
Budapesti M¶szaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar

Department of Automation and Applied Informatics

Semantic parsing with graph
transformations

Scientific Student's Assosiactions Report

Author Supervisor

Kovács Ádám Dr. Recski Gábor

Gémes Kinga Andrea

October 28, 2018

Kivonat

A szemantikai elemzés célja, hogy természetes nyelvi adathoz készíthessünk szemantikai

reprezentációt, így tudjuk modellezni a szoveg jelentését. Ha a nyelvi jelentést fogalmak

irányított gráfjaival reprezentáljuk, ezeket pedig a mondat szintaktikai szerkezetét reprezen-

táló fákból kell el®állítanunk, akkor a teljes feladat egyetlen komplex gráf-transzformációként

de�niálható.

A népszer¶ szemantikai feladatokra, mint a szemantikai hasonlóság mérése, vagy a gépi

szövegértés, ritkán használják a természetes nyelv szemantikájának a reprezentációját, f®leg

a state-of-the art rendszerekben. Ezek a rendszerek többnyire szó embeddingeket használ-

nak a szavak jelentésének ábrázolására, amik a szavak jelentését legfeljebb néhány száz

dimenziós valós vektorként ábrázolják.

Ebben a dolgozatban mi gráf-reprezentációkat és ezek transzformációit használjuk, mint

egyszer¶, ám hatékony eszközök a következmény viszony felismerésére, valamint leírunk

egy módszert a 4lang szemantikus elemz®rendszer[30] használatára a 2018-as Semeval

Task Machine comprehension using commonsense knowledge1 kapcsán. Ez a feladat azt

kívánja a résztvev®kt®l, hogy olyan rendszereket tanítsanak fel, amelyek ki tudják válasz-

tani a megfelel® választ az egyszer¶bb, több válaszlehet®séget kínáló kérdéseknél rövid

eseményleíró szövegek elolvasása után. A tanító és teszt adat az MCSript[28] adathalmaz

részhalmazából lett kinyerve. A két legjobb rendszer, HFL-RC[10] és Yuanfudao[39] rendre

84,15% és 83,95% pontosságot ért el a teszt adaton.

El®ször bemutatunk egy hatékony baseline-t ezen a feladaton csupán a szemantikus grá-

fok és a köztük lév® hasonlóságok felhasználásával. Ezt követ®en leírjuk a Yuanfudao state-

of-the art rendszert és az ezzel végzett kísérletezéseinket, amelyek során a baseline-unkat

extra feature-ként felhasználva javítottunk a rendszer pontosságán. Ennek a kiválasztása

magától értet®d® volt, mivel a forráskód nyilvánosan elérhet®, és már sikeresen alkalmazott

tudás alapú reprezentációt a szópárok közötti szemantikai kapcsolatokra, a ConceptNet-et.

Eredményeink azt mutatják, hogy ezzel a módosítással 0.5 százalékpont növekedés érhet®

el, és a ConceptNet helyettesíthet® a mi szemantikus modellünkkel.

1https://competitions.codalab.org/competitions/17184

1

https://competitions.codalab.org/competitions/17184

Abstract

The main task of semantic parsing is to automatically build semantic representation from

the input, so we can model the meaning of raw texts. If we model meaning as directed

graphs of concept and we can build them from syntax trees that represent the structure of

sentences, then we can de�ne the whole process as one complex graph transformation.

Representations of natural language semantics are rarely used explicitly in state-of-the

art systems for popular semantics tasks such as measuring semantic similarity or machine

comprehension. These systems mostly use word embeddings as representation of word

meaning.

In this paper we use graphical representations and transformations as simple but pow-

erful tools for recognizing entailment and we describe a method using semantic parsing

system 4lang (Recski:2016) and applying it on the 2018 Semeval Task Machine compre-

hension using commonsense knowledge. This task requires participants to train systems

that can choose the correct answer to simple multiple choice questions based on short pas-

sages describing simple chains of events. Data for both training and testing is extracted

from the MCScript dataset (Ostermann et al., 2018). The top two systems, HFL-RC (Chen

et al., 2018) and Yuanfudao achieved accuracy scores of 84.15% and 83.95% on the test

data, respectively.

First we will present a strong baseline on this task using only semantic graphs and

similarities among them, followed by a description of a state-of-the art system Yuanfudao

(Wang et al., 2018) and our experiments with it where we used our baseline as an extra

feature for improving the neural network. The choice of the system was obvious, because

the source code is publicly available and it already employs successfully a knowledge base

representing semantic relationships among pairs of words, ConceptNet. Our results suggest

that these features achieve a .5 percentage point improvement, and the ConceptNet could

be replaced by our semantic model.

2

Contents

Kivonat 1

Abstract 2

1 Introduction 5

1.1 Natural Language Processing . 5

1.2 Objectives . 6

1.3 Results . 7

1.4 References . 7

1.5 Structure . 7

1.6 Division of labour . 8

2 Semantic models and parsing 9

2.1 Distributional model . 10

2.2 Abstract Meaning Representations . 12

2.3 4lang . 13

2.3.1 The formalism . 13

2.3.2 Expansion . 14

2.3.3 The service . 16

3 Machine Comprehension 20

3.0.1 Comprehension, entailment, and knowledge bases 20

3.1 Method . 21

3.1.1 Experiments . 21

4 Deep learning neural networks 24

4.1 Context . 24

4.2 Basics . 25

4.2.1 Optimization . 25

4.2.2 Regularization . 27

4.3 Natural Language Processing with Deep learning 28

4.3.1 Embedding layers . 28

4.3.2 Recurrent Neural Networks . 29

4.3.2.1 Long-Short Term Memory 30

3

4.3.2.2 Gated recurrent unit . 31

4.3.3 Attention . 32

5 Yuanfudao system 35

5.1 The original system . 35

5.1.1 Preprocessing . 35

5.1.2 System description . 36

5.1.3 Parameters . 40

5.1.4 Learning curve . 40

5.2 Modi�cations . 42

5.3 The results . 43

6 Conclusion and future work 45

6.1 Summary . 45

6.2 Future work . 45

6.2.1 Interpreted Regular Tree Grammar 46

7 Acknowledgement 47

List of �gures 49

List of tables 50

Bibliography 54

4

Chapter 1

Introduction

In modern systems distributional models are dominant for a semantic parser. We use graph

based methods and apply it to the 2018 Semeval task on Machine Comprehension (MC).

We built a REST-API (available at http://hlt.bme.hu/4lang) around the 4lang[31]

(described in Chapter 2) to present a highly automated process constructing semantic

models from raw input. Online demo of the service is available at http://4lang.hlt.bme.

hu. In Chapter 3 we introduce a strong baseline for the task, followed by an enhancement

of a state-of-the-art system [39] (Chapter 5). In this chapter we discuss the history of the

Natural Language Processing (NLP) applications, and brie�y de�ne the structure of this

paper.

1.1 Natural Language Processing

While computers can be easily programmed to understand structured data, such as tables

and spreadsheets, it can be rather challenging for them to understand human communica-

tion. Because there is a vast di�erence in the magnitude of the unstructured data compared

to the structured ones, there is a high demand for tools, that can deal with raw text. That's

where NLP comes in. It contains high variety of tools, that we have to use, when we need

to deal with natural input.

Every day, we come into contact with human communication, we say a lot of words to

other people, and they try to interpret them even when the context of the saying isn't

necessarily complete. The listeners can use their common knowledge to �ll the needed

information. We resolve ambiguities, misunderstanding, and can even understand words

we have never heard before just from the context of the communication. Even though these

tasks are trivial for us, for a computer it can be really hard.

The interest in NLP research began in the 1950s, the early phase was mainly focused on

MT (Machine Translation), because after the World War II, people recognized the impor-

tance of the translation from one language to another, and hoped to do it automatically.

However MT is still very di�cult nowadays, so these researches discovered the main chal-

lenges of the syntactic and semantic parsing early. As time passed, researches embraced

new areas of NLP as more advanced technology and knowledge became available. Now that

5

http://hlt.bme.hu/4lang
http://4lang.hlt.bme.hu
http://4lang.hlt.bme.hu

we live in a world where computers and smartphones are widely accessible, collecting data

became incredibly easy, as a result, statistical NLP drew attention because these models

thrive o� big data, but one cannot ignore simple rule based methods which can also be

very powerful, especially using them as a hybrid model with statistical methods.

Building NLP applications requires many levels of analysis. The typical pipeline is struc-

tured as follows:

• First we need to tokenize our input text, which means breaking up the text into

meaningful elements, especially into words

• After we tokenized our text, we need to perform word analysis called morphology,

which is concerned with the structure of words.

• Part of speech assigns words to syntax behavior in a sentence.

• The main task of syntactic parsing is to analyze the grammatical structure of a

sentence. Given a set of words, a parser forms units (subjects, verbs, etc..) according

to some grammatical formalism. There are two main types of syntactic parsers:

� Constituency parsers produce trees, that represent the grammatical structure.

