0 --conf
spark.driver.memory=1536m /monit/spark-jm-realtime/spark-jm-realtime-assembly-
1.0.jar --es-username=meonit --es-password=5(cat /etc/monit/monit_es)

Figure 3.4. Create application dialog in Marathon.

22

Chapter 4
Data retrieval and ingestion

This chapter will be about the configuration of Apache Flume, a software which specializes
in reading and writing data in a distributed and reliable way. This chapter will go into

quite much detail how we achieved to get data flowing between the sources and the targets.

4.1 Objective

The job monitoring aggregation and processing stack is divided in multiple steps. The
PanDA database is a highly optimized Oracle database, which is the primary information
source of any physics simulation and analysis task to be run within the ATLAS experiment
collaboration.

The following external data sources are used for supplying metadata for each entry:

ATLAS Grid Information System (AGIS) - PanDA queues information|8]

AGIS - Topology information

PanDA error codes, statuses and types database available in our ElasticSearch cluster

(static, updated manually only)

Prodsys II database, containing extra data about the specific simulation tasks

4.2 Input sources

In this section I will describe the input sources from the ATLAS Job Monitoring perspec-
tive: where they are reading from, in what context the data is relevant to us, and how and

where it will end up in our architecture in terms of storage.

23

4.2.1 PanDA job database

As a start for the conversion to the new architecture, we have to read from the PanDA
database. Since all our data collectors and transfer points use Flume to do this, we were
looking for a Flume based solution, to keep the collectors on the same base. Thus we were
looking for a solution that would make it possible to read from an Oracle database, and
create flume events from each row. What is really important, that this type of reading
has to be continuous in the sense that it reads in small batches, but only the rows which
have changed since the last batch. Meanwhile the CERN IT Database team was adding
the finishing touches to their flume JDBC reader, which was exactly developed for the
purpose we were looking for. They were also happy that someone aside from them would
be testing their software, so we were free to use. It is also available to the public in their
GitHub repository|[5].

4.2.2 Configuring the Flume agent for reading from PanDA

In this part of the chapter I will explain how we configured the JDBC reader Flume plugin
to read from Panda. Although it will contain quite a lot of code, I recommend the reader
to read the explanations, because it has some important explanations about how Flume
and the reader works. In figure 4.1 one can see how this component is connected to the

other parts of the architecture.

<y
Poll ljl[t)lr;g Push -.
Kafka
PanDA source -

Figure 4.1. Flume JDBC source data flow direction.

First we did some tests by deploying flume-ng-audit-db in a VM, and just trying to un-
derstand how it works by using it. Here is a simplified version of our final configuration

(with some modified fields such as usernames and URLs for security reasons):

reader.query.path = /etc/flume/agent-jdbc/panda.query
reader.connectionUrl = jdbc:oracle:thin:@redacted-host:10000:servicename
reader.username = USERNAME

reader.password = %TEIGI__monit_pandasrc_db_pass__%

batch.size = 40000

batch.minimumTime = 180000

reader.table.columnToCommit = modificationtime

reader.committingFile = /etc/flume/agent-jdbc/query.status
reader.scaleAwareNumeric = true

reader.expandBigFloats = true

24

duplicatedEventsProcessor = true

100000

duplicatedEventsProcessor.header = false

duplicatedEventsProcessor.size

duplicatedEventsProcessor.body = true

duplicatedEventsProcessor.path = /etc/flume-ng/agent-jdbc/last_event.log
interceptors = iproducer iversion itype itypeprefix itimestamp
interceptors.itimestamp.type = timestamp
interceptors.iproducer.type = static
interceptors.iproducer.key = producer
interceptors.iproducer.value = panda
interceptors.itypeprefix.type = static
interceptors.itypeprefix.key = type_prefix
interceptors.itypeprefix.value = raw

interceptors.itype.type = static

interceptors.itype.key = type

interceptors.itype.value = all

interceptors.iversion.type = static

interceptors.iversion.key = version

interceptors.iversion.value = 1

I will explain this configuration line-by-line.

reader.query.path = /etc/flume-ng/agent-jdbc/panda.query

This is an important line in the configuration. This is the path to a file which contains
the query which will be executed at the beginning of each batch to gather all the latest
data from PanDA. In the next section I will show this query and describe it in detail. The
most important thing to know about it, is that it has a WHERE filter with a template value
which is filled by the JDBC reader automatically.

reader.connectionUrl = jdbc:oracle:thin:@redacted-host:10000:servicename

This is a JDBC URL to the host and port where the database can be accessed. It utilizes
the Oracle Thin JDBC client, which should be available on the Java classpath.

