ul
LT T P PP P e—

|||u|uun:!:
MUEGYETEM 1782

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Department of Measurement and Information Systems

Test generation for partially modeled
state-based software components

SCIENTIFIC STUDENTS’ ASSOCIATION REPORT

Author Advisor
Soma Seres dr. Vince Molnar

November 1, 2022

Contents

Kivonat
Abstract
1 Introduction

2 Background

2.1 Model Driven Engineering
2.2 State machines
2.3 Model-based testing

2.3.1 Test terminology

2.3.2 Test generation for state-based models
24 KLEE e
2.5 AUTOSAR e

3 Workflow of the proposed method

3.1 Inputs . . . oL
3.1.1 Partial state machinemodel oL
3.1.2 Generated and handwritten code
3.1.3 Test generator tool

3.2 Outputs e
3.2.1 Instrumented code snippet oL
3.2.2 Output of the test generator
3.2.3 Finaltestcase

3.3 Modular test generation for partial state machines

4 Implementation
4.1 State machine framework oL
4.2 Overview of the architecture and code generation

4.3 Path generation

ii

4.4 Code snippet generation Lo 14

4.4.1 Instrumenting the code for KLEE 14

4.5 Test generation L Lo 16
4.5.1 Running KLEE on the snippets 16

4.5.2 Parsing KLEE outputs 17

4.5.2.1 Selecting the correct value combination 18

4.5.3 Generating final test code L. 19

5 Case study in AUTOSAR environment 21
5.1 Software Version Checker component 21
5.2 Using the method to generate test cases 22

6 Summary 27
Acknowledgements 29
Bibliography 30

Kivonat

Bedgyazott szoftverkomponensek fejlesztése sordn a komponensek (elvart vagy tényle-
ges) mitkodését pontosan és szemléletesen leirhatjuk modellek hasznalatéval. Allapotalapt
komponensek esetében a mérnokok legtobbszor allapotgépeket haszndlnak erre a célra. A
modell célja, hogy egy magasabb absztrakciés szinten mutassa meg, hogyan kellene a kom-
ponensnek miikddnie. Ha a modell kell6en preciz és teljes, felhasznalhato a fejlesztési fo-
lyamat tamogatasara, példaul kod, vagy akar tesztkészlet generalasaval. Ezek a technikak
jelentGsen gyorsabbd, olcsébba és hatékonyabba tehetik a fejlesztést, azonban aprolékos,
lehetdleg formalis modellezést igényelnek a tervezé mérnokok részérdl.

A gyakorlatban azonban joval egyszeriibb és atlathatébb egyes modellelemeket rovid
szoveggel reprezentilni, melyek pontos megvaldsitasat a végleges kddban implementaljak
majd a fejleszt8k. Allapotgépeknél ez jellemzéen az Srfeltételeket és akeidkat érinti, mig az
allapotokat és dllapotatmeneteket tobbnyire pontosan leirja a modell. Ebben az esetben
a kdédgeneratorok jellemzben a f6 logikat megvaldsité kddot készitik el, ahol a szdvege-
sen specifikalt elemek a kdédban egy fiiggvénycsonkként jelennek meg, amit a fejlesztok a
megfelel6 moédon implementalnak. Ez a fajta részleges modellezés j6l kombinalhaté a kdd-
generalassal, azonban jelentésen megneheziti a tesztgeneralast, mivel a modell 6nmagaban
nem értelmezhetd, csak a kitoltott fiiggvények kddjaval egylitt.

A munkamban egy olyan mddszert dolgozok ki, amely megkisérel valaszt adni a fen-
tebb vazolt problémédra. A megoldds hdrom {6 1épésre oszthat6: 1) Utak generdldsa a
tesztekhez az allapotgép modell alapjan (adott fedettségi metrikara optimalizélva); 2)
Koédrészletek generalasa minden egyes tithoz, melyek tartalmazzak az 6sszes kodot, ami az
ut végrehajtasa soran lefutna; 3) Hagyomdanyos tesztgenerdld eszkoz segitségével konkrét
tesztesetek generalasa a kodrészletekhez.

A modellbdl vals ttgenerdlas és azokra épitve a kddrészletek kialakitasa lehet6vé te-
szi, hogy a f6 problémat kikiiszoboljik: 6sszekotjiik a kodot, ami az Orfeltételeket irja le
a hidnyos modellel. A konkrét tesztesetek létrehozasdhoz egy tn. "concolic" tesztgenera-
tor eszkozt haszndalok, ami informéciét gyijt a lefutast befolyasold valtozokrol, majd egy
megold6 segitségével konkrét értékeket ad nekik az egyes tesztesetekben.

A dolgozatban bemutatom az altaldnos megoldast, és ezen felill egy AUTOSAR-
specifikus prototipus implementaciot is. Ezt felhasznalva demonstralom a moédszer mii-
kodését egy autdipari esettanulményon keresztiil. Az esettanulményban egy AUTOSAR-
alapi kornyezetben értelmezendd szoftverkomponens belsé viselkedését leird részleges
allapotgép-modelljét vizsgdlom. A fentebb leirt médszert alkalmazva bemutatom, hogy
a megkozelités alkalmas tesztesetek generaldsara az AUTOSAR szoftverkomponenshez.

Abstract

During embedded software component development, we can use models to represent the
(expected or actual) behavior precisely and informatively. For state-based components
engineers mostly use state machines. The goal of state machine models is to show how the
component should work on a higher level of abstraction. In case the model is sufficiently
precise and complete, it can be used to support the development process (e.g., by gener-
ating code or test cases). These techniques make the development process significantly
faster, cheaper, and more efficient, although they require detailed and preferably formal
modeling from the designing engineers.

In practice, it is often much easier and cleaner to model some parts with simple text,
which will be implemented by the developers in the final code. For state machines, this
usually applies to guards and actions, while states and transitions are precisely described
by the model. In this case, code generators create the implementation of the main logic,
whereas the elements specified by text appear in the code as function stubs, which the
developers will implement in the intended way. This kind of partial modeling can be
combined with code generation, but it makes test generation significantly harder, because
the model cannot be interpreted in itself, only with manually written code of the function
stubs.

In my work, I propose an approach that attempts to solve the above-described issue. The
solution can be divided into three main steps: 1) Generating paths for the tests based
on the state machine model (optimized for given coverage metrics); 2) Generating code
snippets for each path that contains the code that would run during the execution of that
path; 3) Using a conventional test generation tool to create concrete test cases for the
generated snippets.

Using the model to create paths and then creating code snippets based on them allows us
to eliminate the main issue: we connect the manually written code with the incomplete
model. To create concrete test cases, I use a "concolic" test generator tool, which gathers
information about the variables that affect the execution of the code and use a solver to
assign concrete values to them in each test case.

In this work, I present the generic solution that can be used in different areas, as well as
an AUTOSAR-specific prototype implementation to demonstrate that the method works,
illustrated in a case study from the automotive industry. In the case study, I investigate a
software component in an AUTOSAR-based environment, where the internal behavior of
the component is described by a partially modeled state machine. I apply the proposed
method to prove that it is suitable for generating test cases for an AUTOSAR software
component.

ii

Chapter 1

Introduction

In software development, it is common to use models and diagrams to represent different
aspects of the product. Surveys like Akdur et al. [1] or Forward and Lethbridge [11] show
that engineers tend to use models when designing software, especially for documentation,
to make communication and understanding better, and in some cases to write code based
on the model or to generate code from them. In the latter 2 cases, we talk about Model-
Driven Development (MDD). When products are based on models, the models must be
precise and complete. To achieve this we can follow standards like UML [24] by using
tools that were developed to help engineers keep the rules of such standards. However,
there is typically no time to be 100% precise and complete while modeling, and it is much
easier to represent elements with a short descriptive text.

In embedded systems the developers mainly use Component-Based Development (CBD)
due to the nature of the context — it makes sense to split the system into smaller compo-
nents so they fulfill the requirements by working together. State machines are widely used
to model the behavior of software components [12]. In case we want to generate the code
of the component we have to follow the standards very strictly which can be challenging at
times because they are sometimes hard to understand and some parts are very complex.
In situations like these, it might be tempting to simplify things and create a less precise
model. However, this can lead to problems regarding the code generation from the model.
Take a state machine’s guard as an example: language-independent logical expression
should be used to express the condition, but this can lead to overcomplicated expressions
that can not be interpreted quickly by glancing at the model. However, when representing
these conditions with a short and meaningful text, the model can be comprehended much
easier.

When using non-interpreted expressions in the model the generated code has to be com-
pleted with handwritten code. This also means that it is impossible to create test cases
based solely on the model, as the information about the values determining the behav-
ior of the component is hidden behind the short text which only gets resolved once the
corresponding code is written.

