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Kivonat

A gyárakban használt ipari robotok többsége előre beprogramozott cselekvéssorozatot hajt
végre. A robotoknak nincs ismeretük a körülöttük lévő világról. Egy esetleges hiba esetén
az egész robotcella és a gyártás is leáll. A robotok nem tudnak eltérni a beprogramozott
koreográfiától, ezért nem is képesek maguk megoldani a felmerülő problémákat, valamint
adaptálódni a változásokhoz. A nem tervezett leállás a legrosszabb, például egy gépjár-
műgyártó esetén, ahol percenként egy autó elhagyja a gyártósort. Egy leállás percenként
20 000 dollár veszteséget is eredményezhet, és egyetlen incidens akár 2 millió dollárba
kerülhet. [1]

A kiinduló kérdésem az volt, hogy hogyan lehetne ipari feladatokat úgy megoldani,
hogy nem megegyező lépések állandó sorozatát valósítjuk meg, hanem az éppen adott
problémához igazodva adunk egy optimális tervet. A munkám célja egy olyan rendszer
bemutatása, amely Mesterséges Intelligencia (MI) felhasználásával készít egy tervet a
környezeti változókat is figyelembe véve. Ehhez Gazebo szimulációs szoftvert használok,
amellyel hatékonyan lehet szimulálni komplex környezeteket, valamint Robot Operating
Systemet (ROS), amely egy robot alkalmazásfejlesztő platform. A probléma megoldására
tervkészítést alkalmazok, amely a MI régóta létező részterülete.

Bemutatok egy szimulált környezetet, melyben a robotkarnak az utasításokat egy MI
adja. A feladat, hogy alkatrészeket tegyen be pontosan egy futószalagon lévő tárolóba. A
tervet mindig az adott környezeti állapotot figyelembe véve készíti el az MI.
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Abstract

Most industrial robots used in factories perform a pre-programmed sequence of actions.
The robots have no knowledge of the world around them. In the event of a malfunction,
the entire robot cell and the production are shut down. Robots cannot deviate from pro-
grammed choreography, so they cannot solve problems themselves and adapt to changes.
Unplanned downtime is a worst-case scenario for automotive manufacturers, where one
car leaves the production line every minute. The downtime can cost as much as $20,000
potential profit loss per minute, and $2 million for a single incident.[1]

My initial question was how to solve industrial problems without implementing a
constant series of identical steps, but to provide an optimal plan based on the problem at
hand.

The purpose of my work is to introduce a system that uses Artificial Intelligence (AI)
to make a plan that takes into account environmental variables. My analysis is performed
on a robot simulation software, Gazebo interacting with ROS. Gazebo is an open source
simulation software that can be used to simulate complex environments. Robot Operating
System (ROS) is a robotic application development platform. To solve problems, I used
planning, which is a well-established sub-area of artificial intelligence.

In this paper, I present a simulated environment in which the robot arm is instructed
by an AI. The task that needs to be solved is to place the parts precisely into a shipping
box on the conveyor belt. The AI computes the plan according to the given environmental
condition.
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Chapter 1

Introduction

The robots used in factories always carry out a pre-programmed task for assembling, weld-
ing, gluing and palletizing. This is not a problem as long as everything goes as planned,
but any changes, such as moving a part a little further away, can cause serious problems.
Because the robot is not aware of its environment, it cannot adapt to the changes. To-
day, two-thirds of automotive workers-the human ones-are in the general assembly section.
Automating this section has proved more difficult because the customization and complex-
ity of today’s autos requires the flexibility humans provide. Most factories are producing
several models of cars simultaneously, and the mix of those models is often changing de-
pending on demand. It would be expensive, if even possible, to reprogram robots and
machines to be able to accommodate daily changes in factory production schedules. [2] In
this paper I would suggest a possible solution to the problems mentioned above.

In 2018 and 2019 I participated in the Agile Robotics for Industrial Automation Com-
petition (ARIAC)[5] which is a simulation-based competition designed to promote agility
in industrial robotics using the latest developments in artificial intelligence and robot
planning. The general goal of the first, second and third editions (2017, 2018, 2019) of the
ARIAC competition were to motivate further development and adoption of agile indus-
trial robotics by providing an environment where teams could work on solutions towards
more productive and autonomous robots that would also require less time from shop floor
workers. But no one used a higher level planner to solve the competition tasks, everyone
created some sort of scheduler that was able to solve the problem, but optimal solution
was not guaranteed.

The competition involved a simulation of the infrastructure where teams would have
to complete a set of tasks. The simulation infrastructure was built on Gazebo [4] and
ROS [6]. The tasks were made to comprehend four specific areas: failure identification
and recovery, automated planning, fixtureless environment, and plug and play robots.
The tasks or challenges were explored with different simulation trials, which represent
the configuration of the simulated environment as well as its goals. ARIAC tasks revolve
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around collecting a set of part pieces and placing them on a tray to be sent for assembling.
Recent advances in simulator technology go beyond process level simulation e.g., [3]

and with the application of rigid body simulation, a detailed, close-to-real world imple-
mentation study can be performed. I chose Gazebo as my target robot simulation environ-
ment. Gazebo [4] offers the ability to efficiently and accurately simulate a great number
of robots in complex indoor and outdoor environments. It has a robust physics engine,
convenient programmatic and graphical interfaces and high-quality graphics. Gazebo is
free and widely used among robotic experts. The physics engine is used to model the be-
haviors of objects in space. These engines allow the simulation of different types of bodies
to be affected by various physical stimuli. There are two types of physics engines: real-time
and the high precision. Most real-time engines are inaccurate and only provide reduced
approximation of the real world, while most high-precision engines are too slow for every-
day applications. Physics engines are based on the laws of classical mechanics. The used
models determine how accurate these simulations are in dynamical simulations. Gazebo
uses the later, sacrificing performance over accuracy, which can be fine-tuned by several
parameters.

A rigid body simulator would be difficult to apply for the evaluation of complex robotic
cell task, but due to a robotic competitions, Gazebo starts to gain new features to support
this.

In this paper, I would like to present a solution in the 2018 ARIAC environment, my
goal was to make the robot cell more adaptive, versatile, and optimized. To do this, I used
the features offered by AI planning, which is a long-established branch of research in Arti-
ficial Intelligence. About AI planning, Gazebo and ROS I provide background information
in chapter 3 to better understand their role in my work. In chapter 4, I will outline the
steps that I had to take in order to create such a system using the previously mentioned
components. Then in chapter 5 I present my results and experiences. Finally, I will discuss
other possible applications and the potential continuation of my work.
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Chapter 2

Related work

Many autonomous systems such as mobile robots, UAVs or spacecraft, have limited re-
source capacities and move in dynamic environments. Performing on-board mission plan-
ning and execution in such a context requires deliberative capabilities to generate plans
achieving mission goals while respecting deadlines and resource constraints, as well as
runtime plan adaption mechanisms during execution. Authors of [7] propose a framework
to integrate deliberative planning, plan repair and execution control in a dynamic envi-
ronment with stringent temporal constraints. It is based on lifted partial order temporal
planning techniques which produce flexible plans and allow, under certain conditions dis-
cussed in the paper, plan repair interleaved with plan execution. This framework has been
implemented using the IXTET planner and used to control a robotic platform

Authors of [8] explore the execution of planned AUV missions where opportunities
to achieve additional utility can arise during execution. The missions are represented as
temporal planning problems, with hard goals and time constraints. Opportunities are
soft goals with high utility. The probability distributions for the occurrences of these
opportunities are not known, but it is known that they are unlikely so it is not worth trying
to anticipate their occurrence prior to plan execution. However, as they are high utility, it
is worth trying to address them dynamically when they are encountered, as long as this
can be done without sacrificing the achievement of the hard goals of the problem. They
formally characterise the opportunistic planning problem, introduce a novel approach to
opportunistic planning and compare it to an on-board replanning approach in the domain
of autonomous underwater vehicles performing pillar exception and chain following tasks.
Authors of [9] present technology for performing autonomous commanding of a planetary
rover. Through the use of AI planning, scheduling and execution techniques, the OASIS
autonomous science system provides capabilities for the automated generation of a rover
activity plan based on science priorities, the handling of opportunistic science, including
new science targets identified by onboard data analysis software, other dynamic decision-
making such as modifying the rover activity plan in response to problems or other state and
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resource changes. We first describe some of the particular challenges this work has begun
to address and then describe our system approach. Finally, we report on our experience
testing this software with a Mars rover prototype.

