
 

Budapesti Műszaki és Gazdaságtudományi Egyetem 

Villamosmérnöki és Informatikai Kar 

Automatizálási és Alkalmazott Informatikai Tanszék 

 

 

 

 

 

 

 

Laki Dániel 

SESSION-BASED IMPLICIT AND 

EXPLICIT RECOMMENDATION 
   

 

DEPARTMENTAL CONSULTANT 

Simon Gábor 

EXTERNAL CONSULTANT 

Daróczy Bálint 

BUDAPEST, 2016 



 

Table of contents 

Összefoglaló ..................................................................................................................... 4 

Abstract ............................................................................................................................ 5 

1 Introduction .................................................................................................................. 6 

2 Models ........................................................................................................................... 8 

2.1 Matrix Factorization with Stochastic Gradient Descent ......................................... 8 

2.1.1 Preprocessing ................................................................................................... 8 

2.1.2 Matrix factorization ......................................................................................... 8 

2.1.3 Initialization ..................................................................................................... 9 

2.1.4 Choosing the next value ................................................................................. 10 

2.1.5 Measurements ................................................................................................ 10 

2.1.6 Stochastic Gradient Descent .......................................................................... 12 

2.2 Matrix Factorization with Alternating Least Squares ........................................... 13 

2.2.1 Alternating Least Squares .............................................................................. 14 

2.3 k-Nearest-Neighbors ............................................................................................. 15 

2.3.1 Item distances ................................................................................................ 16 

2.3.2 Prediction ....................................................................................................... 16 

3 Updating the models .................................................................................................. 18 

3.1 Update Proposer Rules .......................................................................................... 18 

3.1.1 Frequency-based rules ................................................................................... 18 

3.1.2 Measurement-based rules .............................................................................. 19 

3.1.3 Success-based rule ......................................................................................... 19 

3.1.4 Rules about new items ................................................................................... 20 

4 Architecture ................................................................................................................ 21 

4.1 Recommender ....................................................................................................... 21 

4.1.1 Framework ..................................................................................................... 21 

4.2 System-wide architecture ...................................................................................... 24 

4.2.1 Client .............................................................................................................. 24 

4.2.2 Java application.............................................................................................. 24 

5 The simulation ............................................................................................................ 26 

6 Combined model ........................................................................................................ 29 

6.1 RMSE .................................................................................................................... 29 



 

6.2 Recall .................................................................................................................... 30 

6.3 DCG ...................................................................................................................... 32 

7 Scheduling updates .................................................................................................... 33 

8 System-wide performance considerations ............................................................... 37 

8.1 Processing messages ............................................................................................. 37 

8.2 Giving recommendations ...................................................................................... 38 

9 Conclusions ................................................................................................................. 39 

References ...................................................................................................................... 40 

Appendix ........................................................................................................................ 41 

Models ........................................................................................................................ 41 

Update Proposer Module ............................................................................................ 42 

Interfaces ..................................................................................................................... 43 

Message queue message format .............................................................................. 43 

Database rating storage format ............................................................................... 43 

Database recommendation storage format .............................................................. 43 

Movies ........................................................................................................................ 44 

Users ........................................................................................................................... 45 

Ratings ........................................................................................................................ 47 



Összefoglaló 

Az ajánlórendszerek mint kutatási terület több új iránya is az elmúlt években 

keletkezett. Explicit ajánlóknál [1][2] a legelterjedtebb mérték mai napig az RMSE (Root 

Mean Squared Error), melynek legnagyobb hibája, hogy nem veszi figyelembe az elemek 

sorrendjét. Utóbbi a valós felhasználás során rendkívül fontos, hiszen a gyakorlatban a 

felhasználók számára csak egy rövid, de reményeink szerint releváns lista megmutatására 

van csak lehetőség. 

A probléma felismerése után nem csak új algoritmusok keletkeztek [3], hanem 

felmerült többek között a rangsor alapú kiértékelés, mint pl. az nDCG (normalized 

Discounted Cumulative Gain) illetve kontextuális elemek felhasználása [4][5]. A 

hagyományos CF (Collaborative Filtering) ajánlórendszerek esetén feltételezés, hogy a 

felhasználó már értékelt vagy legalább megtekintett több elemet a rendszerben. Eme 

feltételezés nem minden esetben igaz. Gyakran előfordul, hogy egy honlap látogatói 

„véletlen sétákat” alkotva (session), bejelentkezés nélkül keresik a megfelelő elemet 

[6][7]. Dolgozatomban összehasonlítok több ismert ajánlórendszert és bemutatok egy, 

több modell kombinációjának segítségével, session-ök esetében is alkalmazható modellt. 
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Abstract 

Many new areas of research rose in the past few years in the field of 

recommendation systems. Still to this day, the most widespread measure for explicit 

recommenders [1][2] is RMSE (Root Mean Squared Error). Its biggest mistake is 

disregarding the order of elements, which has a great importance in real usage, since in 

practice, it is only possible the show the users a short, but hopefully relevant list. 

After realizing this problem, not only new algorithms were created [3], but 

ranking-based evaluation (e.g.: nDCG (normalized Discounted Cumulative Gain)), and 

the usage of contextual elements were also considered [4][5]. In the case of traditional 

CF (Collaborative Filtering) recommendation systems, it is assumed that the user already 

rated, or at least viewed multiple elements in the system. This assumption is not always 

true. As it is often the case, the visitors of a website may be looking for certain elements 

without logging in, going through “random paths” (session) [6][7]. In my essay, I 

compare multiple well-known recommender systems, and introduce a model that is a 

combination of multiple models, and can be used in case of sessions. 
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1 Introduction 

Nowadays, personalized experience is everywhere. Websites try to show content 

to the visitors, that might be most relevant to their interests. Content providers constantly 

try to show new content to the users, that they might be most interested in. Online stores 

try to recommend items to returning visitors based on their history. These are all done 

using different recommendation systems. The quality of the results these systems can 

give, is critical. So much, that in 2009, Netflix offered a prize of $1,000,000 for the team, 

that can make the biggest improvement on their recommendation algorithm [8]. 

These systems have different qualities, and there isn’t necessarily a “best” one. 

Their performance can be evaluated from a lot of aspects, and in different situations, 

different recommender systems might be better. It is even possible, that some 

recommenders fit the behavior of individual users better. 

This last assumption serves as a basis for this essay. The goal is to create a 

combined system, that can monitor, and evaluate the performance of other recommender 

systems of different qualities. The combined system doesn’t even have to know how the 

other models work, the only important information about them is the prediction, and 

recommendation they give. Ideally, based on these, the combined system should be able 

to tell, that at any given time, for any given user, which of the known recommender 

systems will give the best results for the user. 