In this work, we concentrate on state machine models which are used to describe embedded
software components’ behavior. The formalism used for this handles very simple state
machines: only states, transitions, guards, and actions are used. States and transitions
are precisely modeled, guards and actions, however, are only represented in the model
with simple text.

1. Definition. A partially modeled state machine has at least one model element which
is represented with short descriptive text instead of precise expressions/elements. .

An example of such state machine is shown in Figure 1.1. Testing these components can
be very challenging as the state machine gets more complex. It can be time-consuming to
provide test cases to cover each state or transition (or both) while providing guards with
different values, so every combination of a logical expression is tested. To address these
challenges, test generation is a promising solution.

opened [doorwaylsEmpty] closed

open

lock /beep unlock /beep

locked

Figure 1.1: Example for a simple partially modeled state machine

Unfortunately, test generation requires precise and complete models. There are also test
generation tools for source code, but these generally do not deal with state-based code
very well, because they optimize for code coverage and not state coverage, which is more
important for state-based behavior. In this work, a solution is proposed that combines
these approaches to generate concrete test cases for partially modeled state machines.

In Chapter 2 the background of the work is described, gathering all related information
needed to understand this report. After that in Chapter 3 the workflow of the proposed
method to solve the described problem is presented by defining the inputs and outputs
as well as the steps to take. To prove the method’s usability in real life, an implementa-
tion using Eclipse-based technologies and Xtend was created, the details are described in
Chapter 4. In Chapter 5 the implemented method is applied to perform a case study in
the automotive industry. The subject of the case study is a state-based AUTOSAR soft-
ware component that is provided as an example by thyssenkrupp Components Technology
Hungary Ltd. (thyssenkrupp). In Chapter 6 I summarize my work and discuss future
tasks and improvement possibilities.

Chapter 2

Background

2.1 Model Driven Engineering

Nowadays as software is becoming more and more complex, a good way to manage this
complexity seems to be abstraction. Model Driven Engineering (MDE) is a popular way
to achieve this by using models as a high-level description of behavior. This means the
systematic use of models as primary artifacts during a software engineering process [13].
Much previous research like [1] and [16] show that adapting MDE can have positive and
negative effects as well, depending on the situation. Model Driven Development (MDD)
is considered to be a subset of MDE, as MDD drives only development - a sub-process of
the whole engineering process.

Akdur et al. [1] show that the top three motivations of model-based development are: “im-
provement of the product quality”, “development of functions with high complexity”, and
“shorter development times”. To narrow down the areas, focusing on embedded systems,
according to the responses in the survey, sequence diagrams and state machines/charts are
the most popular diagram types. The survey also reports that documentation and code

generation are the most popular reasons for using MDE.

An obvious positive effect of adapting MDE is shorter development times, especially if
we are using a model-centric MDD adaptation [8], where we create code from the model
(usually with generators). To be able to take this advantage, the model has to be precise
and well-formed, which however can be difficult and time-consuming. This is heavily
dependent on the experience of the engineers and the used tools.

Schétz et al. [23] show the two sides of MDE: although the design time (and therefore the
cost as well) increased by 30-40%, code generation reduced the final cost by 40-50% and
the verification/testing allowed another 40% reduction. This was possible because 60% of
design errors were revealed in an early phase of the development process. The survey was
done in the automotive industry with 180 participants from 14 different countries. The
conclusion is that adapting MDE can be costly in the beginning, but as the engineers get
more experienced and used to this process, it can be much more effective, resulting in a
more efficient solution in the end.

2.2 State machines

State machines are widely used in the modeling reactive embedded systems [21]. There
are different forms of state machines, which makes their semantics a complex question.
The UML [24] or SysML [18] standards specify a very detailed form of state machines.

State machines have different model elements, the most commonly used are states, tran-
sitions, events, guards, and actions.

States are self-explanatory: they represent a well-definable state of the system (e.g. a door
can be closed/open).

Transitions can appear between states, so they have a source and a target state. They
represent that the state of the system can change from the to the target state of the
transition.

Events trigger transitions. When a transition has a trigger event, it will take place when
the event happens (e.g. the door will be closed when the ’close’ event happens - this means
we shut the door, which is an event from the door’s perspective).

Guards are also used by transitions, they define conditions, which have to be true to enable
a transition. A transition can only be executed if the current event processed is the trigger
event of the transition and the guard on the transition is evaluated to be true.

Actions in the state machine are the way to execute commands and communicate with
the environment of the system. They can also be referenced on a transition, in this case
when the transition is performed, its effect (the referenced action) also gets executed.
Actions can be referenced by states as well, in case we want to simplify our model. If
every transition entering/leaving a certain state has the same action, it is easier to use
an entry/exit action. An entry action is executed when we enter the corresponding state,
and the exit action is executed once we exit the state. When we have an exit action in
the source state of a transition that also has an effect (action), and the target state has an
entry action, the execution of the actions follows a predefined order: first, the exit action
of the source state is executed, then the effect of the transition and finally, the entry is
performed.

2.3 Model-based testing

Model-based testing (MBT) is key in reducing time/cost in the development process.
To test software exhaustively we need a very detailed specification and have to create
complex and/or large amounts of test cases to cover all requirements. Beizer [6] shows
that testing requires about 50% of development resources. In MDE, the models used can
make understanding the system much easier, therefore tests can be more detailed, and
they can be created much faster. In case we want to improve testing even more, MBT
offers a promising technique for this: model-based test generation. If we follow standards
and have the required tools, we can generate tests for different types of models, reducing
the cost of testing by a lot.

When applying MBT, the input for the test cases is the model in itself, so it should
be precisely designed and well-formed. This is not a simple task, but as mentioned in
Section 2.1, the more experience the engineers have, the easier it is for them to create
good models, resulting in higher efficiency.

2.3.1 Test terminology

When we talk about tests, we always have something we want to verify. In MBT, this is
called the System Under Test (SUT), which we want to make sure behaves as expected.
The requirements define what the SUT is responsible for, and the models describe how
the SUT is constructed and how it behaves. Based on these we can create test cases,
which are used to verify that the SUT fulfills the requirements. When applying MBT we
usually do black box testing [7]. This means we think about the SUT as a black box —
we know nothing about the inside, we just know what the outputs should be for the given
inputs (e.g., based on the model). In this approach Test cases generally use the following
structure:

e Set the inputs for the SUT
o Run/trigger the SUT

e Check the outputs

When we check the outputs, we usually use assertions. This means we assume that the
output (the actual value, or the counter for a function call, etc.) is in an expected relation
(e.g. equals, greater, not equals, etc.) with a previously defined value. For example, if we
want to test an arithmetical system, especially its addition functionality, we set the two
inputs for it for 3 and 2, set the operation to "add", run the system for these inputs, and
check if the output is equal to 5.

2.3.2 Test generation for state-based models

As mentioned in Section 2.1 one of the main benefits of MDE is the shorter development
time, which is often achieved by generators. In [16] the authors claim that the purpose
of the model is often generating source code and test cases. The more formal and precise
the model is, the less effort remains after the generation. When generating tests for a
component we have the advantage of systematically processing the model: a generated set
of tests can cover far more cases than a tester could, and this is done in a significantly
smaller amount of time.

For state-based software, we can use the state machine to generate test cases. The diagram
is very similar to a directed graph, therefore some techniques from that field are used.
When generating test cases for state machines the first step is to find execution paths.
This means the sequence of states that are accessible after each other. Path finding can
be based on different coverage metrics such as state coverage (cover all states), transition
coverage (cover all transitions), and transition-pair coverage (cover all combinations of
adjacent transitions successively entering and leaving a given state) [22, 20, 19]. A great
advantage of test generation is that it can be configured for optimizing a selected coverage
metric or fulfilling multiple at once, just by adjusting the generator.

2.4 KLEE

KLEE [9] is a popular test generator tool for C. It is easy to use, open-source, and still
maintained. It is based on symbolic execution. This means that the program is executed
with symbolic values that are used to gather information during the execution of the pro-
gram in order to create equivalence classes for these symbolic variables. These constraints

are then used together to obtain one concrete value for each input using a solver. More
details about symbolic execution can be found in [14].

2.5 AUTOSAR

The AUTOSAR (AUTomotive Open System ARchitecture) standard [5] is the result
of a collaboration between various automotive parties. Their motivation was to create
and establish an open and standardized software architecture for electronic control units
(ECUs) used inside the automotive industry. Tools like AUTOSAR Architect, developed
at thyssenkrupp help to adapt MDE using AUTOSAR models to provide standardized
solutions when creating automotive software.