USERNAME
%TEIGI__monit_pandasrc_db_pass__%

reader.username

reader.password

The username - password combination will authenticate the reader to the database. The
password is not the password itself, but a special string, which is recognized by the Teigi
puppet module, and refers to the key monit_pandasrc_db_pass. In the actual configu-

ration file, this will be replaced by the password defined under that key in tbag[1]. Teigi

25

makes sure that the password is securely transported to the VM where the configuration
file is created, and also ensures that only the authorized hosts can use this key (this is

done by having attached the key to a specific hostgroup).
batch.size = 40000

This determines the maximum number of events to be read from the database in one batch.
So if the query would return more than 40,000 rows at the beginning of the batch, only the
TOP ©BatchSize would be actually collected by Flume. The rest, which is not collected,
will be collected in the next batch - of course the same thing can happen there again. By
setting a batch size, we add throttling to Flume, but this comes with the drawback of
having increasing delays. We selected this value to be around 2-3 times the count of the

usual amount of rows we get.

batch.minimumTime = 180000

The time in milliseconds to wait between batches. We configured this to be 3 minutes (as
it is with the old collector). This interval is small enough to catch the important state
changes, but not too frequent, as it could create too high a load on Oracle, if retrieved too

often.
reader.table.columnToCommit = modificationtime

As explained before, the agent reads the rows that have been changed since the latest
batch. For this, the agent has to detect which rows are changed and which were there
before. This is done by having a column in the table, which is updated when a row is
modified. In the panda database, this column is the modificationtime. If any property
of a job changes, the timestamp on this column is also updated. The agent has a special
value under the alias :committed_value. This stores the timestamp when the last batch
ran. So a really simple SQL query to just get everything from the database would be

similar to this one:
SELECT * FROM panda WHERE :committed_value < modificationtime

This collects every row whose modificationtime was after the last batch. In practice, the

query is a lot more complicated compared to this, but the idea is exactly the same.
reader.committingFile = /etc/flume-ng/agent-jdbc/query.status

This is the path to the file which stores the latest position of the agent (that is
:committed_value). Before the agent is started the first time, it is recommended to be

populated with a beginning value. We set this to be to the current machine time minus

26

2 minutes. I noticed that if the time is in the future, the agent did not want to start up,
even not hours after the specified timestamp, so we subtract those 2 minutes for safety.
The first time it is us who set the timestamp in this file, but after each run the agent
will update it with the latest :committed_value. One additional thing: when there are
more rows returned than the batch size, then there will be rows discarded. If we set the
committed value to the current time, the next batch would miss those rows, which is
clearly not the intention. This is why the agent does not take the current time for the
new :committed_value, but the value in the modificationtime column of the last row.

Because of this, it is highly recommended to order by modificationtime in the query.

reader.scaleAwareNumeric = true

reader.expandBigFloats = true

These two properties were developed by me. We had some problems with numbers dis-

playing in the JSON output. I will demonstrate it with the following example:
{"pandaid": 896.0, "milliseconds_since_submission": 1.45678886E9 }

The first problem is that the PanDA ID is displayed as a float, but all IDs are actually
integers. In the database the type is a NUMBER(12, 0) which means that although the
NUMBER type would allow it by default, but this specific type has disabled fractional num-
bers for this column. So I added a check in the reader which checks if the numeric type
(which is called NUMBER in Oracle, but this naming varies per DBMS) has a 0 scale or not.

If yes, the read values will be treated as integers for that specific column.

The second problem is that milliseconds_since_submission is displayed in an expo-
nential format. This can result in precision loss, and also might be inconvenient to read
for humans (although the official JSON format does support it). The cause of this issue is
that Float.toString () will use the exponent format when the value to convert to string

is bigger than a specific number.

duplicatedEventsProcessor = true

100000

duplicatedEventsProcessor.header = false

duplicatedEventsProcessor.size

duplicatedEventsProcessor.body = true

duplicatedEventsProcessor.path = /etc/flume-ng/agent-jdbc/last_event.log

The duplicated events processor checks if there are duplicate events. By theory, this may
happen when the agent gets restarted, and this will ensure that there will be no distinct
events with the same data. For this, the event processor stores the hash string of each
event in its buffer, which we have defined to be 100,000 events big. Since a hash string
is pretty short (compared to the original data), this file just uses a few megabytes on

disk. The header and body properties of the processor define if the headers and/or body

27

should be used when computing the hashes. We set a timestamp header with a Flume
interceptor when we get an event in the source (so we know when it has been read from
the database), so even though two events are identical in data, they will still not be picked
up by the duplicate events processor, because the timestamp, and so the hash will differ.

So we disabled the headers for computing the hashes.
interceptors.itimestamp.type = timestamp

The itimestamp interceptor adds a timestamp header to the event, which is the current

time in a POSIX time format.

interceptors.iproducer.type = static
interceptors.iproducer.key = producer
interceptors.iproducer.value = panda
interceptors.itypeprefix.type = static
interceptors.itypeprefix.key = type_prefix
interceptors.itypeprefix.value = raw
interceptors.itype.type = static
interceptors.itype.key = type
interceptors.itype.value = all
interceptors.iversion.type = static
interceptors.iversion.key = version

interceptors.iversion.value = 1

Static interceptors just add an extra header with a static value for a defined key. So the

code above will just append these headers to all events:

producer: panda
type_prefix: raw
type: all

version: 1

The first three headers are always required, and set on all our Flume sources. In section
4.2.4 1 will describe how we use headers to route our data. The last header named version
is only checked by the ElasticSearch sink (as of now), which routes to a different index

based on the value.

4.2.3 The query executed by the JDBC agent

The full version of the query can be found in the attachments within the file panda.query.
This is a simplified version, which uses SELECT * instead of selecting the specific columns

we want.

