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Abstract 

 

Aircraft control is one of the most progressive fields of the modern control techniques. 

Control methods implemented on embedded flight computers enhance not only robot pilot 

functions but also support the pilot. These are known as stability and control augmentation 

systems. There are also several civil applications of these methods; for instance, in case of 

vehicles of commercial and personal air transport. However, the military is the most 

motivated to improve these applications and methods. It is indispensable to have an accurate 

nonlinear dynamic model of the aircraft to achieve an adequate control that satisfies all of 

the requirements. A mathematical model of the aircraft can be derived using kinematic, 

dynamic and navigational equations of the rigid body. Contrarily, it is a more difficult 

process to determine its parameters.  

The determination of the nonlinear model and its parameters are parts of the field of 

system identification. In this present work I reviewed several identification methods such as 

the Maximum Likelihood (ML) method both in the time domain and in the frequency 

domain. Particular focus is placed on the output-error method. As a principal part of this 

work I demonstrate the methods mentioned above applying the SIDPAC Toolbox 

developed by NASA, and I compare the given results with those obtained in [4]. 
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Kivonat 

 

A repülıgépek irányításának problémája egy kiterjedt és rohamosan fejlıdı ága a 

szabályozástechnikának. A repülıgépek fedélzeti számítógépeire implementált 

szabályozások nemcsak a robotpilóta funkciót valósítanak meg, hanem komoly szerepet 

játszanak a pilóta munkájának támogatásában is. Ezeket az eljárásokat ún. UAV (Unmanned 

Aerial Vehicle) pilótanélküli kisrepülıgépeken fejlesztik és tesztelik. A precíz szabályozások 

tervezéséhez elengedhetetlenül fontos, hogy ismerjük a repülıgép pontos nemlineáris 

dinamikus modelljét. A modell matematikai alakja egzakt módon elıáll, azonban a modell 

paramétereinek meghatározása komoly méréstechnikai és jelfeldolgozási feladat.  

A nemlineáris modell paramétereinek kiszámítása a rendszerek identifikációjának 

részét képezı tudományághoz tartozik.  Jelen munkában feldolgozásra és bemutatásra 

kerülnek a frekvencia és idıtartománybeli Maximum Likelihood (ML) módszerek, különös 

tekintettel a kimeneti hiba (OE) módszerekre. A módszerek demonstrálása során 

felhasználásra kerülnek a SIDPAC identifikációs Toolbox [1] függvényei.
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1 Introduction 
 

Aircraft control is one of the most progressive fields of the modern control 

techniques. Embedded on board control systems enhance not only robot pilot functions 

but also support the pilot. In the past five decades the huge growth in aircraft 

development has focused on the improvement of modern control methods. This began in 

the late 60s when digital computers become available. Nowadays, most modern 

warplanes, also known as fourth generation jet fighters, require not only accurate 

dynamical models to obtain very precise control but also high speed computers on 

board. Furthermore, there are not any direct connections between control surface 

actuators and the pilot’s instruments of control (pilot stick, pedals…). These aircraft are 

also known as “fly-by wire” controlled aircraft. These airplanes cannot be controlled 

without an on board computer because they are not stable aerodynamically. There are 

several control surfaces such as canards, flaperons…etc that cannot be controlled by the 

pilot. These additional control surfaces are controlled by embedded control systems in 

order to obtain the required stability. Thus, control and stability augmentation systems 

are indispensable. Consequently, having an accurate nonlinear dynamic model of the 

aircraft is necessary in order to develop an adequate control that satisfies all of the 

requirements. For many applications, an aircraft can be assumed as a rigid body, whose 

motion is governed by Newtonian physics. The navigational equations play also an 

important role in building the mathematical model of the aircraft. These equations 

enable transformations between the different coordinate-systems. Measured data can be 

gathered from ground measurements (wind-tunnel tests) or directly from the aircraft 

instrumentation. These measurements include input and output data sequences.  

This current work is a continuation of [4]. Hence, detailed descriptions of the applied 

aircraft models can be found in [1],[4]  and [5]. In this part, I reviewed several 

identification methods such as the time domain Maximum Likelihood (ML) and 

frequency domain methods based on [1]. Particular focus is placed on the output-error 

method based on [2] and [1]. The methods mentioned above are used in case of the same 

data sequences as in [4] in Matlab environment using the SIDPAC Toolbox. Eventually, 

the given results are also compared with those that obtained in [4]. 



 
 

 6 

 

2 Review of  time-domain and frequency domain 
Maximum Likelihood identification methods 

 
In this chapter the time domain Maximum Likelihood (ML) and the frequency domain 

ML identification methods are introduced. Also the fundamentals of influential directions 

are summarized. Particular focus is placed on the output-error (OE) method. The theory 

written in this chapter is based on the descriptions and definitions can be found in [1] and 

[2]. 

2.1 Why the Maximum Likelihood methods 

During aircraft system identification, the applied measured time series are generated 

by nonlinear dynamic systems and corrupted by noises. Because of this, a very simple idea is 

used: assuming a model that depends on the unknown parameters, then minimizing a cost 

function in order to find the values of the parameters that make the outputs of the identified 

model most likely to correlate to the measured data.  

2.2 Outline of estimation theory 

The parameter estimation consists in finding adequate values of unknown model 

parameters θ  in an assumed model, based on noisy measurements z . Since the estimator 

computes approximate values of the parameter vector θ̂  based on noisy measured data z ,  

henceθ̂  is a random variable. In order to develop an estimator, four specifications are 

required: 

(i) A model structure with unknown parameters; 

(ii) Measurements z ; 

(iii) A mathematical model of the process; 

(iv) Assumptions about the uncertainties in the measurement noise v , and in the 

unknown model parameters. 