Software component-based development is commonly used in the AUTOSAR world, the
final ECU software is the result of the collaboration of different SoftWare Components
(SWCs). Each SWC has its own responsibilities and tasks. The SWCs can have ports,
through which they can communicate with other components. To represent the behavior
of the SWC we can create Runnable Entities (runnable), which are responsible for some
of the SWC’s tasks and responsibilities. These runnables can also communicate with each
other inside the SWC in predefined, standardized ways: e.g. we can use Per-Instance
Memory (PIM) or Inter Runnable Variables (IRV) for this purpose.

To identify elements in the resources unambiguously, the AUTOSAR standard’s Generic
Structure Template [3] Section 6.3.2 define ShortName-paths (both absolute and relative).
In an AUTOSAR model, elements are identified by their shortName attribute. Some
special elements (that are Identifiable, see details about this in [3]) create namespaces,
inside which each element has to have a unique ShortName-path. If we are talking about
an absolute ShortName-path, it can be calculated according to Section 6.3.2.1 in [3]: it
begins with the ’/’ character, and we concatenate the shortName of each element from
the containment path separated by ’/’ characters.

AUTOSAR uses a standardized environment to run the applications: this is called the
Run Time Environment (RTE) [4]. This allows communication between components and
different modules (e.g. COM, OS, etc.) using ports and interfaces, as well as scheduling of
the different runnables (they are mapped to OS Tasks). When a SWC’s runnable wants
to access a port or an internal variable (e.g. IRV or PIM), the runnable has to explicitly
declare this. The method for this depends on the type of accessed data. For accessing
each data element an RTE API is available for each runnable that declares the usage of
the data element. These can be found in the RTE Specification [4].

Chapter 3

Workflow of the proposed method

The goal of this work is to generate concrete test cases for partially modeled state machines.
This section will cover the needed inputs and the created outputs, as well as the overview
of the method.

3.1 Inputs

There are 2 main inputs for the test generation: the partial state machine model and the
handwritten code describing the complex model elements. Selecting a conventional test
generator tool for source code is also necessary, and the tool’s output is considered as an
intermediate input in the process.

3.1.1 Partial state machine model

In this method, only a specific form of state machines is used. They are partially modeled
(as defined in Definition 1), and they only contain states, transitions, guards, and actions.
Description of the states and transitions are modeled precisely, while guards and actions
are represented with short and meaningful texts. To support this kind of modeling of state
machines, a framework was created. The details and the implementation of the framework
are discussed in Section 4.1.

3.1.2 Generated and handwritten code

We also need the source code generated from the state machine and the handwritten
functions which implement the actions and guards in the selected programming language.

Actions have a function named the same as the shortName of the action, and as a guide,
the usable RTE APIs are listed as a comment. As actions can be very diverse, we give
the developers freedom by limiting them only to use the previously listed RTE APIs in
the configuration. Guards are more strict, the elements listed in the configuration are
automatically read using the corresponding RTE call in a generated method and passed
to the stub as a parameter. The user only has to use the values and does not have to
worry about using the RTE APIs, to get the data. An example of such generated stub for
an action and a guard is shown in Source Code 3.1.

© 00 N O W N

e
W N = O

/k*
* The callable RTE APIs from the sendSwVersionReport action are:
* - Rte_Pim_ReportTobeSent
* - Rte Pim SentDataStatus
* — Rte_Call_TransmitSwVersionReport_send
*/
void sendSwVersionReport (){
/* TODO */
3

/* CRCOK guard */

bool CRCOK(dtIncomingReport#* IncomingReport, dtSwVersionReport* ReportTobeSent){
return FALSE; /* TODO */

b

Source Code 3.1: Generated stubs for an action and a guard

3.1.3 Test generator tool

To perform the test generation we should select a test generator tool for the programming
language of the previously mentioned codes. To achieve maximum efficiency it is advised to
use a tool that can be run from the command line or code. In this case, the whole workflow
can be automated. This tool is responsible for an intermediate input: the output of the
generator is parsed and the final test cases are created from the parsed values.

3.2 QOutputs

There are outputs in the process after each step, they are either usable later on their own,
or are directly used in the next step of the process.

3.2.1 Instrumented code snippet

After extracting paths from the state machine model, an instrumented code snippet will
be generated as the first output of the process. This code is set up to help the execution
of the selected test generator. It contains all the code that would run during the execution
of a path, providing information about the variables that have an impact on the guards
in the path. This code is also used as an input for the test generator.

3.2.2 Output of the test generator

After using the test generator on the instrumented code snippets, it produces outputs.
These will contain the values for the variables that were instrumented in the previous
output. These outputs can be used separately to create tests or to analyze the model.
The form and usability of them heavily depend on the test generator tool chosen.

3.2.3 Final test case

After parsing the outputs of the test generator the final test cases can be constructed. We
know which variables get which values in each path, so we can set the inputs for the state

machines, and then make assertions after each step about the state of the state machine.
These final test cases can be run separately, or if we provide a function that resets the
whole environment, they can be run after each other.

3.3 Modular test generation for partial state machines

To generate concrete test cases for partially modeled state machines, first, we need to
create a connection between the partial model and the handwritten code parts and then
generate paths and input values for the different test cases.

3 Generated paths for
selected coverage

State machine model

Generated code of the Instrumented code
state machine main logic snippet

Generated stubs for 2
actions and guards

Handwritten code

Test outputs

State machine test cases

Figure 3.1: Overview of the approach

Figure 3.1 provides an overview of the proposed approach. All steps are the results of this
work. In the first step, we use the framework to generate the code that implements the
main logic for the state machine and the stubs that will be responsible for the partially
modeled elements (actions and guards). The second step is to write the code for these
elements inside the stubs.

The third step is generating the paths from the state machine model. We should define
what coverage we would like to optimize for in this step from the ones mentioned in
Section 2.3.2 (e.g. state, transition, transition-pair). Next, we create the connection
between the partial model and the handwritten code, when we create a snippet that
contains all the code that would run during the execution of each path. These will also
contain a call to the handwritten functions, and the snippet will be instrumented so that
the chosen test generation tool can process the variables that determine the execution of
each path.

Using these snippets in step five, we perform the test generation with the selected tool
and parse the outputs in step six to create the final test cases.

In the end, the final test cases are just as if they were generated from a precisely modeled
state machine, thanks to the connection made with the code snippets in step four.

Chapter 4

Implementation

4.1 State machine framework

To be able to build on the assumtions made in Section 3.1.1, I created a framework to
support the partial state machine modeling. It is an Eclipse plugin, which means it can
be integrated into any Eclipse-based tool. The framework is based on a simple metamodel
(Figure 4.1) using the Eclipse Modeling Framework (EMF) [25].

E Statemachine

< shortName : EString

[0..*] transition [0..*] action

[1.1] initialState 0.1 state

[0..*] quard

£ Guard 0.1] guard £ Transition

< shortName : EString < shortName : EString

[Action [state

e
2 : EString 0.1 exit
0. 1] entry

[0.*) outgoingTransition

[1.1] targetState

[0..1] effect

Figure 4.1: Partial state machine metamodel

This simple metamodel was enough to represent most state machines used for component
internal behavior modeling at thyssenkrupp, based on research at the company. The result
was that the used state machines are simple ones, no composite states and regions were
used, therefore the previously listed basic elements are sufficient.

The framework is responsible for creating and validating state machine models as well as
generating the code that implements them.

To integrate the framework into the AUTOSAR environment, a configuration layer was
created as well. It is based on the AUTOSAR Standard’s ECU Configuration [2]. A
definition for the configuration was created which references state machine model elements
by their shortNamePaths (to achieve this the AUTOSAR metamodel was used, and classes
had to inherit from the Referrable and Identifiable classes).

This allows engineers to configure each state machine element that is not modeled precisely
(actions and guards in this case), by declaring what data will be used in the function that
implements the corresponding element. For example, if a guard checks a data element
that is read from a port, we can add the access of this variable to the guard element’s
configuration, and the generated function stub for the guard will have the read data passed

10

as a variable, so only the logical expression has to be implemented. This configuration
is responsible for creating the connection between the state machine and the AUTOSAR
model.

After the configuration is done, the framework generates the implementation of the main
logic behind the state machine, and stubs for the partially modeled elements as well.

On top of the state machine framework, a separate plugin was implemented, that supports
the workflow described in Chapter 3. The implementation was written in Xtend, which is
an extended version of Java, with great template expression support that can be used when
generating text (in my case code). In the following, I will describe this implementation in
detail.