28

SELECT * FROM (

UNION

UNION

UNION

SELECT =*

FROM atlas_panda.JOBSACTIVE4 WHERE modificationtime >=
TO_DATE(’ :committed_value’, ’YYYY-MM-DD HH24:MI:SS’)
AND cloud != ’0SG’ AND VO NOT IN (’cms’,’CMS’)

ALL

SELECT *

FROM atlas_panda.JOBSARCHIVED4 WHERE modificationtime >=
TO_DATE(’ : committed_value’, ’YYYY-MM-DD HH24:MI:SS’)

AND cloud != ’0SG’ AND VO NOT IN (’cms’,’CMS’)

ALL

SELECT *

FROM atlas_panda.JOBSDEFINED4 WHERE modificationtime >=
TO_DATE(’ :committed_value’, ’YYYY-MM-DD HH24:MI:SS’)

AND cloud != ’0SG’ AND VO NOT IN (’cms’,’CMS’)

ALL

SELECT =*

FROM atlas_panda.JOBSWAITING4 WHERE modificationtime >=
TO_DATE(’ :committed_value’, ’YYYY-MM-DD HH24:MI:SS’)

AND cloud != ’0SG’ AND VO NOT IN (’cms’,’CMS’)

) ORDER BY "modificationtime"

What

this does is ask for all the data in 4 tables at the same time:

the active jobs table
the archived jobs table

the defined jobs table

the waiting jobs table

All table names end with the number 4. This number indicates the version of the frame-

work. Most queries and table names have a 4 at the end, indicating that there are (or

were)

also older versions at hand.

Each subquery filters on:

o the VO (Virtual Organization) should not be CMS (as of now, we are only monitoring
ATLAS jobs using the PanDA database)

e the Cloud should not be OSG (this is because the database is also used by some

other experiments, and data could be mixed up otherwise)

e the modification time should be later than the dynamically

:committed_value, which is initialized by the Flume agent.

29

changing

When the rows returned by the subqueries are unionized, there is a final ordering done
based on the modification time. This is important, because the agent will store the
modificationtime of the last row returned (with the TOP ©BatchSize added). If the
result were not be ordered by this timestamp column, the last row would have a random

time between the latest modificationtime and :committed_value.

4.2.4 Mapping from Flume event headers to output directions

Our architecture is based around three main data storage formats, which are:

e an FElasticSearch cluster provided by the ElasticSearch service

e an HDFS cluster which is shared with other IT services (each service has its own

directory with proper permissions)

e an Apache Kafka deployment with multiple broker machines for high availability

Not all input sources route to all outputs, since each data storage format is for different

usages:

e ElasticSearch is mostly used to store the documents for displaying Kibana dash-

boards for users.
e HDF'S is used for long-term archival and for supplying data for batch jobs.

e Kafka sends the events as messages to the subscribed consumers, which are the

streaming jobs doing real-time analytics.

As noted earlier, three Flume headers are mandatory: producer, type_prefix and type.
The producer is the name of the input. For example, fts (File Transfer Service) or panda
(the PanDA database rows). The type prefix is for differentiating between different rep-
resentations of the same data, which is mostly done by having a raw prefix for the data
coming from the sources, and using a different prefix for processed data. The type is used
for differentiating between event types. F'TS triggers messages for transfer started, state
change, or completed. Each type’s message is built up differently, so they have to be under

a different type in ElasticSearch too, so we can match the templates to the messages.

Each storage system has a Flume sink. This is where the headers are translated into output
directions. Originally, the route to these different sinks were defined in each source. This
resulted in channels getting full even if one of the three sinks were down, since the message
has to be kept until the sink is back again.

Also the architecture was quite complicated at this point. So the team decided to write
to Kafka from all sources, and pull from Kafka inside the sinks. This introduces Kafka as

a single point of failure, but the arguments against these are that Kafka is either way a

30

key point to our infrastructure, and by using its high availability settings (using partitions
and replicas), we can ensure that it could handle VM’s falling out of the cluster.

Before this change, if we had had 6 sources and 3 sinks, with each source writing to all
sinks, there would have been 18 different ways the messages could go. With having Kafka
inbetween, that number would be reduced to 9, 6 connections between each source and
Kafka, and 3 connections between Kafka and each sink. Figure 4.2 describes how the data

comes from Kafka and is split into two streams.

ElasticSearch

ElasticSearch
sink
Poll
o
source _
HDFS sink

e —

Figure 4.2. Flume Kafka source splitting incoming data to
Hadoop and ElasticSearch.

HDFS sink

The HDF'S sink dumps all the data into files in HDFS directories. The path for these files
can be pretty long, but it is easy to write jobs for. This is the format defined in the Flume

configuration:

/project/monitoring/archive/Y%{producer}/%{type_prefix}/%{type}/%Y/%m/%d.tmp/

e /project/monitoring is our own directory provided by the Hadoop service.

/archive is where we put all the important data. We also have a /testing directory

on this level to just store temporary files for testing jobs or similar things.

/%{producer}?} is the header which changes per input source.

/h{type_prefix} is the representation (mostly raw).

/%{type} is the type of data.

/%Y is the year extracted from the timestamp (which is set in the Flume sources).

31

e /%m is the month of the year extracted from the timestamp (as a 2 digit number).

e /%d.tmp/ is the day of the month extracted from the timestamp (also as a 2 digit
number), with .tmp added as a postfix.

Each file is prefixed with the following string: FlumeData.%{hostname} The hostname in
the prefix ensures that two HDF'S sinks do not try to write into the same file, which would

drastically reduce performance (because of the waiting for releasing of file locks).