Observations can be linear or nonlinear functions of the parameters. A model is called linear 

in the parameters if its output y  is given by 

      y Hθ= ,         (2.1) 

where the matrix H is assumed to be known. The measurement equation then can be 

expressed as 
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                z H vθ= + .                    (2.2) 

A model is nonlinear in the parameters, if its measurement equation is given by 

                                                              ( )z h vθ= + ,                                                    (2.3) 

where ( )h θ  is assumed to be a known function. Generally, there are 0n  measured outputs, a 

measured data vector consisting of N  data points. Three models of uncertainties in the 

parameters and the observations are considered. They are known as the Bayesian model, the 

Fisher model and the least-squares model. The parameters and measurements are formed as 

follows: 

Bayesian model 

θ  is a vector of random variables with probability density ( )p θ ; 

v  is a random noise sequence with a probability density ( )p v . 

Fisher model 

θ  is a vector of unknown constant parameters; 

v  is a random noise sequence with probability density ( )p v . 

Least-squares model 

θ  is a vector of unknown constant parameters; 

v  is a random vector of measurement noise. 

 

The time domain ML and frequency domain ML estimator were developed for the 

Fisher model. θ  is the vector of unknown constant parameters and v  has an expected value 

or mean that equal to 0, and a variance R . This can be written in the form (0, )Rℕ . The 

Fisher model is based on the Fisher estimation theory. Detailed description can be found in 

[1]. The concept of the likelihood function is used, where ( ; ) ( )L z p zθ θ= . The parameter 

vector θ  is assumed to be a vector of unknown constants. Hence, the most common 

estimator of the Fisher model is to maximize the likelihood function, which is equal to the 

value of the parameter vector that maximizes ( ; )L z θ  for given z . If ( )p z  is Gaussian, the 

likelihood function has the form  

                        
1

12
1

( ; ) (2 ) exp ( ) ( )
2

N TL z R z H R z Hθ π θ θ
− −  = − − −    

.                       (2.4) 

where i  denotes the determinant. Then the estimate 

                                                          ˆ max ( ; )L z
θ

θ θ= ,                                                    (2.5) 

minimizes  
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                                             11
( ) ( ) ( )

2
TJ z H R z Hθ θ θ−= − − .                                        (2.6) 

Or in case of nonlinear measurement equation 

                                            11
( ) ( ( )) ( ( ))

2
TJ z h R z hθ θ θ−= − − .                                       (2.7) 

The Fisher information matrix M is defined as 

                                    
2ln ln ln

( ) ,
T

T

L L L
M E Eθ

θ θ θ θ
   ∂ ∂ ∂  = = −     ∂ ∂ ∂ ∂      

                          (2.8) 

 

This equality is discussed in detail in [1]. 

2.3 Time-domain ML methods 

 

 It can be seen below that in case of a linear measurement equation z H vθ= +  the 

ML estimator becomes a simple least-square estimator with weighting equal to the inverse 

of the noise covariance matrix. Furthermore, in case of a stochastic dynamic system with 

process noise, the measurements are nonlinear functions of the parameters. Thus, the 

general form of the measurement equation is ( )z h vθ= + . 

 The solution combines a state estimator and a nonlinear parameter estimator. The 

models to be estimated are in state-space form. The application of a state estimator that is a 

Kalman filter is necessary because of the presence of the process noise in the dynamic 

equations. This method is also known as the filter-error method. The nonlinear parameter 

estimator is required because of the nonlinear measurement equation, which means that 

there is nonlinear connection between model parameters and measured outputs. However, 

the combined estimation of parameters and states induce a difficult nonlinear estimation 

problem. For further practical implementation, three simplifications are made: 

(i) The Gauss-Newton method, also known as the modified Newton-Raphson 

method is used for minimizing the cost function instead of the Newton-

Raphson method; 

(ii) In case of linear dynamic models, the general Kalman filter is replaced by its 

steady-states form; 

(iii) The unknowns are divided into three subsets: states, model parameters and 

the elements of the noise covariance matrix. 
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In the following section, the filter-error method is introduced briefly. It is followed 

by the properties of ML methods. Properties of ML estimators are also introduced. For 

further practical applications, the assumption of no process noise is made. In this case, the 

states can be derived by direct numerical integration. The resulting ML estimator is known 

as the output-error method. This method is a generalization of the nonlinear least squares 

estimator presented in [1]. Flight testing is done preferably on a day with calm air in order 

to eliminate the process noise in the model. Finally, the equation-error method is presented. 

If the state variables are measured without error, the equation-error version of the ML 

estimator can be used that is identical to linear regression. 

 

2.3.1 Filter-error method 

In most cases of practical system identification problems, such as the aircraft dynamic 

modeling problem, discrete-time measurements made on a continuous-time dynamic system 

are given. A stochastic forcing term is added to the system to represent inadequacies of the 

linear model structure. The model equations then can be written as: 

                                          

( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ),

1,2,..., ,

wx t A x t B u t B w t

y t C x t D u t

z i y i v i

i N

θ θ θ
θ θ

= + +
= +
= +
=

ɺ

                                 (2.9) 

                                        
[ ]
[ ][ ]{ }

0

0 0 0

(0) ( ),

(0) ( ) (0) ( ) ( ),
T

E x x

E x x x x P

θ

θ θ θ

=

− − =
                              (2.10) 

where ( )w t  is the process noise and ( )v i is the measurement noise, and they are white noise 

sequences.  

                                        

[ ]
[ ]

( ) 0,

( ) 0,

( ) ( ) ( , ) ( ),

( ) ( ) ( , ) ,

T
i j i i j

T
ij

E w t

E v i

E w t w t Q t t t

E v i v j R i

θ δ

θ δ

=

=

  = − 

  = 

                                       (2.11) 

where θ  is the unknown parameter vector. 

The random vectors ( )w t  and ( )v i are assumed to be white and uncorrelated. The Q  

and R  matrices are usually diagonal. The likelihood function for a sequence of 

measurements will be denoted ( ; )NL Z θ  that means [ ](1), (2),..., ( )
T

NZ z z z N= . The 
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expression of the likelihood function can be derived by successive applications of the Bayes’s 

rule.  

                   

[ ] [ ]
[ ]

1 1

1 2 2

1
1

( ; ) (1), (2),... ( ), ( ) ; ;

( ) ; ( 1) ; ; ...