4.2 Overview of the architecture and code generation

AUTOSAR model Partial State machine model

AUTOSAR specific configuration

AUTOSAR Related code State machine code

RTE Contract Test Stubs

Connector code

Instrumented code Test Cases

Figure 4.2: Architecture of the AUTOSAR Implementation
Figure 4.2 shows the architecture of the final implementation. 3 models are used:

o the partial state machine model to describe the behavior of a runnable

o the AUTOSAR model, which describes the Software Component (SWC) and every-
thing else related to it

o finally, the AUTOSAR-specific configuration that connects the two (which is actually
part of the AUTOSAR model, but it is visualized separately as it is a single model
element that contains the connecting information between the two main models)

The dashed arrows mean that one thing is used by another. The arrow starts from the
used element and ends in the user, so the configuration uses both the AUTOSAR and the
partial state machine model by referencing their model elements: AUTOSAR elements by
a cross-reference, state machine elements by their shortNamePath. From each model, a
related code can be generated. Generation is shown with a solid thin arrow on the figure,

11

while the workflow is shown with a thick one. The instrumented code is used by KLEE,
and KLEE is used to create the final test cases.

Demo Component

runnable

<<PIM>>
pimC

Figure 4.3: An example for an AUTOSAR Software Component

Figure 4.3 is an example of an AUTOSAR SWC. The generation of the different artifacts
and the relation between them is easier to demonstrate with an example. This component
is called ’Demo’ and has 1 runnable called ‘runnable’. The SWC has 2 ports, one provided
and one required - on portA it can receive data, and on portB it can send data. The
interface of the ports is not shown in the figure, portA has one data element, valA, and
portB similarly has one data element, valB. The component also has a Per-Instance Mem-
ory (PIM), called pimC. The runnable can access all of the previously mentioned data
elements, so the corresponding Run Time Environment (RTE) API can be used inside the
runnable implementation.

From the AUTOSAR model, we can generate the RTE Contract for the SWC that most
importantly contains code for the user-defined types, the declaration of functions in sep-
arate source files that will implement the different runnables and the RTE APIs. In
Figure 4.4 we can see that the RTE Contract contains the demo_ runnable.c file and the
RTE API for all the data elements: we have a read API for portA’s valA, a write API for
portB’s valB, and a PIM API for pimC.

MODEL CODE

RTE CONTRACT TEST STUBS

RTE APIs portA Stub

AUTOSAR RTE Read portA_valA
MODEL
d ble.
SO-THARERIEE RTE Write portB_valB

RTE PIM pimC

valA stub

portB Stub

valB stub

pimC stub

HANDWRITTEN STUBS
Action stubs

Guard stubs

&3

STATE

STATE MACHINE CODE

MACHINE
MODEL

MAIN LOGIC

Figure 4.4: Models and codes used in the process

Test stubs can also be generated from the AUTOSAR model using thyssenkrupp’s model-
ing tool, which allows us to set the different values on the RTE APIs used by the SWCs.

12

This test stub code makes testing much more convenient and will be used when creat-
ing the final test cases (which is a reasonable decision, since developers also use these
when implementing test cases by hand). Figure 4.4 shows that each data element has its
own stub: we can set portA’s data elements through its stub, and the same applies to
portB’s (although it is a written port, this can be useful when testing multiple components
together, but this is not the scope of this work), and PIMs have their own stub as well.

Assume the demo SWC’s behavior can be modeled with a state machine and we used the
framework to create one and already configured it as well, so we can access the different
elements of the AUTOSAR SWC. From the partial state machine model, the code for the
main logic can be generated and has to be extended with the connector code. It uses
the AUTOSAR-specific configuration to create method stubs that make the developer’s
job easier by providing the required data for guards and by listing the callable RTE APIs
for actions, so they know what APIs they’re allowed and able to call. The main logic of
the state machine will reference the handwritten stubs through headers (as we are in the
AUTOSAR environment, the used language is C), and the handwritten stubs will use the
RTE APIs. For example, if a guard is based on the value of pimC, the guard’s stub will
receive the value inside the PIM, and we can write a condition based on that value, or
if we want to send data on portB inside an action, we will be able to call the RTE API
of portB from the action’s stub. The connector code uses the generated codes of the two
different domains, so we include the relevant headers to connect the domains.

4.3 Path generation

Path generation for state machines is a widely researched area. I did not intend to create
anything new regarding this step, but the solution needed to use some already existing
algorithms.

The method is prepared so that it can generate paths depending on the preferred coverage
metric. The solution uses the strategy design pattern - for each coverage metric there can
be a different class that implements the path generation based on their metric goal. I
have implemented 2 algorithms, but these can be extended according to the user’s needs.
I describe the two implemented algorithms below.

The first algorithm’s goal is to cover all states. This was achieved by implementing an
iterative version of the Depth First Search (DFS) algorithm. The algorithm is described in
Algorithm 1. The main idea is that we use the state machine as a directed graph and we
run a DFS from the initial state. We store the previously traversed states and whenever
we reach a leaf (no more outgoing transitions are available to not visited states) we create
a path, that contains the states and transitions that led us to the current leaf. Then we
go back to the first state that has an outgoing transition with a target that is yet to be
visited.

The other algorithm’s goal is to cover all states and transitions. To achieve this I generate
all possible paths between the initial state and every other state using Dijkstra’s algorithm
[10]. Since all possible paths are found between each state, all states will be covered using
every transition at least once in a path. To avoid testing the same paths multiple times,
I filter out paths that are prefixes of others. As the state machine is validated before
the generation, it is guaranteed that all states are accessible in the graph, therefore this
method will cover every state and transition.

These two algorithms are just examples, their purpose is to provide some basic path
generation feature so the user is not forced to implement their own. There are several

13

1
2
3

Algorithm 1 All State Coverage algorithm based on Iterative Depth First Search

Require: V is a state machine where each state is accessible
1. Stack S < {}, Visited < {}, States < {}
2: S.push(V.initial), Visited.push(V.initial), States.push(V.initial)
3: while S not empty do
State u < S.pop()
5 if u ¢ Visited then
6 States.push(u), Visited.push(u)
7: end if
8
9

o

if u.outgoing contains transition where target is not in Visited then
: for all ¢ € u.outgoing where target is not in Visited do S.push(t.target)
10: end for

11: else

12: Create path from States

13: for all r € States where r has no more unvisited neighbor do
14: Remove r from States

15: end for

16: end if
17: end while

other coverage criteria and algorithms, hence this part can be expanded to the users’
liking,.

4.4 Code snippet generation

From the previously generated paths, we want to create a code snippet that contains the
code that would run during the execution of the path. This means we need to flatten
the code of the state machine and provide information for the test generator about the
variables that determine the execution of each step. To generate the snippet Algorithm 2
is used.

It is important to generate these snippets into well-differentiable parts (functions or even
source files), so we can run the test generator separately for each snippet.

4.4.1 Instrumenting the code for KLEE

In Algorithm 2 Step 6 I mentioned instrumenting variables for the test generator tool. In
the implementation, KLEE was chosen as the tool to be used thanks to the reasons listed
in 2.4. When working with KLEE this means that after including the header of KLEE we
can simply create a symbolic variable by calling the klee_ make_symbolic function with
the reference, the size, and the name of the variable. Source Code 4.1 is an example for
this.

uint8 myVar;
klee_make_symbolic(&myVar, sizeof (myVar), "myVar");
/* Code that uses myVar */

Source Code 4.1: Make a simple variable symbolic for KLEE

14

© 00 N R W N =

11
12
13
14
15
16
17

18
19
20

Algorithm 2 Code snippet generation algorithm

Require: P is a path generated from ST'M state machine
1: Set Vars < {}

2: for all ¢t € P.transitions where t has a guard do
3: Vars.push(r) where r is every referenced variable in t.guard
4: end for

5: for all v € Vars do > Begin instrumented code here
6: instrument v for test generator tool

7: end for

8: State < ST M .initial

9: for step € P do

10: if step.transition has guard then

11: step.transition.guard

12: end if

13: if step.sourceState has exit action then

14: step.sourceState.exit call

15: end if

16: if step.transition has action then

17: step.transition.action call

18: end if

19: if step.targetState has entry action then

20: step.targetState.entry call

21: end if

22: State + step.targetState

23: end for

In C it is common to use structures to group related variables into one place. When using
structs with KLEE, it can lead to some bugs, so when instrumenting the code I made sure
to break down the structs into simple variables, make those symbolic, and then set the
already symbolic variables for the original struct. Structs can have other structs as their
inner variables, so this had to be done recursively. Source Code 4.2 shows an example of
making a nested struct symbolic for KLEE.

/* Struct typedefs */
typedef struct{
uint8 id;
boolean processed;
} dtInfo;
typedef struct{
dtInfo info;
uint32 data;
} dtMessage;

/* Make struct symbolic */
dtMessage testO_message;

dtInfo testO_message_info;

uint8 testO_message_info_id;

klee_make_symbolic(&testO_message_info_id, sizeof (testO_message_info_id),
— "testO_message_info_id");

boolean testO_message_info_processed;

klee_make_symbolic(&testO_message_info_processed, sizeof (testO_message_info_processed),
— "testO_message_info_processed");

15

21
22

23
24
25

26
27

testO_message_info = (dtInfo){.id=testO_message_info_id,
< .processed=testO_message_info_processed};

uint32 testO_message_data;
klee_make_symbolic(&testO_message_data, sizeof (testO_message_data),

— '"testO_message_data'");

testO_message = (dtMessage){.info=testO_message_info, .data=testO_message_datal;

Source Code 4.2: Make a struct symbolic for KLEE

This detailed approach also makes it easier to create the final test code, because we have
a separate object with a concrete value for each primitive variable.