Authors of [10] describe the Remote Agent flight experiment for spacecraft command-
ing and control. In the Remote Agent approach, the operational rules and constraints are
encoded in the flight software. The software may be considered to be an autonomous "re-
mote agent" of the spacecraft operators in the sense that the operators rely on the agent
to achieve particular goals.

[11] is a survey of articles and methods on how to optimize a robot cell. The purpose of
such optimization is to minimize or maximize at least one of the following objective func-
tions: 1) minimizing the execution time, respectively maximizing the robot productivity,
considering that the relative speeds of the actuators elements are limited constructively;
2) minimizing the energy consumption or mechanical work necessary for execution, lead-
ing to a reduction of the mechanical stresses in actuators and on the robot structure and
obtaining smooth trajectories, easy to follow; 3) minimizing the maximum power required
for operating the robot; 4) minimizing the maximum actuation forces and moments. The
most common optimization criteria used in the literature are: minimum time trajectory
planning; minimum energy trajectory planning or minimum actuation effort and minimum
jerk trajectory planning.

Authors of [12] highlighted key conclusions from a workshop sponsored by the National
Science Foundation in October 2013 that summarize opportunities and key challenges in
robot planning and include challenge problems identified in the workshop that can help
guide future research toward making robot planning more deployable in the real world.
This article highlights that robot planning could also be used in nimble factories with
rapidly changing products and needs by facilitating quick adaptation to new tasks and
reducing the effort of manually reprogramming robots if workspaces or products are mod-
ified. Creating robots with the planning capabilities needed for these new scenarios will
require research on manipulation planning, efficient user interfaces for conveying how tasks
should be performed, human-robot cooperation, enabling situational awareness, compen-
sating for environmental and operational uncertainty, and assuring performance. Although
robots are increasingly being used in a variety of real-world applications, the deployment
of advanced robot planning capabilities in real-world robots has thus far been limited.
Progress will require the collaboration of planning researchers from robotics and artifi-
cial intelligence with researchers from neighboring disciplines, such as computer vision,
haptics, natural language processing, and human-computer interfaces.

The papers above outline the many possibilities of using AI planning from space to
deep sea. They mention that many components are required to be used in real-world
scenarios. I present a possible solution to these issues in this paper.
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Chapter 3

Used software components

In this chapter, I present the basics of the Robot Operating System (ROS), Gazebo sim-
ulation software and planning with PDDL, with the aim of presenting their role in my
work.

3.1 Robot Operating System
Robot Operating System (ROS)[13] is a trending robot application development plat-
form that provides various features such as message passing, distributed computing, code
reusing, and so on.

ROS comes with ready to use capabilities, for example, SLAM (Simultaneous Local-
ization and Mapping) and AMCL (Adaptive Monte Carlo Localization) packages in ROS
can be used for performing autonomous navigation in mobile robots and the MoveIt pack-
age for motion planning of robot manipulators. These capabilities can directly be used
in our robot software without any hassle. These capabilities are its best form of imple-
mentation, so writing new code for existing capabilities are like reinventing wheels. Also,
these capabilities are highly configurable; we can fine-tune each capability using various
parameters.

ROS is packed with tons of tools for debugging, visualizing, and performing simulation.
The tools such as rqt_gui, RViz and Gazebo are some of the strong open source tools for
debugging, visualization, and simulation. The software framework that has these many
tools is very rare.

The ROS message-passing middleware allows communicating between different nodes.
These nodes can be programmed in any language that has ROS client libraries. We can
write high performance nodes in C++ or C and other nodes in Python or Java. This kind
of flexibility is not available in other frameworks.

ROS currently only runs on Unix-based platforms. Software for ROS is primarily tested
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on Ubuntu and Mac OS X systems, though the ROS community has contributed support
for Fedora, Gentoo, Arch Linux and other Linux platforms. [6, 14]

3.1.1 ROS Concepts
ROS has three levels of concepts: the File system level, the Computation Graph level, and
the Community level. [15] In the next chapters I will show the most important elements
of these three levels.

Figure 3.1: ROS File system level[13]

3.1.1.1 Packages

Software in ROS is organized in packages[16]. A package might contain a library, a dataset,
configuration files or anything else that logically constitutes a useful module. The goal of
these packages it to provide this functionality in an easy-to-consume manner so that
software can be easily reused. In general, ROS packages follow the "Goldilocks" principle:
enough functionality to be useful, but not too much that the package is heavyweight and
difficult to use from other software.
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3.1.2 ROS Computation Graph level
The computational graph of ROS is peer-to-peer network that processes data. The ele-
ments of the computational graph are nodes, Master, Parameter Server, messages, services,
topics, and bags, all of which provide data to the Graph in different ways.[15]

Figure 3.2: ROS Computation Graph level[13]

3.1.2.1 Nodes

ROS nodes[17] are responsible for performing tasks that require computation. Nodes are
combined together into a graph and communicate with one another using streaming topics,
RPC services, and the Parameter Server.

Using ROS nodes makes the architecture of the systems more transparent, as each
node performs a single function. Nodes provide more stable system, because in case of
an error, if a node fails, the whole system does not stop. Code complexity is reduced in
comparison to monolithic systems. In the case of a system change, if a function is replaced
by a better one, it is not necessary to change the entire system, it is enough to replace a
node with another one. This interchangeability is also present in the ROS framework, for
example, it is not necessary for nodes to be written in the same programming language in
order to communicate. ROS nodes can be written in python and C++.

Every node has a URI[18], which corresponds to the host:port of the XMLRPC server
it is running. The XMLRPC server is not used to transport topic or service data: instead, it
is used to negotiate connections with other nodes and also communicate with the Master.
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This server is created and managed within the ROS client library, but is generally not
visible to the client library user. The XMLRPC server may be bound to any port on the
host where the node is running.

3.1.2.2 Master

The ROS Master provides name registration and lookup to the rest of the Computa-
tion Graph. Without the Master, nodes would not be able to find each other, exchange
messages, or invoke services.[15] It tracks publishers and subscribers to topics as well
as services. The role of the Master[19] is to enable individual ROS nodes to locate one
another. Once these nodes have located each other they communicate with each other
peer-to-peer. The Master also provides the Parameter Server.

The Master[18] is implemented via XMLRPC , which is a stateless, HTTP-based pro-
tocol. XMLRPC is relatively lightweight, does not require a stateful connection, and has
wide availability in a variety of programming languages, for example Perl, Java, Python,
C, C++, PHP.

3.1.2.3 Parameter Server

Parameter server[13] is a shared database between nodes. It can stores globally accessible
variables that every node can read, write or delete, but it is also possible to control access
to the variables. The server can store a wide variety of data types, for example 32-bit
integers, booleans, strings, doubles, iso8601 dates and can even store dictionaries. If the
number of parameters is too high it is possible to save them in a YAML Ain’t Markup
Language (YAML) file.

The Parameter Server[18] is part of the Master, which means that its implemented via
XMLRPC libraries in order to enable easy integration with the ROS client libraries and
also to provide greater type flexibility when stroring and retrieving data.

3.1.2.4 Messages

ROS nodes communicate with each other by publishing messages to a topic. It supports
standard primitive data types[13] (e.g., integer, floating point, Boolean, and so on) and
arrays of primitive data types. It is also possible to build our own message types using
these standard types.