( ) ; .

N N N

N N N

N

i
i

L Z z z z N L z N Z L Z

L z N Z L z N Z L Z

L z i Z

θ θ θ θ

θ θ θ

θ

− −

− − −

−
=

= =   

=    −  =   

=   ∏

                (2.12) 

As was mentioned below, in order to find an optimal parameter vector, the likelihood 

function has to be maximized. However, for computational purposes, it is advantageous to 

minimize the negative logarithm of the likelihood function instead. Thus, the ML estimator 

can be written in the form of  

       [ ] { }1 1
11

ˆ max ; max ( ) ; min ( ) ;
N N

N i i
ii

L Z L z i Z ln L z i Z
θθ θ

θ θ θ θ− −
==

= =   = −     ∑∏ .          (2.13) 

If ( )w t  and ( )v i  are normally distributed and independent, then ( )z i  will also have the 

same properties.  

The following notation will be used: ˆ( 1)x i i −  is the best estimate of the state ˆ( )x i  

using measurements [ ](1), (2),..., ( 1)z z z i − . Then [ ]1( ) ; ( );iL z i Z L z iθ θ−  =   will be 

determined by the mean and its covariance matrix. These quantities can be expressed as  

                            

[ ]
[ ] { }

ˆ( ); ( 1)

ˆ ˆ( ); ( ) ( 1) ( ) ( 1)

( ) ( ) ( ),

T

T

E z i y i i

Cov z i E z i y i i z i y i i

i i i

θ

θ

= −

=  − −   − −    

 = = v v BBBB

                     (2.14) 

where  

                                                ˆ( ) ( ) ( 1)i z i y i i= − −v  ,                                                    (2.15) 

is the vector of innovations and ( )iBBBB  is the innovation covariance matrix. Hence, the 

probability density of the innovation approaches a Gaussian distribution, as the sampling 

rate increases. In case of a sufficiently high sample rate, the likelihood function has the form 

of 

                         [ ]
1

12
1

( ); (2 ) ( ) exp ( ) ( ) ( ) .
2

N TL z i i i i iθ π − − = −  
v vB BB BB BB B                      (2.16) 

Then, the negative log-likelihood function can be expressed as  

                 ( ) 1 0

1

1
; ( ) ( ) ( ) ( ) (2 ),

2 2

N
T

N
i

Nn
ln L Z i i i ln i lnθ π−

=

 − = + +    ∑ v vB BB BB BB B          (2.17) 
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where 0n  is the number of output variables. It can be seen that the last term on the right 

side is a constant, and it has no effect on the optimization. Thus, it can be neglected, which 

results in 

                            ( ) 1

1

1
; ( ) ( ) ( ) ( ) .

2

N
T

N
i

ln L Z i i i ln iθ −

=

 − = +    ∑ v vB BB BB BB B                       (2.18) 

In order to determine a negative log-likelihood function the mean value and the covariance 

matrix of the innovation have to be calculated. These quantities can be derived using a 

Kalman filter. The filtering has two steps, consisting of prediction and measurement update. 

The following equations are derived for linear time-invariant system. 

Initial condition:  

                                    
[ ]
[ ][ ]{ }

0

0 0 0

(0) (0) ( ),

(0) (0) (0) ( ),
T

x E x x

P E x x x x P

θ

θ

= =

= − − =
                                 (2.19) 

Prediction:  

                       

ˆ ˆ( 1) ( ) ( 1) ( ) ( ),

( 1) ( ) ( 1) ( 1) ( ) ( ) ( ),

( 1) ,

T T
w w

d
x t i A x t i B u t

dt
d

P t i A P t i P t i A B QB
dt

i t t i t

θ θ

θ θ θ θ

 −  = − + 

 −  = − + − + 

− ∆ ≤ ≤ ∆

           (2.20) 

Measurement Update:  

                                         

[ ]

1

ˆ ˆ( ) ( 1) ( ) ( ),

( ) ( 1) ( ) ( 1),

( ) ( ) ( ) ( 1),

T

x i i x i i K i i

K i P i i C i i

P i i I K i C P i i

θ
θ

−

= − +

= − −

= − −

v

BBBB                                           (2.21) 

 

where  

                                     
( 1) ( ) ( 1) ( ) ( ),

ˆ( ) ( ) ( ) ( 1) ( )( ),

Ti i C P i i C R

i z i C x i i D i

θ θ θ
θ θ

− = − +

= − − −v

BBBB
                                   (2.22) 

 

 
Optimization algorithm 
 

The ML parameter estimates are obtained by minimizing the negative log-likelihood 

function  

                                       1

1 1

1 1
( ) ( ) ( ) ( ) ( ) .

2 2

N N
T

i i

J i i i iθ −

= =
= +∑ ∑v vB BB BB BB B                                   (2.23) 



 
 

 12 

In order to solve this optimization problem, generally, the Newton-Raphson method is used. 

To determine a solution to the optimization-problem given in (2.23), the cost function θ   is 

expanded in a Taylor-series around a nominal parameter estimation 0θ . The choice of this 

nominal parameter estimation plays an important role in both the convergence and 

computational time of the optimization. The Taylor-series expansion is given by  

                                  0 0 0

1
( ) ( ) '( ) "( ) ...,

2
T TJ J J Jθ θ θ θ θ θ θ= + ∆ + ∆ ∆ +                         (2.24) 

We approximate ( )J θ with the second-order expansion of its Taylor-series, 

                                   0 0 0

1
( ) ( ) '( ) "( ) ,

2
T TJ J J Jθ θ θ θ θ θ θ≈ + ∆ + ∆ ∆                              (2.25) 

where '( )J θ  is the Jacobian, "( )J θ is the Hessian of the cost function at the nominal 

parameter estimation and θ∆  is the vector of changes inθ . 