� Dependency parsers are the more popular nowadays. They represent the struc-

ture of a sentence as a dependency tree, which instead of grammatical relations,

tries to model the dependencies between words.

A parse of the example sentence: "John has �nished the work" can be seen in Figure

1.1.

• At this point we have various ways to analyze a text, but without modeling its

meaning. Semantics is the study of meaning, and semantic parsing is a task to �nd a

representation and assign it to the text. This task will be the main topic of our work.

Figure 1.1: Parses of the sentence "John has �nished the work" [2]

1.2 Objectives

The main focus of this study is computational semantics. Our research includes building

explicit representations of natural language semantics, because in today's state-of-the art

6

systems for popular semantics tasks such as measuring semantic similarity or machine

comprehension, they are rarely present. Virtually all systems competing at popular chal-

lenges (e.g. [9, 8]) rely on word embeddings as the sole representation of word meaning.

Recently [33] has presented a method using graphical representations of natural language

text that improved over the state-of-the art on the task of measuring semantic similarity

of pairs of English words. In this paper we use similar graphs as simple but powerful tools

for measuring textual entailment. Our task includes de�ning new methods for measuring

graph similarities, and building an online available service for building graphs highly auto-

matically, giving us a tool for building strong baseline methods. Our work was based upon

measuring our models through state-of-the art systems on the 2018 Semeval Task Machine

comprehension using commonsense knowledge.

1.3 Results

We present a novel method for recognizing entailment using semantic graphs and apply

it to the 2018 Semeval task on Machine Comprehension (MC). Concept graphs are built

automatically from MC texts, questions, and answers, using the semantic parsing system

4lang [30]. First we present a highly automated process of building concept graphs from

raw text, then a strong baseline method is presented using only these graphs achieving

an accuracy score of 68.3%, followed by an enhancement of a state-of-the art system [39],

where we proceeded to use the metric underlying our baseline as an additional feature.

Preliminary results suggest that these features achieve a .5 percentage point improvement

over the original system.

1.4 References

The code of our system is available on Github1. The code was implemented by the authors

of this paper based upon the 4lang system.

1.5 Structure

The structure of the paper is the following:

• Chapter 1 describes the short history and motivation of the NLP applications, it

also gives a short summary about the objectives of the paper, and our results.

• Chapter 2 gives a short introduction into the �eld of semantic parsing, and semantic

models in general. It brie�y explains the semantic parsing system 4lang, and our

process of automating the building of concept graphs

• Chapter 3 describes the baseline approach to the Machine Comprehension task,

which achieved an accuracy score of 68.3%.

• Chapter 4 gives an introduction into deep learning, focusing on the NLP tasks.

1https://github.com/adaamko/4lang

7

https://github.com/adaamko/4lang

• Chapter 5 presents our experiments with the state-of-the art system Yuanfudao.

Our preliminary results show a .5 percent improvement over the original system.

• Chapter 6 summarizes our contributions and describes our ongoing/future work. It

brie�y discusses our plans for the follow-up, that was beyond the scope of this work.

1.6 Division of labour

This project was a product of the combined work of Kovács Ádám and Gémes Kinga

Andrea. Kovács Ádám was responsible for building the service to automate the process

of building concept graphs (online demo available at http://4lang.hlt.bme.hu), and

was mostly working on the baseline methods and metrics. Gémes Kinga Andrea's main

work involved applying the baseline to the state-of-the-art system Yuanfudao [39]2 and

experiments with IRTGs brie�y described in Chapter 63.

2https://github.com/GKingA/commonsense-rc
3https://github.com/GKingA/irtg

8

http://4lang.hlt.bme.hu
https://github.com/GKingA/commonsense-rc
https://github.com/GKingA/irtg

Chapter 2

Semantic models and parsing

In this chapter we �rst introduce applications, that use semantic models as an essential

knowledge for their process. After, the theory and problems of semantic representation

are discussed, and we brie�y present the upsides and downsides of such representations.

After that we go into details about distributional and graph based models, introducing the

semantic parsing system 4lang, which is the main focus of our work. Finally, our micro-

services are discussed, built around the parser to highly automate the process of building

concept graphs from raw input. An easy example of their usage is shown as well.

When we use the word semantics, we usually refer to the interpretation of a linguistics

unit (e.g. words, phrases, sentences, or whole texts) within the boundaries of a certain

context. In many scienti�c �elds e.g. philosophy, logic or biology the study of semantics

is a highly researched task. While many NLP tasks like syntactic parsing, part-of-speech

tagging, or even machine translation can be ignorant of the meaning of units, of what

information they hold, there are also many other tasks that rely heavily on semantics.

Some examples, where semantic analysis is unavoidable:

• Question answering is the process of generating meaningful answers to the user's

question, using some kind of knowledge. It might be considered one of the oldest

tasks in NLP or in AI in general with machine translation. With the recent rise of

products like Siri, Alexa, or Watson, it is still one of the most researched area.

• Recognizing entailment is whether a statement implies another or not, it is closely

connected to machine comprehension, which is the main focus of our work.

• Chatbots are systems, that somewhat can simulate the conversation of humans.

• Sentiment analysis is the task of understanding the opinion about a subject. Usu-

ally can be considered as a classi�cation problem, where in the simplest case two class,

"negative" and "positive" is given. More complex version of the task is also present,

where the detection of the target of the opinion is also the part of the problem.

There are solutions for the problem with hand-crafted rules and machine learning

algorithms as well.

For modeling the meaning of linguistic units, choosing an appropriate representation of

9

our model is needed. While for syntactic analysis widely accepted concepts and ideas (e.g.

dependency tree, phrase structure trees) of such representation are already in use, for a

semantic model it still remained a challenging task. Even answering the question "What

is a semantic representation?" is not well de�ned, and mostly decided by the nature of

our task. The units of a semantic model are also not globally decided (word, phrase or a

sentence?).

Finding an absolute representation of semantics knowledge is among the most di�cult

task in Arti�cial Intelligence (AI). While we are yet to �nd a representation that has no

downside, various experimental models are present, that are applicable for certain domains,

but are problematic in other scenarios. So before choosing one, we need to take into account

the limitations of each choice.

Representation of semantic knowledge with logical expressions (e.g. zero-order logic,

prepositional logic) exists, and although many companies still rely on hand-crafted rules

as a knowledge representation, they are very unpractical and have serious problems with

scalability and automation. Distributional models have risen in popularity in recent years,

where meaning is represented with multi-dimensional vectors. While vector based models

can give us a uniform representation, they mostly lack interpretability in a way that we

never really know what happens inside these models. Another issue is the choice of the

dimension. Many algorithms exist for reducing the dimension of such vectors to a �xed

number, but determining the correct length can be di�cult. Rare words are a big issue

as well, if a word in the training data is rarely present, distributional models will fail to

handle them correctly.

On the other hand graph based solutions have high level of interpretability, and handling

rare words is one of their biggest advantage. But automating the process of building graphs

is a challenging task, and using them as a sole solution for a semantic parsing task in most

cases would come short, but in hybrid systems they make up for the weaknesses other

models have.

In the next sections we will brie�y discuss graph based models and distributional models,

and because both of them have their merits, it is necessary to know the strengths and

weaknesses of each one. Our work focuses around graph based solutions.

2.1 Distributional model

In the �eld of natural language processing one way of encoding semantic meaning is to use

distributional models. They model semantic meaning as real-valued vectors. These vectors

need to be constructed from a training data, and we can calculate similarity as cosine

distance between the vectors.

Let's have a look at these two sentences "The cat is walking in the bedroom" and "A dog

was running in a room". Words "dog" and "cat" have a similar semantic meaning, so if

they are represented by vectors, and their cosine distance from each other is small, then we

can vary the sentences "The dog is walking in the bedroom" and "A cat was running in a

room" [6]. These models take surrounding words into account and their goal is to obtain the

10

meaning of the target word from their surroundings[16], and because "dog" and "cat" are

close in vector space, they most likely will appear in the same context. This intuition helps

us generalize sentences. These meanings are represented by vectors, called embeddings.

One of the �rst models built around these intuitions were introduced by Bengio [6].

These word embeddings are used in basically all state-of-the art systems related to

natural language processing applications. Mikolov [26] showed that word embeddings can

be applied for vector operations, like addition or subtraction, and these operations often

result in meaningful representation. If we have example words "King", "Man", "Woman",

then the vector("King") - vector("Man") + vector("Woman") 2.1 will most likely result

in vector that is close to vector("Queen") in the embedding space.

While the usage of word embeddings brought an important breakthrough in modeling

word meaning, applying them for bigger linguistics units like phrases, sentences or even

whole text remained a di�cult challenge even for nowadays. One of the biggest reasons for

this is the additive aspect of these models: if we model A B C expression with vector v(A)

+ v(B) + v(C), then we represent "John killed Bill" and "Bill killed John" sentences in

the same way.