Messages[20] files are simple text files with .msg extension stored in the msg subdi-
rectory of a package. Message generators translate the .msg files into source code. These
message generators are implemented in the Client Libraries and they are invoked from
build script.

The are two commonly used message packages std_msgs and common_msgs. The
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messages in std_msgs[21] package are not intended for permanent usage because these
types do not convey sematic meaning about ther contents. Every message simply has a
field called "data". The messages in this package can be useful for quick prototyping, for
example the Empty type, which is useful for sending an empty signal or the "MultiArray"
types, which can be useful for storing sensor data.

Messages in the common_msgs[22] package are widely used by other ROS packages.
It is being used to interact with an action server and an action client in the action-
lib_msgs, for diagnostics and runtime monitoring in diagnostic_msgs, for common geo-
metric primitives such as points, vectors, and poses in geometry_msgs, for robot navigation
in nav_msgs and common sensors (sensor_msgs), such as laser range finders, cameras,
point clouds.

3.1.2.5 Topics

Topics[23] are named buses over which nodes exchange messages. Topics have anonymous
publish and subscribe semantics, which decouples the production of information from its
consumption. In general, nodes are not aware of who they are communicating with. Instead,
nodes that are interested in data subscribe to the relevant topic; nodes that generate data
publish to the relevant topic. There can be multiple publishers and subscribers to a topic.

Topics are intended for unidirectional, streaming communication. Nodes that need to
perform remote procedure calls, i.e. receive a response to a request, should use services
instead. There is also the Parameter Server for maintaining small amounts of state.

Nodes that subscribe to a topic will request connections from nodes that publish that
topic, and will establish that connection over an agreed upon connection protocol.[15]
Two transport protocols are supported by ROS[18], one based on TCP/IP, another UDP-
based. TCP is widely used because it provides a simple, reliable communication stream.
TCP packets always arrive in order, and lost packets are resent until they arrive. The
TCP/IP-based transport is called as TCPROS and it is the default protocol used in ROS.
While TCP is great for wired Ethernet networks, these features become bugs when the
underlying network is a lossy WiFi or cell modem connection. In this situation, UDP is
more appropriate. When multiple subscribers are grouped on a single subnet, it may be
most efficient for the publisher to communicate with all of them simultaneously via UDP
broadcast. The UDP-based protocol is known as UDPROS. For these reasons, ROS does
not commit to a single transport. Given a publisher URI, a subscribing node negotiates
a connection, using the appropriate transport, with that publisher, via XMLRPC. The
result of the negotiation is that the two nodes are connected, with messages streaming
from publisher to subscriber.
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Figure 3.3: ROS communication between two nodes and the master[18]

3.1.2.6 Services

Request/reply interaction can only be achieved with ROS services[13]. Topics can not do
this kind of communication because it is unidirectional. ROS services are mainly used in
a distributed system. The ROS services are defined using a pair of messages. We have to
define a request datatype and a response datatype in a .srv file. The .srv files are kept in
a srv folder inside a package. In ROS services, one node acts as a ROS server in which the
service client can request the service from the server. If the server completes the service
routine, it will send the results to the service client.

3.1.3 Summary
ROS is an open-source framework to develop robotic applications. Because of the structure
that each package has a separate function, it makes it considerably easier for developers
to work, since there is no need for reinventing the wheel.

Thanks to a very active community of helpful people, if you are facing a problem you
will most likely find people who have been in a similar shoe.

In my opinion, ROS is a good choice for my work because, although at the beginning
there is a big enough threshold to jump. It is not easy to learn how to use it, but once one
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has overcome the initial difficulties, it is easier to create complex, scalable, transparent
systems.

3.2 Used ROS packages
To avoid having to deal with something that has already been made, I have used the
following packages to speed up and ease my work.

3.2.1 ariac package
The ariac package that I am worked with was made for the 2018 ARIAC. The ariac
package contains the simulation environment and the GEAR interface. GEAR[24] provides
a ROS interface to control all available actuators, read sensor information and send/receive
notifications. The ariac package is built on several other packages, but I will not go into
detail about them.

3.2.2 rosplan package
The ROSPlan[25] framework provides a collection of tools for AI Planning in a ROS
system. ROSPlan has a variety of nodes which encapsulate planning, problem generation,
and plan execution. This structure is shown in 3.4 figure.

The Knowledge Base[25] stores the PDDL model. It stores both a domain model and
the current problem instance. The Problem Interface node is used to generate a prob-
lem instance. It fetches the domain details and current state through service calls to a
Knowledge Base node and publishes a PDDL problem instance as a string, or writes it to
file. The Planner Interface node is a wrapper for the AI Planner. The planner is called
through a service, which returns true if a solution was found. This interface feeds the
planner with a domain file and problem instance, and calls the planner with a command
line specified by parameter.The Parsing Interface node is used to convert planner output
into a plan representation that can be executed, and whose actions can be dispatched
to other parts of the system. Plan Dispatch includes plan execution, and the process of
connecting single actions to the processes which are responsible for their execution. An
implementation of the Plan Dispatch node subscribes to a plan topic, and is closely tied
to the plan representation of plans published on that topic.

3.3 Gazebo
Gazebo[4] is a 3D dynamic Simulator that can simulate accurately and efficiently pop-
ulations of robots in complex indoor or outdoor environments. This way, we can easily
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Figure 3.4: The structure of the ROSPlan framework, the package can be di-
vided into 5 separate nodes whose relationship to each other is
shown in the figure.
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test robotic applications and algorithms without the need for actual hardware. Gazebo
provides a robust physics engine, high-quality graphics, and convenient programmatic and
graphical interfaces.

Figure 3.5: Gazebo simulation of the 2018 ARIAC environment

3.3.1 Physics engine
Gazebo[4] supports the ODE, Bullet, Simbody and DART physics engines. By default
Gazebo is compiled with support for ODE. In my work I used only the Open Dynamics
Engine (ODE), therefore I would only give a more detailed description of that physics
engine.

Open Dynamics Engine (ODE)[26] is an open source, high performance library for
simulating rigid body dynamics. It is fully featured, stable, mature and platform inde-
pendent with an easy to use C/C++ API. It has advanced joint types and integrated
collision detection with friction. ODE is useful for simulating vehicles, objects in virtual
reality environments and virtual creatures. It is currently used in many computer games,
3D authoring tools and simulation tools.

The process of simulating the rigid body system through time is called integration.[27]
Each integration step advances the current time by a given step size, adjusting the state
of all the rigid bodies for the new time value. There are two main issues to consider when
working with any integrator:
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• How accurate is it? That is, how closely does the behaviour of the simulated system
match what would happen in real life.

• How stable is it? That is, will calculation errors ever cause completely non-physical
behaviour of the simulated system? (e.g. causing the system to "explode" for no
reason).

The current integrator of ODE is very stable, but not particularly accurate unless
the step size is small. In gazebo the default step size is 0.001, which means it calls the
UpdatePhysics resource 1000 times in a simulated second. With this setting, the simulation
will be very realistic so the events in the simulation are a good approximation of reality.
Unfortunately, this means that if we want to simulate too complex system on a computer
that has a finite computing capacity, the simulation speed will be significantly reduced.

Gazebo has a metric that shows how slow the simulation is for real time. This is the
real time factor (RTF) which is the simulation time divided by real time.

3.3.2 What is a simulated World?
A complete environment is essentially a collection of models and sensors.[28] The ground
and buildings represent stationary models while robots and other objects are dynamic.
Sensors remain separate from the dynamic simulation since they only collect data, or emit
data if it is an active sensor

The following is a brief description of each general component[28]:

• Models, Bodies, and Joints: A model is any object that maintains a physical rep-
resentation. This encompasses anything from simple geometry to complex robots.
Models are composed of at least one rigid body, zero or more joints and sensors, and
interfaces to facilitate the flow of data. Bodies represent the basic building blocks
of a model. Their physical representation take the form of geometric shapes chosen
from boxes, spheres, cylinders, planes, and lines but it is also possible to use complex
model files. Each body has an assigned mass, friction, bounce factor, and rendering
properties such as color, texture, transparency, etc.