In the first part of the essay, 3 well-known recommendation models will be 

introduced. They have different qualities; these will be inspected in the essay. Some 

methods of evaluating the performance of these models will also be introduced. After 

that, the essay will show strategies for updating the models. 

The combined system is developed for a larger system used in the industry, that 

relies heavily on recommendations. Parts of this system, that is related to the 

recommender are also introduced here. 

Finally, the essay tries to answer important questions in 3 areas: 

1. Can such a combined system work? Can it give the users better 

recommendations, then what they would get from the base models? 
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2. How does updating affect these models? What is a good strategy for running 

updates on the models? 

3. How does such system perform under heavy load? Is it even possible, to 

effectively run such a system? 
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2 Models 

This section contains a description of three well-known models that are often used 

for recommender systems. The first two models are Matrix Factorization models. The 

first one uses Stochastic Gradient Descent, while the second one uses Alternating Least 

Squares. The third model is k-Nearest-Neighbors. All model can have different 

parameters, the ones that were used here can be found in the appendix.  

2.1 Matrix Factorization with Stochastic Gradient Descent 

The following section introduces the first model, Matrix Factorization with 

Stochastic Gradient Descent (or SGD). The general idea is to construct a matrix, that 

contains all the known values (in this case, ratings) for user-item pairs. The goal is to 

predict the unknown values based on this matrix. 

2.1.1 Preprocessing 

Theoretically, the matrix constructed in the first step could already be used to start 

the factorization. However, results can be improved a lot by using some additional 

techniques beforehand.  

Perhaps one of the most important of these techniques is normalization, or 

centralization. Some users like to give generally higher ratings to everything. This means 

that even though two users’ ratings can be entirely different, their relative ratings might 

be essentially the same. Because of that, it is recommended to subtract the average of a 

user’s ratings from his ratings, and perform the factorization on the resulting matrix. The 

same can be done with items too on the resulting matrix. Using centralization alone can 

already give a somewhat decent prediction to the unknown elements. 

2.1.2 Matrix factorization 

The idea behind matrix factorization is the following: instead of working with a 

matrix with a very large number of elements, it can be easier to work with multiple smaller 

matrices that can produce the original matrix. While it is also possible to drastically 

reduce memory-usage this way, this is not the only reason it is popular in recommender 

systems. 
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The matrix containing the known user-item pairs is extremely sparse. 

Realistically, a user only ever sees a very small subset of all the items that the model 

contains. Because of this, the smaller matrices can only be constructed based on those 

few items that are known. The assumption is that when these matrices are produced, the 

result will not only be close to the already known user-item pair, but will also give a good 

prediction for the values that are not known. In this case, the matrix containing the known 

values (M) will be decomposed into two factor matrices, U and V. These will produce the 

prediction matrix (P). 

The algorithm looks like this: 

1. Initialize U and V 

2. Repeat n times: 

a. Pick a known value from M (i,j) 

b. Improve U and V in a way, that the difference between P[i,j] and M[i,j] 

decreases. 

Each of these steps can have different approaches, the following sections contain 

a description of the methods used in this model. 

2.1.3 Initialization 

There are two main factors to consider during the initialization of U and V. The 

initial values in P should be relatively close to the values in M. P containing the average 

of the values in M in every field might look like a good choice, except the initial values 

in P should also be somewhat random – Measurements show that introducing randomness 

to the initial matrix can lead to far better results. This leads to the following algorithm: 

Let a be the “central value”. This is the value that disregards any random factor. 

If all the values in U and V are set as a, then the resulting P will contain the average of 

the values in M as every element. Furthermore, let c be the maximum distance from a. 

This means that the values in U and V will be chosen from the range [(a - c); (a + c)]. 

The first step is calculating a. Let d be the common dimension of U and V. Then, 

each element of P is: 

𝑎𝑣𝑔(𝑀)  = 𝑎2 ∗ 𝑑 
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Where avg(M) is the average of the known elements of M. From this, a can be 

calculated: 

𝑎 = 𝑠𝑔𝑛 (
𝑎𝑣𝑔(𝑀)

𝑑
) ∗ √|

𝑎𝑣𝑔(𝑀)

𝑑
| 

After that, filling up U and V is done the following way: just let r be a random 

number in the range [(a - c); (a + c)]. Each element of U and V shall be a new r. 

2.1.4 Choosing the next value 

The next issue is the order, in which the known elements of M should be iterated. 

As with the previous step, the difference is easily measurable between a linear iteration, 

and a random permutation. Furthermore, it is also recommended to visit the known 

elements multiple times. So, to determine the iteration order, first a list should be created 

of all the known elements of M. Shuffling this list gives an iteration order. Iteration 

through the list can be repeated as many times as desired. 

2.1.5 Measurements 

The real challenge lies in determining the new values of U and V. The aim is of 

course to improve the resulting matrix (P). After the improvement of U and V, it should 

contain better values, than before. This raises the question: what does improve and better 

mean? How do we measure how good a P matrix is? If the means to determine this value 

is not known, there is no sense in talking about improving it. Fortunately, multiple 

measurements like this exist. 

2.1.5.1 RMSE 

RMSE, or Root-Mean-Square Error is a measurement commonly used in 

recommendation systems. For example, the goal of the 1,000,000$ Netflix challenge was 

to beat their algorithm’s (CineMatch) RMSE by 10%. 

RMSE gives information about how far the known elements of M are from the 

same elements in the prediction matrix (P). The formula is the following: 

𝑅𝑀𝑆𝐸 = √ 
∑ (𝑀[𝑖, 𝑗] − 𝑃[𝑖, 𝑗])2

(𝑖,𝑗)∈𝑀

|𝑀|
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RMSE is far from ideal. It completely disregards the order of elements, which is 

critical in recommendation systems. However, it can serve as a very good basis for 

improving the prediction matrix, and will be used in the algorithm. As for the order, there 

is a different measurement for that. 

2.1.5.2 nDCG 

The goal would be to recommend items to the user, which he or she might be the 

most interested in. It is safe to assume that these are the items that would get the highest 

ratings from the user in question. Giving the user the top 10 recommended items this way 

is easy: just sort the list of items of the user, based on each item’s predicted rating value, 

then present the user with the first 10 items in that list. But how good is this list? nDCG 

can give a measurement to that. 

nDCG, or normalized Discounted Cumulative Gain measures the ranking quality 

of an algorithm. The basis for ranking is the relevance of an item. In this case, this 

relevance is the rating value belonging to each item. To understand how this works, break 

it down to smaller parts. 

Cumulative Gain is the sum of the relevance of the items: 

𝐶𝐺𝑝 = ∑𝑟𝑒𝑙𝑖

𝑝

𝑖=1

 

Where p is the number of items in consideration (e.g. when recommending the 

best 10 items: p = 10). This isn’t a very good measure, since it doesn’t take into 

consideration the actual position of each item on the list. 