Figure 2.1: Vector addition example [1]

The other issue is that we know very little about the structure of a multi-dimensional

real-value vectors (for embeddings it can be from 300 up to 1000 dimension), so this makes

it very hard to understand their structure, and exactly in what scenario they work, and the

reason when they don't. So while most state-of-the art systems use word embeddings as a

sole representation of meaning, and while it can be useful to encode meaning as vectors, so

it can create connection from language speci�c and non-language speci�c data, we cannot

deny the importance of having other semantics representations, such as graph-based ones.

In the majority of our work, we researched graph-based solutions, where we model the

meaning of linguistics unit with graphs, and the whole process can be de�ned with graph

transformations. Next I will brie�y introduce graph based formalism starting with Abstract

Meaning Representations (AMR) followed by the introduction of the 4lang formalism,

which will be the focus of the work, and I will go into details in the next section.

11

2.2 Abstract Meaning Representations

Abstract Meaning Representation (AMR) was introduced by Banarescu[5] for representing

the meaning of linguistic structures. They represent meaning as directed acyclic graphs

(DAGs), that can be used to capture the meaning of whole sentences. In the past few

years, AMR related works have appeared e.g. parsing applications, or annotated corpuses

[5, 27, 11].

Nodes of AMR graphs can be represented various ways. Each node in the graph rep-

resents a semantic concept [36], that can be either an English word, or frameset from

PropBank [29], essentially used for abstraction. The framesets are English verbs. The

AMR introduced these variables for entities, events, properties, and states. An AMR can

be converted to multiple formats:

• Logic format

• AMR format

• Graph format

These formats can be seen on Figure 2.2 for sentence "the boy wants to go", and the

corresponding 4lang representation on Figure 2.3.

Figure 2.2: Example sentence and representations [29]

In this paper we use the semantic parser 4lang [32], and unlike 4lang, AMR handles

wider range of phenomenas, mostly typical of English. AMR's usage is mostly biased to-

wards English [29], while 4lang can be con�gured to handle multiple languages.

Figure 2.3: Example sentence and representations in 4lang

In the next section, we will go into details about the 4lang formalism, and the parser

12

itself. After that we will describe our method of measuring similarities between semantic

graphs, and its usage on semantic related tasks.

2.3 4lang

The 4lang system is in the main focus of our work, in this section we will discuss the

formalism and possible applications. 4lang also means the manually built dictionary of

mapping more than 2000 words to graphs, this is described in [21]. After discussing the main

formalism of 4lang, we will demonstrate our highly automated process of building concept

graphs, that was achieved by wrapping 4lang functionality in micro-services building a

REST-API, followed by our baseline for the machine comprehension task.

2.3.1 The formalism

The 4lang system of semantic representation [20] represents the meaning of linguistic

units (both words and phrases) as directed graphs of syntax-independent concepts. Every

node of a 4lang graph is a concept, which means that they are not taken as words, and

they don't have any grammatical functions, like part-of-speech, voice, tense, etc.[31]. Since

these concepts have no grammatical attributes and no event structure, e.g. the phrases

water freezes and frozen water would both be represented as water
0−→ freeze. This also

means that 4lang de�nes a many-to-one relation between the words and concepts.

4lang formalism de�nes three types of edges:

• The 0-edge represent represent attribution (dog
0−→ large), hypernymy (dog

0−→
mammal) and unary predication (dog

0−→ bark)

• 1- and 2-edges those representing binary relations are connected to their arguments

via edges labeled 1 and 2, e.g cat
1←− catch

2−→ mouse. Binaries that are shown with

uppercase are binaries that must have two outgoing edges as shown in Figure 2.4.

If we look at the sentence "Kinga broke Adam's bike", and the corresponding graph

shown in Figure 2.4, if the 0-connection wouldn't be present between Kinga
0−→ break,

that would mean we consider that the relationship depend on whether the object of

breaking is established or not. So in 4lang the connection of 0-edge is present between

a subject and a predicate regardless of the other arguments.

The example in Figure 2.10 shows the 4lang de�nition of the concept bird. This de�ni-

tion was built manually, as part of the 4lang dictionary [21], but similar de�nitions have

been created automatically from de�nitions of monolingual dictionaries such as Longman,

using the dict_to_4lang tool [30].

The open-source 4lang pipeline1 contains tools for generating directed graphs from raw

text by mapping dependency edges in the output of the Stanford parser [13] to 4lang

subgraphs over concepts corresponding to each word of the original sentence. The Stanford

parser builds a dependency tree from the raw text that captures the syntactical relations

1https://github.com/kornai/4lang

13

https://github.com/kornai/4lang

Figure 2.4: 4lang with binaries

between the linguistics units. 4lang graph construction involves mapping from these re-

lations to 4lang semantics graphs, assigning the dependencies to 4lang subgraphs. The

mapping is presented in Table 2.1, and an example is shown for sentence "I like swimming"

in Figure 2.6, where we can see the dependency tree coming out of the Stanford parser,

and the corresponding 4lang graph is present in Figure 2.5, where the mapping from the

dependency tree to 4lang graph is done.

Figure 2.5: 4lang example of a sentence

2.3.2 Expansion

Optionally, the 4lang system allows us to expand graphs, a process which uni�es the

graph with the de�nition graphs of each concept. The implementation is written in the

dict_to_4lang module, that extends the functionality of the discussed text_to_4lang

14

Dependency Edge

amod

w1
0−→ w2

advmod
npadvmod
acomp
dep
num
prt

nsubj

w1
1

0
w2

csubj
xsubj
agent

dobj

w1
2−→ w2

pobj
nsubjpass
csubjpass
pcomp
xcomp

appos w1
0

0
w2

poss
w2

1←− HAS
2−→ w1prep_of

tmod w1
1←− AT

2−→ w2

prep_with w1
1←− INSTRUMENT

2−→ w2

prep_without w1
1←− LACK

2−→ w2

prep_P w1
1←− P

2−→ w2

Table 2.1: Mapping from Stanford dependency relations to 4lang subgraphs [32, p. 12.].

15

Figure 2.6: Stanford example of a sentence

Figure 2.7: 4lang de�nition of sentence "My poor wife".

pipeline with dictionaries. 4lang takes advantage of this, and implements the expansion

step, which is essentially joining the de�nitions graphs to the main graph. This allows us

to build a larger graph, that contains more information, and allows us to model the text

better by simply adding the de�nition of words.

Let us look at the example sentence "My poor wife", that results the graph shown in

Figure 2.7. Looking at the de�nition of the word poor : having very little money and not

many possessions, we can build a de�nition graph and essentially join the two graphs

together. This can result us a better model if we are ready to take word de�nitions into

account, and with this method we can have higher similarities between graphs whose

sentences are also similar 2. Doing this for every word in the sentence resulting in a merged

graph Figure 2.8. If we look at the graph, it is clear that the expanded graph gives us much

more accurate context and de�nition. Our work was built around the expanded graph, and

we will see that how better it actually performs on a real task. This will be the main topic

of the next chapter.

2.3.3 The service

At the beginning of our research we put a high emphasis on generating graphs from raw

text with a highly automated method, so besides being an open-source software library,

we made 4lang accessible via a public REST API at http://hlt.bme.hu/4lang. We used

2Of course not every interpretation of "poor" is related to money. It requires a higher level mechanism
to handle these kind of occurrences, see more in [19].

16

http://hlt.bme.hu/4lang

Figure 2.8: 4lang de�nition of expanded sentence "My poor wife".

17

the python language for implementing the service, and for the framework we used the

�ask3 package. The service generates input for the text_to_4lang module from the raw

text input, then after processing it, returns a graph in networkx multigraph4 format

to make it easy to visualize it on essentially any client side. Online demo of the service is

available at http://4lang.hlt.bme.hu. The process is presented in Example 2.1.

sentence = " I l i k e micro−s e r v i c e s . "

data = { ' s e n t en c e ' : sentence}

data_json = json.dumps(data)

payload = { ' j son_pay load ' : data_json}

headers = { ' Content−t ype ' : ' a p p l i c a t i o n / j s o n ' , ' Accept ' : ' t e x t / p l a i n ' }

r = requests.post(" ht tp : // h l t . bme . hu/4 l ang / s ende f ",

data=data_json , headers=headers)

s_machines = r.json ()[' s e n t en c e ']

Example 2.1: Demonstration of the service in python language.

The generated graph can be seen in Figure 2.9. The code of the service is publicly

available on Github5. We can generate graphs with raw text by calling the service. Currently

our service has multiple endpoints, with each of them representing di�erent methods. If you

are only interested in processing a single sentence, the following endpoints are available:

Figure 2.9: 4lang de�nition of sentence "I like micro-services".

• /sendef - Returns the graphs built from the sentence.