                                            

( )

(1)

( )
( ) (2)'( ) ,

( )

( )p

J

J
J

J

J

n

θ
θ

θ
θ θθ

θ

θ
θ

∂ 
 ∂
 

∂ 
∂  ∂= =  ∂

 
 ∂ 
 ∂ 

⋮

                                                (2.25)                                      

 

2 2 2

2 2 2

2

2 2 2

( ) ( ) ( )

(1) (1) (1) (2) (1) ( )

( ) ( ) ( )
( )

(2) (1) (2) (2) (2) ( )"( ) .

( ) ( ) ( )

( ) (1) ( ) (2) ( ) ( )

p

pT

p p p p

J J J

n

J J J
J

nJ

J J J

n n n n

θ θ θ
θ θ θ θ θ θ

θ θ θ
θ θ θ θ θ θ θθ

θ θ

θ θ θ
θ θ θ θ θ θ

 ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂= =  

∂ ∂  
 
 ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ ∂  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

              (2.26) 

 
 The necessary condition to minimize ( )J θ becomes 
 

                                                   0 0'( ) "( ) 0.J Jθ θ θ+ ∆ =                                                  (2.27) 
 

The solution of this equation gives an estimate for the vector of parameter changes, 

 

                                                   [ ] 1ˆ "( ) '( ).J Jθ θ θ−∆ = −                                                 (2.28) 
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We assumed that the Hessian is nonsingular. Since the first and second order derivative of 

the cost function are computed around a nominal parameter estimation 0θ , the updated 

parameter vector estimation θ̂  is computed by, 

 

                                                        0
ˆ .θ θ θ= + ∆                                                             (2.29) 

 
Because of the approximation in the Taylor series, it is necessary to repeat the estimation 

using the estimated vector θ̂  as the new nominal value 0θ . That is important because the 

outputs are nonlinear functions of the parameters, thus the cost function is more 

complicated than quadratic. In case of linear least-squares problems, which are discussed in 

detail in [1], the output depends linearly on the parameters. Thus, the cost function is a 

quadratic function of the parameters and the term given in (2.25) is an exact equality. 

Accordingly, the parameter estimates could be derived in one iteration. In this case, the 

repeated applications of the quadratic cost to the nonlinear function on the parameters are 

used to iteratively arrive to the solution. This iterative process will be arrived at when the 

convergence criteria are satisfied. Convergence criteria that have been used in practice are 

introduced later in this section.  

Minimization of the negative-log likelihood function for the filter-error problem is a very 

difficult optimization problem. Computing the second order derivatives in the Hessian 

matrix is an extremely time demanding task and is not robust enough. Hence, for practical 

applications the modified Newton-Raphson method is used. Details of this approach are 

introduced later. A block diagram of the filter-error method is shown below in Figure.2.1. 

 

Figure 2.1 Block diagram of filter-error method 
 

Simplification possibilities 
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In order to obtain simplifications of this optimization problem, several solutions are 

introduced in [1] and [2].  Comparisons and summaries of these simplifications are also 

outlined in [1]. The ML estimation algorithm for a time-invariant stochastic linear 

dynamic system can be simplified through replacing the Kalman filter by its steady-states 

form. 

Initial condition:  

                                  
[ ]
[ ][ ]{ }

0

0 0 0

(0) (0) ( ),

(0) (0) (0) ( ),
T

x E x x

P E x x x x P

θ

θ

= =

= − − =
                                  (2.30) 

Prediction:  

                                    
ˆ ˆ( 1) ( ) ( 1) ( ) ( ),

( 1) ,

d
x t i A x t i B u t

dt
i t t i t

θ θ −  = − + 

− ∆ ≤ ≤ ∆
                                   (2.31) 

 

 

Measurement update:  

                                           
1

ˆ ˆ( ) ( 1) ( ),

( ) ,T

x i i x i i K i

K PC θ −

= − +

=

v

BBBB

                                                      (2.32) 

 

where  

                                
( ) ( ) ( ),

ˆ( ) ( ) ( ) ( 1) ( ) ( ).

TC PC R

i z i C x i i D u i

θ θ θ
θ θ

+
= − − −v

B =B =B =B =
                                            (2.33) 

In this case, the steady-state form of the Riccati equation can be solved for P.  

                            1( ) ,T T T T
w wP P PC CPC R CP Q− = Φ − + Φ + Γ Γ                                 (2.34) 

Φ  and wΓ  can be written in the form: 

                                                   
1

,

( ) .

A t

A t
w w

e

A e I B

∆

− ∆

Φ =

 Γ = − 
                                               (2.35) 

This means that using a steady-state filter brings simplification to the equation for the first 

order derivatives of the cost function, because the partial derivatives of the cost function 

with respect the unknown parameter vector are calculated from a linear matrix equation. 

Henceforward, the estimation algorithm has some difficulties. Further simplification to 

algorithm can be obtained by recasting the vector of unknown parameters. The elements of 

K and BBBB  are included into the parameter vector, instead of the elements of Q and R. This 
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leads to a new cost function in which an approximation of the covariance matrix is used 

according to (2.36) that is derived in [1]. 

                                                     
1

1ˆ ( ) ( ).
N

T

i

i i
N =
∑B =B =B =B = v v                                                     (2.36) 

The resulting cost can be minimized by using a nonlinear optimization technique, such as 

the Newton-Raphson method as it was mentioned earlier. This is also an iterative 

optimization procedure that continues until selected convergence criteria are satisfied. In 

this case, the unknown parameters are estimated in subsets. First, the parameters contained 

in A,B,C,D and K held constant while the estimation of the parameters  in BBBB  is in progress, 

and then the parameters contained in BBBB  are held constant while the parameters in A,B,C,D 

and K are estimated. The estimate of the measurement covariance matrix can be derived 

from (2.32-33): 

                                                              ˆ ˆˆ ˆ( )R I CK= − B.B.B.B.                                                 (2.37) 

This method carries also many problems in the computation of wB  and Q in (2.32-33). 

Because of these difficulties in the simplified algorithms a third formulation was proposed. It 

is advantageous to recast the unknown parameters as the elements of A, B, wB , C, D, Q and 

BBBB .  