• Joints provide the mechanism to connect bodies together to form kinematic and
dynamic relationships. A variety of joints are available including hinge joints for
rotation along one or two axis, slider joints for translation along a single axis, ball
and socket joints, and universal joints for rotation about two perpendicular joints.
Besides connecting two bodies together, these joints can act like motors. When a
force is applied to a joint, the friction between the connected body and other bodies
cause motion. However, special care needs to be taken when connecting many joints
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in a single model as both the model and simulation can easily loose stability if
incorrect parameters are chosen.

• Interfaces provide the means by which client programs can access and control models.
Commands sent over an interface can instruct a model to move joints, change the
configuration of associated sensors, or request sensor data. The interfaces do not
place restrictions on a model, thereby allowing the model to interpret the commands
in anyway it sees fit.

• Sensors: A robot can not perform useful tasks without sensors. A sensor in Gazebo is
an abstract device lacking a physical representation. It only gains embodiment when
incorporated into a model. This feature allows for the reuse of sensors in numerous
models thereby reducing code and confusion.

3.3.3 Main components
Gazebo is a stand-alone software, this section describes each of the items involved in
running a Gazebo simulation. [29]

• World file: The world description file contains all the elements in a simulation, includ-
ing robots, lights, sensors, and static objects. This file is formatted using Simulation
Description Format (SDF), and typically has a .world extension.

• Model files: A model file uses the same SDF format as world files, but should only
contain a single model tag. We can also use URDF files to create models, because
we can convert the URDF file into an SDF. The purpose of these files is to facilitate
model reuse, and simplify world files. Once a model file is created, it can be included
in a world file.

• Gazebo Server: The server is the workhorse of Gazebo. It parses a world description
file given on the command line, and then simulates the world using a physics and
sensor engine.

• Graphical Client: The graphical client connects to a running gzserver and visualizes
the elements. This is also a tool which allows you to modify the running simulation.

• Plugins: Plugins provide a simple and convenient mechanism to interface with
Gazebo. Plugins can either be loaded on the command line, or specified in an SDF
file.

19



3.3.4 Using Gazebo with ROS
Gazebo is a stand-alone simulator. However Gazebo has an interface, through which we
can intervene into the simulation with ROS.

Figure 3.6: An overview of the gazebo_ros_pckgs interface [30]

3.3.4.1 gazebo_ros_pkgs package

gazebo_ros_pkgs [30] provides wrappers around the Gazebo to achieve ROS integration.
This is a meta package that contains the necessary interfaces to simulate a robot in Gazebo
using ROS messages, services and dynamic reconfigure.

The use of each package is as folows [13]:

• gazebo_ros: This contains wrappers and tools for interfacing ROS with Gazebo

• gazebo-msgs: This contains messages and service data structures for interfacing with
Gazebo from ROS

• gazebo-plugins: This contains Gazebo plugins for sensors, actuators, and so on.
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• gazebo-ros-control: This contains standard controllers to communicate between ROS
and Gazebo

3.3.5 UR10 Robot arm
In the ARIAC environment, there is a UR10 robot arm that is responsible for moving
parts from the yellow boxes. It also plays a significant role in my work, so I present its
essential characteristics. The UR10 robot arm designed by Universal Robots has 6 degrees
of freedom with its 6 rotating joints. Its payload can be up to 10 kg. It has a reach of 1300
mm. [31]

3.3.6 Summary
Gazebo is an open-source dynamic simulator that can accurately and effectively simulate
complex environments with multiple robots. Although this precision comes with a trade-
off, since every interaction is computed 1000 times per second, so if the system is too
complex, the simulation can slow down considerably. This is one aspect that needs to be
taken into account during development.

Gazebo can be connected to ROS so the events in the simulation can be changed with
ROS. This and the community around the software, as well as the resources that were
available on the Internet, seemed to be an appropriate choice for my work.

3.4 Automated planning and scheduling
Automated planning and scheduling, or more simply denoted as AI planning is a well-
established sub-area of artificial intelligence. The purpose of planning is for the planner
to create a series of actions that meet the goal conditions.

3.4.1 Overview
From a computer science point of view, planning is just one formalism succinctly describ-
ing large transition systems, similar to automata networks or Turing machines. Trivially,
planning is hard (PSPACE-complete in our case here). [32]

A planning task is consists of four parts [32]:

• a set of finite-domain state variables

• a set of actions, where each action has a partial variable assignments called precon-
ditions and effects.

• a complete variable assignment called initial state
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• a partial variable assignment called goal

A plan is path leading from the initial state to a state complying with the goal. The
plan is optimal if it is a shortest such path. Unless other metrics are considered during
the planning. [32]

The classic planning environments that are fully observable, deterministic, finite, static
(that is, where changes only occur when the agent acts), discrete (in time, actions, objects
and effects). This is a fairly significant limitation, so most problems cannot be solved
with classic planning. Non-classical planning deals with partially observable, stochastic,
dynamic environments and with multiple agents. [33]

3.4.2 The language of planning problems
In the late 1990s, the yearly International Planning Competitions (IPL) began in order
to encourage development of efficient planning search algorithms. A new language, PDDL
(Planning Domain Definition Language) was designed in order to have a single unified
syntax for representing planning problems for the competition. PDDL has improved over
time to support many sophisticated features, such as variable types, action costs, action
preferences, deadlines, etc. even though no planning software available today supports all
these features of PDDL. [34]

The main inspiration for the PDDL language was the STRIPS language from the
early 1970s, developed at SRI International. STRIPS (Stanford Research Institute (SRI)
Problem Solver) was used to help Shakey the Robot solve various tasks. [34]

Planning problems represented in PDDL are separated into two parts: the domain and
one or more problems. The domain PDDL file lists the actions available in the domain. A
problem PDDL file describes the initial state and goal criteria for a particular scenario. The
idea is that the same domain file will be useful for many different problem scenarios. [34]

A domain file, typically named domain.pddl, has the following sections: [34]

• the name of the domain

• a list of predicates and each predicate’s variables (recall that a predicate represents
a single property of a state)

• a list of actions; for each action, its parameters, preconditions, and effects may be
stated

Here is an example domain file, for the "blocks world" planning problem. Note that vari-
ables are marked with a question mark, as in ?x, and the syntax generally uses Lisp’s
prefix notation and keywords (preceded by colons, e.g., :parameters). [34]
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;; domain .pddl for blocksworld

( define ( domain blocksworld )
(: requirements : strips )

(: predicates ( clear ?x)
(on - table ?x)
( holding ?x)
(on ?x ?y))

(: action pickup
: parameters (? ob)
: precondition (and ( clear ?ob) (on - table ?ob))
: effect (and ( holding ?ob) (not ( clear ?ob)) (not (on - table ?ob))))

(: action putdown
: parameters (? ob)
: precondition (and ( holding ?ob))
: effect (and ( clear ?ob) (on - table ?ob)

(not ( holding ?ob))))

(: action stack
: parameters (? ob ? underob )
: precondition (and ( clear ? underob ) ( holding ?ob))
: effect (and ( clear ?ob) (on ?ob ? underob )

(not ( clear ? underob )) (not ( holding ?ob))))

(: action unstack
: parameters (? ob ? underob )
: precondition (and (on ?ob ? underob ) ( clear ?ob))
: effect (and ( holding ?ob) ( clear ? underob )

(not (on ?ob ? underob )) (not ( clear ?ob)))))

A problem file lists the domain, objects that can be used in place of variables, a
description of the initial state (using the predicates listed in the domain file), and goal
criteria (again, using predicates). [34]
;; problem file: blocksworld - prob1 .pddl

( define ( problem blocksworld - prob1 )
(: domain blocksworld )
(: objects a b)
(: init (on - table a) (on - table b) ( clear a) ( clear b))
(: goal (and (on a b))))

3.4.3 Advantages of Planning
What characterizes planning research is the attempt to create one planning solver that will
perform sufficiently well on all possible domains (inputs). That will never work out (the
problem is hard), but there’s been tremendous algorithmic progress in the last decade.
This will pay off if either: [32]
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• The problem is subject to frequent change. If a custom solver is implemented, it needs
to be continuously adapted. Using planning, it suffices to change the declarative
planning model.

