

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar

Automatizálási és Alkalmazott Informatikai Tanszék

Tóth Kristóf

TŐZSDEI TERMÉKEK

TECHNIKAI ANALÍZISE

NEURÁLIS HÁLÓZATOK

HASZNÁLATÁVAL

KONZULENS

Dr. Ekler Péter

BUDAPEST, 2023

 2

Tartalomjegyzék

Összefoglaló ... 4

Abstract ... 5

1 Introduction ... 6

2 Background .. 8

2.1 History of the stock market ... 8

2.2 Strategies for investing ... 8

2.3 Recognizing patterns ... 9

2.4 Challenges ... 10

2.5 Choice of topic .. 11

3 Related research... 12

3.1 Understanding the problem ... 12

3.2 Types of neural networks .. 12

3.3 Long short-term memory (LSTM) .. 14

3.4 Convolutional neural networks ... 15

3.5 Dataset .. 16

3.5.1 Processing the dataset .. 17

3.6 Neural network architecture .. 18

3.7 Implementations .. 20

3.8 Failures .. 23

4 Results ... 24

4.1 Classification .. 24

4.2 Price prediction ... 25

5 Web-based application for visualization ... 28

5.1 Node.js development .. 28

5.2 Software architecture .. 28

5.2.1 Angular .. 29

5.2.2 Nest.js .. 38

5.3 Model integration .. 39

6 Conclusion and future work ... 42

7 Acknowledgements .. 44

8 Bibliography ... 45

 3

 4

Összefoglaló

Mindenkinek ajánlott a félretett pénzét valamilyen módon befektetnie, erre egyik

lehetőség lehet a tőzsde. Manapság viszont erősen algoritmizáltan és trendekből levont

következtetések alapján működik a kereskedés, kisbefektetőként könnyű elveszni az

információáradatban.

A rengeteg adatnak birtokában érdemes megfontolni annak a lehetőségét, hogy

neurális hálózatokkal meg tudjuk-e jósolni a tőzsdei termékek (részvény vagy ETF)

jövőbeli árát, vagy a trendeken belüli elmozdulásaikat előrejelezni, esetleg az

előrejelzések alapján a megfelelő döntéseket hozni, ugyanis a neurális hálózatok képesek

óriási adathalmazokban mintákat felfedezni és elkülöníteni egymástól, ezért is veszik át

ezek a modellek egyre inkább a vezető szerepet az elemzésben, amire kimerítően mi

emberek nem vagyunk képesek.

Egy lehetséges megoldás a tőzsdei termékek technikai analízise, amely alatt a

historikus napi/heti árfolyamok elemzését értjük. Sajnos ezek a termékek is ki vannak

téve a mindennapi gazdasági, politikai és egyéb történéseknek, amelyeket előre nem lehet

látni, viszont jelentősen módosíthatják az árakat, kilátásokat. A dolgozat célja egy

technikai analízisre alkalmas neurális hálózat létrehozása és finomhangolása, amely a

múltbeli adatok alapján képes meglátni bizonyos mintákat, és az alapján tanácsot adni,

hogy mi lenne a helyes döntés a vételükkel/eladásukkal kapcsolatban.

Napjainkban a webes megoldások különösen népszerűek, hiszen könnyedén

elérhetők asztali és mobil környezetből, és az elkészítettt modelleket bele lehet

„csomagolni” ezen alkalmazásokba is. A cél egy modern, jól skálázódó és látványos

webes felület elkészítése az adatok megfelelő vizualizálására.

Dolgozatomban mintegy 8000 részvény és ETF több évtizedes adatát vizsgálva

készítem el a modelljeimet, és kísérlek meg ezek alapján előre jelezni. Munkám során

amellett hogy olyan tapasztalatokra teszek szert, illetve olyan algoritmusok kerülnek

kidolgozásra, melyek más területen is felhasználhatóak, kipróbálom a neurális hálók

többféle konfigurálását és paraméterezését, és megállapítani, melyik a legalkalmasabb az

aktuális feladatra.

 5

Abstract

The stock market offers a chance for everyone to invest at least some of their

money throughout their lifetime. Trading has become so automated in modern times that

small investors may become overwhelmed by the volume of information.

With all the historical data available, one must consider the possibility of

employing artificial neural networks (ANN) to forecast any type of trend or movement of

a stock or ETF (Exchange-traded Fund), or at least, use these networks to assist us in any

manner throughout the decision-making process. Artificial neural networks can identify

patterns in enormous datasets that people are unable to do, which is why various deep

learning algorithms are becoming more and more common in the trading industry.

The technical study of stock prices, which limits consideration of these articles'

historical data, maybe a way to make predictions. Unpredictable political and economic

developments have a significant impact on these prices, which is unfortunate. In order to

predict prices or at least aid in trading decisions, this research aims to build neural

networks and fine-tune them for technical analysis.

Web applications are getting more and more popular nowadays because they are

easily accessible from mobile and desktop environments, also the created models can be

packaged into the apps, and used out of the box. The objective is to provide a cutting-

edge, scalable, and aesthetically pleasant user interface for accurately visualizing data.

To attempt forecasting, I will analyze more than 8,000 stocks’ and ETFs’ more

than decades-long data to create my models. During my work I will create such algorithms

and get experience in a field that is applicable in multiple industries, I will configure

neural networks in a variety of ways before finding out, which is the most adequate to the

task at hand.

 6

1 Introduction

We’ve all heard the advice that we should invest at least a small amount of our

money into an asset to generate wealth with compounding interest, or at least combat

inflation. Hopefully, most of us take this advice, but choosing the right paper or asset, at

the right time for the right price at the proper broker is quite challenging, also as we,

people, are not always making decisions purely on logical thinking, making these

financial decisions can be overwhelming.

Type of paper Description

Stocks
The owner of the stock receives shares of ownership

in a public company.

Bonds

Bonds are fixed-income securities that corporations

and governments issue to raise money to fund

projects.

Cash

Cash investments—commonly called cash

equivalents—are short-term investments (treasury

bills, certificates of deposit, etc.).

Mutual funds

A mutual fund invests in groups of stocks, bonds, and

other securities, its portfolio is managed by financial

professionals.

Index funds
Index funds are a special form of mutual fund that is

managed passively.

Exchange-traded funds
ETFs buy a basket of securities, like stocks and

bonds. They can focus on a particular sector.

Annuities
Contract between an individual and an insurance

company.

Derivatives

Derivatives are financial instruments whose values are

based on an underlying asset (futures contracts,

options contracts, swaps, etc.).