ElasticSearch sink

The 2 parameters for inserting into ElasticSearch are the index name and the type name.
The index name is parametrized with the producer and the version:
monit_Y%{producer}_vi{version}

The version is only mapped to the destination in ElasticSearch, because Kafka and HDFS
do not check if the messages conform to any structure, they just dump the body of the
event to its final destination. But in ElasticSearch, we use index templates, which have
to match the incoming documents. So we also utilize the version header, to forward the

document to a different index in case the version increases.
The type name contains the 3 mandatory headers:
%{type_prefix}_Y{producer}_l{type}

The index templates had been previously constructed, refined and uploaded to our cluster

before production data started coming.

Kafka sink

Kafka calls the queues which store messages for different types in separate topics. The
mapping from Flume headers to topic names is pretty simple:
J{producer}_Y{type_prefix}_l{type}

So for example, a consumer should subscribe to topics such as panda_raw_all or

fts_raw_complete.

4.3 Increasing the reliability of the Flume source

While we had the source deployed in our QA environment, we discovered a few issues,
which needed intervention and applying fixes either to the original source code of the
Flume source or the hostgroup Puppet configuration.

Firstly, we noticed that after an agent restart, the first database read would only happen

32

10-30 (sometimes even 60) minutes later. A few minutes delay would be understandable,
since it is just supposed to read every 3 minutes, but this was way more than that. The
logs were not pointing to anything suspicious, they reported that the source was indeed
started, but the database read batch was not executed.

Usually when I do not get enough information from the Flume logs, I attach a debugger
with the sources opened, and add some breakpoints. Since I did not know where to put a
breakpoint, I restarted the agent, waited a minute to make sure the initialization process
surely finishes, and then attached the debugger. After that, I paused all threads, which
shows the current stack trace of each thread. There were quite a few of them, but I quickly
found the one called Main. Checking the stack trace it was waiting on a native method
called getRandom (), which was inside the Oracle Thin JDBC client implementation. Then
it all occurred to me: the Oracle JDBC client uses /dev/random for its security model,
but /dev/random blocks if the entropy pool is empty, which blocks until there is enough
entropy. After issuing a fix, which solved this, the agent immediately started fetching the
latest data from the database, as expected.

Following to the deployment in QA we executed some simple tests against the Python
collector . Since real-time processing step does not contain any post-processing, we were
interested to find out if all the data is extracted from the database correctly, and there are
no duplicates or missing jobs. We ran the flume sources for multiple hours, and compared
the number of documents in ElasticSearch on non-overlapping windows of 10, 30 and 60
minutes.

All numbers were matching, except on the window of 1 hour, where the new cluster con-
tained 1 document less compared to the old one. Using binary search, I pinpointed the
exact timestamp at which the difference appeared between the two clusters.

Since the timestamp format declared in Oracle has seconds precision, even a one second
bin yields multiple results. I retrieved the documents from both clusters for the one-second
bin, and compared the task IDs, which could be found in the body of each document.
When I discovered which specific ID was missing, I did a search in Kafka and HDFS for
that specific ID, but there was no result found. To make sure this was not an error in the
query itself, I did a search for a different task ID from the same bin, which did return
results for both storage systems.

So the specific job update was not present in either of the 3 used storages. This means
that the root cause had to be at the source. I had a look at the source code, and inspected
the parameters as well. The configuration displayed in section 4.2.2 describes the usage of
a duplicated events processor which can store up to 100 000 events. I suspected that this
might be the issue, since an incorrectly detected duplicate event might be dropped, while it
should not be. I opened the source code of this processor, and checked the implementation
of the detection for duplicates.

The processor generates a hash based on the body and or headers of the event (de-
pending on the configuration settings). The hashing is executed using the default Java
String.hashCode () algorithm, which returns a 32 bit integer, approximately 4.3 billion
different combinations. One might think that the probability of a hash collision would be

33

100 000 divided by this number, thus 0.002%.
But this is not the case. A principle called the birthday problem applies here:

The probability p(n) that in a room of n people, there exists at least a pair
that has the same birthday, we ignore the variation in distribution (in reality,
not all the dates are equally likely) and assume the distribution of birthdays

are uniform around a year of 365 days.[4]

Of course, we are not talking about people and birthdays here. But our hashing problem
is very alike: instead of birthdays, we take the hashed value, and instead of 365 possible

232

values, we have combinations (the distinct number of values an integer can take).

If n = 10° and k = 232, the probability could be calculated based on the following formula:

k! 2321
kn(k —mn)! 93210% (932 _ 105)|

p(n) = (4.1)

That does not seem like an easy calculation, even for computers. But there is an upper

bound formula which works fairly good on larger numbers:

p(n) = e~ (=1/2/k — ~(10°(10°-1)/2)/2% _ 3191 (4.2)

So the actual probability of no hash collision is around 31%, which will lead to events
being dropped even if they are not duplicates.

To fix this, I changed the hashing implementation to MD5, which hashes to a 128 bit
value, making the probability of two hashes colliding almost impossible. The change also
required to implement hashing of the Map<String, String> type, because the headers
are stored as key-value pair in this type. I studied the original Java source code to get
some ideas, and found that they XOR the hashed value with the hashed key, which makes

the following two maps have the same hash, and print this code true:

Map<String, String> mapl = new HashMap<String,String>();

Map<String, String> map2 = new HashMap<String,String>();

mapl.put("foo", "bar");
map2.put ("bar", "foo");
System.out.println(mapl.hashCode() == map2.hashCode());

In my implementation I added an offset to the value hash before applying the XOR
operation, so that it would return different hashes in the case above.
Aside from this patch, I also made some other improvements to the JDBC Flume agent

source code, which were all merged in the library and are available to the public on
GitHub.[16, 17]

34

4.4 Kafka, the middle man

As one may have noticed on the architecture diagram 2.2 on page 10, every component in
the stack depends in some way on Kafka. I will give a short introduction on Kafka, since
its initial release was not so long ago, and it might be unknown to some.