• It would be costly to implement a custom solver. Unless the problem is quite easy,
making a solver will cost time and money. Writing the planning model is typically
much less effort.

AI planning has several important benefits that make it stand out from other AI sub-
areas [35]:

• When explainability is desired, if we want to be able to explain why a particular
course of action was chosen e.g. ass

• Rapid prototyping: short time to solution.

• Variety of off the shelf planners available both proprietary and open-source

In other words, planning is a cost-effective method for software engineering. It’s a
model-based approach. The planning model serves as a high-level programming language
decoupling the problem from its solution.
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Chapter 4

Implementation

4.1 Creating domain and problem files
In this section, I provide a brief description of what factors I took into account when I
created the domain and problem files, and why I implemented it in this way.

4.1.1 Domain file
The domain file must include all actions that can change the state of the world. In addition
to the changes we make, we also need to write down the conditions under which the action
is executed. It is important to have a good knowledge of the environment when creating a
domain file, because we do not want to put unnecessary restrictions in it, but we also do
not want to create actions that are physically impossible.

The 2018 ARIAC environment is suitably limited to avoid a state space explosion. Two
agents can change the state of the world, the robot arm and the conveyor belt. Therefore,
4 actions are sufficient.

The first action is responsible for moving the robot arm parallel to the conveyor belt.
(: durative - action ur_move

: parameters (? ur - ur ?from - yellowbox ?to - yellowbox )

: duration (= ? duration (+ (+
(*( -( abs_X_position ?from) ( abs_X_position ?to)) (-( abs_X_position ?from) (

↪→ abs_X_position ?to)))
(*( -( abs_Y_position ?from) ( abs_Y_position ?to)) (-( abs_Y_position ?from) (

↪→ abs_Y_position ?to)))
) 1) )

: condition
(and
(at start ( ur_at ?ur ?from))
)
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: effect
(and
(at end ( ur_at ?ur ?to))
(at start (not ( ur_at ?ur ?from)))
)

)

The PDDL version 2.1 allows the use of durative actions. It is not trivial what we
choose to perform an action. If you choose a fixed time, e.g. when the action is certainly
completed, the planner will ignore the distance between the yellow boxes. By doing this,
an opportunity is missed to optimize the solution. The next option is to change the action
duration depending on its parameters. The time of move action is similar to the Manhattan
norm, except that in PDDL absolute values cannot be computed. The components are
multiplied by themselves to get a positive number. Equation 4.1 shows how the duration
is calculated.

Duration = (Xfrom − Xto) ∗ (Xfrom − Xto) + (Yfrom − Yto) ∗ (Yfrom − Yto) + 1 (4.1)

The condition is that the robot arm moves from point A to point B to initially be in
point A. The effect is not surprisingly that it gets to point B and it will no longer be at
point A.

The second action also belongs to the robot arm, it is responsible for picking up parts.
There are two locations in the parameter list. ?locationA is the location where the robot

(: durative - action ur_pick
: parameters (? ur - ur ? locationA - location ? locationB - location ? piece - piece )

: duration (= ? duration (* (+ (+
(*( -( abs_X_position ? locationB ) ( abs_X_position ? locationA )) (-( abs_X_position ?

↪→ locationB ) ( abs_X_position ? locationA )))
(*( -( abs_Y_position ? locationB ) ( abs_Y_position ? locationA )) (-( abs_Y_position ?

↪→ locationB ) ( abs_Y_position ? locationA )))
) 1) 1.5) )

: condition
(and
(at start ( ur_at ?ur ? locationA ))
(over all ( ur_at ?ur ? locationA ))
(at start ( is_ur_available ?ur))
(over all ( is_reachable ? locationA ? locationB ))
(at start ( is_in ? piece ? locationB ))
)

: effect
(and
(at end ( is_ur_carry ?ur ? piece ))
(at end (not ( is_in ? piece ? locationB )))
(at end (not ( is_ur_available ?ur)))
)

)
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arm is located and ?locationB is where the part is located. Using this it is easy to calculate
duration. The 1.5 times multiplier is needed to change the characteristics of the different
robotic arms by setting a single parameter. The prerequisite for the pick action is that
the robot be located where the part is reachable and remain there for the duration of the
action. Also, it should be available, so the vacuum gripper should be free. The effect is
quite self explaining, the robot arm is no longer available and it carries the part.

The place action is not much different from the pick, the location A is now the position
of the robot and the location B where the part will be placed The is_precise predicate

(: durative - action ur_place
: parameters (? ur - ur ? locationA - location ? locationB - location ? piece - piece )

: duration (= ? duration (* (+ (+
(*( -( abs_X_position ? locationB ) ( abs_X_position ? locationA )) (-( abs_X_position ?

↪→ locationB ) ( abs_X_position ? locationA )))
(*( -( abs_Y_position ? locationB ) ( abs_Y_position ? locationA )) (-( abs_Y_position ?

↪→ locationB ) ( abs_Y_position ? locationA )))
) 1) 1.5) )

: condition
(and
(at start ( ur_at ?ur ? locationA ))
(over all ( ur_at ?ur ? locationA ))
(at start ( is_ur_carry ?ur ? piece ))
(over all ( is_reachable ? locationA ? locationB ))
)

: effect
(and
(at end (not ( is_ur_carry ?ur ? piece )))
(at end ( is_in ? piece ? locationB ))
(at end ( is_ur_available ?ur))
(at end ( is_precise ? piece ? locationB ))
)

)

expresses that the part is in its accurate position. It is possible to have a robot arm that
is unable to place down accurately.

The shippingbox_move action moves two shipping boxes simultaneously on the con-
veyor belt. The action is very similar to ur_move. The (at start (<= (*(*(- (yellowbox-
position ?to) (yellowbox-position ?to2)) (- (yellowbox-position ?to2) (yellowbox-position
?to))) -1) 1)) expression is responsible for preventing the planner from changing the order
of the left and right boxes. This expression is true because yellowbox-position values always
increase from left to right and the (at start (< (yellowbox-position ?to) (yellowbox-position
?to2))) expression ensures that we can only move boxes from left to right. This limitation
is needed because otherwise the planner may change the position of the shipping boxes
relative to one another. For a similar reason, it is expressed that one shipping box is differ-
ent from the other, otherwise it would be possible to move only one box at a time. What
is also different from the ur_move action is that at the end of the action, the position of
the shipping box is also set.
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(: durative - action shippingbox_move
: parameters (? shippingbox1 - shippingbox ? shippingbox2 - shippingbox ?from -

↪→ yellowbox ?to - yellowbox ? from2 - yellowbox ?to2 - yellowbox )

: duration (= ? duration (+ (+
(*( -( abs_X_position ?from) ( abs_X_position ?to)) (-( abs_X_position ?from) (

↪→ abs_X_position ?to)))
(*( -( abs_Y_position ?from) ( abs_Y_position ?to)) (-( abs_Y_position ?from) (

↪→ abs_Y_position ?to)))
) 1) )