Table 1 – Types of investment assets [1]

The abundance of papers, stocks, bonds, and ETFs can also cause some headaches

for us. Nowadays the most popular choice of a small investor is the stock market (this

decision also depends on region, accessibility, and financial education). It is easy to

register at an online broker, you can even log in with your Google account so the

procedure takes only a couple of minutes. Uploading money is also made easy by most

of the payment processors, and buying a piece of a business also takes only one click, so

 7

everything is set up to make this process seamless and easy, the only hard decision(s) we

have to make is which one to buy. What is the right price? What is our goal or strategy?

It is a fact that we can’t predict a stock’s price in the long run, as it is highly

dependent on economic and political events, none of them can be foreseen, but one of

these so-called black swan1 events can highly affect stock prices in any direction, and in

the short and long term, too.

For the short term on the other hand, trading has become so automated and

analytic, that we have to consider the possibility, that there are certain patterns, that are

recurrent on the market, and exploring and exploiting these patterns can end up in some

capital gain. We have to consider that our capital is always at risk whatever we invest,

and we shouldn’t have irrational expectations. It is also hard for us to handle seeing our

portfolio reduce to its fractional value, so it would be beneficial to have software, that can

decide instead of us, or at least help in deciding if this is the right time to buy the stock

and see what projections do we have for the future.

1 https://economictimes.indiatimes.com/definition/black-swan-theory

https://economictimes.indiatimes.com/definition/black-swan-theory

 8

2 Background

This chapter gives an overview of investing, strategies, and challenges. I will also

explain why I chose this field to research, and why the topic is relevant for everyone.

2.1 History of the stock market

The history of the stock market dates back to medieval Europe, where traders

gathered to exchange goods, anticipating a future rise in prices in hopes of a profit. This

mostly meant purchasing and selling commodities, until in 1611, The Dutch East India

Company became the first publicly traded company, traders were able to buy equity in

the company. The goal was to fund ships across the sea to gather goods. Those who

funded received a dividend in return. Evolving through centuries, the modern stock

market embodies the exchange for immaterialized papers of thousands of companies,

whose owners get ownership of the company, expecting a higher selling price or

dividends. In the Western world, stocks are an established part of one’s investment or

retirement portfolio, unfortunately in Hungary, only a couple percent of the population

hold any kind of stock.

2.2 Strategies for investing

There are multiple approaches to buying a stock. One can consider holding for the

long term, that is when one should focus on the outlook of future performance of the

company. This investing strategy is called value investing [2]. Investors with this strategy

are aiming for undervalued stocks which could perform well in the future. One should

differentiate the company’s value from its price in the stock market. Measuring the

company’s value mostly consists of checking its balance sheet, and only if it is appealing

one checks if he/she is paying the right amount of money at the time.

Investing into exchange-traded funds (ETFs2) can also be a viable option because

those papers provide a basket of securities/papers, so one’s portfolio is more diversified,

and there is less risk of volatility.

2 https://www.investopedia.com/terms/e/etf.asp

https://www.investopedia.com/terms/e/etf.asp

 9

Moreover, there is another approach, which is more focused on the trends of the

stock price, when based on the past short-term movements one is making their moves

speculating for an upward and downward movement. When expecting an upward

movement, one has to „long” a stock, which means that they purchase that paper, for a

downward movement one can do „short selling”, which means borrowing a paper and

selling it on the open market, and planning to buy back later for less money in the future,

keeping the difference.3 These actions can happen at a high frequency, doing these

multiple times a day is called day-trading. It is argued worldwide, if this form of investing

is even investing or just speculation, and after taxes does one even have any money left,

but there was a study made in 2014, that states, that it is a valid option for generating

wealth, at least for the most skilled ones. They investigated the Taiwan Stock Exchange

and saw that most of the traders lose money even before taxes, and those who succeed

benefit from periods during high information symmetry (e.g, around earnings

announcement), which suggests that these traders may possess internal information (this

can not be ruled out), or at least they are making moves much more quickly [3]. It is yet

unclear how they can forecast those movements, but profit can be made indeed with day

trading. In this regard, we can consider strategy as investing.

2.3 Recognizing patterns

There are multiple patterns for day traders to recognize, I’ll show one of the most

popular trading patterns, which is the Fibonacci trading strategy.

It is using retracement levels between a previous high and low, and expecting a

correction in an upward or downward trend. The local low is considered 0% and the local

high of the period is 100%. The Fibonacci retracement levels are 23.6%, 38.2%, 61.8%,

and 78.6%. While not officially a Fibonacci ratio, 50% is also used. After these ratios are

near to Fibonacci ratios that is why the strategy is called after Fibonacci.4 These levels

indicate that if the price is finding a support or resistance, we can expect a movement in

the opposite direction shortly, so one can create positions on the market based on our

expectations. To better visualize this phenomenon, you can see the retracement levels of

3 https://www.investopedia.com/terms/s/shortselling.asp

4 https://www.investopedia.com/terms/f/fibonacciretracement.asp

https://www.investopedia.com/terms/s/shortselling.asp
https://www.investopedia.com/terms/f/fibonacciretracement.asp

 10

the USD/CAD currency pair, where the price retracted around 38.2% of a move down

before continuing.

Figure 1 - Retracement levels [4]

This pattern does not repeat always for sure, but knowing it can help us in our

portfolio. We should ask ourselves, are there any more patterns that we could follow? Do

we have to recognize them, or we can automate the recognition process? What tool can

analyze huge datasets and recognize patterns within? Your answer is correct, it is neural

networks.

2.4 Challenges

Investing in the financial markets and analyzing prices is far more complicated

than feeding a stock chart to a neural network model and seeing the results. Markets are

deeply embedded in the global economy, political, military, and economic events, human

psychology is even involved, the perception about the future can also be influential, and

we can’t base our future predictions on the past. Tobias Scädler made a study, where he

investigated, whether markets are moving logically, irrationally, or somewhere in

between, and if the latter, what the ratio is.

He was curious whether there were signs of movements of stock prices in any

kind of periodic manner or rather behaving irrationally. To tackle this problem he used

an over 200-year-old method, which is mostly used for analyzing frequencies and signal-

processing, so-called Fourier transformation. The goal of the Fourier transform is to

convert a function into another function, which represents the frequencies the original

 11

function consists of. If one was able to apply this transform to stock prices and have any

kind of success, one would discover the representation of the stock charts we see in

another way, low frequencies would mean long-term trends, high frequencies would

suggest short-term movements. The benefit of these would be that seeing these trends

would give us some insights to where the stock price is going, therefore we could base

our trading on that, or at least it would have an effect on us.

Tobias however, had a major issue, that stock prices are not continuous, also we

have to accept the fact that stock exchanges are closed for more than 10 hours between

trading days, and there is no trading during weekends and holidays, which almost tak up

30% of the calendars days, however the world events do not stop. He came up with a

solution that one can consider stock prices (open, close, high or low) as a discrete set of

signals, and connecting them with exponential functions, because “dealing with financial

markets, an interpretation of (positive or negative) compound interest seems to be

appropriate”, Tobias states.