Apache Kafka is a message queue with extra features. Its most prominent feature is that
it stores the messages even if no one or everyone consumed it. Consumers can subscribe
and receive messages in real-time, but also fetch the messages from the past hour (given
that those are still available).

Kafka is supposed to be running in a distributed way, but it can also run on a single
machine, or even in-process (this is very useful when Kafka is a unit testing dependency
in Java projects). Kafka has a dependency on Zookeeper, which is used to coordinate the
distribution of messages, registering the consumers, and discovering other brokers in the
same domain.

Storage of messages can be done in-memory and on the hard disk as well. The former is
faster, the latter has a lot more space to offer. Usually the speed of the hard disk is more
than enough, and the throughput can scale by adding new broker machines.

Kafka tries to solve the usual problems with distributed systems by itself. When the
Zookeeper connection URL is set to the same value for different machines, Kafka will take

care of:

e Discovery and setup of other brokers
e Load and consumer distribution
e Automatic deletion of data after certain time or space consumed

e Support for streaming data from multiple brokers at the same time

At the monitoring team, we have been using Kafka for a while, although not as a
production service in the beginning. But together with the redesign of the architecture,
the need came for a temporary storage service, which would be able to store messages
for some hours at least. This was required because a processing service might be down,
and delayed output is even better than lost output. Another requirement is distributed
operation, because if Kafka is inoperable, the whole data flow stops. We wanted to
minimize the risk of this.

Although Flume does also fulfill these requirements, Kafka has a big advantage over
Flume: it plays really well with other software. It is very easy to connect to Spark or
Flume with it, which was very important for us. Also it takes care of distributed read
and write, which is very important in the case of Spark. When you read with multiple
machines (or executors) from a single source, you are mostly limited to the throughput to
that single source. Multiple consumers reading the same data are called consumer groups

in Kafka terminology.

35

When using Kafka, it seems that you are still connecting to a single source, but if the data
is stored on multiple Kafka brokers, Kafka will take care of connecting each consumer to
a different broker, which will multiply the speed. In figure 4.3 one can see an example
where two different consumer groups read from the same two Kafka brokers. In theory,
the two groups should finish reading at the same time, since there are only 2 brokers,

which will be the bottleneck when reading with 4 consumers.

Kafka Cluster
Server 1— Server 2
iz [t
| c2 \ J C6

Consumer Group A Consumer Group B——

Figure 4.3. Kafka consumer groups reading from two brokers.

Usually one does not use a Kafka setup for just distributing one type of data. To separate
messages of different types, so-called topics can be used. When uploading data to or
downloading data from a broker, you have to define a topic. Similar messages will be in
the same topic, which can be referenced by their name. Each topic will have two offsets:
the start offset and end offset. When a message is uploaded to a Kafka topic, it will get
an offset value. The first one will get the number 1, the second 2, it always increases by
one. The topic’s start offset is the offset value for the oldest message it stores, the end
offset is the offset of the most recent message. Usually messages are automatically deleted
when they are too old, and new ones are coming constantly, so these 2 markers are always

increasing.

4.4.1 Setting up and optimizing Kafka for monitoring data

Initially, we started with a Kafka development setup of 3 brokers, which was enough
for us for a surprisingly long time. Setting up a Kafka cluster was also pretty easy. It
requires Java 8, a Zookeeper URL in the configuration file, and after that its service can
be started. If another machine has the same Zookeeper URL, it will automatically join
the cluster, and start fetching the messages from the other broker so that the data is
more distributed.

The 2 main parameters for scaling are partitions and replicas. The number of partitions
means that how many machines a topic should be distributed onto. The number of
replicas is the number of copies to keep in the cluster, so if one machine falls out, another
machine can still have the same data, so there is no data loss at all. Each partitions will

have their own offsets, but the numbers can differ, since distribution is not always even.

36

In figure 4.4 one can see an example where one partition has less messages than the other 2.

Partition

Partition
1

(=]
[+
w
N
w
[=2]
~
(=]

Partition
2

=
[+
W
.
o
[=2]
~
(=]

Old

Figure 4.4. Anatomy of a topic.

Replicas copy partitions, which means that offsets should be the same in the case of flawless
operation, but there might be times when they are out of sync, which is not a problem,
but is usually a forecast that the cluster can’t deal with the current throughput or there
are communication issues. After a few months, we started seeing issues with our 3 broker
cluster. The common problem was that the disks of the brokers got almost full. We fixed
this by fine-tuning the log retention time to delete outdated messages more frequently.
But this was not enough for long, since this just delayed our problem. We were in need
of a cluster which would be able to cope with our present and future throughput. So we
designed 2 clusters, a smaller one for development, and a bigger one for production. Its

parameters are:

e 16 brokers, each 80 GB of disk space
e 20 partitions per topic
e 3 replicas for each partition

e 12 hour data retention time

Although the number of partitions is bigger than the number of brokers, this is not a
problem, some brokers will have 2 partitions instead of 1. Choosing a higher partition
number was done to prepare for the future: if we add 4 more machines, the partitions will
be rebalanced, and each broker will have 1 partition.