The idea behind Discounted Cumulative Gain is that highly relevant items 

should appear earlier on the list than less relevant, or irrelevant items. Because of that, 

the considered relevance of an item appearing lower on the list should be penalized. As 

shown by Wang et al. [9], penalizing logarithmically is a good choice here: 

𝐷𝐶𝐺𝑝 = 𝑟𝑒𝑙1 + ∑
𝑟𝑒𝑙𝑖

𝑙𝑜𝑔2(𝑖)

𝑝

𝑖=2

 

Calculating DCG is the most difficult part, but to make this measurement even 

more useful, one more step is remaining: how does the ranking’s DCG compare to the 

ideal ranking’s DCG? This is what normalized Discounted Cumulative Gain gives the 
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answer to. Note, that for calculating nDCG (just like with RMSE), only the known values 

should be considered. An ideal ranking should be created for this calculation. It is the 

ranking of items based on their known rating values: in case the algorithm is perfect, the 

predicted ranking should be the same as the ideal ranking. 

This gives the following formula: 

𝑛𝐷𝐶𝐺𝑝 =
𝐷𝐶𝐺𝑝

𝐼𝐷𝐶𝐺𝑝
 

Where IDCG is the DCG belonging to the ideal ranking. 

2.1.5.3 Recall 

Recall answers the question “Out of the items the user is interested in, how many 

did we manage to recommend?”. 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠
 

The recommended items are determined by different “cuts”, depending on how 

many elements the recommender returns. For a top n recommender, an item is 

recommended, if it is ranked in the first n items for the user. Recall can be an extremely 

useful measurement, since the recommender system returns only a small set of items for 

each user. The quality of this set is extremely important. 

2.1.6 Stochastic Gradient Descent 

Finally, everything is ready for the actual work to begin. Just for a quick recap. 

At this point M is normalized, U and V are initialized, and the order of the iteration is 

decided. The only missing piece is the actual change that should happen when each 

element of the matrix is visited. Again, the goal is to improve the prediction matrix with 

the change along a certain measurement. 

The values in U and V should be changed in a way that the inspected prediction 

value comes closer to the known value. Notice, that for P[i,j] this means changing only 

the values in row i of U, and column j of V, as P[i,j] equals the product of these two. 

Improvement will happen using a technique called Stochastic Gradient Descent, or SGD. 

SGD can tell how should the values in U and V change to reduce error. In general, it’s 

formula for SGD is: 
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𝑤𝑡+1 = 𝑤𝑡 − 𝑙 ∗ ∇𝑤𝑄(𝑤𝑡) 

Where l is the learning rate, and Q(w) is the “loss function”. In this case, this 

translates to a less complex formula. The measurement the algorithm is meant to 

minimalize is RMSE, and thus the loss function is the error of each prediction: 

𝑒𝑟𝑟 = (𝑀𝑖𝑗 − 𝑃𝑖𝑗)
2
 

Remember, that 

𝑃𝑖𝑗 = ∑𝑈𝑖𝑘𝑉𝑘𝑗

𝑘

 

Next, the gradients should be determined for the related row of U and the related 

column of V: 

𝜕𝑒𝑟𝑟

𝜕𝑈𝑖𝑘
= −2(𝑀𝑖𝑗 − 𝑃𝑖𝑗)𝑉𝑗𝑘

𝑇  

𝜕𝑒𝑟𝑟

𝜕𝑉𝑘𝑗
= −2(𝑀𝑖𝑗 − 𝑃𝑖𝑗)𝑈𝑘𝑖

𝑇  

This is where the name Gradient Descent comes from. RMSE is minimalized, 

using a gradient-based method: it is derived along the parameters, which results in the 

gradients. It is Stochastic, because random samples are taken from the training dataset. 

The result of all this is a formula for changing each of the relevant values of U and V 

during each round of improvement: 

𝑈𝑖𝑘 = 𝑈𝑖𝑘 + 2𝑙(𝑀𝑖𝑗 − 𝑃𝑖𝑗)𝑉𝑗𝑘
𝑇  

𝑉𝑘𝑗 = 𝑉𝑘𝑗 + 2𝑙(𝑀𝑖𝑗 − 𝑃𝑖𝑗)𝑈𝑘𝑖
𝑇  

Note, that while most of these values are given, l can be of any value. Picking a 

good learning rate is of key importance in the algorithm. A badly chosen learning rate can 

even make the prediction worse. 

2.2 Matrix Factorization with Alternating Least Squares 

Matrix factorization with Alternating Least Squares (or ALS) isn’t very different 

from the previous model. The process itself is the same, and most of the steps are also 

identical. An initial matrix is filled with the known values, the matrix is normalized, U 
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and V are initialized, the values in them are improved, and then the normalization is 

restored. The only difference is the algorithm used for improving U and V, which is ALS.  

2.2.1 Alternating Least Squares 

The basic idea behind Alternating Least Squares is the following. Instead of 

making improvements one by one based on the known values, entire rows or columns are 

improved at the same time. Only one factor matrix is improved at a time – when U is 

improved, V is locked, and vice versa – this is why it is called Alternating. After choosing 

a row or column, the Least Squares problem must be solved. 

There are two cases: either U or V is locked. In this more detailed description, a 

row (U1) is improved, meaning V is locked. Once again, the measurement to be improved 

is RMSE. With known n items in the first row of the matrix, it is: 

𝑅𝑀𝑆𝐸 =  √
(𝑀11 − 𝑈1𝑉1)2 + ⋯+ (𝑀1𝑛 − 𝑈1𝑉𝑛)2

𝑛
 

RMSE is to be minimalized, meaning the solution is where the derivate of the 

above function is 0: 

−2(𝑀11 − 𝑈1𝑉1)𝑉1 − ⋯− 2(𝑀1𝑛 − 𝑈1𝑉𝑛)𝑉𝑛 = 0 

(𝑀11 − 𝑈1𝑉1)𝑉1 + ⋯+ (𝑀1𝑛 − 𝑈1𝑉𝑛)𝑉𝑛 = 0 

After some rearrangements: 

𝑀11𝑉1 − (𝑈1𝑉1)𝑉1 + ⋯+ 𝑀1𝑛𝑉𝑛 − (𝑈1𝑉𝑛)𝑉𝑛 = 0 

(𝑈1𝑉1)𝑉1 + ⋯+ (𝑈1𝑉𝑛)𝑉𝑛 = 𝑀11𝑉1 + ⋯+ 𝑀1𝑛𝑉𝑛 

Take U and V into elements, and the following system of equations is the result: 

𝑉11(𝑈11𝑉11 + ⋯+ 𝑈1𝑘𝑉1𝑘) + ⋯+ 𝑉𝑛1(𝑈11𝑉𝑛1 + ⋯+ 𝑈1𝑘𝑉𝑛𝑘) =  𝑀11𝑉11 + ⋯+ 𝑀1𝑛𝑉𝑛1

⋮
𝑉1𝑘(𝑈11𝑉11 + ⋯+ 𝑈1𝑘𝑉1𝑘) + ⋯+ 𝑉𝑛𝑘(𝑈11𝑉𝑛1 + ⋯+ 𝑈1𝑘𝑉𝑛𝑘) =  𝑀11𝑉1𝑘 + ⋯+ 𝑀1𝑛𝑉𝑛𝑘

 

Where k is the common dimension of U and V. 