4.5 Test generation

In order to get the final test cases we need to use the previously generated code snippets
with the selected tool, in our case KLEE.

4.5.1 Running KLEE on the snippets

A disadvantage of KLEE is that it is very complicated to set up on a Windows computer,
so to be able to run the tool, Windows Subsystem for Linux (WSL) had to be installed.
This allows the user to use their computer as if it had a UNIX operating system. After
this and installing KLEE inside the WSL, it is possible to run KLEE even from code.

KLEE uses LLVM bitcode as its input. In order to save time and resources clang is used to
first compile the source files that are static through the test generation: the state machine
code and the RTE APIs.

As mentioned previously the implementation is an Eclipse plugin, integrated into the
modeling tool at thyssenkrupp. This means that the user can create projects, and they
can create and edit AUTOSAR and partial state machine models as well as a configuration
to connect the two. When the user generates the codes from the two models, they are
placed in a predefined folder.

The previously mentioned predefined folders contain the source codes and the headers as
well, but they also have to be extended with KLEE’s headers, which are stored inside the
plugin, so we don’t have to copy them inside each project. The folders containing headers
will be passed as an include path for the compiler and the ones containing source codes
will be selected to compile all contained source codes.

After this, each test snippet is compiled alone and linked to the static parts, and KLEE
is executed on the linked bitcode, which creates a folder containing the output of the
test generation. Fach test snippet is split into 2 source files: one contains the code for
each step along the corresponding path and one contains the main function, so KLEE
can be used for generation. The step functions only contain the flattened code of the
state machine for the current step, these are used later to find the value combination that
actually runs through the selected path. Inside the main function, first, we make every
necessary variable symbolic for KLEE as described in Section 4.4.1. After that, we call
each step function and check if it can be executed — if a step has a guard, it can get stuck
on that guard, and we don’t want KLEE to continue using those values, so we return from

16

=W NN =

© 0w N >«

11
12
13
14
15
16
17
18
19

20
21
22
23
24

© 0w N Ot s W N

e e e e =
N O s W NN = O

the main function. KLEE will handle these as a normal output, but we will filter out these
value combinations later on. An example for these two files is shown in Source Code 4.3

and Source Code 4.4.

/* Source containing steps: kleelnput2.c */
#include <kleelnput2.h>
SvcStateSTM testState2; /* Store the current state of the STM */
int stepO(dtSwVersionReport* test2_ReportTobeSent, dtSVCIncomingReport*
< test2_IncomingReport){

/* Effect for transition */

sendSwVersionReport () ;

testState2 = WAIT_RESPONSE;

return O;
3
int stepl(dtSwVersionReport#* test2_ReportTobeSent, dtSVCIncomingReports
— test2_IncomingReport){

bool resl = incomingNotProcessed(test2_IncomingReport) ;

if (TRUE == res1){

testState2 = CHECK_CRC;
} else {
return 1;

3

return O;
}
int step2(dtSwVersionReport* test2_ReportTobeSent, dtSVCIncomingReportx*
— test2_IncomingReport){

/* Entry action for FINISH */

handleIncompatibleVersions() ;

testState2 = FINISH;

return O;

Source Code 4.3: Source containing steps for instrumented code

/* Source containing main: kleelnput2Main.c */
#include <kleelnput2.h>
int main(){
dtSwVersionReport test2_ReportTobeSent;
/* instrument struct test2_ reportTobeSent for KLEE */
dtSVCIncomingReport test2_IncomingReport;
/* instrument struct test2_IncomingReport for KLEE */

/* Perform steps in the path*/

int sO = stepO(&test2_ReportTobeSent, &test2_IncomingReport) ;
if(sO != 0){return 1;}

int s1 = stepl(&test2_ReportTobeSent, &test2_IncomingReport);
if(s1 != 0){return 2;}

int s2 = step2(&test2_ReportTobeSent, &test2_IncomingReport);
if(s2 !'= 0){return 3;}

return O;

Source Code 4.4: Source containing main function for instrumented KLEE code

4.5.2 Parsing KLEE outputs

KLEE produces ktest files, that contain information about all the symbolic variables.
This includes its name, size, and concrete value. KLEE creates a ktest file for each

17

N OO R W

Ut W N =

© 0 N O

11
12
13
14
15
16

value combination. In the previous section, it was mentioned that we need to filter out
combinations that cause the path to get stuck midway. To do this, we need to gather
information about the different value combinations first.

To parse the outputs of KLEE, the program uses their original parser tool called ktest-
tool[15]. To use it we need to provide a ktest file produced by KLEE. Each path has
its own corresponding output folder produced by KLEE. The implementation is built
into AUTOSAR Architect, which is an Eclipse-based application, so I stored the script
of the parser inside my plugin and used the Eclipse Platform to load the script. For
each previously generated path, I entered the corresponding folder where KLEE placed
its outputs, and ran the script for every ktest file. The scripts print out the information
about all the variables in a human-readable way, this can be easily parsed from Xtend.
An example of such output is shown in Source Code 4.5. The name of the variable was
test2_ ReportTobeSent_ SwVersionCre, it was 4 bytes and its value was 0.

object 0: name: 'test2_ReportTobeSent_SwVersionCrc'
object 0: size: 4

object 0: data: b'\x00\x00\x00\x00"

object 0: hex : 0x00000000

object 0: int : O

object 0: uint: O

object 0: text:

Source Code 4.5: Output of ktest-tool for a variable

4.5.2.1 Selecting the correct value combination

For the final tests, we only want to use the value combination where the path could be fully
executed. For this a separate source file is created, that contains the main function for
helping determine the incorrect combinations and functions that set all the related inputs
to the corresponding value. The main function has an array of function pointers, that
stores the step functions for the current path. It also receives a command line argument,
that tells the program which value combination should be used to initialize the inputs.
After these, each function pointer is called and we check if the return value is different
from 0, which means the state machine got stuck in the current step, which implies this
combination is wrong, so we return from the main function with the number of steps
completed. An example of such file is shown in Source Code 4.6.

#include <stdio.h>
#include <kleelnput2.h>
#include <SVC_TestStubs.h>
#include <valuesPath2.h>
int (*xsteps[3]) (dtSwVersionReport* test2_ ReportTobeSent, dtSVCIncomingReports
< test2_IncomingReport) ;
extern SvcStateSTM testState2;
void svcPath2Test0(void){
TESTSTUB.Rte_Pim_SVC_IncomingReport.ReportProcessed = 0OU;
/* Setting the rest of the inputs for the corresponding value */
}
void svcPath2Testl(void){
TESTSTUB.Rte_Pim_SVC_IncomingReport.ReportProcessed = 255U;
/* Setting the rest of the inputs for the corresponding value */
3
int main(int argc, char **argv){
if (argc !'= 2) return -1;

18

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

1
2
3

char* ¢ = argv[1];
switch(*c){
case '0': svcPath2Test0() ;break;
case 'l': svcPath2Testl() ;break;
default: return -1;
+
steps[0] = step0;
steps[1] = stepil;
steps[2] = step2;
for(int i = 0; i < 3; i++){
int resI = steps[i] (Rte_Pim_ReportTobeSent (), Rte_Pim_IncomingReport());
if(resI '= 0){
printf ("Stuck in %s\n", svcStateToString(testState2));
return i+1;
¥
¥

return O;

Source Code 4.6: Source containing main function for instrumented KLEE code

In the example, the path had 3 steps, so the function pointer array has 3 elements: step0,
stepl and step2 referenced from the correct header (kleeInput2.h). 2 combinations were
generated, therefore 2 functions were created for each, these are the svcPath2TestX func-
tions. Inside these we use the test stubs generated from the AUTOSAR model, setting
the ReportProcessed element of the IncomingReport PIM for 0 and 255, depending on the
combination used. In the main function, a for loop is used to call each step, and we check
if the return value is not 0, and in that case, we return the number of the step that the
state machine got stuck on. If all steps could be performed correctly with the values, we
reach the end of the array and return 0, which means we found the correct path.

To determine the right combination we compile each above-described source file with
the related codes and headers (AUTOSAR + partial state machine) with GCC, run the
executable and check the return value of the program. If the return value is different from
0, the state machine got stuck, in case it is equal to 0, the combination is the right one
and we can save this setup for generating the final test case for this path.