• /senexp - Returns the graphs, where the word's de�nition has been added to the

graph.

• /senabs - Calling this function, we de�ned some rules, where we can build a more

abstract graph using the de�nitions, this is more of a future work, we will brie�y

mention the algorithms and ideas behind it in the last chapter.

3http://�ask.pocoo.org/
4https://networkx.github.io/documentation/networkx-1.9.1/reference/classes.multigraph.

html
5https://github.com/adaamko/4lang

18

http://4lang.hlt.bme.hu
https://networkx.github.io/documentation/networkx-1.9.1/reference/classes.multigraph.html
https://networkx.github.io/documentation/networkx-1.9.1/reference/classes.multigraph.html
https://github.com/adaamko/4lang

You can get a word's de�nition by calling the de�ned endpoint:

• /de�nition - Returns the graphs built from the word's de�nition.

For the machine comprehension task we de�ned a dedicated endpoint:

• /rally - Returns a merged graph, where we merge a question sentence with an

answer sentence. The main goal of this endpoint is that we can get a graph that can

be explicitly compared with graph built from the passage text (it will be explained

in the next chapter in details).

Figure 2.10: 4lang de�nition of bird.

Graphs generated by the 4lang parser have previously been used successfully in measur-

ing semantic similarity. The current state of the art system on the SimLex-999 benchmark

[15] outperforms previous top systems by utilizing a simple similarity metric between 4lang

de�nitions of pairs of English words [33], this was the main idea of trying it in a di�erent

task with a di�erent state-of-the-art system.

In the next chapter, we will brie�y discuss the machine comprehension challenge, and we

will introduce our baseline method for solving it using our micro-service for automatically

building concept graphs. After that we will present how it is applicable to an already

working system.

19

Chapter 3

Machine Comprehension

In this chapter a brief introduction to the machine comprehension task is given, followed

by the de�nition and application of our metric, that was de�ned for measuring similarity

between concept graphs. After our baseline for the task presented.

The 2018 Semeval TaskMachine comprehension using commonsense knowledge1 requires

participants to train systems that can choose the correct answer to simple multiple choice

questions based on short passages describing simple chains of events. Data for both train-

ing and testing is extracted from the MCScript dataset [28]. Some questions can only be

answered using commonsense knowledge, and are explicitly labeled as such. For example,

one passage might describe a story of a gardener planting a tree, and one of the questions

would subsequently ask whether the gardener used his hands or a shovel to dig a hole for

the tree, even though the answer to this question is not present in the passage. The top two

systems, HFL-RC [10] and Yuanfudao [39] achieved accuracy scores of 84.15% and 83.95%

on the test data, respectively. In our experiments we used semantic graphs to augment the

Yuanfudao system, since its source code is publicly available2 and since it already employs

successfully a knowledge base representing semantic relationships among pairs of words.

3.0.1 Comprehension, entailment, and knowledge bases

In the next section we shall present a simple method for measuring support, the continuous

counterpart of entailment, based on graphical representations of meaning, and use this

metric in a baseline for machine comprehension and to improve a state of the art MC

system. Although explicit representations of semantics are rarely used for this purpose, in

recent years there have been several attempts at leveraging lexical ontologies in machine

comprehension, and the approach of using textual entailment as an intermediary task is also

not new. [37] achieves competitive results on the MCTest dataset [34] by generating answer

candidates and ranking them using a separate RTE system, which is trained on the Stanford

Natural Language Inference (SNLI) dataset [7] but also relies on an explicit measure of

lexical overlap between sentence pairs. Other recent systems are various extensions of a

baseline proposed by [34] that measures a weighted overlap between pairs of bag-of-words

1https://competitions.codalab.org/competitions/17184
2https://github.com/intfloat/commonsense-rc

20

https://competitions.codalab.org/competitions/17184
https://github.com/intfloat/commonsense-rc

Figure 3.1: Merged graph of answer candidate "Jon" for the question Who
did it?

representations, e.g. [38] applies the frame semantic parser of [12] and includes features

representing overlap between bag-of-frame and bag-of-argument representations. Finally,

the Yuanfudao system presented in this section is the most recent example of enhancing the

performance of an MC system using a lexical knowledge base: ablation studies show that

their top-ranking accuracy score of 83.84% drops to 82.78% if ConceptNet-based features

are removed.

3.1 Method

We de�ne a simple metric between pairs of 4lang graphs that we intend to use for measur-

ing entailment between a paragraph and a sentence. We shall de�ne the degree to which

some graph G1 supports another graph G2 as the ratio of edges in G2 that are also present

in G1:

S(G1, G2) =
|E(G1) ∩ E(G2)|
|E(G2)|

Two (directed) edges are identical if their source and target nodes and their labels are all

identical. Based on early �ndings we used only expanded 4lang graphs (see Section 2.3) for

measuring support. To create a simple baseline solution for the Machine Comprehension

task, we compare answer candidates to each question by comparing the degree of support

for each in the passage, based on the 4lang representations of each piece of text. For wh-

questions we can create representations of each answer by merging the question graph's

wh-node with the graph of each answer graph (see Figure 3.1), for this we use the /rally

endpoint of our service de�ned in the previous chapter. Our baseline method will simply

pick the answer candidate with the higher support score.

3.1.1 Experiments

Demonstrating the algorithm behind our baseline, let's look at the example passage:

"I went into my bedroom and �ipped the light switch. Oh, I see that the ceiling lamp is

not turning on. It must be that the light bulb needs replacement. I go through my closet

21

Figure 3.2: Merged graph of answer candidate "Kitchen."

Figure 3.3: Merged graph of answer candidate "Bedroom."

and �nd a new light bulb that will �t this lamp and place it in my pocket. I also get my

stepladder and place it under the lamp. I make sure the light switch is in the o� position.

I climb up the ladder and unscrew the old light bulb. I place the old bulb in my pocket and

take out the new one. I then screw in the new bulb. I climb down the stepladder and place

it back into the closet. I then throw out the old bulb into the recycling bin. I go back to my

bedroom and turn on the light switch. I am happy to see that there is again light in my

room."

And a question related to the text: Which room did the light go out in? and the answers:

• "Kitchen."

• "Bedroom."

First we build the expanded graph from the text. After we build the merged graphs (for

the demonstration, we now only build the graphs without expansion) seen in Figure 3.2

and Figure 3.3. The graph without merging can be seen in Figure 3.4. After the merging,

we compare both of the graphs to the passage graph applying our de�ned metric.

We tested the baseline method described in the previous section on a subset of all

questions in the train section of the MC dataset: wh-questions that were not categorized

22

Figure 3.4: Graph built from the question

as "common-sense". Of this subset of 5,375 questions (of a total of 9,731), our method

correctly answers 3,671, achieving an accuracy score of 68.3%. We then proceeded to use

the metric underlying our baseline as an additional feature in the Yuanfudao system.

In the next chapter we will brie�y give an introduction into the �eld of deep learning in

general, and particularly in NLP applications, and then we will demonstrate the Yuanfudao

system.

23

Chapter 4

Deep learning neural networks

In this chapter we will introduce the basic deep learning related concepts necessary to

understand the model described in the next chapter.

4.1 Context

Deep learning neural networks gained popularity again in recent years, after the AI winter

ended. Since then neural networks became part of the everyday life, we hear about arti�cial

intelligence being used in smart phones to enhance images quality or recognize certain

settings and take a picture accordingly. AI is also being used in cancer research and other

�elds of bioinformatics, and personal assistants became extremely popular as well.

But even with the seemingly endless capabilities of arti�cial neural networks we are far

from creating anything that could have the cognitive capacities of humans. This problem

is considered by many to be AI-complete or AI-hard, meaning that creating a network that

could keep up a human-like conversation would require data scientist and researchers to

construct a universal arti�cial intelligence. A small but important step to achieve this is

to create a system capable of doing simple reading comprehension tasks that also require

some common sense knowledge.

The most common structures of these experimental neural networks include recurrent

neural network layers and attention layers. Before we explain the function of these building-

blocks we need to lay down a foundation.

In this chapter we will introduce the deep learning mechanisms that are the essential

building blocks of the Yuanfudao system described in Chapter 5.

24

4.2 Basics

Some arbitrary de�nitions we will use in this chapter:

• Batch: The chunks of training data that we use for training in one iteration. Its size

can be a crucial parameter to set.

• Epoch: One training iteration is called an epoch. The number of epochs determines

how long we want to train our network.

• Learning rate: η the velocity of the learning process. Setting it too low could result

in slow learning and getting stuck in a local minimum, but setting it too high could

result in jumping over the optimum and bouncing.

• Accuracy: The ratio of the correct predictions from all of the predictions. Our goal

is to achieve a high accuracy with our neural network on the test set.

• Test set: The part of the dataset that we don't use during the training of our neural
network. This determines the actual accuracy of the network.