The resulting optimization algorithm has six steps: 

(i)   Assembling the system and covariance matrices A, B, wB , C, D, Q and R 

using the nominal parameter values; 

(ii) Computing the covariance matrix of the innovations (2.36); 

(iii) Estimating of the unknown parameters in the state and covariance matrices, 

using a nonlinear optimization technique; 

(iv) For ˆ=B BB BB BB B , compute K̂  and R̂  from (2.32) and (2.37); 

(v) Update the nominal values of the unknown parameters; 

(iv) Repeat steps 1-5 until convergence criteria are satisfied. 

 

The filter-error method is the most general estimation method for practical aircraft 

system identification problems because it allows the presence of both the measurement and 

process noise in the model. However, the main practical problem with this method is that 

there are a lot of parameters to be estimated which often leads to difficulties. 
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2.3.2 Properties of ML methods 

The accuracy of the estimation concerns itself with the properties of the estimates. 

Using the definitions introduced in [1]. 

(i) ML estimates of dynamic system parameters are asymptotically unbiased; 

ˆ( ) ,

.

E

N

θ θ→
→ ∞

 

(ii) ML estimates are consistent; 

ˆ ,

.N

θ θ→
→ ∞

 

(iii) ML estimates are asymptotically efficient; 

1ˆ( ) ,

,

Cov M

N

θ −→
→ ∞

 

where M the Fisher information matrix defined earlier by (2.8). 

 

This means that the main diagonal elements of the inverse information matrix 

provide the lower bounds on the parameter variances, named the Cramer-Rao 

bounds. These diagonal elements represent the achievable accuracy for the 

parameter estimates. 

 

(iv) ML estimates are asymptotically normal. The distributions of the estimates are 

asymptotical approaches a normal distribution with mean θ  and variance 1M − , 

namely θ̂  is 1( , )Mθ −
ℕ . 

 

2.3.3 Output-error method 

Further simplification can be achieved when ML estimation method is applied to a 

deterministic linear dynamic system. In this case, there is no process noise, and the system 

can be written in the form of 

                                                     

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ), 1,2,..., ,

x t A x t B u t

y t C x t D u t

z i y i v i i N

θ θ
θ θ

= +
= +
= + =

ɺ

                                (2.38) 

where v  is (0, )Rℕ and [ ]( ) ( ) ( ) .T
ijCov v i E v i v i Rδ = =   
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Furthermore, because of the lack of process noise, Q is zero and the state equations are 

deterministic. The Kalman gain K is also zero, so the Kalman filter can be replaced by a 

simple integration of the state equations. The innovations in the method become: 

                            ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1,2,..., .z i y i z i C x i D u i i Nθ θ− = − − =v =                   (2.39) 

Practically, they are equal to output-errors. The negative log-Likelihood function then can 

be written as: 

                           ( ) -1 0

1

1
; ( ) ( ) (2 ),

2 2 2

N
T

N
i

NnN
ln L Z i R i ln R lnθ π

=
− = + +   ∑v v                 (2.40) 

The two last terms of (2.40) can be dropped because they do not depend on the unknown 

parameter vector θ . The unknown parameters are elements of state matrices as can be seen 

above and the initial condition vector. Solving (2.40) with respect to R is done by 

differentiating with respect to R. The result then is set equal to zero and solved for R. That 

gives (2.41) which is similar to (2.36). 

                                                        
1

1ˆ ( ) ( ).
N

T

i

R i i
N =

= ∑v v                                                 (2.41) 

Generally, only the diagonal elements of the R matrix are estimated from (2.40) assuming 

that the measurement noises are uncorrelated with one another. For a given R̂  the cost 

function can be written as: 

                             [ ] [ ]1 1

1 1

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) .

2 2

N N
TT

i i

J i R i z i y i R z i y iθ − −

= =
= = − −∑ ∑v v           (2.42) 

This cost is minimized by using a relaxation technique in which first θ  held fixed while 

computing R̂  from (2.41), then minimizing the cost with respect to θ  for a given fixed R, 

where ˆR R= . These two steps are repeated until convergence criteria are satisfied. 

Optimization of the cost in (2.42) can be done using the Newton-Raphson method as 

discussed earlier. The first and second order derivative can be calculated by (2.25-26). The 

first order derivative has the following form: 

                                     1 1

1 1

( ) ( ) ( )ˆ ˆ( ) ( ),
T TN N

i i

J i y i
R i R i

θ
θ θ θ

− −

= =

∂ ∂ ∂= = −
∂ ∂ ∂∑ ∑

v
v v                          (2.43) 

where the elements of the 
( )J θ
θ

∂
∂

vector can be written as  

                                            1

1

( ) ( ) ˆ ( ), 1,2,... .
TN

p
ij j

J y i
R i j n

θ
θ θ

−

=

∂ ∂= − =
∂ ∂∑ v                           (2.44) 

The elements of the second order derivative then have the form of     
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2 2

1 1

1 1

( ) ( ) ( ) ( )ˆ ˆ ( ), , 1,2,...
TN N

p
i ij k j k j k

J y i y i y i
R R i j k n

θ
θ θ θ θ θ θ

− −

= =

∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂ ∂ ∂∑ ∑- v                (2.45) 

The term on the far right side can be neglected. Thus, the resulting optimization method is 

called Gauss-Newton method or modified Newton-Raphson method. This simplification is 

made for practical reasons. Obtaining the second-order derivative is computationally 

expensive. Furthermore, it is susceptible to numerical errors. The parameter vector change 

then can be written using the approximate second-order derivative: 