4.5.3 Generating final test code

After parsing the outputs and finding the correct combination of values we have a concrete
value for each input variable used during the execution of a given path. In the final test
code, we assign these values to the corresponding variables using the generated test stubs.
When a structure is needed to be assigned, we can not set the whole structure data with
one command, instead, we have to set the inner values one by one - the previously made
efforts while generating the instrumented code comes in handy now, as we have access to
all these sub-variables separately.

After setting the inputs for the path, we simply call the function that implements the state
machine as many times as needed to complete the path, and after each call, we assert the
current state of the state machine. An example of such a final test case is shown in Source

Code 4.7

#include <svc.h>
#include <valuesPathZ2.h>
#include <TKP_ASSERT.h>

19

extern SvcStateSTM svcCurrentState;
SvcStateSTM expectedStates[3] = {WAIT_RESPONSE, CHECK_CRC, FINISH}
void SVC_testCase2(){
/* Initialize inputs with the correct values */
svcPath2Test0() ;

for(int i = 0; i < 3; i++){

sve();

TKP_ASSERT_FATAL (expectedStates[i] == svcCurrentState);
I

return O;

Source Code 4.7: Example for a final test case for a path

For the assertions, the thyssenkrupp-provided macros are used, but any library for C could
be used for this purpose.

20

Chapter 5

Case study in AUTOSAR

environment

5.1 Software Version Checker component

The subject of the case study is an AUTOSAR SoftWare Component (SWC) called "Soft-
ware Version Checker’. The main requirement for this component is that it has to send the
CRC for the software version stored on the Electronic Control Unit (ECU) this compo-
nent is running on, receive a CRC from another ECU as well, and verify the same software
version is installed on both ECUs.

Software Version Checker

<<PIM>>
ReportTobeSent

ruRefresh

<<PIM>>
IncomingReport

Figure 5.1: Software Version Checker SWC

The checking process is modeled with a state machine, where the guards and actions are
represented with simple texts. The state machine can be seen on Figure 5.2 and the SWC
(with only the parts relevant to the state machine shown) on Figure 5.1. The ruRefresh
runnable is responsible for implementing the checking functionality, which will be based
on the state machine.

The initial state is called SEND_CRC, from which we automatically enter the
WAIT_RESPONSE state. During this transition, we call the sendSwVersionReport ac-
tion, which is an existing C function, that uses the sendSwReport server port to call an
operation that sends the content of the ReportTobeSent PIM.

21

/sendSwWersionReport

SEND_CRC WAIT_RE

[incemingMotProcessed]

SPONSE

CHECK_CRC

[CRCOK] [ECUSideC]

CRC_WAS_OK ECU_SIDE_WAS_OK

[else]

[else] [ECUSide0ik] CRCOK]

FINISH \ / CHECK_NEW_VERSION_REGUIRED \

btr}- hsn:llslncampstible\!slsi:}ﬂ bﬂ'}' I processincoming Report J

relse]
It 1

Figure 5.2: State machine representing the behavior of SVC

The incomingNotProcessed guard checks if the report stored in the IncomingReport
PIM(which is handled by another runnable) is processed already. If it is not yet pro-
cessed, we continue to check the software version. The check has 2 steps: checking the
incoming software version’s CRC and the ECUSideOk flag.

This can be done in arbitrary order: this is why we have states for each check. If any
of the checks fail, we go to the FINISH state, where we handle the difference by re-
porting an error on the errorReport port. If both checks were successful, we go to the

CHECK_NEW__ VERSION_ _REQUIRED state, where we check if the software should be
updated and do so in the processIncomingReport action.

5.2 Using the method to generate test cases

After creating the state machine, we have to connect the elements to the AUTOSAR model
using the configuration layer. As mentioned before the incomingNotProcessed guard uses
the IncomingReport PIM to check whether the IncomingReport has already been pro-
cessed. To make this connection we reference the IncomingReport PIM in the configura-
tion for the guard. We create configurations for the other guards as well applying the same
logic: for the CRCOK guard, we reference the IncomingReport and the ReportTobeSent
PIMs, for the ECUSideOk guard we only reference the ReportTobeSent.

After creating the connection with the AUTOSAR model we can generate the code that
implements the state machine. The generated code will contain the main logic for the
state machine and stubs for the actions and guards.

As the legacy code of the SWC does not use the state machine framework, we have to
copy the implementation for each guard and action into the corresponding stubs. At this
point, we are done with the implementation of the state machine.

Before we want to use the method, we have to generate the RTE contract and the test
stubs for the component. After this step, we have everything ready to use the method.

22

w

© W N O O

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24

As the implementation described in Chapter 4 is fully automated, we just have to run the
command responsible for generating test cases. After the generation is done, we can find
the final test cases for testing the state machine in the project’s root folder. If we want to
use the intermediate in/outputs for debugging, we can find them in the "kleeInputs’ folder.
This contains the instrumented code that was used by KLEE, the outputs of KLEE, and
the source files used for finding the correct value set, as well as the compiled version of
them. Examples for each file are presented below.

The generated paths all begin with the following subpath:
SEND CRC—WAIT RESPONSE—CHECK CRC-—... The final test cases cover
the following paths (only listing the part after the common subpath):

1. ECU_SIDE WAS OK—CHECK NEW_ VERSION REQUIRED
2. CRC_WAS OK—CHECK NEW_ VERSION REQUIRED

3. ECU_SIDE WAS OK—FINISH

4. CRC_WAS OK—FINISH

5. FINISH

By looking at the paths and the state machine model, we can verify that these paths
satisfy the all-state and all-transition coverage.

#include <kleelnput4.h>
SvcStateSTM testStated;
int stepO(dtSwVersionReport* test4_ReportTobeSent, dtSVCIncomingReport*
— test4_IncomingReport)q{
/* Effect for transition */
sendSwVersionReport () ;
testState4 = WAIT_RESPONSE;
return O;
+
int stepl(dtSwVersionReport* test4_ReportTobeSent, dtSVCIncomingReport*
— test4_IncomingReport){
bool resl = incomingNotProcessed(test4_IncomingReport) ;
if (TRUE == resi1){
testStated = CHECK_CRC;
} else {
return 1;

}

return O;
3
int step2(dtSwVersionReport* test4_ReportTobeSent, dtSVCIncomingReportx*
— test4_IncomingReport){

/* Entry action for FINISH */

handleIncompatibleVersions() ;

testState4 = FINISH;

return O;

Source Code 5.1: Steps for path5 from the generated paths

#include <kleelnput4.h>
int main(){
dtSwVersionReport test4_ReportTobeSent;

23

10
11
12

13

14
15
16
17
18
19

20
21
22

23
24
25

26

27
28
29

30

31
32
33
34
35
36
37
38

I

0

L

0

I

u

0

I

u

i

g

I

g

I

I

g

—

—

dtSwVersionCrc test4_ReportTobeSent_SwVersionCrc;
klee_make_symbolic(&test4_ReportTobeSent_SwVersionCrc,

sizeof (test4_ReportTobeSent_SwVersionCrc), "test4 ReportTobeSent_ SwVersionCrc'");

boolean test4_ReportTobeSent_EcuSideOk;
klee_make_symbolic(&test4_ReportTobeSent_ EcuSideOk,
sizeof (test4_ReportTobeSent_EcuSideOk), "test4_ReportTobeSent_ EcuSideOk");

boolean test4_ReportTobeSent_SwVersionRequest;

klee_make_symbolic(&test4_ReportTobeSent_SwVersionRequest,
sizeof (test4_ReportTobeSent SwVersionRequest),
"test4_ReportTobeSent_SwVersionRequest") ;

test4_ReportTobeSent =
(dtSwVersionReport){.SwVersionCrc=test4_ReportTobeSent_SwVersionCrc,
.EcuSideOk=test4_ReportTobeSent_EcuSidelk,
.SwVersionRequest=test4_ReportTobeSent_SwVersionRequestl};

dtSVCIncomingReport test4_IncomingReport;

dtSwVersionReport test4_IncomingReport_ReceivedReport;

dtSwVersionCrc test4_IncomingReport_ReceivedReport_SwVersionCrc;

klee_make_symbolic(&test4_IncomingReport_ReceivedReport_SwVersionCrc,
sizeof (test4_IncomingReport_ReceivedReport_SwVersionCrc),
"test4_IncomingReport_ReceivedReport_SwVersionCrc") ;

boolean test4_IncomingReport_ReceivedReport_EcuSideOk;

klee_make_symbolic(&test4_IncomingReport_ReceivedReport_EcuSideOk,
sizeof (test4_IncomingReport_ReceivedReport_EcuSideOk),
"test4_IncomingReport_ReceivedReport_EcuSide0Ok");

boolean test4_IncomingReport_ReceivedReport_SwVersionRequest;

klee_make_symbolic(&test4_IncomingReport_ReceivedReport_SwVersionRequest,

sizeof (test4_IncomingReport_ReceivedReport_SwVersionRequest),
"test4_IncomingReport_ReceivedReport_SwVersionRequest");
test4_IncomingReport_ ReceivedReport =