• Training set: The data we could use for training our network is usually split into

two parts in 80:20 ratio. We use the bigger set of data to train our network and we

call this the training set.

• Development set or Validation set: The smaller portion of the data. We use this

section to validate the network during its training. We do not use this section of the

data to train the network.

People usually use supervised learning in the �eld of natural language processing to achieve

the desired structure, but we might face multiple challenges while training. That's the rea-

son why we have to use optimization and regularization methods.

4.2.1 Optimization

The goal of optimization is to overcome the following problems:

• Local minimum

• Setting the learning rate

• Setting the batch size

We have touched on the �rst two brie�y before, but setting the batch size is also very

important. We give the training data to the network in batches, and we iterate through

them multiple times (depending on the epoch).

Methods used for optimizing:

• Stochastic gradient descent

• Momentum

25

• Adaptive learning rate

• Adam (Adaptive learning rate and momentum)

• AdaMax (Adam variant)

Stochastic gradient descent

g ← 1

batchSize
∆w

batchSize∑
i=1

Loss(fw(xi), yi)

Where f is the network itself.

w ← w − ηg

This is a classical method for optimizing. It does not account for dynamic parameter

settings. The system described in Chapter 5 can use this function. We will consider this as

our base, and only highlight the di�erences between this and other optimization methods.

Momentum

g ← αg +
1

batchSize
∆w

batchSize∑
i=1

Loss(fw(xi), yi)

Where α is a parameter we can set. This method has an added parameter, that helps to

take into account the previous iterations, giving a momentum to the learning towards the

optimum.

Adaptive learning rate

r ← r + g2

Where r is a parameter thats initial value can be set.

w ← w − η√
r
g

As the name suggests the adaptive learning rate uses a parametrization to slowly decrease

the learning rate through time, depending on the previously calculated gradient.

Adam

r ← ϕrr + (1− ϕr)g
2

s← ϕss+ (1− ϕs)g

Where s is a parameter thats initial value can be set and ϕ is a parameter of the decay

rate.

w ← w − ηs√
r
g

26

Adam is one of the most popular optimizer function nowadays. It combines the adaptive

learning rate and the momentum hence the name: Adam.

AdaMax

r ← max(ϕrr, |g|)

s← ϕss+ (1− ϕs)g

w ← w − η

1− ϕs

s

r

A variant of the Adam optimizer. It was �rst described in the Adam: A method for stochastic

optimization article [17]. It di�ers from Adam in that it uses a max operation and the

in�nity norm. The system described in Chapter 5 can use this optimization function too.

4.2.2 Regularization

The goal of regularization is to avoid over-�tting. Over-�tting happens when our neural

network produces good results on the training set's dedicated subset, the development

or validation set, but it can't predict the expected outputs properly on a new dataset for

example the test set. It happens very often, so machine learning experts developed a couple

functions to avoid this phenomenon.

• Weight decay: Also known as L2 regularization. It uses a parameter to make sure

that the previously learned weight won't in�uence the new one too much.

w ← (1− ηα)w − η∆wLoss

• L1 regularization: This is a normalization method that modi�es the cost function

similarly to the L2 regularization. The di�erence is, that in this case the weights

might get reduced to zero.

• Dropout: It randomly disables weights for an epoch, so they won't be used in that

iteration.

• Early stopping: It stops the learning if the results on the development set haven't

shown any progress in the last couple of epochs.

• Noise injection: It injects noise into the training set.

The system later described in Chapter 5 uses dropouts while learning. This might cause

the system's performance to �uctuate a little bit from epoch to epoch but it is a powerful

tool for regularization and as we'll see later it manages to achieve consistently good results

on the development set.

27

4.3 Natural Language Processing with Deep learning

As mentioned above the kind of layers used in Natural Language Processing are mostly

recurrent neural network layers, attention layers and sometimes embedding layers.

4.3.1 Embedding layers

The function of embedding layers is to turn integer values to �xed length vectors, for

example word embedding vectors discussed in Chapter 2. They are used mostly in natural

language processing to work as word2vec translation.

When using embedding layers we want to �nd vectors for each word so that it can model

the word's meaning. We achieve this by looking at the context, the word usually appears

in. If two words like apple and orange usually appear in the same context, than the vectors

assigned to these words should have low cosine distance between them. You can read about

this idea in detail in Chapter 2.

If you are building an NLP model, the embedding layer should be in the �rst layer, since

its purpose is to make the transition from word to vector, and the word in this case is the

input.

Figure 4.1: An embedding layer.

The input dimension of this layer is the size of the vocabulary and the output dimension

is the size of the dense vector. Usually the vocabulary size greatly exceeds the embedding

dimension since the output vectors size is �xed and can range from 300 to 1000, and the

vocabulary - depending on the dataset - can be way higher than that. See at Figure 4.1.

They work mostly like a lookup table that can be trained. A lot of the times we use pre-

trained models, like the GloVe embeddings that have been trained on enormous datasets.

28

We can also train them on our speci�c problem, or use the pretrained and our own em-

beddings simultaneously.

4.3.2 Recurrent Neural Networks

In a simple feed forward neural network, the information only moves in one direction: from

the input layer to the output layer. On the other hand recurrent neural networks take into

account their immediate past, the output of the network with the previous timestamp.

This internal "memory" like functionality allows the network to remember what it had

calculated before. This is illustrated at Figure 4.2.

At every timestamp the network gets two sets of inputs: the actual input at the times-

tamp and the hidden state of the network for the previous input. In one iteration it calcu-

lates its output using the calculated hidden state in the timestamp. It all could be imagined

like the same feed forward network being repeated after one other.

The hidden state mentioned above is the "memory" of the network that is calculated

with the previous hidden state and the input.

Figure 4.2: A recurrent neural network.

The backpropagation is also slightly di�erent in this case, it's called backpropagation

through time, you need to "unroll" the network (see at Figure 4.3), and use the backprop-

agation starting from the right timestamps. Each timestamp's backpropagation could be

understood as backpropagation on a separate feed forward neural network.

The gradient vanishing or explosion can be a problem with this RNN.

There is a multitude of solutions for the exploding gradients, one of which is called

gradient clipping. This is one of the method the state-of-the art system, Yuanfudao uses.

This technique is a very simple yet powerful way of dealing with exploding gradients. All

29

Figure 4.3: Unrolled recurrent neural network.

it does is that it limits the size of the gradient, if its norm is higher than a set threshold.

RNNs can be used in supervised and also unsupervised learning. They are used when

the data is sequential, like text, audio, etc.

4.3.2.1 Long-Short Term Memory

The system we worked with uses LSTM layers as its default RNN type. Long-short term

memory networks are the extension of the previously discussed recurrent neural network.

The main di�erence is that it also has an internal long term memory. Usually these type

of networks are more reluctant to have the exploding gradient problem.

Like the simple RNN, LSTMs also have hidden states, that are calculated slightly dif-

ferently.

The LSTMs hidden states are calculated using three gates:

• input gate: determines whether to let new input in

• forget gate: determines whether to forget an input because it's not relevant anymore

• output gate: determines whether to let the input impact the output with the current

timestamp
These gates are analog and their values ranges from 0 to 1 with the sigmoid function.

A simpli�ed depiction can be seen at Figure 4.41.

1https://en.wikipedia.org/wiki/Long_short-term_memory

30

https://en.wikipedia.org/wiki/Long_short-term_memory

Figure 4.4: A long-short term memory network's gates.
Image from Wikipedia

The sigmoid function allows this structure to be able to learn, meaning that we can use

the backpropagation through time method described above.

Long-short term memory networks are used in natural language processing, but also in

generative networks, like video or image description generation, text generation and so on.

Bidirectional long-short term memory also known as BiLSTM

BiLSTM networks are a variant of long-short term memory that read the input from the

beginning to the end then also from the end to the beginning. The main idea behind this is

that we may need not just the previous output, but also the next one too. These networks

usually outperform simple LSTM systems in their predictions and the learning velocity

too.

4.3.2.2 Gated recurrent unit

The system we worked with can use GRU layers as its RNN type, but it's not its default

setting and it did not perform as good. Gated recurrent units are also a type of RNN and

have a similar structure (Figure 4.52) to the long-short term memory network, but has

been shown to exhibit better performance on smaller datasets, than the LSTM.

2https://en.wikipedia.org/wiki/Gated_recurrent_unit

31

https://en.wikipedia.org/wiki/Gated_recurrent_unit

Figure 4.5: A gated recurrent unit's gates.
Image from Wikipedia

It has four main building blocks:

• update gate: the gate gets the x[t] and the h[t-1] as its input and z[t] is the output

on the image

• reset gate: the gate gets the x[t] and the h[t-1] as its input and r[t] is the output

on the image

• current memory content: the gate gets the x[t], the h[t-1] and the r[t] as its input

and �h[t] is the output on the image

• �nal memory at current time step: the h[t] on the image
Gated recurrent units are mostly used on the �eld of speech recognition and music

modeling while the LSTM is more relevant on the �eld of natural language processing.