He looked for trends within the timespan of 10 days and 20 years, due to the nature

of the dataset and computational limitations. He came up with the conclusion that there

is more irrationality in every area of the market, more in the tech sector, and less in the

industrial sector, but irrationality dominates over logical periodicity. [5] Therefore

predicting stock prices solely based on their past performance is more than challenging.

2.5 Choice of topic

I chose this topic to look into because this field is the mixture of my professional

and hobby activities, I devote much of my freetime to get informed about personal finance

, and I am curious about the potential of neural networks and innovation in IT, I consider

myself financially educated, yet deeply into learning new areas of the financial markets.

While developing the web application I was inspired by popular trading platforms like

Robinhood.

 12

3 Related research

This chapter is about the research I’ve made to gain the background knowledge

that is needed to come up with adequate solutions from an analytic and point of view, to

understand the core mathematical concepts and paradigms, and as an engineer, to be able

to use that knowledge to create a product.

3.1 Understanding the problem

Neural networks have multiple use-cases in several fields, from image recognition

to weather forecasting. The difference between the two mentioned areas are that images

are independent from each other and can be given in any order to the neural network,

weather and stock prices are related to a time series, and the order of the datapoints do

matter.

The hypothesis is that there is a connection between data points near each other.

One can assume that models which can store any kind of state inside them will perform

better in predicting future prices.

3.2 Types of neural networks

All neural network are built up from layers of perceptrons or neurons, which is

the smallest building block of the network, and one can stack layers onto each other. All

perceptrons have inputs, weights and biases, activation function and an output. The output

of each layer is measured as the inputs are multiplied by the weight of the connection as

a transformation function, all summed up and forwarded to the next layer according to

the activation function. These elements will be discussed deeper in other sections of this

chapter, but to clarify, this process can be described with the following equation:

𝑦 = 𝑓𝑛(𝑓𝑛−1(… (𝑓1(𝑥))))

 13

Where 𝑦 is the output, 𝑥 is the input and 𝑓𝑖 is the ith transformation function. The

most popular activation functions used in neural science are the following:

relu (rectified linear unit) tanh sigmoid

𝑓(𝑥) = max(0, 𝑥) 𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 𝜎(𝑥) =

1

1 + 𝑒−𝑥

Table 2 - Popular activation functions [6]

Building up from perceptrons or neurons, there are two broad and architecturally

different neural networks, one is the so called feedforward neural networks, where

information flows only in one direction between the layers, applying the feedback of a

result happens with backpropagation method. One important attribute of these types of

networks is their statelessness, depending on the problem one is trying to tackle it can be

a benefit or a drawback.

Figure 2 - Difference between recurrent and feed-forward neural networks [7]

On the other hand, there are recurrent neural networks, where flow of information

can be bi-directional, which means that output of a certain layer or node can be an input

of a node in the same layer, or have an effect on it. This means that these nodes can store

an internal temporary state, or at least information can persist because of the dynamic

 14

feedback they receive, which can be explioted for recognizing patterns between nearby

datapoints. [8].

3.3 Long short-term memory (LSTM)

LSTM networks are a special type of recurrent neural networks, which is

commoly used for series analysis. The concept of LSTM were created to aim to tackle the

problem of RNN-s, which is the explosion or vanishing of gradients. This means that on

the figure above during feed-back to the same node happens values are getting raised to

the power of 2, after multiple repetitions values can converge to infinity or null,

depending on the exponent.

What sets LSTM models apart from traditional RNNs is their ability to capture

long-range dependencies in the input data. This is achieved through the use of memory

cells, which allow the model to selectively remember or forget information over time.

LSTM models consist of multiple memory cells, each with three main components: an

input gate, a forget gate, and an output gate. The input gate determines the effect of new

information in the cell, forget gate controls the information discarded. Obviously, otput

gate determines the output of the cell which is being sent to the next node. This

architecture succesfully removed the gradient problem mentioned above. [9]

Inside LSTM cells 𝑡𝑎𝑛ℎ and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜎)activation functions are used.

Figure 3 - High-level architecture of an LSTM cell [10]

 15

Figure 4 - LSTM cells connected to each other [11]

There is a systematic literature overview about the approaches in stock market

prediction, the most popular solutions included some kind of generic neural networks, the

second most popular was LSTM, appearing in 2015 and since then it is getting a bigger

and bigger share of the publications, so this indicates that LSTMs are gaining popularity,

which is may because of it’s efficiency and versatility. [12]

3.4 Convolutional neural networks

Convolutional neural networks are commonly used for image recognition tasks,

however they are also performing well in time series classification. [13]

Vanishing gradients and exploding gradients, seen during backpropagation in

recurrent neural networks, are prevented by using regularized weights over fewer

connections. [14]

They are a special type of feed-forward neural network, which’s layers convolve

the input and pass the result to the next layer. This happens with kernels/filters, which are

sliding windows (in a certain dimension according to the input data’s dimension) on the

data. Pooling layers can be used in these models to reduce the dimension of data, and also

reduce calculation time and complexity. The flatten layer’s only task is to make multi-

dimensional data to a one-dimensional array.

 16

Figure 5 - Understanding convolutional neural networks [15]

According to the studies I came across LSTM models seemed to be the best

performing, but from a scientific standpoint, I wanted to experiment with multiple

architectures and models.

3.5 Dataset

Whatever model one creates, an appropriate dataset is mandatory. There are

multiple popular websites to get data from, I acquired the data of more than 8000 stocks

and ETF-s from Kaggle5. The only limitation of this dataset is that the latest timestamps

are on the 1st April, 2020. Historic data are separated to different files for different stocks.

Here you can see the structure of the datapoints of each file:

Type Explanation

Date Date of trading day

Open Opening price of stock that day

Close Closing price of that day

High Highest price that day

Low Lowest price that day

Adjusted close Closing price after adjustments6

Volume Number of shares traded that day

Table 3 - Explanation of data points

Kaggle’s aim is to create a machine learning and AI related community, so users

can upload models and scripts beside datasets, users can view other’s research and build

5 https://www.kaggle.com/datasets/jacksoncrow/stock-market-dataset

6 Data is adjusted using appropriate split and dividend multipliers (source)

https://www.kaggle.com/datasets/jacksoncrow/stock-market-dataset
https://help.yahoo.com/kb/SLN28256.html

 17

on top of that. To the dataset I acquired a user attached a script, which provided inspiration

to create my models (the script is available here).

3.5.1 Processing the dataset

In this section I will discuss the high-level architecture of the model independently

from the actual implementation. I will tell about that more in implementations section.