                              
1

1 1

1 10 0 0

( ) ( ) ( )ˆ ˆ ˆ ( ) ,
TN N

i i

y i y i y i
R R iθ

θ θ θ

−
− −

= =

   ∂ ∂ ∂∆ =    ∂ ∂ ∂   
∑ ∑ v                                (2.46) 

 where 
y

θ
∂
∂

 is an 0 pn n×  matrix called the output sensitivity matrix and its elements are 

called the output sensitivities. The elements of this matrix quantify the changes in the 

outputs due to changes in the parameters. 1R̂−  is usually diagonal. According to (2.46), it 

can be seen that output sensitivities must be linearly independent and nonzero for a good 

matrix inversion. When this condition is held, each model parameter has a unique and 

significant impact on the model outputs. Henceforward, in case when the approximation for 

the second-order derivative of the cost function is used, the Fisher information matrix can 

be written as 

                                     
2

1

1

ln ( , ) ( ) ( )ˆ( ) .
TN

N
T

i

L Z y i y i
M E R

θθ
θ θ θ θ

−

=

 ∂ ∂ ∂= = ∂ ∂ ∂ ∂ 
∑                      (2.47) 

Then the ML estimator has the form of: 

                                                      1 0
0 0

0

( )ˆ ( ) .
J

M
θθ θ θ
θ

−  ∂= −  ∂ 
                                       (2.48) 

The parameter covariance matrix satisfies the Cramer-Rao inequality 

                                                          1ˆ( ) ( ) ,Cov Mθ θ −≥                                                 (2.49) 

which means that the inverse of the Fisher information matrix gives the lower bound for the 

parameter covariance matrix. A block diagram of the output-error method can be seen in 

Fig 2.2. 
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Figure 2.2 Block diagram of output-error method 
 

Convergence criteria, computing sensitivities and nearly singular information matrix  

It was shown in [1] that the practical application of ML estimator to flight data 

sometimes leads difficulties. For instance, the dependence in the likelihood function can be 

far from quadratic. Furthermore, the information matrix can be singular or nearly singular. 

The optimization method for the output-error method discussed earlier can be summarized 

as: 

                                               

0

1
0 0

1
0

1
0 0 0

1

1
0 0

1

ˆ ,

( ) ( ),

ˆ( ) ( ),

ˆ( ) ( , ) ( , ) ,

ˆ( ) ( , ) ( ) ,

( , )
( ) ,

ˆ( ) ( ) ( , ).

N
T

i

N
T

i

j

k

M g

Cov M

M S i R S i

g S i R i

y i
S i

i z i y i

θ θ θ
θ θ θ

θ θ

θ θ θ

θ θ

θ
θ

θ

−

−

−

=

−

=

= + ∆

∆ = −

≥

 =  

 =  

∂ 
=  ∂ 

= −

∑

∑ v

v

                                 (2.50) 

where the information matrix M has dimensions p pn n×  and the sensitivity matrix ( )S i has 

dimensions 0 pn n× . In order to reach at the global maximum of the likelihood function the 

modified Newton-Raphson method is used, but the nominal parameter value of θ  must be 

near to the global minimum. The modified Newton-Raphson method is based on this 

assumption. If the nominal parameter vector is far from the optimal solution, then the result 

will be either convergence to a local minimum, or divergence. There are several methods to 



 
 

 20 

obtain excellent starting values; for instance, regression methods or in particular cases the 

subspace identification method. The applicability of the subspace identification methods 

computing a nominal parameter vector is under investigation. Furthermore, there is a 

method that can be used to eliminate the need of a perfect starting value. This method will 

be discussed later in this chapter. When there are problems with model structure, model 

structure determination methods can be used not only to identify an adequate model 

structure, but also to determine a good starting value. Also, it is necessary to have an initial 

value for R  that can be obtained using 0θ  and (2.41). This optimization is finished when 

convergence criteria are satisfied. There are criteria for both θ  and R̂ .  

The criteria can be: 

(i) Absolute value of the elements of θ∆  are sufficiently small; 

(ii) Changes in ( )J θ  are sufficiently small; 

(iii) The absolute values of the elements of the cost derivative are close to zero; 

(iv) Changes in the elements of R̂  are sufficiently small. 

Some convergence criteria that worked well for aircraft parameter estimation problems in 

[1] are introduced here. 

                                              5
1( ) ( ) 1 10 , 1,2,... ,j k j k pj nθ θ −

−− < × =                          (2.51a) 

or 

                                                                
1

1

ˆ ˆ
0.001,

ˆ
k k

k

θ θ

θ
−

−

−
<                                         (2.51b) 

where k  denotes the kth  iteration and  denotes the Euclidien norm. This can also be 

written: 

                                                

1

1

1
0,

1

( ) ( )
0.001,

( )

ˆ ˆ( ) ( )
0.05, 1,2,...

ˆ( )

k k

k

jj k jj k

jj k

J J

J

r r
j n

r

θ θ
θ

−

−

−

−

− <

−
< =

                             (2.52) 

where ĵjr  denotes the estimate of the jth  diagonal element of R̂ . Furthermore, the 

magnitude of the changes can be varied by directly applying a multiplicative term in θ∆ : 

                                                        0 0
ˆ ( ) ( ).cM gθ θ θ∆ = −                                              (2.52) 

Two methods can be used to compute the elements of the sensitivity matrix. These two 

methods are the analytical approach and the numerical approach. 
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The analytical approach uses the output equations of the system with respect to the 

unknown parameters , 1,2,...j pj nθ = . In case of the linear system given by (2.38) this can be 

written as: 

                                    , 1,2,... .p
j j j j

y x C D
C x u j n

θ θ θ θ
∂ ∂ ∂ ∂= + + =
∂ ∂ ∂ ∂

                              (2.53) 

The states can be derived from the state equations of the dynamic system: 

                                                                     
0

,

(0).

x Ax Bu

x x

= +
=
ɺ

                                            (2.54) 

The state sensitivities are computed by solving the state sensitivity equations, which are 

obtained by differentiating the state equations with respect to the unknown parameters: 

                                   , 1,2,... .p
j j j j

d x x A B
A x u j n

dt θ θ θ θ
 ∂ ∂ ∂ ∂= + + =  ∂ ∂ ∂ ∂ 

                        (2.55) 

In the numerical approach, an approximation is used to compute the output sensitivities: 

                                          0 0( ) ( )
, 1,2,... .p

j j

y yy
j n

θ δθ θ
θ δθ

+ −∂ = =
∂

                              (2.56) 

or 

                                         0 0( ) ( )
, 1,2,... .