After rearranging it: 

𝑈11(𝑉11
2 + ⋯+ 𝑉𝑛1

2) + ⋯+ 𝑈1𝑘(𝑉11𝑉1𝑘 + ⋯+ 𝑉𝑛1𝑉𝑛𝑘) =  𝑀11𝑉11 + ⋯+ 𝑀1𝑛𝑉𝑛1

⋮
𝑈11(𝑉11𝑉1𝑘 + ⋯+ 𝑉𝑛1𝑉𝑛𝑘) + ⋯+ 𝑈1𝑘(𝑉1𝑘

2 + ⋯+ 𝑉𝑛𝑘
2) =  𝑀11𝑉1𝑘 + ⋯+ 𝑀1𝑛𝑉𝑛𝑘
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Putting it into matrices: 

[
 
 
 
 

(𝑉11
2 + ⋯+ 𝑉𝑛1

2) (𝑉11𝑉12 + ⋯+ 𝑉𝑛1𝑉𝑛2)

(𝑉11𝑉12 + ⋯+ 𝑉𝑛1𝑉𝑛2) (𝑉12
2 + ⋯+ 𝑉𝑛2

2)
⋯

(𝑉11𝑉1𝑘 + ⋯+ 𝑉𝑛1𝑉𝑛𝑘)

(𝑉12𝑉1𝑘 + ⋯+ 𝑉𝑛2𝑉𝑛𝑘)

⋮ ⋱ ⋮
(𝑉11𝑉1𝑘 + ⋯+ 𝑉𝑛1𝑉𝑛𝑘) (𝑉12𝑉1𝑘 + ⋯+ 𝑉𝑛2𝑉𝑛𝑘) ⋯ (𝑉1𝑘

2 + ⋯+ 𝑉𝑛𝑘
2) ]

 
 
 
 

 

[

𝑀11𝑉11 + ⋯+ 𝑀1𝑛𝑉𝑛1

𝑀11𝑉12 + ⋯+ 𝑀1𝑛𝑉𝑛2

⋮
𝑀11𝑉1𝑘 + ⋯+ 𝑀1𝑛𝑉𝑛𝑘

] 

Or, in a more compact format: 

[
 
 
 
 
 
 
 
 
 ∑𝑉𝑙1

2

𝑛

𝑙=1

∑𝑉𝑙1𝑉𝑙2

𝑛

𝑙=1

∑ 𝑉𝑙1𝑉𝑙2

𝑛

𝑙=1

∑𝑉𝑙2
2

𝑛

𝑙=1

⋯

∑𝑉𝑙1𝑉𝑙𝑘

𝑛

𝑙=1

∑𝑉𝑙2𝑉𝑙𝑘

𝑛

𝑙=1

⋮ ⋱ ⋮

∑𝑉𝑙1𝑉𝑙𝑘

𝑛

𝑙=1

∑𝑉𝑙2𝑉𝑙𝑘

𝑛

𝑙=1

⋯ ∑𝑉𝑙𝑘
2

𝑛

𝑙=1 ]
 
 
 
 
 
 
 
 
 

   

[
 
 
 
 
 
 
 
 
 ∑𝑀1𝑙𝑉𝑙1

𝑛

𝑙=1

∑𝑀1𝑙𝑉𝑙2

𝑛

𝑙=1

⋮

∑𝑀1𝑙𝑉𝑙𝑘

𝑛

𝑙=1 ]
 
 
 
 
 
 
 
 
 

 

This can be used as an input for the Least Squares problem. For the columns, the 

result is very similar, and can be reached the same way: 

[
 
 
 
 
 
 
 
 
 ∑𝑈1𝑙

2

𝑛

𝑙=1

∑𝑈1𝑙𝑈2𝑙

𝑛

𝑙=1

∑𝑈1𝑙𝑈2𝑙

𝑛

𝑙=1

∑𝑈2𝑙
2

𝑛

𝑙=1

⋯

∑𝑈1𝑙𝑈𝑘𝑙

𝑛

𝑙=1

∑𝑈2𝑙𝑈𝑘𝑙

𝑛

𝑙=1

⋮ ⋱ ⋮

∑𝑈1𝑙𝑈𝑘𝑙

𝑛

𝑙=1

∑𝑈2𝑙𝑈𝑘𝑙

𝑛

𝑙=1

⋯ ∑𝑈𝑘𝑙
2

𝑛

𝑙=1 ]
 
 
 
 
 
 
 
 
 

   

[
 
 
 
 
 
 
 
 
 ∑𝑀𝑙1𝑈1𝑙

𝑛

𝑙=1

∑𝑀𝑙1𝑈2𝑙

𝑛

𝑙=1

⋮

∑𝑀𝑙1𝑈𝑘𝑙

𝑛

𝑙=1 ]
 
 
 
 
 
 
 
 
 

 

The problem must be solved for all rows and columns for U and V, possibly 

multiple times. 

2.3 k-Nearest-Neighbors 

k-Nearest-Neighbors or kNN is very different from the previous models in many 

ways. Its basis is the similarity between different items in the database. For each user-

item pair, the prediction is based on those k items, that the user rated, and are most similar 

to the item in question. 
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2.3.1 Item distances 

Item similarity is determined by their distances. This is where the name “nearest 

neighbor” comes from. The similar items are the ones that have the shortest distance from 

the item in question. Item distances can be defined in any way, but the way they are 

defined will have a great impact on how the model performs. When calculating distances, 

the 2 main questions are: 

1. What should be the distance function?  

2. What should be the basis for the distances? 

They both greatly affect the outcome. Picking Euclidean distance or cosine 

distance yields different results. Similarly, picking the movies’ genres as a basis, or the 

ratings the movie received by the users will have very different outcomes. Not only can 

these affect the accuracy of the predictions, but they can also greatly affect the 

performance of the model. Just consider this: if the basis for the distance is the genres of 

the movies, then an already calculated distance between two items isn’t likely to change. 

However, if it is the ratings of the users, then it will change a lot. Since the most resource-

consuming part of this model is calculating item distances, this should seriously be taken 

into consideration. 