: condition
(and
(at start ( shippingbox_at ? shippingbox1 ?from))
(at start ( shippingbox_at ? shippingbox2 ? from2 ))
(at start (< (yellowbox - position ?to) (yellowbox - position ?to2)))
(at start (<= (*(*( - (yellowbox - position ?to) (yellowbox - position ?to2))
(- (yellowbox - position ?to2) (yellowbox - position ?to))) -1) 1))
(at start ( is_different ? shippingbox1 ? shippingbox2 ))
)

: effect
(and
(at end ( shippingbox_at ? shippingbox1 ?to))
(at end (not ( shippingbox_at ? shippingbox1 ?from)))
(at end ( is_reachable ?to ? shippingbox1 ))
(at end ( is_reachable ? shippingbox1 ?to))
(at end (not ( is_reachable ?from ? shippingbox1 )))
(at end (not ( is_reachable ? shippingbox1 ?from)))

(at end ( shippingbox_at ? shippingbox2 ?to2))
(at end (not ( shippingbox_at ? shippingbox2 ? from2 )))
(at end ( is_reachable ? shippingbox2 ?to2))
(at end ( is_reachable ?to2 ? shippingbox2 ))
(at end (not ( is_reachable ? from2 ? shippingbox2 )))
(at end (not ( is_reachable ? shippingbox2 ? from2 )))

(at end ( assign ( abs_X_position ? shippingbox1 ) (yellowbox - position ?to)))
(at end ( assign ( abs_X_position ? shippingbox2 ) (yellowbox - position ?to2)))
)

)

4.1.2 Problem file
The physical parameters, the initial state and the goal can be defined in the problem
file. For the sake of simplicity, I chose the same type of part. There are 15 disks in the
world, 3 in each yellow box. Right_nomansland and left_nomansland represent the empty
positions next to yellowbox1 and 5.
(: objects

disk1 disk2 disk3 disk4 disk5 disk6 disk7 disk8 disk9 disk10 disk11 disk12
↪→ disk13 disk14 disk15 - disk

ur - ur
right_nomansland left_nomansland yellowbox1 yellowbox2 yellowbox3

↪→ yellowbox4 yellowbox5 - yellowbox
shippingbox1 shippingbox2 - shippingbox

)

When writing the initial state, the position and properties of each component must
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be specified, since there is a closed world assumption, everything not listed here is false
by default. It is worth noting that it is important for the planner that if location B is
available from location A, then it must be stated that location B is also available from A.
(: init

( ur_at ur yellowbox3 )
( is_ur_available ur)

( is_different shippingbox1 shippingbox2 )
( shippingbox_at shippingbox1 yellowbox1 )
( shippingbox_at shippingbox2 yellowbox2 )
( is_reachable shippingbox1 yellowbox1 )
( is_reachable shippingbox2 yellowbox2 )
( is_reachable yellowbox1 shippingbox1 )
( is_reachable yellowbox2 shippingbox2 )

( is_reachable shippingbox1 shippingbox2 )
( is_reachable shippingbox2 shippingbox1 )

(= (yellowbox - position left_nomansland ) 1)
(= (yellowbox - position yellowbox1 ) 2)
(= (yellowbox - position yellowbox2 ) 3)
(= (yellowbox - position yellowbox3 ) 4)
(= (yellowbox - position yellowbox4 ) 5)
(= (yellowbox - position yellowbox5 ) 6)
(= (yellowbox - position right_nomansland ) 7)

(= ( abs_X_position left_nomansland ) 1)
(= ( abs_X_position yellowbox1 ) 2)
(= ( abs_X_position yellowbox2 ) 3)
(= ( abs_X_position yellowbox3 ) 4)
(= ( abs_X_position yellowbox4 ) 5)
(= ( abs_X_position yellowbox5 ) 6)
(= ( abs_X_position right_nomansland ) 7)
(= ( abs_X_position shippingbox1 ) 1)
(= ( abs_X_position shippingbox2 ) 2)

(= ( abs_Y_position left_nomansland ) 1)
(= ( abs_Y_position yellowbox1 ) 1)
(= ( abs_Y_position yellowbox2 ) 1)
(= ( abs_Y_position yellowbox3 ) 1)
(= ( abs_Y_position yellowbox4 ) 1)
(= ( abs_Y_position yellowbox5 ) 1)
(= ( abs_Y_position right_nomansland ) 1)
(= ( abs_Y_position shippingbox1 ) 2)
(= ( abs_Y_position shippingbox2 ) 2)

( is_reachable shippingbox1 shippingbox1 )
( is_reachable shippingbox2 shippingbox2 )
( is_reachable yellowbox1 yellowbox1 )
( is_reachable yellowbox2 yellowbox2 )
( is_reachable yellowbox3 yellowbox3 )
( is_reachable yellowbox4 yellowbox4 )
( is_reachable yellowbox5 yellowbox5 )
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( is_in disk1 yellowbox1 )
( is_in disk2 yellowbox1 )
...
( is_in disk15 yellowbox5 )

( is_precise disk1 yellowbox1 )
...
( is_precise disk15 yellowbox5 )

)

The goal is to put 6 parts in each shipping box and position them exactly where they
were intended.
(: goal

(and
( is_in disk1 shippingbox1 )
( is_in disk2 shippingbox1 )
( is_in disk3 shippingbox1 )
( is_in disk4 shippingbox1 )
( is_in disk5 shippingbox1 )
( is_in disk6 shippingbox1 )
( is_in disk7 shippingbox2 )
( is_in disk8 shippingbox2 )
( is_in disk9 shippingbox2 )
( is_in disk10 shippingbox2 )
( is_in disk11 shippingbox2 )
( is_in disk12 shippingbox2 )

( is_precise disk1 shippingbox1 )
( is_precise disk2 shippingbox1 )
( is_precise disk3 shippingbox1 )
( is_precise disk4 shippingbox1 )
( is_precise disk5 shippingbox1 )
( is_precise disk6 shippingbox1 )
( is_precise disk7 shippingbox2 )
( is_precise disk8 shippingbox2 )
( is_precise disk9 shippingbox2 )
( is_precise disk10 shippingbox2 )
( is_precise disk11 shippingbox2 )
( is_precise disk12 shippingbox2 )

)
)

It is possible to set alternate metrics for what the planner should optimize, these
settings have a huge impact on the time it takes to create a solution. By default, it
optimizes for time for durative actions. For atomic actions, the goal is to reduce the
number of actions.
(: metric minimize total -time )
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4.1.3 Solution file
It depends on the planner how the solution file is created. But the planners I tried, used
this format: action start time: (action name, parameters) [action duration] A solution
made by LPG-td looks like this:
; Version LPG -td -1.4
; Seed 33248757
; Time 0.84
; Search time 0.38
; Parsing time 0.03
; Mutex time 0.43
; MetricValue 1925.00

0.0003: ( UR_MOVE UR UR_START YELLOWBOX5 ) [2.0000]
2.0005: ( UR_PICK UR YELLOWBOX5 DISK10 ) [5.0000]
0.0003: ( SHIPPINGBOX_MOVE SHIPPINGBOX1 CONV_LOCATION_BAD YELLOWBOX5 ) [2.0000]
7.0007: ( UR_PLACE_FAST UR DISK10 YELLOWBOX5 SHIPPINGBOX1 ) [5.0000]
12.0010: ( UR_PICK UR YELLOWBOX5 DISK8 ) [5.0000]
17.0012: ( UR_PLACE_FAST UR DISK8 YELLOWBOX5 SHIPPINGBOX1 ) [5.0000]
22.0015: ( UR_PICK UR YELLOWBOX5 DISK9 ) [5.0000]
27.0018: ( UR_PLACE_FAST UR DISK9 YELLOWBOX5 SHIPPINGBOX1 ) [5.0000]
32.0020: ( UR_PICK UR YELLOWBOX5 DISK6 ) [5.0000]
37.0023: ( UR_PLACE_FAST UR DISK6 YELLOWBOX5 SHIPPINGBOX1 ) [5.0000]
42.0025: ( UR_PICK UR YELLOWBOX5 DISK7 ) [5.0000]
...