2
p

j j

y yy
j n

θ δθ θ δθ
θ δθ

+ − −∂ = =
∂

                        (2.57) 

where jθ  denotes a perturbation vector for parameter jθ  and jδθ  is scalar magnitude of 

jθ . The first equation (2.56) implements forward finite differences and the second (2.57) 

implements central finite differences. Forward finite differences requires ( 1)pn +  steps, 

whereas the central finite differences requires (2 )pn  steps. The sensitivities must be 

calculated for every iteration of the modified Newton-Raphson method.  

 As was mentioned earlier, the information matrix can be singular. In other words, it 

can be ill-conditioned. There are three frequent reasons for an ill-conditioned information 

matrix: 

(i)  There are too many unknown parameters in the information matrix. 

(ii)   There is misspecification in the model. Changes in one or more model 

parameters produce nearly equivalent change in outputs, or one or more 

model parameter have little or no effect on outputs. 

(iii)  There is insufficient information in the data. 
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 Hence, there are two main consequences about a nearly singular information 

matrix. 

(iv)  The information matrix M can be negative definite that causes a cost increase 

jθ  for the modified Newton-Raphson step.  

(v)   The step size θ∆  can be large in one or more directions. 

The latter problem can be seen from the decomposition of the inverse M matrix as follows: 

                                                           1

1

1
,

pn
T

j j
i j

M t t
λ

−

=
=∑                                                 (2.58a) 

                                                           
1ˆ ( ) ,

j

T
j jt g tλθ

λ
∆ = −                                             (2.58b) 

where jλ  are the eigenvalues of M corresponding to eigenvectors jt . Then the next step in 

the modified Newton-Raphson method can be derived by combining (2.58b) with the second 

equation in (2.50). 

Thus, the step will be large for small jλ  in a direction of jt . The parameter step θ∆  is 

therefore dominated by inappropriate information. There are several techniques that can be 

used to address this problem. Three of them are introduced here. 

Rank deficient method 

 This method is based on the reduced inverse of M applying the singular value 

decomposition (SVD). 

                                                                   TM UDT=                                                    (2.59) 

The reduced-order inverse then can be computed as 

                          

1

2

1

1

1

1
0

1
.

1

0

0

0

p

p

n m
T T

j j
j j

n m

M T U t u

µ

µ

µ
µ

−
−

=

−

 
 
 
 
 
 
 

= = 
 
 
 
 
 
 
  

∑
⋱

⋱

             (2.60) 

where jt  and  ju  are the jth  column of T and U matrices, respectively. The singular values 

are arranged from the largest to smallest in magnitude. 
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                                           1 2 1... ...
p p pn m n m nµ µ µ µ µ− − +≥ ≥ ≥ ≥ ≥ ≥                               (2.61) 

The smallest m singular values are then dropped. The selection criteria to drop the singular 

values is 

                                                                     
max

,j N
µ

ε
µ

<                                                  (2.62) 

where N is the number of data points, and ε  is the computing machine precision. The rank 

of the reduced-order inverse of M matrix is pn m− . 

Levenberg-Marquardt method 

 This method augments the information matrix to improve its conditioning and 

produce a reasonable inverse. The augmentation term can be written as 

                                                               1 1
0( ) ,M M kA− −= +                                           (2.63) 

here 0M  is the original information matrix, k  is a positive nonzero scalar parameter and A 

is positive definite matrix. Generally, A is chosen as the identity matrix, 

                                                                1 1
0( ) .M M kI− −= +                                          (2.64) 

The scalar parameter k can be obtained by an iterative procedure. An initial value for k is 

recommended, as 0.01k = . 

Bayes-like method 

 This method improves the conditioning of the information matrix by combining the 

measured data with prior estimates of some or all of the parameters in the model. The 

resulting cost function is similar to that for the Bayesian estimator [1]. 

                                    1 1

1

1 1
( ) ( ) (i) + ( ) ( ),

2 2

N
T T

p p p
i

J i Rθ θ θ θ θ− −

=
= − ∑ −∑v v                     (2.65) 

where pθ  is the vector containing the prior parameter values, and p∑  is a positive 

semidefinite covariance matrix that represents the confidence in the parameters of pθ . θ∆  

then can be computed by using the modified Newton-Raphson method: 

                                            1 1 1
0 0

ˆ ( ( ) ) ( ) ,p p pM gθ θ θ θ− − − ∆ = − +∑ +∑ −                          (2.66) 

in cases when the information matrix is nearly singular. In other words, it is singular only 

at certain points in the progression towards the global optimum. In these cases, the methods 

discussed above can be used temporarily. The rank deficiency method is the easiest to use in 

this way. Computing the inverse of the information matrix is always done by calculating the 

SVD. The singular value ratios are checked against the criteria (2.62). If any singular values 
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are too small, their corresponding terms will be dropped from the inverse according to 

(2.60-61). 
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2.4 Frequency domain ML methods 

Switching to frequency domain has many advantages. Several methods for data 

analysis and system modeling can be formulated in frequency domain. Furthermore, 

frequency domain analysis requires a smaller number of data points and the results can be 

applied directly to control system design. The basis for these methods is the finite Fourier 

transform that is the procedure for transforming time-domain data to frequency domain. 

Frequency domain ML methods are sensitive for transforming errors. Any errors in the 

transformation affect the accuracy of the frequency domain data. For parametric modeling 

in the frequency domain, the Fisher model is considered similarly to time-domain analysis. 

The Fisher model has the following form: 

(i)  ( )z h θ= +ɶ ɶɶ v ; 

(ii)  θ  is a vector of unknown constant parameters; 

(iii) ɶv  is a random noise sequence with probability density p( )ɶv . 

 

where hɶ  is a known complex vector function, xɶ  and zɶ  are functions of the transformed 

states and controls, respectively. The measurement vector zɶ  is the Fourier transform of the 

time-domain data vector z . In the following section, the transformation from time-domain 

to frequency domain is presented; then, the ML estimator for linear dynamic model with 

process noise is introduced followed by the frequency domain output-error method where 

there is no process noise. Finally, equation-error method in the frequency domain is 

presented. 