(dtSwVersionReport){.SwVersionCrc=test4_IncomingReport_ReceivedReport_SwVersionCrc,

.EcuSideOk=test4_IncomingReport_ReceivedReport_EcuSideOk,
.SwVersionRequest=test4_IncomingReport_ReceivedReport_SwVersionRequest};

boolean test4_IncomingReport_ReportProcessed;

klee_make_symbolic(&test4_IncomingReport_ReportProcessed,
sizeof (test4_IncomingReport_ReportProcessed),
"test4_IncomingReport_ReportProcessed");

test4_IncomingReport =
(dtSVCIncomingReport){.ReceivedReport=test4_IncomingReport_ReceivedReport,
.ReportProcessed=test4_IncomingReport_ReportProcessed};

int sO = stepO(&test4_ReportTobeSent, &test4_IncomingReport) ;

if(sO != 0){return 0;}

int s1 = stepl(&test4_ReportTobeSent, &test4_IncomingReport);

if(s1 != 0){return 1;}

int s2 = step2(&test4_ReportTobeSent, &test4_IncomingReport);

if(s2 != 0){return 2;%}

return O;

Source Code 5.2: Instrumented main function for path5

#include <stdio.h>
#include <kleelnput4.h>
#include <SVC_TestStubs.h>

24

© 0 N O

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

© 0 N O O R W N =

e e
w N = O

#include <valuesPath4.h>

int (*steps[3]) (dtSwVersionReport* test4 ReportTobeSent, dtSVCIncomingReports

— test4_IncomingReport) ;
extern SvcModStateSTM testState4;
void svcModPath4Test0(void){

TESTSTUB.Rte_Pim_SVC_ReportTobeSent.
TESTSTUB.Rte_Pim_SVC_ReportTobeSent.
TESTSTUB.Rte_Pim_SVC_ReportTobeSent.

SwVersionCrc = 0U;
EcuSideQOk = OU;
output.value.returnValue.SwVersionRequest =

— 0U;
TESTSTUB.Rte_Pim_SVC_IncomingReport.ReceivedReport.SwVersionCrc = OU;
TESTSTUB.Rte_Pim_SVC_IncomingReport.ReceivedReport.EcuSideOk = OU;
TESTSTUB.Rte_Pim_SVC_IncomingReport.ReceivedReport.SwVersionRequest = OU;
TESTSTUB.Rte_Pim_SVC_IncomingReport.ReportProcessed = 255U;

}

void svcModPath4Testl(void){
TESTSTUB.Rte_Pim_SVC_ReportTobeSent.SwVersionCrc = OU;
TESTSTUB.Rte_Pim_SVC_ReportTobeSent.EcuSideOk = 0OU;
TESTSTUB.Rte_Pim_SVC_ReportTobeSent.SwVersionRequest = OU;
TESTSTUB.Rte_Pim_SVC_IncomingReport.ReceivedReport.SwVersionCrc = OU;
TESTSTUB.Rte_Pim_SVC_IncomingReport.ReceivedReport.EcuSideOk = OU;
TESTSTUB.Rte_Pim_SVC_IncomingReport.ReceivedReport.SwVersionRequest = OU;
TESTSTUB.Rte_Pim_SVC_IncomingReport.ReportProcessed = OU;
}
int main(int argc, char **argv){
if (argc !'= 2) return -1;
charx ¢ = argv[1];
switch(*c){
case '0': svcModPath4Test0() ;break;
case 'l': svcModPath4Test1() ;break;
default: return -1;
+
steps[0] = step0;
steps[1] = stepil;
steps[2] = step2;
for(int i = 0; i < 3; i++){
int resI = steps[i] (Rte_Pim_ReportTobeSent (), Rte_Pim_IncomingReport());
if (resI != 0){
printf ("Stuck in %s\n", svcModStateToString(testStated));
return i+1;
}
}

return O;

Source Code 5.3: Code to find the correct value combination for pathb

The final test case for pathb is shown in Source Code 5.4.

#include <svc.h>

#include <valuesPath4.h>

#include <TKP_ASSERT.h>

extern SvcStateSTM svcCurrentState;

SvcStateSTM expectedStates[3] = {WAIT_RESPONSE, CHECK_CRC, FINISH}

void SVC_testCase2(){
/* Initialize inputs with the correct values */
svcPath4Test1();

for(int i = 0; i < 3; i++){

svc();
TKP_ASSERT_FATAL (expectedStates[i] == svcCurrentState);

25

14
15

return O;

Source Code 5.4: Example for a final test case for a path

Similar test cases were generated for each path, running these will test the behavior of
the SWC. Thanks to the fulfilment of the previously mentioned metrics, 100% coverage is
achieved, as required for safety-critical software.

26

Chapter 6

Summary

Model-Driven Engineering has many advantages, one of the most important is making the
development process shorter and more efficient. However, the industry is always in a rush,
engineers rarely have enough time to create fault-free and 100% precise models. Reducing
the complexity can help them to address these challenges, but it can lead to less support
regarding automated processes.

An example of this is modeling state machines using simple texts to represent some model
elements. In my work, I proposed a method that can handle such partially modeled
state machines and generate test cases for them based on the model and the additional
handwritten code that is needed to interpret the textually modeled elements. To verify
the method I created an implementation in an Eclipse plugin that was integrated into an
automotive modeling tool developed at thyssenkrupp. This way I could test the proposed
method in the AUTOSAR world, modeling the internal behavior of AUTOSAR Software
Components (SWC).

The method uses a conventional test generator, after extracting paths from the state
machine model and creating instrumented code snippets that contain the code that would
run during the execution of that path. The test generator is used on these snippets to get
concrete values for the variables that determine the execution of each path. The output is
then parsed and the values are used in the final test case to set the variables’ values. Then
we assert the current state of the state machine after calling the function that implements
its main logic.

An implementation of the method was created in an Eclipse-plugin, so I could integrate
it into the Eclipse-based modeling tool, which is used at thyssenkrupp to help engineers
model AUTOSAR SWCs. Using this implementation I did a case study on a state-based
component, creating tests automatically using the proposed method.

Future work

While KLEE has a lot of advantages, it also has disadvantages. One of these is that floats
are not handled well by the tool, so components that used floating point numbers had
to be avoided for now. KLEE uses symbolic execution that relies on constraint solvers,
which cannot handle floating-point numbers well. If it encounters a float, KLEE casts the
symbolic variables to an integer and assigns 0 to it as a value. This leads to incomplete
and often incorrect value combinations.

27

KLEE has a fork that can handle float as well, it is called KLEE-FLOAT [17]. This version
requires a lot more effort to install and the time limitations did not allow experimenting
with this fork, but this can be a promising continuation of this work.

Another point of potential extension comes from the fact that currently, the used state
machines are really simple, containing only a small subset of the possible elements. This
subset could be extended, for example, with composite states or regions. These make the
code generation for the state machine itself much more complex. Handling the different
kinds of events in AUTOSAR (e.g., change events on variables) can bring another par-
tially modeled aspect into the environment. Depending on practical need, some of these
extensions could broaden the application possibilities in more use cases.

28

Acknowledgements

I would like to thank thyssenkrupp Components Technology Hungary, especially Gergely
Sisak and Bence Limbay, for providing countless industrial examples for my work and
helping me professionally as well, regarding AUTOSAR and embedded software engineer-
ing.

I would also like to thank my advisor, Vince Molnar for helping me overcome the difficulties
by proposing great inspirational ideas all the time I felt stuck.

Last but not least, I would like to thank my friends and family, especially my girlfriend
for being patient with me during the time I spent writing this report.

29

Bibliography

1]

[10]

[11]

Deniz Akdur, Vahid Garousi, and Onur Demirors. A survey on model-
ing and model-driven engineering practices in the embedded software indus-
try. Journal of Systems Architecture, 91:62-82, 2018. ISSN 1383-7621.
DOI: https://doi.org/10.1016/j.sysarc.2018.09.007. URL https://wuw.
sciencedirect.com/science/article/pii/S1383762118302455.

AUTOSAR. AUTOSAR Standard - Classic Platform - Specification of ECU
Configuration, 2016. URL https://www.autosar.org/fileadmin/user_upload/
standards/classic/4-3/AUTOSAR_TPS_ECUConfiguration.pdf. [Online; accessed:
28-October-2022].

AUTOSAR. AUTOSAR Standard - Classic Platform - Generic Structure
Template, 2016. URL https://www.autosar.org/fileadmin/user_upload/
standards/classic/4-3/AUTOSAR_TPS_GenericStructureTemplate.pdf. [Online;
accessed: 28-October-2022].