For this model, Pearson correlation is used as a distance function, with the 

movies’ genres as a basis. Pearson correlation can be calculated the following way: 

𝜌𝑋,𝑌 =
cov(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 

Where X and Y are the vectors that belong to the items, cov is the covariance, and 

σ is the standard deviation. As a first step in kNN, a distance matrix must be constructed, 

meaning the distance (in this case, the Pearson correlation) must be calculated and stored 

for every single item pair. 

2.3.2 Prediction 

When the distance matrix is ready, the model can start giving predictions. For any 

user-item pair, the algorithm for this is the following: 

1. Out of the items user rated, get the k number of items, that have the smallest 

distance from item (based on the distance matrix) 
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2. Apply the following formula: 

𝑝𝑟𝑒𝑑𝑖,𝑢 = 
∑ 𝑑(𝑖, 𝑗) ∗ 𝑟𝑢(𝑗)𝑗 ∈ 𝑚𝑜𝑠𝑡𝑆𝑖𝑚𝑖𝑙𝑎𝑟

∑ |𝑟𝑢(𝑗)|𝑗 ∈ 𝑚𝑜𝑠𝑡𝑆𝑖𝑚𝑖𝑙𝑎𝑟
 

Where d(i,j) is the distance between i and j, and ru(j) is the rating user u gave to 

item j. 

To greatly reduce retraining times, the genres of the movies were used as a basis 

in the current model. This way, not only it is not necessary to do a lot of recalculation on 

the item-distance matrix, but most of the recommendations can also be kept after an 

update. This is important, because unlike matrix factorization models, where producing 

the prediction matrix is very fast, producing all the predictions for kNN is extremely slow 

(1,000-10,000 times slower). This is not surprising. While the matrix factorization models 

are O(users*items*factors), kNN is proportional to the cost of calculating the similarity, 

and the number of ratings a user has. Unfortunately, making a global top list of items 

requires having all the predictions. This makes kNN a generally inferior choice in session-

based cases. 
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3 Updating the models 

After training the models for the first time, they should yield good results for a 

while, but this is bound to change over time. Not only user preferences can change, but 

new items, or new users will also appear. Because of this, the models must be updated 

over time. The strategy for this however, is not obvious. Many different aspects can be 

taken into consideration when working out a strategy. 

It isn’t an unrealistic expectation, to be able to assign different strategies to each 

model either. Or, to be able to change the update strategy on the fly. The role of the Update 

Proposer module is exactly this: any model can have an update proposer belonging to it. 

The update proposer monitors the model’s activity, and when it should be updated based 

on its rule-set, it proposes the update. 

3.1 Update Proposer Rules 

Updating the models may be necessary for various reasons. The Update Proposer 

module makes it possible to create a set of rules for when this can happen. Generally, 

these rules revolve around one of four categories: 

- Number of incoming messages 

- Measurements getting worse 

- Rate of unsuccessful predictions getting worse 

- Number of times new users/items showed up 

The following sections go more into detail about each of these. Note, that none of 

these rules are obligatory, the proposer can work with any subset of them.  

3.1.1 Frequency-based rules 

The first set of rules is the frequency-based ones. The only thing they take into 

consideration is the number of incoming messages since the last update. There are 2 rules 

that fall into this category: minimum number of messages necessary until the next update, 

and maximum number of messages allowed until the next update. If a minimum message 

limit is set, then it doesn’t matter, if update should happen based on other rules, if the 

message count does not reach the minimum limit. 
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3.1.2 Measurement-based rules 

The two measurements the updater takes into consideration are DCG, and recall. 

It does it in a way, that for each message, it stores these values, and calculates a moving 

average of them. If the rank is known, then the DCG is: 

𝐷𝐶𝐺 = 
1

𝑙𝑜𝑔2(𝑟𝑎𝑛𝑘)
 

The number is elements (n) the predictor returns is known. In this case, recall is: 

𝑟𝑒𝑐𝑎𝑙𝑙 =  {
0, 𝑖𝑓 𝑟𝑎𝑛𝑘 ≥ 𝑛
1, 𝑖𝑓 𝑟𝑎𝑛𝑘 < 𝑛

 

There 4 rules that fall into this category: 

- Number of messages the moving average takes into consideration for DCG 

- Number of messages the moving average takes into consideration for recall 

- The minimum of what the moving average of DCG can reach 

- The minimum of what the moving average of recall can reach 

The first two does not actually propose any updates, they just affect how the last 

two work. In case the moving averages of DCG or recall fall under their respective 

minimum limits (and there were enough messages since the last update to fulfill the 

minimum messages necessary rule), an update is proposed. 

3.1.3 Success-based rule 

There is only one rule that falls into this category. The model can’t always give 

predictions for a user-item pair, or a list of recommended items for a user. This is because 

the model may not have any information about the item or user in question. It can give 

back a fixed response, like 3 as a predicted rating, or the list of overall most popular items, 

but no real answer can be given that is exclusive to the user/item in question. 

If this rule is used, then the proposer will keep track of the ratio of successful and 

unsuccessful predictions since the last update. If the rate of unsuccessful predictions 

reaches the limit (and there were enough messages since the last update), then an update 

is proposed. 
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3.1.4 Rules about new items 

These rules don’t propose updates either, they merely alter the dataset that is sent 

for updating. There are two of these: 

- Minimum number of ratings necessary for an item to be forwarded for 

updating 

- Minimum number of ratings necessary for a user to be forwarded for updating 

If an update is proposed, but new item i, or new user u don’t have enough ratings 

belonging to them, then all the data belonging to them will be removed from the new 

dataset sent to the model. However, the update proposer will keep these, so if enough 

ratings will accumulate by the time the next update is proposed, they will be forwarded 

to the model. 
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4 Architecture 

The following section contains a description of the architecture of the 

recommender system, and the description of the whole system the recommender system 

is in. 

4.1 Recommender 

The recommender system consists of 3 main types of components: 

- Models 

- Update Proposer 

- Framework 

The first two were already covered. The following section contains a description 

of the Recommender Framework. 

4.1.1 Framework 

Many of the processes in the recommender system are not exclusive to the models. 

While the way they are done can be very different, from an outsider’s point of view, they 

are irrelevant.  In some cases, it might also be necessary for the models to work together 

– for example, in case of having a combined model that uses results from all the other 

models. Because of this, it is better to have the models inside a framework, instead of 

storing them separately. It also forces the models to provide a common interface. 

4.1.1.1 Model operations 

There are several operations that the framework provides. These mostly forward 

the call to one or more models in a way that the framework is not actually aware of how 

each model works. This means any number of new models can be added to the framework 

if they provide the standard interface. Here follows a list of operations each model should 

be able to do. 
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Initialize models with data 

By providing an initial (“training”) dataset, the model must be able to initialize 

itself. Initialization includes everything, up to performing the first training of the model. 