4.3.3 Attention

The Attention mechanism was �rst described in [4] and was used for machine translation.

Since then it became a widely used tool in natural language processing. The idea behind

this mechanism is that when the neural network predicts the output, it only uses parts of

the given input instead of the full input. That is where the most relevant information is

concentrated and this mechanism only pays attention to these parts and the network has

to learn what to pay attention to.

Usually in the "sequence-to-sequence" tasks like MT there are two main parts of the

model an encoder and a decoder. The encoder and the decoder are usually some type of

RNN, mostly LSTM. The encoder is responsible for creating a so called context-vector

from the input sequence. This context-vector has a �xed length and it serves as the repre-

sentation of the sequence inside the model. The decoder then decodes this context-vector

to a sequence again, in the case of the machine translation this sequence is in a di�erent

language. A depiction can be seen at Figure 4.6.

32

Figure 4.6: A sequence-to-sequence model with encoder and decoder.

The attention mechanism described in [4] was used in the decoder part of this model, the

encoder functions the same way. The paper explicitly stated that this attention mechanism

relieves the encoder from having to encode every sequence to a �xed length context vector.

In this case we have a context vector for every word of the expected output. These context-

vectors are the weighted sums of the encoder's states (annotations).

ci =
t∑

j=1

αijhj

Where α parameter is calculated like the following:

αij =
exp(eij)∑t

k=1 eik

and eij is its energy

eij = a(si−i, hj)

This is an alignment model that scores how well the input around j and the output around

i match. This alignment model is a feed forward neural network that is trained simulta-

neously with the other components of the system. The decoder uses the previous state's

output and its assigned context-vector when calculating its own target.

si = f(si−1, yi−1, ci)

The attention based model is at Figure 4.7.

Figure 4.7: A sequence-to-sequence model with encoder-decoder and attention.

33

A big advantage of using this mechanism is the ability to interpret our model. These

days it's more important than ever to be able to tell why does the network predict what

it predicts, and thanks to the attention mechanism we are able to say that (in a purely

attention-based network). One example is shown at Figure 4.8.

Figure 4.8: An interpretation of a french - english sequence to sequence trans-
lation.
Image from [4].

Since its �rst description in [4] the attention mechanism has been used for:

• Image caption/description: a convolutional neural network translates the image

to the context vectors and the decoder creates a description for it. A recent system

using attentions for image captioning is described in the Image Caption with Global-

Local Attention paper [24].

• Grammar representation: in this case the decoder builds a grammatical repre-

sentation for the input. On a related �eld there was a study regarding linguistic

representations and attentions [3].

• Advanced machine translation: Since it was �rst introduced it has revolutionized

the �eld of machine translation. A study on this �eld is E�ective Approaches to

Attention-based Neural Machine Translation [25].

• Machine comprehension tasks: question answering based on a previously read

text. The system described in Chapter 5 is like this [39].

34

Chapter 5

Yuanfudao system

On the 2018 Semeval Task Machine comprehension using commonsense knowledge compe-

tition the Yuanfudao [39] system reached second place with 83.95% accuracy on the test

data.

5.1 The original system

The Yuanfudao system implements a Three-way Attentive Network (TriAN), an ensemble

of three LSTMs augmented with various attention mechanisms, to model for each question

interactions between question, possible answers, and the passage that may or may not

contain the correct answer to the question.

The system was implemented using python programming language and the pytorch

package for the implementation of the neural network. The source code is available on

Github1.

5.1.1 Preprocessing

This system processes the input data as follows:

1. Using the spacy package's tokenizer function it generates the part of speech (pos)

tag, named entity recognition (ner) tag and the lemma for each word in the passage,

and the pos tags of the questions.

2. It assigns a number representation and an o�set for each word in the passage, ques-

tions and answers.

3. It also saves the ids of the passages, questions and answers and whether the answer

was correct.

4. The preprocessor �nds the words and lemmas in the questions and answers, that also

occurred in the passage's word and lemma list.

5. It stores each word's frequency using the wikiwords library.

1https://github.com/intfloat/commonsense-rc

35

https://github.com/intfloat/commonsense-rc

6. It establishes the ConceptNet relation between the words of the passage and question

and also between the words of the passage and answer.

7. The preprocessor saves all this data to their respective json �les.

Conceptnet [35]

ConceptNet plays a major part of the Yuanfudao system, as it was shown in the original

paper [39]. This is a metric used to show the possible relationship between two words.

These relations could be "RelatedTo", "IsA", "Synonym", "PartOf" etc.

The ConceptNet itself is a large graph of general knowledge that has shown to be a�ective

at determining word relations.

The preprocessor compares the words in the passage with the words in the "query"

(question or answer) using ConceptNet and stores only one of the matches per word, if

there were any.

5.1.2 System description

An overview of the original system is reproduced in Figure 5.1.

Figure 5.1: Structure of the original network [39]

This system is a deep learning neural network consisting of embeddings, recurrent neural

networks and attention mechanisms.

First the inputs generated in the preprocessing phase go through three embedding lay-

ers, each corresponding to the passage, question and answer respectively. There are also

pos-embedding, ner-embedding and rel-embedding layers. The pos-embedding gets the pas-

sage's and the question's pos tags as its input, the ner-embedding layer gets the passage's

ner-tags and the relation-embedding gets the relationship vectors generated using the Con-

ceptNet. This input embedding layer is shown in Figure 5.2.

The word embeddings' outputs are paired up (passage-question, answer-question, answer-

passage) and go through a so called sequence attention matching layer. The sequence at-

tention matching layer at its core uses the bmm function in pytorch which performs a

batch matrix-matrix product of the input matrices. This way it "matches" the two inputs

together. This is shown in Figure 5.3.

36

Figure 5.2: Structure of the input embedding layers.

Figure 5.3: Structure of the sequence attention matching layers.

The system uses dropouts after the embedding and sequence attention matching layer

layers to avoid over-�tting.

These layers are followed by three stacked bidirectional RNN layer, each corresponding

to the passage, question and answer respectively. It di�ers from the standard bidirectional

RNN layer in one aspect: it can concatenate the hidden states of the RNN. By default

the type of the RNN is LSTM, but it can also be GRU. Their inputs are sort of self

explanatory. The passage's stacked bidirectional RNN layer gets the passage's word em-

bedding layer, the output of the sequence attention matching layer for the passage-question

input pair, the passage's pos- and ner-embedding layers, the word frequency tensor cre-

ated with the wikiword library, and the two relation-embedding layer's output. The ques-

tion's stacked bidirectional RNN layer expects the question's word and pos-embedding

outputs on its input. The answer's stacked bidirectional RNN layer's inputs are the an-

swer's word embedding output and the output of the sequence attention matching layer

for the answer-question and the answer-question input pairs. These RNN layers are shown

in the Figure 5.4. This layer implicitly uses a dropout rate for regularization.

37

Figure 5.4: Structure of the stacked bidirectional RNN layers.

The question's and the answer's stacked bidirectional RNN layer's outputs are used

in two linear sequence attention layers, or better known as self-attention layers over a

sequence for the question and the answer respectively. This layer is basically a linear layer

slightly modi�ed, so the in�nite outputs are masked and it uses a softmax function at its

output.

The passage's stacked bidirectional RNN layer's output is used di�erently. The system

passes it and the question's stacked bidirectional RNN layer's output to a bilinear sequence

attention layer, which is similarly to the sequence attention matching layer uses the bmm

function as its core function.

The two linear sequence attention layer's and the bilinear sequence attention layer's

output is passed through a weighted averaging function with their respective stacked bidi-

rectional RNN layer's output. This part of the network is shown in Figure 5.5.

The averaged passage output is passed through a linear feed forward layer then multi-

plied by the answer's averaged output. The question's averaged output is passed through

an other linear feed forward layer than multiplied by the answer's averaged output. At

the end its all summed and sigmoid function used at its output. The output in this case

is whether the answer was correct to the given question or not. This last section is at

Figure 5.6.

38

Figure 5.5: Structure of the sequence attention layer
and the following weighted average function.

Figure 5.6: Structure of the output of the network.

39

5.1.3 Parameters

The Yuanfudao system has these following command line arguments:

• GPU: the training of the system can be done on GPU which is much faster than

training it on CPU

• using cuda: pytorch can support CUDA for parallelization. The system uses CUDA

by default.

• optimizer: the optimizer function can be adamax (default) or SGD

• RNN type: the RNN used by the system can be LSTM or GRU

• dropout rate: there are separate dropout rates for embeddings and RNNs

• embedding dimension: each embedding dimension in the system can be manually

set

• gradient clipping: the gradient clipping threshold can be set

• epoch

• learning rate

• batch size

• random seed

• other parameters related to input handling, RNN settings and testing

You can read about the deep learning related arguments and their functions in Chapter 4.