Preprocessing is a crucial step in pipelining our data. Creating an effective

pipeline is one of the most important aspects of the effiency of the neural network. The

following figure explains at a high level how the data is processed in my application:

Figure 6 - High level procedure of dataprocessing

It is always a hard question how one should separate their data, in what ratio,

should it be shuffled or not, it’s importance is discussed in the paper of Dr. Kamila

Pawluszek-Filipiak, who investigated landslide detection in her paper. Although, the

problem she was discussing is much more different than mine, she raised my awareness

about choosing train and test sets appropriately. [16] In the field of predicting from past

data 80/20 ratio is widely accepted, so I stuck with that.

As different orders of magnitude could cause biases in the neural network, one

always has to scale their data into a small range of numbers, in my case I chose the 0-1

range.

https://www.kaggle.com/code/dbdmobile/predict-stocks-using-lstm

 18

The aim of and LSTM model is to learn and discover connections between past

data, so I one has to attach the past 𝑛 number of data points to a certain data point. After

all of these preprocessing procedures the data is ready to be consumed.

After the model is created, teached and fed with the testing data, predictions are

ready, but one has to inverse scale them with the original scaling method, just backwards.

3.6 Neural network architecture

The final structure of the neural networks can be seen in the tables down below,

you can also find the Jupyter Notebook scripts in the repository.

Layer type Parameters

LSTM units=64, return_sequences=True

input_shape= last 2 dimensions of training

dataset

Dropout rate=0.2

LSTM activation=relu, units=64,

return_sequences=True

Dropout rate=0.2

LSTM activation=relu, units=64,

return_sequences=False

Dropout rate=0.2

Dense units=1

Table 4 - LSTM network layers

If following layers are also LSTM layers, then the return_requences flag should

be True for the given LSTM layer. Dropout layers are added to avoid overfitting. Dense

layers are used to connect to all of the previous layer’s nodes, so they collect data from

all possible directions. The parameter units is 1, because the result needs to be a list of

one-dimensional data.

Layer type Parameters

Dense activation=relu, units=64

Dropout rate=0.2

Dense activation=relu, units=64

Dropout rate=0.2

Dense activation=relu, units=64

 19

Dropout rate=0.2

Flaten

Dense units=1

Table 5 - Feed-forward network architecture

Layer type Parameters

Conv2D filters=2048, kernel_size=(3,3),

activation=relu, input_shape= last 3

dimensions of training dataset

MaxPooling2D pool_size=(2,2)

Dropout rate=0.2

Dense units=64

Dropout rate=0.2

Dense units=64

Dropout rate=0.2

Flatten

Dense units=1

Table 6 - Convolutional network architecture

To compare networks with different parameters developers can use the

visualization toolkit Tensorboard7. It provides a visual representation of the learning

process, architecture, biases of the networks.

Figure 7 - Learning rate of models in Tensorboard

7 https://www.tensorflow.org/tensorboard

https://www.tensorflow.org/tensorboard

 20

Tensorboard is also capable of generating a low-level architecture of the model

and so much more:

Figure 8 - Generated visual for low-level architecture by Tensorboard

3.7 Implementations

The software was implemented in Keras framework, which builds on top of the

Tensorflow framework using the python language. The name „Keras (κέρας) means horn

in Greek. It is a reference to a literary image from ancient Greek and Latin literature, first

found in the Odyssey, where dream spirits (Oneiroi, singular Oneiros) are divided

between those who deceive dreamers with false visions, who arrive to Earth through a

gate of ivory, and those who announce a future that will come to pass, who arrive through

 21

a gate of horn. It's a play on the words κέρας (horn) / κραίνω (fulfill), and ἐλέφας (ivory)

/ ἐλεφαίρομαι (deceive).”8

Keras provides a high-level declarative approach to configure a neural network. I

also used some machine learning related libraries to simplify my workflow. As I’ve

discussed the pipelining architecture at a high level, now I’ll go into detail with some

implementation specialties.

Splitting data to train and test datasets can be implemented by a function call from

Scikit-learn’s9 python package.

from sklearn.model_selection import train_test_split
train, test = train_test_split(dataset, test_size=0.2, shuffle=True)

The function gives back the train and test tuple, which can be saved into variables,

also split ratio can be defined, and one can also tell the function to shuffle the dataset or

not.

Another important object I needed to import to the script is Scikit-learn’s

MinMaxScaler. It can scale data in all dimensions into a feature range, which can be

defined, I used the range 0-1. The scaler’s mechanic is the following:

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

Calling the fit function on the object calculates all the necessary values for scaling

the data, but does not do any transformation. The transform function does the scaling, and

gives back the scaled array. But this can be done in one step with calling fit_transform,

but one has to keep in mind that the transform function does not calculate the scaling

values. It is a common technique to call fit_transform for the training data and call

transform for the testing data. Therefore values in the testing data can stay outside of the

feature range. After prediction the scaler can be used to inverse transform the predicted

values with the inverse_transform function.

8 https://keras.io/about/

9 https://scikit-learn.org/stable/

https://keras.io/about/
https://scikit-learn.org/stable/

 22

Neural network models can be instantiated by creating a Sequential object. with

the calling the add function on the model one can add layers10 to the network, those will

be chained sequentially. After adding the layers one can compile the model with it’s

compile function, where the loss function and the optimizer has to be defined. The loss

function defines the methodology of calculating a model’s preciseness in predicting. The

model aims to minimize the function’s value. Optimizers define the learning rate, weight

decay according to a certain algorithm. For example, one of the most commonly used

optimizers, the Adam optimizer implements the Adam algorithm, which according to

[17], „computationally efficient, has little memory requirement, invariant to diagonal

rescaling of gradients, and is well suited for problems that are large in terms of

data/parameters”.

After compiling, one has to train the model with giving the following parameters:

• Training data

• Expected results

• Epochs: the amount of times that the model iterates through the whole

dataset

• Batch size: the amount of data points processed at once until a

backpropagation happens

• Validation split (optional): during training the model can also test it’s

performance with splitting the training dataset to test itself

• Callbacks (optional): callback objects to do further logging or checkpoint

saving

According to the verbose parameter, the epochs and loss function results will be

printed to the console, and if the training is done, one can call the predict function, where

the model will give its predictions.

You can find all the data processing scripts in the following Github repository:

https://github.com/GuTory/profit_prophet_data_processing.

10 https://keras.io/api/layers/

https://github.com/GuTory/profit_prophet_data_processing
https://keras.io/api/layers/

 23

3.8 Failures

Besides creating models for a certain stock, I also wanted to create an all round

model, that consumes all historic data at once, but I came into obstacles that I was not

able to tackle until now.

Firstly, I labeled all data points with a label to know which stock it belongs to,

and created theoretically the same pipeline of preprocessing to the aggregated dataset.