This step doesn’t necessarily have to be fast. Since this must only be done once, 

and the system won’t go live until this is done, this operation taking a long time is 

acceptable.  

Receive data 

In case a new rating comes in, the model must be able to process it. Along with 

the data, the model must also be able to receive and process the evaluation of the message. 

That is done by the framework, and includes the recall and DCG for the new item, and 

whether item and user were found. This information is forwarded to the update proposer 

of the model, which decides if the model should be updated, or not. If the answer is yes, 

then the model must start the update process. 

Give prediction 

When presented with a user-item pair, the model must be able to provide the 

following information: 

- Prediction for the user-item pair 

- The user was found in the model, or not 

- The item was found in the model, or not 

User ranking 

When presented with a user id, the model must be able to provide the following 

information: 

- A list of item ids, ranked by their predicted ratings for the user (in descending 

order) 

- The user was found in the model, or not 
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Persist 

The models must be able to provide all the data that is necessary to fully restore 

the model if necessary. 

Restore 

When provided with the data that Persist returned, the model must be able to fully 

restore itself to its former state. 

4.1.1.2 Other functions 

The framework doesn’t only store and communicate with the models, it also 

communicates with the outside world. Upon initialization, its only parameter determines 

how long the recommendation list should be. It provides functions for both testing, and 

live operation. These include: 

I/O operations on the disc 

There are many reasons for the framework to write data to, and read data from the 

disc. Some of these are for testing/simulation: the sample data (see chapter Hiba! A 

hivatkozási forrás nem található.) can be acquired from the disc. Other uses however 

are also for live operation: the models are persisted to the disc. It is important to note that 

while persisting the models into a database was considered, it proved to be very 

ineffective. 

Database operations 

The system that the recommender is used in reads the recommendations from a 

database (mongoDB - https://www.mongodb.com). Because of this, the framework must 

be able to save recommendations into the database  

Message queue operations 

The framework can send messages to the message queue (RabbitMQ - 

https://www.rabbitmq.com), but that functionality is currently only used for testing. 

Receiving messages however is very important. This is how the recommender learns 

about new ratings. 

https://www.mongodb.com/
https://www.rabbitmq.com/
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4.2 System-wide architecture 

This section introduces the architecture of system that the recommender is used 

by. Note, that this does not contain every component of the system, only the ones that are 

related to the recommender. 

 

Fig. 1: System-wide architecture 

The recommender has already been introduced. The next part contains a short 

introduction of the client and the java application. For information on the message and 

storage formats, see the Interfaces section of the Appendix. 

4.2.1 Client 

This is where the data for the recommender originates from, and this is where the 

recommendation will arrive to in the end. While currently the client only sends one type 

of message to the server that is used by the recommender, this can (and in the future, 

probably will) change. A recommender can get a wide variety of messages from the 

clients, that can be interpreted in many ways. This can range from the very explicit 

“rating”, “favorite”, or “open”, to “time spent looking at the item”, or even data derived 

from mouse movement. 

4.2.2 Java application 

The Java application provides a REST [10] interface for the client. REST 

(REpresentational State Transfer), or RESTful web services are a way of making 
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communication between computer systems possible. It is stateless, uses a client-server 

model, and offers a uniform interface.  

Although this is the biggest component of the whole system, the part that is related 

to the recommender is small. In case the client sends a request that should change the 

rating of an item, the Java application does two things: 

- Save the newly acquired data into the database; 

- Send the new data via message queue to the recommender. 

The java application can also receive requests from the client for 

recommendations. In this case, it reads the entry from the database that belongs to the 

user that made the request. If the database contains no such information, it reads the 

recommendation belonging to the id ‘top’. 
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5 The simulation 

To test how the recommendation engine performs, some preexisting data is 

necessary. For this purpose, my data of choice was the MovieLens dataset 

(https://movielens.org/). It comes in different sizes. The simulations use the one with 

~1.000.000 ratings (which contain timestamps). It is a good compromise, the dataset is 

big enough for testing various attributes of the system, but small enough to work with 

even on home computers. 

The appendix contains more detailed description on the dataset. 

Using the parameters found in the Appendix, a simulation was run. This had 2 

major parts: 

1. Training period with the first 10% of the data 

2. Test period with the other 90% of the data 

This section contains some basic measurements regarding performance during 

these two periods. Evaluating the results however is not part of this section. That can be 

found in chapter the Combined model. 

The times required for training each model can be very different. This is how long 

the initial training took for each model: 

Model Training time (s) 

Matrix Factorization with SGD 31 

Matrix Factorization with ALS 71 

k-Nearest-Neighbors 1127 

 The training time necessary for kNN is visibly much higher, than the other two. 

This is because the item-distance matrix must be fully calculated for this model. This is 

also the reason kNN was set in a way that the basis for this matrix is the genre of the items. 

If the basis was a constantly changing data, like ratings, then this matrix would always 

have to be recalculated, meaning every update would take similarly long time. 

The testing period took a longer time. Using the settings seen in the Appendix, it 

ran for ~13 hours. 

https://movielens.org/
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The update statistics for the 3 models were very similar. The DCG and the recall 

criteria were usually fulfilled just after reaching the minimum number of required 

messages. The “rate of unknown items” criterion was also usually fulfilled in the first half 

of the simulation, but by the second half, it stopped triggering updates. 

 

Fig. 2.: Number of new ratings put in the models after each update 

As it is visible on  Fig. 2, the number of new ratings that were put into the models 

with each update never reach very high numbers. If it wasn’t for elements that were kept 

in because not enough ratings belonged to a new user or item, this would probably be a 

constant 10,000. 

It is also worth to look at the update times. 

 

Fig. 3.: Update times (s) for each model. 
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On Fig. 3, it is visible that while MF with SGD (orange), and kNN (red) have a 

steady update time, MF with ALS requires significantly more time as the number of 

elements grow in the model. However, it should be noted, that this training time is still a 

lot lower, than what kNN would do, in case the item-distance matrix had to be 

recalculated. 
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6 Combined model 

Evaluating the results of the simulation, it is visible there is no clear “best” model. 

However, it might be possible to predict which model will give the best results for a given 

user. The idea is that for each user, keep track of how each model performed for the last 

n requests. This can be done for different measurements, in this case, RMSE, DCG, and 

recall are used. 

While not part of the combined model, only the individual models, it is also worth 

mentioning the strategy for when prediction is not possible, due to unknown user, or 

element. This happens a lot: the percentage of successful predictions is below 35%. The 

reason for failed prediction is almost always an unknown user. In such case, the strategy 

for giving prediction for one user-item pair is predicting a rating of 3. 