5.1.4 Learning curve

Without the recommended pretraining (Figure 5.7):

• Max dev accuracy: 82.7% reached in the 26th epoch

• Train accuracy: 97.7% reached in the 26th epoch

• Max train accuracy: 99.8% reached in the 50th epoch

• Last dev accuracy: 81.9%

• Average dev accuracy after ten epochs: 81.9%

40

Figure 5.7: Learning curve without pretraining.

With the recommended pretraining(Figure 5.8):

• Max dev accuracy: 82.5% reached in the 38th epoch

• Train accuracy: 99% reached in the 38th epoch

• Max train accuracy: 99.7% reached in the 50th epoch

• Last dev accuracy: 82.2%

• Average dev accuracy after ten epochs: 81.9%

Figure 5.8: Learning curve with pretraining.

41

As you can see there is no signi�cant di�erence between the learning curve with or

without pretraining.

5.2 Modi�cations

Our modi�cations are available on Github2.

We modi�ed the preprocessing part of the system to incorporate the similarity calculat-

ing method from Chapter 3. The most straightforward way of incorporating our metric

into the system is by creating vectors similar to those representing ConceptNet relations

between words of a passage and words in each answer candidate. Since these vectors repre-

sent word-to-word relationships, we measure the support between pairs of 4lang de�nition

graphs, and for each word in the passage we take the maximum support score over all

words of the answer candidate. Elements of a vector for a passage P and a possible answer

A are hence de�ned as:

S
(P,A)
i = max

Aj∈A
S(Pi, Aj)

Elements of a vector for a passage P and a question Q are de�ned as:

S
(P,Q)
i = max

Qj∈Q
S(Pi, Qj)

Elements of a vector for a question Q and an answer A are de�ned as:

S
(Q,A)
i = max

Aj∈A
S(Qi, Aj)

We used these new input vectors as the input of a new 4lang embedding layer that

functions similarly to the other embedding layers. It is shown at Figure 5.9. The input of

this layer is 101 dimensional, since the similarities are on a scale to 0 to 100.

Figure 5.9: 4lang embedding layer.

The outputs of this layer are passed to the RNN layers. This is depicted at Figure 5.10.

Since we also wanted to see how the system changes if we replace ConceptNet relations

with our metric, we also trained systems without ConceptNet rel-embeddings.

2https://github.com/GKingA/commonsense-rc

42

https://github.com/GKingA/commonsense-rc

Figure 5.10: Structure of the modi�ed stacked bidirectional RNN layers.

5.3 The results

The original Yuanfudao [39] publication said its system was able to reach 83.95% accuracy

on the test data. We were only able to reproduce a 80.3% accuracy on the test set and

82.5% on the development set with the recommended pretraining on the RACE [23] dataset.

We will take these results as our bases of the comparison.

We tested our model by turning on and o� the usage of ConceptNet and 4lang. There

were 4 combinations: using neither, just ConceptNet, just 4lang and both.

model dev test

pretrained TriAN, no ConceptNet 83.7% 81.9%
pretrained TriAN, with ConceptNet 82.5% 80.3%
pretrained TriAN, with 4lang 84.2% 81.5%
pretrained TriAN, with both 83.4% 82.9%
TriAN, no ConceptNet 82.8% 80.2%
TriAN, with ConceptNet 82.7% 80.5%
TriAN, with 4lang 83.2% 80.9%
TriAN, with both 83.1% 80.8%

Table 5.1: E�ect of 4lang and ConceptNet on results

43

It is evident that without pretraining the Yuanfudao system performs best if we use

the relation scores calculated from 4lang graphs instead of the ConceptNet relationships.

After pretraining the network on the RACE dataset the results show that using both of the

relation metric is the most bene�cial.

44

Chapter 6

Conclusion and future work

6.1 Summary

This thesis proposes a novel method for recognizing entailment using semantic graphs and

apply it to the 2018 Semeval task on Machine Comprehension (MC). First, a brief overview

of the �eld of natural language processing is given focusing on real life applications, that

are in need of the NLP technologies. Then the topic of computational semantics was dis-

cussed in details, focusing on one-two major tasks, like question-answering or information

retrieval. After that the formalism of 4lang was presented with examples, and the method

of expansion was discussed. After simple yet a strong baseline method was presented for

measuring textual entailment and its application to the comprehension task, followed by

an introduction to the �eld of deep learning. Finally the last chapter reports the results of

applying the baseline method to the MC task and also of using it as an extra feature in

the neural network based Yuanfudao system.

6.2 Future work

Our results are quite promising, but further experiments are required to explore whether

our enhancements can improve the top-ranking system that also employs pretraining and

an ensemble of multiple models. We also plan to incorporate sentence-level support into

the system as a more direct application of our baseline.

We also have some experiments with de�ning new additional rules added to the 4lang

parser, that could potentially be giving us a more abstract and simpler de�nitions than

the expansion method. Let us look back the sentence "My poor wife" and the expanded

graph shown in Figure 2.8. In this example if we look at the edge wife
0−→ woman we can

make an assumptions, that native speakers can easily make using simple inference rules

[22]. In our example, within the boundaries of the sentence we can use the concept woman

instead of the concept wife. Using this simple rule we can reduce our graph to a simpler

de�nition shown in Figure 6.1.

45

Figure 6.1: Example of the "abstract" method

6.2.1 Interpreted Regular Tree Grammar

We recently started experimenting with Interpreted Regular Tree Grammars [18] (IRTG)

that we could also use to construct 4lang graphs, since they implement graph transfor-

mations, so graph grammars can be used. And by modifying the rules of the grammar,

we can also accomplish the expand functionalities and we also can de�ne inference rules.

These experiments are not yet perfect, but this approach shows great potential. See the

phrase "Ordinary email" represented in Figure 6.2.

The base of this approach is to de�ne grammar �les where we describe the rules using

multiple graph, tree or string algebras. This allows us to use it as a graph rewriting grammar

�le which we can use to transcribe for example a universal dependency graph to a 4lang

graph.

We used an already functioning grammar that de�ned the relationships between uni-

versal dependencies and 4lang graphs and modi�ed it to incorporate the de�nition of the

words also [14].

Figure 6.2: Example of the "expand" method using IRTG

46

Chapter 7

Acknowledgement

We would like to thank Dr. Recski Gábor and Dr. Kornai András for their constant support

and help with our work. Without their guidance we would not have been able write this

paper.

47

List of Figures

1.1 Parses of the sentence "John has �nished the work" [2] 6

2.1 Vector addition example [1] . 11

2.2 Example sentence and representations [29] 12

2.3 Example sentence and representations in 4lang 12

2.4 4lang with binaries . 14

2.5 4lang example of a sentence . 14

2.6 Stanford example of a sentence . 16

2.7 4lang de�nition of sentence "My poor wife". 16

2.8 4lang de�nition of expanded sentence "My poor wife". 17

2.9 4lang de�nition of sentence "I like micro-services". 18

2.10 4lang de�nition of bird. 19

3.1 Merged graph of answer candidate "Jon" for the question Who did it? . . . 21

3.2 Merged graph of answer candidate "Kitchen." 22

3.3 Merged graph of answer candidate "Bedroom." 22

3.4 Graph built from the question . 23

4.1 An embedding layer. 28

4.2 A recurrent neural network. 29

4.3 Unrolled recurrent neural network. 30

4.4 A long-short term memory network's gates. Image from Wikipedia 31

4.5 A gated recurrent unit's gates. Image from Wikipedia 32

4.6 A sequence-to-sequence model with encoder and decoder. 33

4.7 A sequence-to-sequence model with encoder-decoder and attention. 33

4.8 An interpretation of a french - english sequence to sequence translation.

Image from [4]. 34

5.1 Structure of the original network [39] . 36

5.2 Structure of the input embedding layers. 37

5.3 Structure of the sequence attention matching layers. 37

5.4 Structure of the stacked bidirectional RNN layers. 38

5.5 Structure of the sequence attention layer and the following weighted average

function. 39

5.6 Structure of the output of the network. 39

48

5.7 Learning curve without pretraining. 41

5.8 Learning curve with pretraining. 41

5.9 4lang embedding layer. 42

5.10 Structure of the modi�ed stacked bidirectional RNN layers. 43

6.1 Example of the "abstract" method . 46

6.2 Example of the "expand" method using IRTG 46

49

List of Tables

2.1 Mapping from Stanford dependency relations to 4lang subgraphs [32, p. 12.]. 15

5.1 E�ect of 4lang and ConceptNet on results 43

50

Bibliography

[1] Embedding additions. https://blogs.mathworks.com.

[2] Parser di�erences. https://upload.wikimedia.org/wikipedia/commons/e/e7/

Johnhasfinishedthework-1.jpg.

[3] Afra Alishahi Ákos Kádár, Grzegorz Chrupala. Representation of linguistic form and

function in recurrent neural networks. arXiv preprint arXiv:1602.08952, 2016.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. In International Conference on Learning

Representations (ICLR 2015), 2015.