Companies have been established and are being traded on the stock market since different

points in time, so they have a different weight in training, which can cause biases, for

example an ETF called SCA has only one data point, so it would get lost in a batch, so it

would make no sense to predict the future price for SCA. As I had more than 28 million

data points, It was even a struggle to load it into memory, not even calculating sliding

windows for each data point (where memory requirements go up from 4BG to ~50-

60GB), so I was unable to run my scripts, and no cloud provider offered a service for this

kind of memory need free of charge. Limiting the dataset, but having a couple of million

data points has even caused the loss function to be a Nan value, if that happens, there is

no way to predict. Around under a million data points runs were successful, but that is

only 4% of the dataset. So I stuck to individual stock training. Furthermore, stocks that

do not have a long track record, fail on the compiling side, the loss function gives a Nan

value, therefore, the model in incapable of predicting.

I came to realize too late that fitting data to the model multiple times train the

model incrementally, I’ve found this discussion and it’s verification in a Github issue11,

but I was not able to experiment this feature until now.

11 https://github.com/keras-team/keras/issues/4446

https://github.com/keras-team/keras/issues/4446

 24

4 Results

During my research I’ve created an LSTM, a convolutional and a simple feed-

forward neural network for the task. The LSTM was used for actual stock prediction and

also the direction of movement was measured, the other two served classification

purposes, whether they are expecting a rise or fall in prices.

4.1 Classification

The convolutional and feed-forward networks were not so much different from

each other, they also performed similarly. Classification was made according to which

direction the model expects the price to move. When expecting an upward movement the

investor’s move could be a buy, for downward movement selling or shorting is

appropriate.

Convolutional models reached a highest of 57% success rate for predicting the

right movement, but for only a few selected stocks, training rates were mostly between

50-52%, testing rates in the range of 52-54%. Here you can see some selected stocks and

their results:

Figure 9 - Convolutional model success rate

Feed-forward networks predicted in a pretty similar way: percentagewise

convolutional models predicted 0,07% better than regular feed-forward networks.

0,46

0,48

0,50

0,52

0,54

0,56

0,58

JPM MSFT C MMM AAPL KO AMD DIS

Train ratio Test ratio

 25

Figure 10 - Feed-forward neural network success rate

4.2 Price prediction

I also measured the prediction of right movement for the LSTM model, and it

performed significantly worse than the previous models. Success rates were between 47-

49%, some stocks hitting the 50% mark.

It is hard to find the right parameters for a neural network, as there are so many

variations for each element. Some of the most influential parameters however were the

number of past data points that were attached to a data point, as the following figures

prove it:

Figure 11 - Apple prediction with the data of the past 2 days

0,46

0,48

0,5

0,52

0,54

0,56

0,58

JPM MSFT C MMM AAPL KO AMD DIS

Train rate Test rate

 26

Figure 12 - Apple prediction with the data of the past 6 days

Figure 13 - Apple prediction with the data of the past 21 days

According to these findings, days between 6 and 14 seemed the most suitable.

Another cruicial parameter was the batch size, which not only made computations

much more longer when it was a small number (between 8-16), but also made predictions

worse:

 27

Figure 14 – J.P. Morgan prediction with a batch size of 8

Figure 15 - J.P. Morgan prediction with a batch size of 64

Other parameters did not influence the model in such a way, but it is still possible,

that there are more optimal parameters. I mention in the future work section that I am

interested in finding better solutions for fine-tuning.

 28

5 Web-based application for visualization

Aside from researching the possibilites of stock prediction and creating neural

networks, I have created a an all-round product, which integrates the model and presents

it’s predictions to an aesthetically pleasing user interface. I will explain the development

process and engineering perspectives for the software I’ve created in the following

sections.

5.1 Node.js development

Node.js is an open-source javascript-based software framework for creating

scalable web applications. It elevates the developer experience by a package manager

(NPM, Node Package Manager), which enables importing numerous managed libraries,

those can be imported and used instantly in one’s application. As it is hard to create

scalable and maintainable applications in JavaScript, developers can write their code in

Typescript also, which helps in avoiding runtime errors, and enhances maintainability.

Problems a developer comes across are easily researchable, and the community is large.

Because of the previously mentioned reasons, multiple UI and backend

frameworks use Node as their backbone. In my project I used Angular for creating the

user interface, and Nest.js to manage the backend logic of the application. For storing

data I used Firestore, which is provided and maintained by Google.

5.2 Software architecture

The basic concept for creating the application was to use a standard three-layer

architecture, where each layer has its separate roles, and they are loosely coupled.

 29

Figure 16 - Communication between application components

Inside both applications I developed I used Microsoft’s Domain Driven Design12,

to further separate application components according to their domain, therefore, file

structure was easy to manage and navigate in, which made development more seamless.

5.2.1 Angular

Angular is a component-based framework for creating web applications, it is

developed and maintained by Google and uses Typescript as the primary language. It also

has a huge collection of first-party libraries to manage routing, forms, client-server

communication and so much more. From small projects to enterprise applications,

Angular is able to scale, the documentation is easy to process and is up to date. 13

The basic building blocks of Angular were components that were organised into

modules. Since version Angular 14, the core concept of Angular is having standalone

components, which have a template view, that gets rendered in the browser. Developers

are able to manipulate and modify these templates according to the logic of the

application. Classes in the application can be separated according to their roles:

12 https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/best-practice-an-

introduction-to-domain-driven-design

13 https://angular.io/

https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/best-practice-an-introduction-to-domain-driven-design
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/best-practice-an-introduction-to-domain-driven-design
https://angular.io/

 30

components having a view, services providing data, model entities, structural or attribute

directives that manipulate the DOM structure or the view of the component, etc.

Most of the classes use decorators, which provide metadata that tells Angular how

to use them, for example, the metadata for a service class provides the information that

Angular needs to make them available through dependency injection (DI). These classes

are annotated with the @Injectable decorator.

Dependency injection is a programming pattern that enforces an object to receive

all its necessary dependencies instead of instantiating them internally. This method helps

developers to create loosely coupled programs, and also less boilerplate code is needed.

As objects on the receiving end do not know the implementation of the injected

dependencies, applications are more reusable and testable.

Angular gives an out-of-the-box solution for dependency injection, if the

necessary metadata, through decorators, is provided. As modules are no longer necessary

in Angular (they still can be used, but they have code structuring purposes only), one can

directly define our components, which providers (services) they need, and what other

imports Angular has to make. Thanks to DI, everything happens in the background, no

unnecessary coding is required.

Figure 17 - Angular architecture and concepts [18]

I will not go into Angular’s further details, that is only relevant from a developer’s

point of view, but I will mention some of the most interesting discoveries and solutions I

came up with, which I feel is worth sharing.