A Kafka cluster like this can be easily used to connect to other applications. Flume has a
Kafka sink and source, which support parallel reading by making use of consumer groups,
and writing as well (the different machines just write to the same topic). Spark has a
Kafka connector, both for streaming and batch usage. The connector automatically scales

if it sees that there are multiple brokers and executors available.

37

Chapter 5

Results and conclusion

In this short chapter I will summarize the state of this solution, and will give a few results
based on the latest progress. Also I will give an outline of the work required to make this

solution a production-ready architecture.

5.1 Results

In this past year I had the possibility to work at one of the few places in Europe,
where I had access to the resources and technical knowledge to create and run truly
high-performance distributed applications.

All this could not have been possible without the aid and experience of my colleagues.
Many of us worked hard together to build something which we all could be proud of and
use with great confidence. In my opinion, the resulting architecture fulfills all our present
and future needs - reliability, scalability and maintainability. I had to leave CERN before
it was put to test in a production environment, but the initial results while being still in
development were promising.

While I was still there, we were able to deliver around 100 GB of data through the system
per hour, day and night. We were able to deploy multiple Spark jobs which were running
and monitored constantly. All output data is being streamed to HDFS and ElasticSearch,
where it is stored in a well-structured format, making it available for future processing
or real-time visualizations as well. Since the architecture was designed to be scalable,
it could deal with throughputs 10 times more than the current, just by adding more
machines to the different hostgroups.

In this short period (as it seemed to me), I developed a fair understanding about how
Spark, Flume and Kafka works. I had the chance to put my experiences into some
important data management applications, which will be the replacements of some
outdated technologies, and an architecture which will hopefully be able to serve the needs

of monitoring for the many years to come.

38

5.2 Future work

The work I did at CERN is by no means completed. Although each of the applications are
working as intended in the pre-production environment on actual production data, they
can be improved and extended by need. Even though I did my best to finish all of the
work, there are still feature requests ready to pick up.

The main directions where the implemented software stack and the Spark jobs could be

improved:

e There are still some external data sources which need to be added. These are sites
which do not report statistics through PanDA, but have their own interface (for

example, the MIRA supercomputer[7], or for a special job type called TZero).

e Create example dashboards in Kibana for the users to explore the options they have.

Also provide education if necessary.

e By having not only job monitoring data in ElasticSearch, but also transfer and
network statistics, more complex dashboards could be created which combine the
data of these monitoring systems, making it easier for the users to have an overview
of the job(s) they want to check.

e Although the Spark jobs have been running in pre-production for multiple months,
they still need extensive testing to check if they are production-ready. For example,
it has to be checked if there is no data lost on a restart, and how they would handle

if any of the tasks would get stuck.

e There are multiple ways to reduce resource usage at various places, but we didn’t

want to do premature optimizations, so this is still left to do when we feel it is time.

As time will go on, the list of these improvements and feature requests will surely grow.
I hope that the results of this 12 month period were useful to the collaboration of the
thousands of scientists, engineers, and any other people who, by delivering exceptional

work day-by-day, make the existence of CERN a reality today.

39

List of Figures

1.1

21

2.2

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

The tiered subdivision of the WLCG sites. 5
The Monitoring architecture. L L. 10
Job monitoring data flow diagram. 0oL 10
Chronos sample architecture[18]. 14
Stack overview of a job deployed inaslave. 18
Chronos overview of defined jobs. oL 21
Create application dialog in Marathon. 22
Flume JDBC source data flow direction. 24

Flume Kafka source splitting incoming data to Hadoop and ElasticSearch. . 31
Kafka consumer groups reading from two brokers. 36

Anatomy of a topic. 37

40

Bibliography

1]

CERN Configuration team docs - Adding secrets. https://configdocs.web.cern.ch/
configdocs/secrets/adding.html. Accessed: 2016-08-15.

ATLAS Experiment - About ATLAS. http://atlasexperiment.org/. Accessed:
2016-08-17.

Tan Bird. Computing for the Large Hadron Collider. Annual Review of Nuclear and
Particle Science Vol. 61: 99-118, 2011.

Birthday problem. http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/
Birthday.html. Accessed: 2016-06-18.

Apache Flume JDBC source. https://github.com/cerndb/flume-ng-audit-db.
Accessed: 2016-04-16.

Changing job config via web UI resets cpu, mem, etc. https://github.com/mesos/
chronos/issues/426. Accessed: 2016-08-22.

Alessandro Di Girolamo. The atlas distributed computing project for lhc run-2 and
beyond. Technical report, ATL-COM-SOFT-2015-149, 2015.

A Anisenkov et al. AGIS: Evolution of Distributed Computing information system
for ATLAS. Journal of Physics: Conference Series, Volume 664, 2015.

E Karavakis et al. Processing of the WLCG monitoring data using NoSQL. Journal
of Physics: Conference Series, Volume 513, Track 3, 2014.

Fernando Barreiro Megino et al. PanDA: Exascale Federation of Resources for the
ATLAS Experiment at the LHC. EPJ Web of Conferences, Volume 108, 2016, 2016.

G Aad et al. Combined Measurement of the Higgs Boson Mass in pp Collisions at
sqrt(s) = 7 and 8 TeV with the ATLAS and CMS Experiments. Physical Review
Letters - PRL 114, 191803 (2015), 2015.