The solution file is a list of actions that lead from the initial state to the goal.

4.2 Planner
The quality of the solution depends largely on the kind of planner we use. There are a
large number of free to use planners available, but most are over 10+ years old, so it takes
a lot of effort to compile and run them.

I tried several planners e.g. OPTIC, POPF, FF, Metric-FF, SMTPlan, but the one
that best suited my planning problem and the PDDL language expressions I intended to
use was LPG-td planner.

I chose the planner based on the fact that it should support at least the PDDL 2.1
language expressions, its output should suit to what ROSPlan accepts, and produce good
quality solution files within the foreseeable future.

4.2.1 LPG-td
The LPG-td planner was chosen because it met my expectations in all aspects and in
addition it is available as an executable.

LPG[36] (Local search for Planning Graphs) is a planner based on local search and
planning graphs that handles PDDL 2.1 domains involving numerical quantities and du-
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rations. The system can solve both plan generation and plan adaptation problems. The
basic search scheme of LPG was inspired by Walksat, an efficient procedure to solve SAT-
problems. The search space of LPG consists of "action graphs", particular subgraphs of the
planning graph representing partial plans. The search steps are certain graph modifications
transforming an action graph into another one. LPG exploits a compact representation of
the planning graph to define the search neighborhood and to evaluate its elements using
a parametrized function, where the parameters weight different types of inconsistencies
in the current partial plan, and are dynamically evaluated during search using discrete
Lagrange multipliers.

The evaluation function uses some heuristics to estimate the "search cost" and the
"execution cost" of achieving a (possibly numeric) precondition. Action durations and
numerical quantities (e.g., fuel consumption) are represented in the actions graphs, and
are modelled in the evaluation function. In temporal domains, actions are ordered using
a "precedence graph" that is maintained during search, and that takes into account the
mutex relations of the planning graph.

The system can produce good quality plans in terms of one or more criteria. This
is achieved by an anytime process producing a sequence of plans, each of which is an
improvement of the previous ones in terms of its quality. LPG is integrated with a best-first
algorithm similar to the one used by FF. The system can automatically switch to best-first
search after a certain number of search steps and "restarts" have been performed. Finally,
LPG can be used as a preprocessor to produce a quasi-solution that is then repaired by
ADJ, a plan-analysis technique for fast plan-adaptation.

LPG-td[37] is an extension of the LPG planner that can handle most of the features of
PDDL 2.2, the standard planning language of the 4th International Planning Competition
(IPC-4).In particular, LPG-td is an incremental fully-automated planner generating plans
for problems in domains involving:

• STRIPS actions

• durative actions

• actions and goals involving numerical expressions

• operators with universally quantified effects

• operators with existentially quantified preconditions

• operators with disjunctive preconditions

• operators with implicative preconditions

• timed initial literals (deterministic unconditional exogenous events)
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• predicates derived by domain axioms

• maximization or minimization of complex plan metrics

There are three ways to start the planner[36]:

• LPG-td.speed finds as quickly as possible a plan and then stops

• LPG-td.quality finds a plan and then spends a certain amount of CPU-time (auto-
matically decided) trying to improve it

• LPG-td.bestquality incrementally finds the best plan that the planner can derive
within an user-specified CPU-time limit

4.3 Changing the simulated environment
In this section, I summarize the changes I made to the ARIAC environment so that the
world described in PDDL and the simulated world can be matched.

4.3.1 Changing the behaviour of the conveyor belt
In the original environment, the conveyor belt could only be moved in one direction. This
greatly limits the number of environmental modifiers. Although, due to the properties of
the planner, the planner is still planning so that the conveyor belt can only move in one
direction, at least in the future it is possible to change this.

In order to change the direction of the conveyor belt, the ConveyorBeltPlugin had to
be modified to accept negative values as a command, and to move the belt in the opposite
direction to negative values.

Once the belt has travelled a certain distance, a new shipping box will teleport to the
end of the belt. This is not a problem if the belt can only move in one direction, because
then the boxes can’t get jammed up, but I would have had a problem with the newly
produced shipping boxes. To avoid this, a GEAR plugin had to be modified to prevent
spawning new boxes.

4.3.2 Modification of the box model file
The distance between the centers of two yellow boxes is 0.81 centimetres. The goal is to
have the centers of the two shipping boxes at such a distance on the assembly line, but
this is not possible without modification. By removing the cover of the boxes, they can be
placed at a sufficient distance from each other. This requires modifying the model files for
the boxes.
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4.3.3 Installation of sensors
In order to know where the shipping boxes are on the conveyor belt, it is necessary to
install sensors. Each logical position (which in the solution file are yellowbox1-5, right /
left_nomansland) has a physical counterpart, so to know that the boxes have reached the
right place I placed break beams next to the belt.

Figure 4.1: The figure shows a completed order in the shipping boxes. Next
to the conveyor belt are the break beam sensors with their beams
displayed.

4.4 Modifying and using ROSPlan
The ROSPlan package provides the connection between ROS and AI planning. The 3.4
figure shows that the developer only needs to do low level actions because the other
overheads are handled by ROSPLan. Unfortunately, this was not the case, because I had
some code from my previous projects that I wanted to keep and it was written in Python
and ROSPlan is in C++. Therefore, some interfaces had to be created, which creates a
connection between python and C++.

Although ROSPlan supports LPG-td planner with an interface, this interface when
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I started the development was not perfect and did not work. The problem was that the
planner creates the solution with all uppercase characters and the interface only accepts
lowercase characters. The other problem was that the planner does not list the execution
time of each action in chronological order when creating the solution file. Therefore, each
character had to be converted to lowercase letters and the actions had to be chronologically
ordered.

I created two interfaces, one for the UR robot arm and one for moving the shipping
boxes. These of course does not obviate the need for ROSPlan action interfaces, which
are responsible for updating the knowledge base. The plan dispatch node publishes the
action to be executed on the action_dispatch topic. The Python and action interfaces are
subscribed to this topic. If the interfaces notice that the published message is addressed
to them, they will execute their task in parallel. When the Python interface indicates to
the action interface that the action has been completed, the action interface will update
the knowledge base with the effects. This system is shown in the 4.2 figure.

4.4.1 Creating low-level actions
When I started creating low-level actions, I did not have to start from scratch, because
I already had code for controlling the UR robot arm in Cartesian space from previous
projects. The parts are always in the same pose, so I linked the name and location of the
parts, this way there is no need to use a camera to locate the parts.

The robot arm picks up the parts with a simulated pneumatic gripper. This can be
remotely controlled by a ROS service. An object will be attached to the gripper if they
are making contact. The gripper regularly publishes its status. The published message
contains whether the suction is enabled or disabled or whether there is an object attached
to the gripper.

The order served by the robot arm contains the number of parts and the pose to be
placed in the shipping box. This order is published on a ROS topic at the start of the
simulation. The position of the box is required for the exact positioning of all items. This
would require additional sensors. For the sake of simplicity, I have not chosen this solution.
Gazebo has a topic that can be used to change the pose of components in the environment.
By selecting the reference frame for the right shipping box, the part can be teleported to
its final position without the need for additional sensors for positioning. For the sake of
realism, the robot arm turns to place the part in the box, but only to drop the part into
the box.
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Figure 4.2: The figure shows the connection between the interfaces. The red
arrows indicate the service responsible for updating the knowledge
base. The blue arrows indicate the topic on which the actions to be
executed are published. Purple arrows indicate the topic through
which the python interface indicates to the action interface that
the action is complete. The brown arrows indicate the action feed-
back to the dispatcher.
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Chapter 5

Results and evaluation

5.1 Issues with planning
When creating PDDL files that describe the physical world, it does matter how much
the planner is limited. If the state space is too large, it will take a long time to get a
good quality solution. If the metrics on which we want to get the optimal plan are too
complicated, the planning time will increase. Many attempts are needed to create files
that model the environment well and produce optimal or near-optimal solutions.