 31

I wanted to create a platform for traders to view their favorite stocks and see their

interactive charts, so I had to integrate user handling in a way, that registration and login

is made easy and is effortless. Therefore I implemented a social login with Google, where

for login and registration users can opt to use their Google account, so no username and

password is needed!14 This is the basic flow of authentication in my application:

Figure 18 - Authentication flow

Angular has a different approach to asynchronous calls from other frameworks. It

utilizes the RxJS library.15

RxJS, short for Reactive Extensions for JavaScript, is a library that enables

reactive programming. Reactive programming is a unique and innovative programming

paradigm that focuses on data streams and the propagation of change. This paradigm

enables developers to easily express both static and dynamic data streams, providing a

more versatile approach to handling data.

One of the core ways that RxJS is used is in handling asynchronous events,

particularly within the context of Angular applications. Following the observer pattern,

RxJS offers a range of operators such as map, switchMap, filter, concat, merge, etc. These

operators are tools that help developers manage both synchronous and asynchronous

code, making the handling of events much more streamlined and efficient.

14 Package used for implementation: https://www.npmjs.com/package/@abacritt/angularx-social-

login

15 https://rxjs.dev/

https://www.npmjs.com/package/@abacritt/angularx-social-login
https://www.npmjs.com/package/@abacritt/angularx-social-login
https://rxjs.dev/

 32

The observer pattern is a software design pattern, which enables the multicasting

of data from an object, mostly called as subject, to its dependents, called observers.

Observers get notified, when the subject’s data changes, therefore data flow is continuous

and automatic. In RxJS, the Subject16 class is the core element of subjects. In my project

I used BehaviorSubject, which is a special subject with an initial value, which is emitted

whenever it is subscribed to. The benefit of this is that value initializations will cascade

automatically.

A central feature of RxJS is its provision of an API for creating and working with

observables. Observables are lazy Push collections of multiple values, meaning they don't

compute their held values until they're subscribed to. This approach allows for a more

efficient use of resources, as values are only computed when needed. In many ways,

observables fill a gap in JavaScript, providing an effective way of handling multiple

values over time.

 Single Multiple

Pull Function Iterator

Push Promise Observable

Table 7 - Observables are lazy Push collections of multiple values [19]

In the Angular framework, RxJS is extensively used to handle HTTP requests and

responses. It enables developers to handle these requests and responses in a more efficient

and scalable manner, as the use of observables allows for effective management of

multiple, possibly asynchronous, data streams. As observables are lazy type collections,

data can be pulled to the UI with async pipes.

Moreover, RxJS provides observable operators that allow for the transformation

of observables. These operators can be used to manipulate the data streams in various

ways, such as filtering out certain values, combining multiple streams, or mapping values

to new forms. Additionally, RxJS also allows for actions to be scheduled for future

execution, providing even more flexibility in handling asynchronous events.

As Angular 16 was released in May this year17, I wanted to use the most up to

date technological advancements it can provide. One of the most interesting feature that

16 https://rxjs.dev/api/index/class/Subject

17 https://blog.angular.io/angular-v16-is-here-4d7a28ec680d

https://rxjs.dev/api/index/class/Subject
https://blog.angular.io/angular-v16-is-here-4d7a28ec680d

 33

was released with the new version are Signals. They allow the developer to define reactive

values and dependencies between them. Therefore, changes are cascaded automatically

throughout the application and one can write his/her code more declaratively. In the

application I handled the logged in user with Signals, as some components behaving

differently when the user is logged or not. In Angular, this used to be solved with the

RxJS library the following way:

private authService = inject(AuthService);
public authenticatedUser: Observable<UserInterface | null>;
constructor() {
 this.authService.authenticatedUser
 .pipe(takeUntilDestroyed())
 .subscribe(user => {
 this.authenticatedUser = user;

 // other logic
 });
}

The authenticated user gets stored into the variable through the subscription.

When components get destroyed, unscubscribe needs to happen, if not, that can cause

memory leaks. Therefore I use the takeUntilDestroyed() in the pipe method, which

unsubscribes when needed. Otherwise, one has to save the subscription into a variable,

and can unsubscribe at the component’s onDestroy18 lifecycle event. I find the first

approach more scalable and maintainable.

With Angular Signals however, this can be solved in one line of code:

 authenticatedUser: Signal<UserInterface | null> =
 computed(() => this.authService.authenticatedUser.value);

As the authentication service’s variable stayed the same BehaviorSubject19, these

two implementations are identical. You can see that with Signals it is more readable, and

declarative.

There are some scenarios, where RxJS is more optimal than Signals. I came across

the problem that I needed to make a call asyncronously according to the result of another

asynchronous call: requiring historical stock data according to the ticker the component

receives. This can be solved in nested subscriptions, but that is unsustainable. RxJS has

an operator for this, called switchMap, which does exactly what is needed: a callback

18 https://angular.io/api/core/OnDestroy

19 https://rxjs.dev/api/index/class/BehaviorSubject

https://angular.io/api/core/OnDestroy
https://rxjs.dev/api/index/class/BehaviorSubject

 34

function can be defined that executes when the Observable result arrives, and the return

value will be the next Observable.

 private activatedRoute = inject(ActivatedRoute);
 public stockMetaData$: Observable<StockMeta>;
 constructor() {
 this.stockMetaData$ = this.activatedRoute.paramMap.pipe(
 takeUntilDestroyed(),
 switchMap(params => {
 this.ticker = params.get('ticker') || '';
 return this.stockMetaService.getStockByTicker(this.ticker);
 })
);
 }

The component receives the stock’s ticker in the URL of the page, that can be

fetched from the injected ActivatedRoute object, and the historic data can be only called

when the result has arrived.

Angular components can also be lazy loaded, as users don’t need all the available

parts of the application at once. Therefore, pages can be loaded with just the necessary

elements, which causes faster loading speeds and better user experience. In Angular, this

is how you can load a component lazily:

{
 path: 'stockhistory/:ticker',
 loadComponent: () =>
 import('./stock/component/history/stock-history.component')
 .then(m => m.StockHistoryComponent),
}

In my project, I utilized lazy loading like in this example: when users navigate to

the /stockhistory/AAPL page (where Apple’s historical data get loaded) only then

StockHistoryComponent gets loaded as you can see in the developer tools of the browser:

 35

Figure 19 - Lazy loading mechanic in developer tools

One drawback of this approach is that the application’s network activity is

increased as data loading is distributed in time, but this is the cost of faster load times.

For presenting the stocks’ historical data I obtained Syncfusion’s20 community

license, which provides countless components for multiple platforms. In addition, it is

free of charge for individuals. I had to explain my project’s goal and what I would use the

components for, they were helpful and friendly, shoutout to them!