G Aad et al. The ATLAS Experiment at the CERN Large Hadron Collider. Journal
of Physics: Conference Series, Volume 664, 2015.

K De et al. The future of PanDA in ATLAS distributed computing. Journal of
Physics: Conference Series, Volume 664, 2015.

41

https://configdocs.web.cern.ch/configdocs/secrets/adding.html
https://configdocs.web.cern.ch/configdocs/secrets/adding.html
http://atlasexperiment.org/
http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html
http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html
https://github.com/cerndb/flume-ng-audit-db
https://github.com/mesos/chronos/issues/426
https://github.com/mesos/chronos/issues/426

[14]

[17]

[18]

[19]

[20]

T Maeno et al. Overview of ATLAS PanDA Workload Management . Journal of
Physics: Conference Series, Volume 331, Part 7: Distributed Processing and Analysis,
2011.

Lyndon Evans and Philip Bryant. LHC Machine. Journal of Instrumentation, Volume
3, August 2008, 2008.

cerndb/flume-ng-audit-db - [MONIT-20] Improvements to type handling of
the JDBC reader . https://github.com/cerndb/flume-ng-audit-db/commit/
81dd4c612199c51bdd448761ba7a43£739a414c9. Accessed: 2016-06-18.

cerndb/flume-ng-audit-db - [MONIT-228] Add MD5 hashing op-
tion . https://github.com/cerndb/flume-ng-audit-db/commit/
ebee8bbe40dabd7b040597ab5bf48518530c1a99. Accessed: 2016-06-18.

The Philosophy and design of ScalaTest. https://mesos.github.io/chronos/. Ac-
cessed: 2016-10-18.

Tim Berners-Lee’s proposal. http://info.cern.ch/Proposal.html. Accessed: 2016-
08-16.

Marathon documentations - Using a Private Docker Registry. https://
mesosphere.github.io/marathon/docs/native-docker-private-registry.html.
Accessed: 2016-08-15.

42

https://github.com/cerndb/flume-ng-audit-db/commit/81dd4c612199c51bdd448761ba7a43f739a414c9
https://github.com/cerndb/flume-ng-audit-db/commit/81dd4c612199c51bdd448761ba7a43f739a414c9
https://github.com/cerndb/flume-ng-audit-db/commit/e5ee8bbe40dabd7b040597ab5bf48518530c1a99
https://github.com/cerndb/flume-ng-audit-db/commit/e5ee8bbe40dabd7b040597ab5bf48518530c1a99
https://mesos.github.io/chronos/
http://info.cern.ch/Proposal.html
https://mesosphere.github.io/marathon/docs/native-docker-private-registry.html
https://mesosphere.github.io/marathon/docs/native-docker-private-registry.html

Appendix

A.1 Mesos master puppet configuration

class hg_monitoring::spark::master inherits hg monitoring::spark::base {
$java_8_path = ’/usr/lib/jvm/jre-1.8.0-oracle.x86_64/bin/java’

Add all Marathon parameters here. For all wvalid options,

see the docs:

< https://mesosphere.github.i0/marathon/docs/command-1line-flags.html
$marathon_defaults = {

’MARATHON_TASK_LAUNCH_TIMEQUT’ => ’360000° # 6 minutes

}

This node will act as a Mesos master
class { ’::mesos::master’:

work dir => ’/var/lib/mesos’,

options => {

quorum => 1,

hostname => $::hostname,

ip => ’0.0.0.07,

},

}

5050 is the default port for Mesos masters
firewall { ’100 mesos ports’:

proto => ’tcp’,

dport => [’5050°],

action => ’accept’,

}

All Mesos masters have Marathon installed

The Mesos class already added the Mesos yum rTepos,

43

so we can install <t immediately.
package { ’marathon’:

ensure => installed,

provider => ’yum’,

¥

The marathon defaults are flattened in a file,

which will be read when the service starts

file { ’/etc/default/marathon’:

ensure => present,

content => template(’hg_monitoring/spark/marathon_defaults.erb’),
notify => Service[’marathon’],

}

Marathon only works on Java 8, so we have to switch from the default
- Java 7

exec { ’set-java-8-from-alternatives’:

command => "alternatives --set java ${java_8_pathl}",

path => [’ /usr/sbin’, ’/usr/bin’],

unless => ’ls -1 /etc/alternatives/java | grep 1.8.07,

} >

service { ’marathon’:

ensure => running,

enable => true,

hasstatus => true,

hasrestart => true,

require => File[’/etc/default/marathon’],

}

5050 is the default port for Mesos masters
firewall { ’110 marathon port’:

proto => ’tcp’,

dport => [’8080°’],

action => ’accept’,

}

X

A.2 Mesos worker puppet configuration

Monitoring config directory

Needs a configuration directory for monit secrets

44

file { [’/etc/monit/’]:

ensure => directory,

Keytadb file for kerberos autentication
The monitops_keytadb is in tbag at monitoring top level
Allows us to read from / write to HDFS
teigi::secret { ’monitops_keytab’:
path => ’/etc/monit/monitops.keytab’,
mode => ’0755’,
} >