AUTOSAR. AUTOSAR Standard - Classic Platform - Specification of RTE Soft-
ware, 2017. URL https://www.autosar.org/fileadmin/user_upload/standards/
classic/4-3/AUTOSAR_SWS_RTE.pdf. [Online; accessed: 31-October-2022].

AUTOSAR. AUTOSAR Standard - Classic Platform, 2022. URL https://www.
autosar.org/standards/classic-platform/. [Online; accessed: 25-October-2022].

Boris Beizer. Software Testing Techniques (2nd Ed.). Van Nostrand Reinhold Co.,
USA, 1990. ISBN 0442206720. DOI: 10.5555/79060.

Boris Beizer. Black-Box Testing: Techniques for Functional Testing of Software
and Systems. John Wiley & Sons, Inc., USA, 1995. ISBN 0471120944. DOTI:
10.5555/202699.

Alan W. Brown. An Introduction to Model Driven Architecture - Part 1; MDA and
Today’s Systems. 2004.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and Au-
tomatic Generation of High-Coverage Tests for Complex Systems Programs. In
Proceedings of the 8th USENIX Conference on Operating Systems Design and Im-
plementation, OSDI’08, page 209-224, USA, 2008. USENIX Association. URL
http://www.doc.ic.ac.uk/~cristic/papers/klee-o0sdi-08.pdf.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269-271, 1959.

Andrew Forward and Timothy C. Lethbridge. Problems and Opportunities for Model-
Centric versus Code-Centric Software Development: A Survey of Software Profes-
sionals. In Proceedings of the 2008 International Workshop on Models in Software

30

http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2018.09.007
https://www.sciencedirect.com/science/article/pii/S1383762118302455
https://www.sciencedirect.com/science/article/pii/S1383762118302455
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_ECUConfiguration.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_ECUConfiguration.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_GenericStructureTemplate.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TPS_GenericStructureTemplate.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_RTE.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_RTE.pdf
https://www.autosar.org/standards/classic-platform/
https://www.autosar.org/standards/classic-platform/
http://dx.doi.org/10.5555/79060
http://dx.doi.org/10.5555/202699
http://www.doc.ic.ac.uk/~cristic/papers/klee-osdi-08.pdf

[12]

[13]

[17]

[20]

[21]

Engineering, MiSE *08, page 27-32, New York, NY, USA, 2008. Association for Com-
puting Machinery. ISBN 9781605580258. DOI: 10.1145/1370731.1370738. URL
https://doi.org/10.1145/1370731.1370738.

David Harel. Statecharts: a visual formalism for complex systems. Sci-
ence of Computer Programming, 8(3):231-274, 1987. ISSN 0167-6423.
DOI: https://doi.org/10.1016/0167-6423(87)90035-9. URL https://www.
sciencedirect.com/science/article/pii/0167642387900359.

John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen. Em-
pirical Assessment of MDE in Industry. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, page 471-480, New York, NY,
USA, 2011. Association for Computing Machinery. ISBN 9781450304450. DOI:
10.1145/1985793.1985858. URL https://doi.org/10.1145/1985793.1985858.

James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):
385-394, jul 1976. ISSN 0001-0782. DOI: 10.1145/360248.360252. URL https:
//doi.org/10.1145/360248.360252.

KLEE. ktest-tool, 2021. URL https://github.com/klee/klee/blob/master/
tools/ktest-tool/ktest-tool. [Online; accessed 26-October-2022].

Liebel, Grischa and Marko, Nadja and Tichy, Matthias and Leitner, Andrea and
Hansson, Jorgen. Assessing the State-of-Practice of Model-Based Engineering in the
Embedded Systems Domain. In Dingel, Juergen and Schulte, Wolfram and Ramos,
Isidro and Abrah&o, Silvia and Insfran, Emilio, editor, Model-Driven Engineering
Languages and Systems, pages 166-182, Cham, 2014. Springer International Publish-
ing. ISBN 978-3-319-11653-2. DOI: 10.1007/978-3-319-11653-2_11.

Daniel Liew, Daniel Schemmel, Cristian Cadar, Alastair F. Donaldson, Rafael Zahl,
and Klaus Wehrle. Floating-point symbolic execution: A case study in n-version pro-
gramming. In 2017 82nd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pages 601-612, 2017. DOI: 10.1109/ASE.2017.8115670.

Object Management Group (OMG). OMG Systems Modeling Language, Version 1.6.
OMG Document Number formal/19-11-01 (https://www.omg.org/spec/SysML/1.
6/), 2019.

Jeff Offutt and Aynur Abdurazik. Generating Tests from UML Specifications. In
Robert France and Bernhard Rumpe, editors, «UML»’99 — The Unified Modeling
Language, pages 416-429, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. ISBN
978-3-540-66712-4. DOI: 10.1007/3-540-46852-8_30.

Jeff Offutt, Shaoying Liu, Aynur Abdurazik, and Paul Ammann. Generating test
data from state-based specifications. Softw. Test., Verif. Reliab., 13:25-53, 03 2003.
DOI: 10.1002/stvr.264.

Reggio, Gianna and Leotta, Maurizio and Ricca, Filippo. Who Knows/Uses What of
the UML: A Personal Opinion Survey. In Dingel, Juergen and Schulte, Wolfram and
Ramos, Isidro and Abrah&o, Silvia and Insfran, Emilio, editor, Model-Driven Engi-
neering Languages and Systems, pages 149-165, Cham, 2014. Springer International
Publishing. ISBN 978-3-319-11653-2. DOI: 10.1007/978-3-319-11653-2_10.

31

http://dx.doi.org/10.1145/1370731.1370738
https://doi.org/10.1145/1370731.1370738
http://dx.doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
https://www.sciencedirect.com/science/article/pii/0167642387900359
https://www.sciencedirect.com/science/article/pii/0167642387900359
http://dx.doi.org/10.1145/1985793.1985858
https://doi.org/10.1145/1985793.1985858
http://dx.doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://github.com/klee/klee/blob/master/tools/ktest-tool/ktest-tool
https://github.com/klee/klee/blob/master/tools/ktest-tool/ktest-tool
http://dx.doi.org/10.1007/978-3-319-11653-2_11
http://dx.doi.org/10.1109/ASE.2017.8115670
https://www.omg.org/spec/SysML/1.6/
https://www.omg.org/spec/SysML/1.6/
http://dx.doi.org/10.1007/3-540-46852-8_30
http://dx.doi.org/10.1002/stvr.264
http://dx.doi.org/10.1007/978-3-319-11653-2_10

[22]

Yasir Dawood Salman, Nor Laily Hashim, Mawarny Md Rejab, Rohaida Romli, and
Haslina Mohd. Coverage criteria for test case generation using UML state chart dia-
gram. AIP Conference Proceedings, 1891(1):020125, 2017. DOI: 10.1063/1.5005458.
URL https://aip.scitation.org/doi/abs/10.1063/1.5005458.

Bernhard Schétz, Manfred Broy, Sascha Kirstan, and Helmut Krcmar. What
is the Benefit of a Model-Based Design of Embedded Software Systems in the
Car Industry?, volume 1, pages 310 — 334. IGI Global, 01 2011. DOI:
10.4018/978-1-4666-4301-7.ch017.

Bran Selic, Conrad Bock, Steve Cook, Pete Rivett, Tom Rutt, Ed Seidewitz, and
Doug Tolbert. OMG Unified Modeling Language (Version 2.5), 03 2015. URL https:
//www . omg.org/spec/UML/2.5.1/PDF.

David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF': Eclipse
Modeling Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009. ISBN
0321331885. DOI: 10.5555/1197540.

32

http://dx.doi.org/10.1063/1.5005458
https://aip.scitation.org/doi/abs/10.1063/1.5005458
http://dx.doi.org/10.4018/978-1-4666-4301-7.ch017
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
http://dx.doi.org/10.5555/1197540

	Kivonat
	Abstract
	Introduction
	Background
	Model Driven Engineering
	State machines
	Model-based testing
	Test terminology
	Test generation for state-based models

	KLEE
	AUTOSAR

	Workflow of the proposed method
	Inputs
	Partial state machine model
	Generated and handwritten code
	Test generator tool

	Outputs
	Instrumented code snippet
	Output of the test generator
	Final test case

	Modular test generation for partial state machines

	Implementation
	State machine framework
	Overview of the architecture and code generation
	Path generation
	Code snippet generation
	Instrumenting the code for KLEE

	Test generation
	Running KLEE on the snippets
	Parsing KLEE outputs
	Selecting the correct value combination

	Generating final test code

	Case study in AUTOSAR environment
	Software Version Checker component
	Using the method to generate test cases

	Summary
	Acknowledgements
	Bibliography