Generally styling the application I used a first-party library called Angular

Material21, which also provides out-of-the-box components, and for further

customization, I used Tailwind CSS22. You can see the final form of the application in

the following pictures. You can access the repository, the code and more screenshots on

the following link: https://github.com/GuTory/profitprophetfrontend

20 https://www.syncfusion.com/

21 https://material.angular.io/

22 https://tailwindcss.com/

https://github.com/GuTory/profitprophetfrontend
https://www.syncfusion.com/
https://material.angular.io/
https://tailwindcss.com/

 36

Figure 20 - Landing screen, Google authentication is appearing by default

Figure 21 - Historical, and recent data of Apple, recent data is fetched from https://polygon.io/,

Profit Prophet’s prediction is the neural network’s prediction presented on the UI

https://polygon.io/

 37

Figure 22 - Previous and next buttons for paging the data

Figure 23 - The application's authentication page with Google authentication

Figure 24 - Searching for symbols is enabled, the profile shows up on the top left side of the screen

 38

5.2.2 Nest.js

Nest.js is a used for developing backend applications with a modular architecture

in its primary language TypeScript. The similarities with Angular became evident in the

first stages in development: NPM packages, decorators, layer separation (module,

controller, service), etc. [20] It also utilizes dependency injection in the same way as

Angular.

As a backend application one has to define endpoints which translate to certain

functions, which’s results get sent back. This can be done simply by annotating the

funnctions in the controller:

@Controller('auth')
export class AuthController {
 constructor(private authService: AuthService) {}
 @Post('/')
 public async authenticateUser(@Body() user: UserInterface) {
 return await this.authService.authenticateUser(user);
 }
}

If AuthController is imported to the application’s module, the application has now

and POST23 endpoint: /auth/. This example code is my project’s authentication endpoint,

where the user’s data is being sent in the HTTP body, the service layer handles the

login/registration request with Firestore in the following way:

• Query if user exists in Firestore database

• If yes, return that user

• If not, save user to database and return it’s value

Firestore is cloud database provided by Google Firebase to store and sync data for

client- and server-side development. It offers seamless data synchronization and robust

offline support. Firestore's data is stored as collections of documents, with the capability

to nest fields in documents in the form of sub-collections for more complex hierarchical

data structures. It also provides powerful querying, transaction operations, and real-time

updates. Firestore can be imported with NPM to any application with the following

package: https://www.npmjs.com/package/@firebase/firestore.

23 https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST

https://www.npmjs.com/package/@firebase/firestore
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST

 39

In the project’s application I stored stocks’ historical data locally, as they take up

to more than 6GB of data when stored in a JSON format. Reading these files

synchronously can be done with the file system library24 Other data, such as stock

metadata (symbol, security name, etc.) and users are stored in the Firestore database. As

I have more than 8000 stock’s data in the database I also implemented pagination into my

application, because fetching these data all at once is unnecessary. Firestore is a NOSQL

database, so to be able to implement pagination I had to save the document reference of

the first and last element of a page, to be able to define with the startafter or endbefore

function in the query, which documents are wanted.

const q = query(
 this.collection,
 orderBy('Symbol'),
 limit(this.pageSize),
 startAfter(this.lastStock),
);

In this example, q is a Firestore query on the collection, which is defined in the

constructor, documents are ordered according to their Symbol, with the limit function one

can define the page size, and documents will be fetched starting from the lastStock

document reference. After defining the query, one has to execute it to fetch the actual

data. You can find my project’s pagination implementation in this link.

The whole project’s repository can be seen on this page:

https://github.com/GuTory/profitprophetbackend/

5.3 Model integration

After initializing the model and fitting for the right data, if one finds the model

good enough, he or she can choose to persist it. Luckily, in Keras, it is only a function

call on the model: model.save(filename). One has to define the filename, and everything

is taken care of the framework. From a personal perspective, I’ve also saved the scaler

I’ve used for training and testing the model, to know how much I have to inverse

transform them.

24 https://nodejs.org/api/fs.html

https://github.com/GuTory/profitprophetbackend/blob/main/src/stock/service/stock.service.ts
https://github.com/GuTory/profitprophetbackend/
https://nodejs.org/api/fs.html

 40

I successfully managed to integrate the created model into my web application.

My goal was to have a REST endpoint on the backend, which consumes the stock’s

symbol, and according to the symbol the script gives the adequate data to the model.

As my backend is a Node.js based application, I am not able to run direct python

code. Luckily, the child_process25 package provides a service, which spawns a shell then

executes the command within that shell, buffering any generated output. The command

string passed to the exec function is processed directly by the shell. Down below you can

see a simple example of executing a script in a Typescript environment.

import { exec } from 'child_process';

exec('python3 script.py', (error, stdout, stderr) => {
 if (error) {
 console.error(exec error: ${error});
 return;
 }
 console.log(stdout: ${stdout});
 console.error(stderr: ${stderr});
});

Besides the python script I added the model, and the scaled values to the backend

directory, and also the data which needs to be processed. The script chooses the file

according to the symbol it receives as a parameter.

However, my python script takes a couple seconds to finish, let alone the creation

of a shell. As you can see one can define a callback function which gets called when the

script exits, but the web application does not wait for it’s execution to finish. Therefore,

I had to “promisify” it by bundling it into a Promise object. The `util` library gives an

easy way for that: util.promisify(function). Whatever function is added as a parameter,

the result will be an asynchronous function, which can be called like I did in my project:

import { exec } from 'child_process';
import * as util from 'util';

const asyncExec = util.promisify(exec);
const childResult: { stdout: string; stderr: string } = await asyncExec(
 `C:\\Users\\Dell\\AppData\\Local\\Programs\\Python\\Python311\\python.exe
 ${this.pythonScriptPath}
 ${ticker}`
);

25 https://nodejs.org/api/child_process.html#child_processexeccommand-options-callback

https://nodejs.org/api/child_process.html#child_processexeccommand-options-callback

 41

The await keyword assures that the result will be awaited, and then it can be

captured, in my implementation the result appeared in the stdout variable, as the promisify

function had a signature like the above for its return. After parsing the result the backend

can give back the final prediction of the stock or signs of error. I decided to only give

back the last data point of predictions as it is the most relevant.

You can ask why my project does not call python scripts with pyton3 command,

that is because I was struggling with running the script for hours, because giving the

python3 command instead of C:\\…\\Python311\\python.exe the script loaded a previous

version tensorflow (2.11.0, and 2.14.0 would have been required), therefore modules

were not found (tensorflow.contrib) and the script failed.26 I also found out, that the issue

was because with the python3 command the Command Prompt was using python version

3.7.9, whereas I needed 3.11.5. With better care for environment variables, this problem

can be avoided.

Although, predictions were successfully integrated into the application, running

the script is pretty time-consuming, which needs some further enhancements.

Figure 25 - Prediction takes more than 10 seconds to finish

26 https://github.com/tensorflow/tensorflow/issues/30794

https://github.com/tensorflow/tensorflow/issues/30794

 42

6 Conclusion and future work

In my paper, I investigated the possibilities of using neural networks for predicting

stock prices based on historical data and integrated that model into a web application.