From the users’ perspective, it is more important what the recommendation is in 

such case. With the matrix factorization models, when the user is unknown, items are 

ranked by their average predicted ratings. However, this is not acceptable for the k-

Nearest-Neighbors model: doing so requires knowing the full prediction matrix. The 

problem with that is the same as with the item-distance matrix: calculating it takes a very 

long time, and it this case, a large amount of recalculating with every update is not 

avoidable. Because of this, kNN is not able to give a recommendation if the user in 

question is not known by the model. 

Picking different measurements for optimization will yield different results. When 

observing the results for each measurement, always the best combined model will be used.  

In each case, the moving average of the last 1,000 elements are shown on the plots. 

For the first 1,000 elements, this is the average of all elements, and after that, the average 

of the last 1,000 elements. 

6.1 RMSE 

Looking at the plot for RMSE, it seems that staying below the minimum of the 3 

models with the combined (optimized for RMSE) model was a success: 
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Fig. 4.: Moving average of RMSE for each model 

To be sure, look at the difference with each model: 

 

Fig. 5.: The difference of RMSE of the combined model from the base models 

On average, it managed to stay below the RMSE of each model. 

6.2 Recall 

The way recall should be evaluated is not trivial. For each single element, they are 

determined by the rank of the item. The question is: which elements should be 

considered? For an item that the user rated as 2 (if the models work well), it is expected 

that the item should be very low on the list. If that is the case, it shouldn’t be in the 

“recommended” list. Such items should not worsen the average for recall. 
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For this reason, the next measurements are evaluated only for items, that got at 

least a rating of 4 from the user. Also, since kNN cannot give recommendations for 

unknown users, it is left out from here. 

 

Fig. 6.: Moving average of recall for each model 

It appears that the model optimized for recall also succeeded, the moving average 

of the recall for the combined model is constantly above the other two models. Looking 

at the differences also suggests the same. 

 

Fig. 7.: The difference of recall of the combined model from the base models 

It is visible, that the numbers are overwhelmingly positive. 
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6.3 DCG 

While the combined model for RMSE and recall seem to yield results 

immediately, apparently DCG requires some time before it starts working as intended. 

 

Fig. 8.: Moving average of DCG for each model 

In the first half, MF with ALS performs better, but by the second half, it overtakes 

it, and starts performing better, that the base models. The difference-plot suggests the 

same. 

 

Fig. 9.: The difference of DCG of the combined model from the base models 
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7 Scheduling updates 

Performance of the models is also affected by retraining strategy. For the 

following measurements, the initial training dataset was 20,000 elements. After that, 

100,000 requests were sent, with different update strategies. The strategies were always 

frequency based. The goal was to see how performance changes if during the 100,000 

requests 0, 1, 3, or 7 updates are executed. 

Number of updates Time (s) 

0 9433 

1 5045 

3 3401 

7 2811 

Notice how by increasing the frequency of updates, the overall time might 

decrease. The reason for this is simple: the updater stores the messages that will be given 

to the model at the next update. Having to work with a collection with too many elements 

causes a visible drop in performance. By increasing the frequency of updates, the time 

will not always decrease. The more frequent the updates are, the more the overall 

execution time will be affected by the actual update time, and less by the performance of 

the update proposer. E.g.: if the basis for kNN was the ratings, then 7 updates would 

probably take much longer than 0 updates. 

The next measurement to observe is the rate of successful predictions. 

Number of updates Successful predictions (%) 

0 1.9 

1 5.8 

3 9.5 

7 12.9 

Here, the results are as expected: more frequent updates cause a higher percentage 

of successful predictions. However, the following measurements will show that this 

doesn’t necessarily lead to better results. This is especially true, if there aren’t enough 
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ratings for a new user or item. In this case, recommending the global top items is probably 

better than giving personalized recommendation. 

 

Fig. 10.: Recall might decrease with more personalized recommendations (MF with SGD) 

The plot for MF with ALS looks essentially the same, so it is not included here. 

For DCG, different trends can be observed for MF with SGD. 

 

Fig. 11.: Without update, DCG got worse over time (MF with SGD) 

On the other hand, while the same trend can be observed for SGD and ALS for 

recall, for DCG, ALS is more in line with what the recall data suggests. 
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Fig. 12.: DCG for MF with ALS is more in line with the data from recall 

Finally, the average RMSE does not seem to be affected during the simulation. 

 

Fig. 13.: RMSE does not seem to be affected during the first 100k messages (MF with SGD) 

The plots are essentially the same for the other models too. 

Based on this, the conclusion is the following. More frequent updates can cause 

an increased overall performance, and will lead to a better rate of successful predictions. 

However, unless there is sufficient data available for each user/item, this may lead to 

worse metrics. Because of this, it is essential to set a minimum limit for new users/items 

to be added to the model. To illustrate this, here is a comparison of the recall metrics with 

a 5th strategy, that includes 7 updates, but only adds a user or item, if it has at least 5 

ratings that belong to it. 
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Execution took 2643 seconds, with a success rate of 12.1%. 

 

Fig. 14.: Setting a minimum rating limit for users/items can lead to better results 

While there is still room for improvement, it is visible how much difference does 

it make to set a minimum required number of ratings, even if the limit is very low. 
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8 System-wide performance considerations 

There are several performance concerns, that should be measured through the 

whole system. From the users’ perspective, one of the most important questions is “How 

fast can my request be served?”. Recommendations should be fast, even when there are 

background tasks running (such as updating models). 

Processing new information should be asynchronous. Updating the models must 

never make the system unresponsive, the user shouldn’t notice anything from the update 

running. These issues are addressed in this section. 

8.1 Processing messages 

In an earlier version of the recommender, new ratings simply came through the 

message queue, and were processed one by one. When an update was triggered, 

processing messages from the queue stopped, until the update was finished. This wasn’t 

a serious issue, until some update times became very long. So long, that RabbitMQ closed 

the connection with the recommender, because it was not responding. It was 

understandable too, at that time, ratings as a basis for kNN was still under consideration. 

Updating that model often took more than an hour. 

Because of that, message processing was rewritten in a way, that the receiver 

fetches the messages from RabbitMQ, then schedules the actual processing 

asynchronously. This way, the model can still receive requests while update is happening. 

The next test involves sending 10,000 requests to the message queue. As seen on 

RabbitMQ’s management surface, messages are processed almost immediately. 

 

Fig. 15.: Messages are processed almost immediately 



 38 

For the recommender, processing these messages takes a lot longer, especially 

since in this case the updater was set to start an update every 1,000 messages. That does 

not concern the message queue though. 

CPU cores are only used on 100%, when the recommender fetches messages from 

the queue. Otherwise, even when an update is in progress, the usage decreases. 

8.2 Giving recommendations 

Giving a pre-calculated recommendation to a user is very fast: the java application 

reads it from the database, and returns it. The time necessary for pre-calculating the 

recommendations however, can vary between models.  

For kNN, it is very slow. It would require calculating the whole prediction matrix. 