IT es-monit password file
Allows us to read from / write to elasticsearch
teigi::secret { ’monit_es_password’:

path => ’/etc/monit/monit_es’,

mode => ’07557,

docker.cern.ch login credentials for the monitops account
teigi::secret { ’monitops_docker_auth’:

path => ’/etc/monit/docker.tar.gz’,

mode => 07557,

Applications will be assigned a Tandom port in the offered range from
— the

resources declaration.
So we will open up the entire port range, and will discover
— applications
with service discovery
firewall { ’200 marathon applications’:
proto => ’tcp’,
dport => ’7000-11000’,

action => ’accept’,

The following rules are required by Docker
If not defined, they will be purged by puppet,

and the containers will be unable to connect to

Required for Docker 1/3

45

firewall { ’000 forward to docker chain’:

proto => ’all’,

chain => FORWARD’,
jump => ’DOCKER’,
source => ’0.0.0.0/0",
destination => 20.0.0.0/0°,

Required for Docker 2/3
firewall { ’001 forward accept all with state’:

proto => ’all’,

chain => ’FORWARD’,

action => ’accept’,

state => [’RELATED’, ’ESTABLISHED’],
source => ’0.0.0.0/0",

destination => ’0.0.0.0/0°,

Required for Docker 3/3
firewall { ’002 forward accept all’:

proto => ’all’,

chain => FORWARD’,
action => ’accept’,
source => ’0.0.0.0/0",
destination => ’0.0.0.0/0°,

Some applications are deployed as Docker images
What we gain with this that we do not need to install every
— application
on all workers, we just pull the image and launch it with the
— parameters.
package { ’docker’:
ensure => installed,

} >

service { ’docker’:
ensure => running,
enable => true,
hasstatus => true,

hasrestart => true,

46

Mesos Chronos
package { ’chronos’:

ensure => installed,

firewall { ’100 chronos port’:
proto => ’tcp’,
dport => 4400,

action => ’accept’,

service { ’chronos’:
ensure => running,
enable => true,
hasstatus => true,
hasrestart => true,

require => Package[’chronos’],

Open firewall to let connection from IT HADOOP analytiz in
$hadoop_node_names =
o sort(unique(query_nodes("hostgroup~\"hadoop/aimon/datanodeI"",
< ’ipaddress’)))
ensure_resource(hg monitoring: :modules::firewall wrapper,

< $hadoop_node_names)

Disable selinuzx.
Needed to mount volumes (with secrets) to containers
$sysconfig_selinux = ’/etc/sysconfig/selinux’
augeas { $sysconfig_selinux:
context => "/files${sysconfig_selinux}",
changes => [’set SELINUX permissive’,],
T >
exec { "SELinux to permissive mode on ${::fqdnl}":
user => ’root’,
command => ’/usr/sbin/setenforce Permissive’,
unless => "/usr/sbin/sestatus | /bin/egrep -q\

> (Current mode: .*permissive|SELinux.*disabled)’",

47

A.3 Example job configuration in Chronos

"schedule": "R/2016-07-21T00:00:00Z/PT1H",
"name": "my-job",
"description": "My job description",
"ownerName": "Monitoring service",
"owner": "example@Qcern.ch",
"container": {
"type": "DOCKER",
"image":
< "docker.cern.ch/monitoring-service/my-job:latest",
"network": "HOST",
"forcePullImage": true,
"volumes": [
{
"containerPath": "/etc/hadoop/conf",

"hostPath": "/etc/hadoop/conf",

"mode": "RO"

1,

{
"containerPath": "/usr/lib/spark",
"hostPath": "/usr/lib/spark",
"mode": "RO"

s

{
"containerPath": "/etc/monit",
"hostPath": "/etc/monit",
"mode": "RO"

s

{
"containerPath": "/usr/lib/hadoop",
"hostPath": "/usr/lib/hadoop",
"mode": "RO"

1,

{
"containerPath": "/usr/lib/hadoop-mapreduce",
"hostPath": "/usr/lib/hadoop-mapreduce",
"mode": "RO"

3,

{

"containerPath": "/usr/lib/hadoop-hdfs/",

48

"hostPath": "/usr/lib/hadoop-hdfs/",

"mode": "RO"
}
]
1,
"cpus": "0.5",
"mem": "1536",

"retries": 1,

"uris": [
"file:///etc/monit/docker.tar.gz"
1,

"command": "/usr/lib/spark/bin/spark-submit ... "

49

	Abstract
	Introduction
	CERN
	CERN computing centre and the Worldwide LHC Computing Grid (WLCG)
	ATLAS
	PanDA

	Monitoring at CERN and WLCG
	Job Monitoring in WLCG
	New Monitoring team

	Problem statement
	Introduction of the problem
	Tasks

	Proposed solution

	Running Spark jobs
	The evolution of our executor frameworks
	Running manually
	The Python script
	The spark-job-runner package
	Problems with the spark-job-runner
	Evaluation of Mesos Chronos and Mesos Marathon

	Selecting our build tool
	Running applications in containers
	Building the Docker image
	Running the built image

	Scheduling
	Batch jobs in Chronos
	Streaming jobs in Marathon

	Data retrieval and ingestion
	Objective
	Input sources
	PanDA job database
	Configuring the Flume agent for reading from PanDA
	The query executed by the JDBC agent
	Mapping from Flume event headers to output directions

	Increasing the reliability of the Flume source
	Kafka, the middle man
	Setting up and optimizing Kafka for monitoring data

	Results and conclusion
	Results
	Future work

	List of figures
	Bibliography
	Appendix
	Mesos master puppet configuration
	Mesos worker puppet configuration
	Example job configuration in Chronos