Although my models are barely or not even above the 50% baseline for hitting the right

direction, which is almost the same as flipping a coin, classification models were able to

go up as high as finding the right direction of movement 57% of the time, but only for a

few selected stocks, so I do not have the confidence yet to trade according to the models

expect the stock to move.

For actual stock prediction, I used only LSTM models, whose predictions

converged to the actual stock price, but the measure of movements was highly swinging

according to the sliding window of past days I provided for each data point, and even the

right direction was defective close to 50% of the time, predictions were lagging behind,

that is how. Convolutional and regular neural networks performed better in predicting

upward or downward movement. Also it would be beneficial to research, whether ETFs

can be predicted more precisely, as they are less volatile, they are a basket of certain

stocks, so more diversified.

Ideas are constantly coming to my mind for further improvements that could be

made in this application. It is for sure, that further fine-tuning is required to the model, so

that it could predict better, on the other hand however, without the information and impact

of external events, relying only on the past performance of the paper is a naive approach

and one cannot expect any kind of breakthrough. It is like a table having a maximum of

three legs, rather two... I have also not explored the potential of transformer models which

could further enhance the model’s performance. [21]

To consume the economic and political events one could create a webscraper to

scan the news, and classify them regarding emotions, outlook and insights for the market.

However, people can react in a different manner for the same events, so our job would

not done yet, one can only assume the possibility of reactions. Where human psychology

is involved, actions get less logical.

In addition, the model could process the given stock’s balance sheet to further

improve the perception of the company.

 43

Finally, regarding the neural networks I am curious whether there are direct

methods to find out what inner architecture is suitable for certain problems instead of

trying out and seeing results, I would like to be able to calculate how many layers, how

to combine them, which activation functions and parameters are optimal.

Nonetheless, for a cleaner and more scalable architecture regarding the web

application, the model could be hosted on a cloud platform, rather than storing it locally.

That however, is more costly, and would have created such an implementation overhead,

that I’ve decided that it is not necessary for now.

 44

7 Acknowledgements

This research was supported by the the European Union project RRF-2.3.1-21-

2022-00004 within the framework of the Artificial Intelligence National Laboratory.

 45

8 Bibliography

[1] B. C. Kat Tretina, „9 Types Of Investment Assets,” 2022. [Online]. Available:

https://www.forbes.com/advisor/investing/types-of-investment-assets/.

[Accessed: 29 October 2023].

[2] B. Graham, The Intelligent Investor, 1st Edition szerk., New York, NY: Harper

& Brothers, 1949.

[3] Y.-T. L. Y.-J. L. T. O. Brad M. Barbera, „The cross-section of speculator skill:

Evidence from day trading,” 2 July 2014. [Online]. Available:

https://pdf.sciencedirectassets.com/271966/1-s2.0-S1386418114X00029/1-s2.0-

S1386418113000190/main.pdf?X-Amz-Security-

Token=IQoJb3JpZ2luX2VjEOz%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F

wEaCXVzLWVhc3QtMSJGMEQCIBM5J%2Ft4Q6qIYE5JjT0FufIusiEOSxbC

lYjS5UR%2BqZoUAiBvzwWace9h. [Accessed: 22 October 2023].

[4] „Fibonacci retracement,” [Online]. Available:

https://en.wikipedia.org/wiki/Fibonacci_retracement. [Accessed: 15 October

2023].

[5] TobiasSchädler, “https://www.researchgate.net/,” 25 December 2018. [Online].

Available: https://www.researchgate.net/profile/Tobias-

Schaedler/publication/330089334_Measuring_Irrationality_in_Financial_Marke

ts/links/5c2cb67ea6fdccfc707804d3/Measuring-Irrationality-in-Financial-

Markets.pdf. [Accessed 10 October 2023].

[6] „Activation function,” [Online]. Available:

https://en.wikipedia.org/wiki/Activation_function. [Accessed: 15 October 2023].

[7] D. Kalita, „A Brief Overview of Recurrent Neural Networks (RNN),” 2023.

[Online]. Available: https://www.analyticsvidhya.com/blog/2022/03/a-brief-

overview-of-recurrent-neural-networks-rnn/. [Accessed: 20 October 2023].

 46

[8] P. J. Werbos, „Generalization of Backpropagation with Application to a

Recurrent Gas Market Model,” May 1988. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/089360808890007X.

[Accessed: 23 October 2023].

[9] J. S. Sepp Hochreiter, „Long Short-term Memory,” Neural Computation, 1997.

[10] S. Saxena, „What is LSTM? Introduction to Long Short-Term Memory,” 2023.

[Online]. Available:

https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-

term-memory-lstm/. [Accessed: 26 October 2023].

[11] C. Olah, „Understanding LSTM Networks,” 2015. [Online]. Available:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/. [Accessed: 22

October 2023].

[12] L. H. J. A. C. A. S. a. K. A. Mintarya, „Machine learning approaches in stock

market prediction: A systematic literature review.,” Procedia Computer Science,

p. 96–102, 2023.

[13] H. L. S. C. J. L. a. D. W. Bendong Zhao, „Convolutional neural networks for time

series classification,” Journal of Systems Engineering and Electronics, pp. 162-

169, 2017.

[14] V. K. R. a. S. R. Balas, Recent Trends and Advances in Artificial Intelligence

and Internet of Things, Springer Nature, 2019.

[15] N. Shahriar, „What is Convolutional Neural Network — CNN (Deep Learning),”

2023. [Online]. Available: https://nafizshahriar.medium.com/what-is-

convolutional-neural-network-cnn-deep-learning-b3921bdd82d5. [Accessed: 23

October 2023].

[16] K. a. B. A. Pawluszek-Filipiak, „On the Importance of Train–Test Split Ratio of

Datasets in Automatic Landslide Detection by Supervised Classification,” 15

September 2020. [Online]. Available: https://doi.org/10.3390/rs12183054.

 47

[17] J. B. Diederik P. Kingma, „Adam: A Method for Stochastic Optimization,” 30

January 2017. [Online]. Available: https://arxiv.org/abs/1412.6980. [Accessed:

26 October 2023].

[18] Google, „Introduction to Angular concepts,” 2022. [Online]. Available:

https://angular.io/guide/architecture. [Accessed: 25 September 2023].

[19] Developers of RxJS, [Online]. Available: https://rxjs.dev/guide/observable.

[Accessed: 30 September 2023].

[20] G. Sharma, „LinkedIn,” 2023. [Online]. Available:

https://www.linkedin.com/pulse/why-nestjs-better-choice-building-nodejs-

applications-gautam-sharma/. [Accessed: 28 October 2023].

[21] N. S. N. P. J. U. L. J. A. N. G. Ł. u. K. a. I. P. Ashish Vaswani, „Attention Is All

You Need,” 31st Conference on Neural Information Processing Systems, 2017.