This is the same problems as using the ratings as a basis for the model. However, if doing 

that is necessary, the best solution is probably calculating recommendations one-by-one, 

when they are needed. Most of the users won’t request recommendations between updates 

anyway, so a lot of unnecessary calculation can be avoided. Although if this strategy is 

applied, then it is not possible to give a global top recommendation list based on item 

averages, since it would also require calculating the whole matrix first. Furthermore, even 

if calculating the prediction matrix was fast, it would take a lot of memory. In case of a 

recommender, that works with millions of songs, it would not be possible to store it in-

memory. 

Matrix factorization models perform a lot better. For a model of 176 users and 

2401 items, giving a top 100 recommendation for every user (+plus a global top list) only 

took 0.6 seconds. After that, saving all the recommendations into the database took an 

extra 0.14 seconds. This is more than acceptable, the increase in the training times (see 

chapter 5) are not even noticeable. 
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9 Conclusions 

The main issue of the essay, which is creating a model that uses the results of 

other models to give better recommendations seems to be a success. The RMSE of the 

combined model could stay below the minimum of the other models, and the recall could 

stay above the maximum. Since the combined model does not use any information on 

how the models work, it can be used with any model. In case the combined model is 

presented models that perform a lot better than the ones seen in this essay, it should still 

be able to improve their overall results. 

It was also seen, that k-Nearest-Neighbors might not be the best choice for 

session-based systems. Producing all recommendations can be very slow, generally 

1,000-10,000 times slower. 

Observing the retraining schedules gave 2 surprising results: first, that more 

frequent updates don’t necessarily mean longer runtime. In fact, they may even speed 

things up. And second, that more personalized recommendations don’t necessarily mean 

better recommendations. This is one of the areas that should be further inspected in the 

future: how much information should the model have about a user by the time it starts 

giving personalized recommendations? 

Finally, running multiple simulations showed that the recommender can perform 

well even under high stress. It can process new data even with a very high rate of requests. 

At the same time, giving recommendations is not an issue, since it is handled by a separate 

application, on a separate server, that only reads the recommendations from the database, 

that were put there by the recommender during the last update. 
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Appendix 

Models 

Parameter name Description Value 

l Learning rate of the Stochastic Gradient Descent 0.03 

c 
The range the values the initial random number can come 

from 
0.5 

d The common dimension of U and V 100 

runPerRound 
The number of times each known value is visited during 

the training 
10 

Table 1.: Parametrization of “Matrix Factorization with Stochastic Gradient Descent” model 

Parameter name Description Value 

c 
The range the values the initial random number can come 

from 
0.5 

d The common dimension of U and V 10 

runPerRound 
The number of times each known value is visited during 

the training 
3 

Table 2.: Parametrization of “Matrix Factorization Alternating Least Squares” model 

Parameter name Description Value 

k 
The number of nearest neighbors the algorithm takes into 

consideration 
10 

Table 3.: Parametrization of “k-Nearest-Neighbors” model 
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Update Proposer Module 

Parameter name Description Value 

recallStored 
The number of messages the moving average of 

recalls is calculated from 
100 

dcgStored 
The number of messages the moving average of 

dcgs is calculated from 
100 

messageCountLimit Update is always proposed after this many messages 25000 

minMessagesToUpdate 

The minimum number of incoming messages 

necessary since the last update for an update to be 

proposed 

10000 

recallLimit 
Update proposed, if the moving average of recalls is 

below this limit 
0.33 

dcgLimit 
Update proposed, if the moving average of dcgs is 

below this limit 
0.125 

unknownLimit 
Update proposed, if the rate of requests where the 

model couldn’t give prediction is above this number 
0.7 

newItemCountLimit 
Minimum number of ratings necessary for a new 

item to be put in the model 
5 

newUserCountLimit 
Minimum number of ratings necessary for a new 

user to be put in the model 
5 

Table 4.: Parametrization of the Update Proposer Module 
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Interfaces 

Message queue message format 

{ 
  "contentId": { 
    "type": "string" 
  }, 
  "ownerId": { 
    "type": "string" 
  }, 
  "rating": { 
    "type": "integer" 
  } 
} 

Database rating storage format 

{ 
  "contentId": { 
    "type": "string" 
  }, 
  "ownerId": { 
    "type": "string" 
  }, 
  "rating": { 
    "type": "integer" 
  }, 
  "timestamp": { 
    "type": "string", 
    "format": "date-time" 
  } 
} 

Database recommendation storage format 

{ 
  "type": "object", 
  "properties": { 
    "key": { 
      "type": "string", 
      "description": "id of the user the recommendation belongs to, or 'top' 
for the recommendation of the overall best items" 
    }, 
    "value": { 
      "type": "array", 
      "elements": { 
        "type": "string" 
      }, 
      "description": "a list of the ids of the items recommended for the 
user" 
    } 
  } 
} 
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Movies 

Field name Description 

id 
integer, it serves as a unique identification for the movie. While it 

may look sequential at first, it is not 

title string, the title of the movie 

year integer, the year the movie came out 

genres 

array of strings, the genres the movie belongs to. It can be one, or 

more of the following: 

Action, Adventure, Animation, Children’s, Comedy, Crime, 

Documentary, Drama, Fantasy, Film-Noir, Horror, Musical, 

Mystery, Romance, Sci-Fi, Thriller, War, Western 

Table 5.: The “movies” dataset  
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Users 

Field name Description 

id 
integer, serves as a unique identifier. In the case of the users, it is 

sequential 

gender its value is either F for female, or M for male 

age integer, indicating the age group of the user 

occupation integer, indicating the occupation of the user 

zip code integer, the user’s zip code 

Table 6.: The “users” dataset 

Values Description 

1 younger, than 18 years 

18 18-24 years 

25 25-34 years 

35 35-44 years 

45 45-49 years 

50 50-55 years 

56 56 years, or older 

Table 7.: User age groups 
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Values Description 

0 other" or not specified 

1 "academic/educator" 

2 "artist" 

3 "clerical/admin" 

4 "college/grad student" 

5 "customer service" 

6 "doctor/health care" 

7 "executive/managerial" 

8 "farmer" 

9 "homemaker" 

10 "K-12 student" 

11 "lawyer" 

12 "programmer" 

13 "retired" 

14 "sales/marketing" 

15 "scientist" 

16 "self-employed" 

17 "technician/engineer" 

18 "tradesman/craftsman" 

19 "unemployed" 

20 "writer" 

Table 8.: User occupations 
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Ratings 

Field name Description 

userId integer, the unique identifier of the user the rating belongs to 

movieId integer, the unique identifier of the movie the rating belongs to 

rating 
integer, the value of the rating on a 1-5-star scale (whole-star ratings 

only) 

timestamp integer, represented in seconds 

Table 9.: The “ratings” dataset 

 