[5] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Gri�tt, Ulf Herm-

jakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. Abstract

meaning representation for sembanking. In Proceedings of the 7th Linguistic Anno-

tation Workshop and Interoperability with Discourse, pages 178�186, So�a, Bulgaria,

2013. Association for Computational Linguistics.

[6] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural

probabilistic language model. Journal of Machine Learning Research, 3:1137�1155,

2003.

[7] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning.

A large annotated corpus for learning natural language inference. In Proceedings of

the 2015 Conference on Empirical Methods in Natural Language Processing, pages

632�642, Lisbon, Portugal, 2015. Association for Computational Linguistics.

[8] Jose Camacho-Collados, Mohammad Taher Pilehvar, Nigel Collier, and Roberto Nav-

igli. Semeval-2017 task 2: Multilingual and cross-lingual semantic word similarity. In

Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-

2017), pages 15�26, Vancouver, Canada, 2017. Association for Computational Lin-

guistics.

[9] Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-

2017 task 1: Semantic textual similarity multilingual and crosslingual focused evalu-

ation. In Proceedings of the 11th International Workshop on Semantic Evaluation

(SemEval-2017), pages 1�14, Vancouver, Canada, 2017. Association for Computa-

tional Linguistics.

51

https://blogs.mathworks.com
https://upload.wikimedia.org/wikipedia/commons/e/e7/Johnhasfinishedthework-1.jpg
https://upload.wikimedia.org/wikipedia/commons/e/e7/Johnhasfinishedthework-1.jpg

[10] Zhipeng Chen, Yiming Cui, Wentao Ma, Shijin Wang, Ting Liu, and Guoping Hu.

H�-rc system at semeval-2018 task 11: Hybrid multi-aspects model for commonsense

reading comprehension. arXiv preprint arXiv:1803.05655, 2018.

[11] Vu; Le Minh Nguyen; Satoh Ken Dac Viet, Lai; Trong Sinh. Convamr: Abstract

meaning representation parsing for legal document. In ConvAMR, 2017.

[12] Dipanjan Das, Nathan Schneider, Desai Chen, and Noah A Smith. Probabilistic frame-

semantic parsing. In Human language technologies: The 2010 annual conference of the

North American chapter of the association for computational linguistics, pages 948�

956. Association for Computational Linguistics, 2010.

[13] Marie-Catherine DeMarne�e, William MacCartney, and Christopher Manning. Gener-

ating typed dependency parses from phrase structure parses. In Proceedings of the 5th

International Conference on Language Resources and Evaluation (LREC), volume 6,

pages 449�454, Genoa, Italy, 2006.

[14] Ács Evelin and Gábor Recski. Semantic parsing using interpreted regular tree gram-

mar. In AACS, 2018.

[15] Felix Hill, Roi Reichart, and Anna Korhonen. Simlex-999: Evaluating semantic models

with (genuine) similarity estimation. Computational Linguistics, 41(4):665�695, 2014.

[16] Daniel Jurafsky and James H. Martin. Speech and Language Processing. 3rd edition

edition.

[17] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, pages 8�9, 2015.

[18] Alexander Koller and Marco Kuhlmann. A generalized view on parsing and trans-

lation. In Proceedings of the 12th International Conference on Parsing Technologies

(IWPT), Dublin, 2011.

[19] András Kornai. Semantics. Springer Verlag, 2018.

[20] András Kornai, Judit Ács, Márton Makrai, Dávid Márk Nemeskey, Katalin Pajkossy,

and Gábor Recski. Competence in lexical semantics. In Proceedings of the Fourth

Joint Conference on Lexical and Computational Semantics (*SEM 2015), pages 165�

175, Denver, Colorado, 2015. Association for Computational Linguistics.

[21] András Kornai and Márton Makrai. A 4lang fogalmi szótár. In Attila Tanács and

Veronika Vincze, editors, IX. Magyar Számitógépes Nyelvészeti Konferencia, pages

62�70, 2013.

[22] Ádám Kovács and Gábor Recski. Knowledge base population using natural language

inference. In AACS, 2018.

52

[23] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE:

Large-scale reading comprehension dataset from examinations. arXiv preprint

arXiv:1704.04683, 2017.

[24] Lixi Deng Yongdong Zhang Qi Tian Linghui Li, Sheng Tang. Image caption with

global-local attention. 2017.

[25] Thang Luong, Hieu Pham, and Christopher D. Manning. E�ective approaches to

attention-based neural machine translation. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing, pages 1412�1421. Association for

Computational Linguistics, 2015.

[26] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. Exploiting similarities among lan-

guages for machine translation. Xiv preprint arXiv:1309.4168, 2013.

[27] Tim O'Gorman, Michael Regan, Kira Gri�tt, Ulf Hermjakob, Kevin Knight, and

Martha Palmer. Amr beyond the sentence: the multi-sentence amr corpus. In COL-

ING, 2018.

[28] Simon Ostermann, Ashutosh Modi, Michael Roth, Stefan Thater, and Manfred Pinkal.

MCScript: A Novel Dataset for Assessing Machine Comprehension Using Script

Knowledge. In Proceedings of the 11th International Conference on Language Re-

sources and Evaluation (LREC 2018), Miyazaki, Japan, 2018.

[29] Martha Palmer, Daniel Gildea, and Paul Kingsbury. The Proposition Bank: An anno-

tated corpus of semantic roles. Computational linguistics, 31(1):71�106, March 2005.

[30] Gábor Recski. Building concept graphs from monolingual dictionary entries. In Nico-

letta Calzolari, Khalid Choukri, Thierry Declerck, Marko Grobelnik, Bente Maegaard,

Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors, Proceed-

ings of the Tenth International Conference on Language Resources and Evaluation

(LREC 2016), Portoroº, Slovenia, 2016. European Language Resources Association

(ELRA).

[31] Gábor Recski. Computational methods in semantics. PhD thesis, Eötvös Loránd

University, Budapest, 2016.

[32] Gábor Recski. Building concept de�nitions from explanatory dictionaries. Interna-

tional Journal of Lexicography, 31:274�311, 2018.

[33] Gábor Recski, Eszter Iklódi, Katalin Pajkossy, and Andras Kornai. Measuring seman-

tic similarity of words using concept networks. In Proceedings of the 1st Workshop on

Representation Learning for NLP, pages 193�200, Berlin, Germany, 2016. Association

for Computational Linguistics.

[34] Matthew Richardson, Christopher JC Burges, and Erin Renshaw. Mctest: A challenge

dataset for the open-domain machine comprehension of text. In Proceedings of the

53

2013 Conference on Empirical Methods in Natural Language Processing, pages 193�

203, 2013.

[35] Robert Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilin-

gual graph of general knowledge. In Proceedings of the Thirty-First AAAI Conference

on Arti�cial Intelligence (AAAI-17), pages 4444�4451, 2017.

[36] Melanie Tosik. Abstract meaning representation. http://www.melanietosik.com/

files/amr.pdf.

[37] Bingning Wang, Shangmin Guo, Kang Liu, Shizhu He, and Jun Zhao. Employing

external rich knowledge for machine comprehension. In IJCAI, pages 2929�2925,

2016.

[38] Hai Wang, Mohit Bansal, Kevin Gimpel, and David McAllester. Machine comprehen-

sion with syntax, frames, and semantics. In Proceedings of the 53rd Annual Meeting

of the Association for Computational Linguistics and the 7th International Joint Con-

ference on Natural Language Processing (Volume 2: Short Papers), volume 2, pages

700�706, 2015.

[39] Liang Wang, Meng Sun, Wei Zhao, Kewei Shen, and Jingming Liu. Yuanfudao at

semeval-2018 task 11: Three-way attention and relational knowledge for commonsense

machine comprehension. arXiv preprint arXiv:1803.00191, 2018.

54

http://www.melanietosik.com/files/amr.pdf
http://www.melanietosik.com/files/amr.pdf

	Kivonat
	Abstract
	Introduction
	Natural Language Processing
	Objectives
	Results
	References
	Structure
	Division of labour

	Semantic models and parsing
	Distributional model
	Abstract Meaning Representations
	4lang
	The formalism
	Expansion
	The service

	Machine Comprehension
	Comprehension, entailment, and knowledge bases
	Method
	Experiments

	Deep learning neural networks
	Context
	Basics
	Optimization
	Regularization

	Natural Language Processing with Deep learning
	Embedding layers
	Recurrent Neural Networks
	Long-Short Term Memory
	Gated recurrent unit

	Attention

	Yuanfudao system
	The original system
	Preprocessing
	System description
	Parameters
	Learning curve

	Modifications
	The results

	Conclusion and future work
	Summary
	Future work
	Interpreted Regular Tree Grammar

	Acknowledgement
	List of figures
	List of tables
	Bibliography