The issues with classical planning are that the environment is treated as static and fully
observable. In my work, it is no problem that the environment is treated as static, since it
is a closed robot cell, thus something changes only if the agent intervenes. However in an
application where the robot collaborates with humans, assuming that the environment is
static is not correct. Not treating the environment as fully observable is a long-researched
problem for AI planning researchers. [38] A good solution to this problem is that if some-
thing proves not to be what we had previously assumed, we will make a new plan using
the new information. In order not to drastically increase the time spent on solution search
and optimization, it is faster to start from the previous solution and repairing it, than
replanning from scratch. [39] In my work, replan occurs when a low level action fails to
execute. In this case, a new problem file is generated from the current state of the world
and a new solution is created using it.

With the LPG-td planner, a lot depends on how good the quality of the first solution
is, because it uses it to create a better optimized solution. It uses a random seed to create
the first solution, so each run produces a different solution. That is why, although it strives
to find the optimum, different runs result in different scores. In order to get the number of
iterations to find a near-optimal solution, I created a script that calls the planner 10 times
to optimize the first solution 10 times during each run. I set a time limit of 10 minutes for
each run.
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Figure 5.1: The figure shows the results of the tests. The results of each run
converge towards the optimum.

In the 5.1 figure I summarized the results of the tests. A total of 80 measurements
were made because the planner could not produce 10 measurements in each iteration in
10 minutes. It is clear from the diagram that the quality of the first solution is poor for
each run, but the 4-5 iterations are very close to the optimum. The diagram also shows
that each run eventually converges to nearly the same value.

The three outliers at the end of the run 2, 3, 4 are because the planner had not been
able to optimize the existing solution for a long time, thus it started with a new solution
that performed worse, so it returned to the previous solution.

5.2 Visualization of the plan
In order to keep track of what are the active actions during the simulation and to visually
see the solution, a script generates an image from the solution file. The 5.2 figure shows
a solution visually depicted. Each arrow is a pick or place action. There are places on
the vertical axis and time on the horizontal axis. The red line indicates the movement of
the UR robot arm. The gray and black lines indicate the movement of the shipping box.
During the simulation, each time a new action is active, the image is regenerated, showing
the currently active action. A textual solution file is more difficult for people to process,
but it is much easier to notice in an image if the planner is not generating a plan like we
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Figure 5.2: The figure shows a solution file visually.

thought.
The 5.2 figure in yellow shows how many actions are performed in parallel. In this envi-

ronment, only one robot does all the tasks, but the goal is to complement the environment
with more robots that cooperate.

When the graph is regenerated, the horizontal axis shows the simulation time, not the
time it was in the solution file. This is an easy way to evaluate the difference between the
PDDL model and reality. With the values specified in my problem file, the simulation time
to take an action and the time that the planner assumes to execute an action are in the
same order of magnitude. For example, the time required to add parts is not significantly
different, so the values obtained in the simulation can be put back into the planning model.
This also applies to the other actions. Where it is not possible to improve the relationship
between the simulated and modelled values by correctly selecting the X, Y distances, it
can be improved by correctly selecting the final multiplication factor.

5.3 Advantages of the simulation
The biggest advantage of using simulation is that it is not necessary to build a robot cell
in order to obtain data about its efficiency or other characteristics. During the ARIAC,
teams are also scored based on built-in metrics defined in the ARIAC scoring. Using these
metrics, we can also get useful information about the goodness of a particular solution.

The ARIAC Key Performance Indicators (KPIs) are received when the completed order
is shipped. The quality of an execution is described by the following factors:

• Total game score: the sum of each order’s Completion Score.

• Total process time: the time it takes to send out the last order

• Product travel time: the time spent by the parts attached to the vacuum gripper

Shipment Completion Score [40] is the sum of:

• Product presence: One point for each correct product in the shipping box.

39



• All products: Points totaling the number of products, if and only if all products are
in the shipping box and no additional unwanted/faulty products are in the shipping
box.

• Product pose: One point for each product that is in the correct pose (location and
orientation) in the shipping box. The location must be within 3cm of the target and
the orientation must be within 0.1 radians.

For example, a solution received the following score:
Score breakdown :
<game_score >
Total game score : [36]
Total process time: [176.509]
Product travel time: [61.515]
<order_score order_0 >
Total order score : [18]
Time taken : [157.004]
Complete : [true]
<shipment_score order_0_shipment_0 >
Completion score : [18]
Complete : [true]
Submitted : [true]
Product presence score : [6]
All products bonus : [6]
Product pose score : [6]
</ shipment_score >

</ order_score >

<order_score order_1 >
Total order score : [18]
Time taken : [173.507]
Complete : [true]
<shipment_score order_1_shipment_0 >
Completion score : [18]
Complete : [true]
Submitted : [true]
Product presence score : [6]
All products bonus : [6]
Product pose score : [6]
</ shipment_score >

</ order_score >

</ game_score >

Total process time is a great indicator of how good the quality of a solution is. We can
also compare two solutions based on how different the part travel time is. In a solution
where the robot arm moves parts too much from one container to another, much can be
accelerated. It is very difficult to give mathematical formulas for estimating robot cell
service times when there are unforeseen events in the system. But based on the data taken
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from the simulated robot cell, we can give a good estimate. With AI planning there are
many solutions that can be simulated and compared with results to evaluate the properties
of a robot cell, much quicker than describing them with mathematical models. Another
advantage is that mathematical models may not remain valid in case of changes, but
PDDL files can be modified quickly.

5.4 Executing the solution
The 5.3 figure shows the robot arm fulfilling two orders. The order parameters are received
via a ROS topic, which includes the type of parts and where to place them in the shipping
box. The robot does not follow a pre-programmed choreography, so it can easily adapt
to changes. ROSPlan uses a structure based on interfaces, so it is easy to replace the
planner or other components with another one if it performs better. The robot arm has
three actions and the conveyor belt can be controlled with a single command. For the
drone that delivers the finished orders does not need to write an action, because it does
not change the state of the environment, just to get the ARIAC scores.

The use of artificial intelligence has never occurred in the history of ARIAC so far. How-
ever, the need for an entity that plans to fulfil orders has always been present. Nonetheless,
modifications are needed to be able to be used in the real competition. For example, the
actions on the robot arm would have to be completed, because the placement of parts with
teleportation is not appropriate. The simulation revealed that this is a valid approach to
a task that is present in the industry and provides a workable solution.
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Figure 5.3: The pictures show important moments of a solution execution,
from empty shipping boxes to completed orders
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Chapter 6

Conclusion and further work

This work presents a possible approach for making industrial robotic cells more adaptable.
For this, I used AI planning to solve a common task in the industry. AI planning is a long-
established branch of research in artificial intelligence. AI planning is not used to solve
real-world tasks because it requires assumptions about the world that are rarely found in
reality. To overcome these preconditions, I presented a possible approach in this paper.
My goal was to make this approach applicable to other types of tasks.

For the simulation I chose the 2019 ARIAC environment. The task can be summarized
as a robot arm fulfils orders by placing the desired parts in a shipping box on a conveyor
belt. For the robot arm, AI provides a plan to complete the order. When creating a plan,
the planner takes into account environmental variables and optimizes the solution based
on a predefined metric. The connection between the simulated environment and the AI is
provided by the ROSPlan framework. The information obtained from the simulation can
be used to optimize a robot cell and to estimate the average serving time for a robot cell.

As a next step, I would like to perform tests to check the improvement of the ARIAC
KPIs with multiple robotic arms. With different types of robotic arms, it may be interesting
to consider other metrics such as power consumption or radio spectrum utilization for
remote control.

It might be worthwhile to try AI planning for another industrial problem to see how
it could be improved. Such problems, may be the use of service robots or the control of
robots where goods have to be transported from one workstation to another.
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