2.4.1Transforming between time-domain and frequency domain 

The finite Fourier transform was considered as 

                                                        2

0

( ) ( ) ,
T

j ftx f x t e dtπ−= ∫ɶ                                             (2.67) 

and it can be approximated by  

                                                    
1

2

0

( ) ( ) ,
N

j fi t

i

x f t x i e π
−

− ∆

=
≈ ∆ ∑ɶ                                            (2.68) 

Another approximation for the finite Fourier transform can be given by applying discrete 

frequencies: 
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1

(2 / )

0

( ) ( ) , 0,1,2,..., 1
N

j k N i

i

x f t x i e k Nπ
−

−

=
≈ ∆ = −∑ɶ                     (2.69) 

The summation in (2.69) is the discrete Fourier transform ( )X k , also the finite Fourier 

transform can be approximated by multiplying the discrete Fourier transform by the 

sampling interval t∆ . 

                                                                   ( ) ( ),x k tX k= ∆ɶ                                            (2.70) 

where 

                                    
1

(2 / )

0

( ) ( ) , 0,1,2,..., 1
N

j k N i

i

X k x i e k Nπ
−

−

=
= = −∑                            (2.71) 

In case of flight data analysis, there are two important disadvantages to using the 

approximation mentioned above: 

(i) The spacing of the discrete frequencies for the discrete Fourier transform is equal to 

the reciprocal of the length of data sequence. Hence, the frequencies are fixed at 

values defined by N  and t∆ . To achieve an efficient and fast Fourier transformation, 

this particular selection of frequencies has to be applied. Which means, that the 

frequencies cannot be chosen arbitrarily. 

(ii)  Hence, the approximation of the finite Fourier transform is a zeroth-order Euler 

approximation of the integrand [ ]( ) ( ) cos( ) sin( )j tx t e x t t j tω ω ω− = − . This integrand 

oscillates as the time variable t  changes causing inaccuracies in the approximation. 

The oscillation increases as the frequency increases. There is the same problem when 

t∆ gets larger. 

It can be seen that using the fast Fourier transformation causes inaccuracies as the data 

sequence decreases, leading to a loss of detail in the frequency domain. Furthermore, modal 

frequencies for a rigid-body dynamics of a full-scale aircraft are usually below 2Hz. For such 

a small frequency band, most of the processing in the transformation rests outside the range 

of interest.  

To address these problems in [1], the defining integrand of the Fourier transformation 

given by (2.67) is approximated by using an approach based on the chirp z-transform, where 

the frequencies can be chosen arbitrarily regardless of the length of the data sequence. 

Applying this method for the frequencies of the frequency band of interest, a high accuracy 

approximation of the Fourier transform can be achieved with excellent computational 

efficiency. 

The discrete Fourier transformation in (2.70-71) can be written as 
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1

0

( ) ( ) ,
N

ki

i

X k x i AW
−

−

=
=∑                                         (2.72) 

where 

                                                         
2

1, .
j

NA W e
π 

 
 = =                                                   (2.73) 

kAW for 0,1,2,..., 1k N= − represents equally spaced points on the unit circle in the 

complex plane. Hence, the kAW is a complex transform variable z , the selection given in 

(2.73) is a z-transform of the data in the time-domain ( ), 0,1,...,x i i N= . A  and W  can be 

changed to achieve different contours in the complex plane. This method is called the chirp 

z-transform. In fact, angular steps are determined by W , and the value of A  can be selected 

as a starting point in the complex plane. So the chirp z-transform is a discrete Fourier 

transform with arbitrarily selectable frequency range and resolution. 

When the contour in the complex plane is along the unit circle, W  and A  have the forms of 

                                                                      
0 ,

,

j

j

A e

W e

θ

θ∆

=
=

                                                  (2.74) 

where 0 0 / tω θ= ∆  is the lower limit of the frequency band in the chirp z-transform in rad/s 

and / tω θ∆ = ∆ ∆  is the frequency resolution. Values of 0θ  and θ∆  can be chosen 

arbitrarily. The only limitations for the resolution and the lower limit is both must be in the 

range [ ]0, / tπ ∆ , where / tπ ∆  is the Nyquist angular frequency in rad/s. This chirp z-

transform can be used to calculate the finite Fourier transform when the selected 

frequencies are regularly spaced in the frequency range of interest. In the case of aircraft 

system identification, evenly spreading the frequencies is the preferred approach to capture 

all important features in the frequency domain.  

 The chip z-transform evaluated at M arbitrarily frequencies kf  in Hz, where the 

selected frequency range is 0 k Nf f≤ ≤  yields 

                                                    

1
2

0

( ) ( ) ,

0 , 0,1,2,..., 1

k

N
j f i

i

k N

X k x i e

f f k M

π
−

−

=

=

≤ ≤ = −

∑                            (2.75) 

The number of frequencies can be chosen with the limitation that M cannot be larger then 

2N to avoid numerical problems: 

                                                         2 .k kt f tθ ω π= ∆ = ∆                                                 (2.76) 

The expression for the high-accuracy calculation can be written as 
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{

]}

0 1 2 3

/ * *
0 1

* *
2 3

( ) ( ) ( )

( ) (0) ( ) (1) ( ) (2) ( ) (3)

( ) ( 1) ( ) ( 2)

( ) ( 3) ( ) ( 4) ,

j T t

x t W X k

x x x x

e x N x N

x N x N

θ

θ θ
γ θ γ θ γ θ γ θ

γ θ γ θ

γ θ γ θ

∆

≈ ∆
+ + + +

+ − + −

+ − + −

ɶ

                              (2.77) 

where 0 1 2( ), ( ), ( ), ( )W θ γ θ γ θ γ θ and 3( )γ θ  are the weights calculated by analytically 

evaluating the finite Fourier transform integral in (2.77) using cubic Lagrange interpolation 

applied to the time-domain data. According to [1], the resulting expressions for the 

weights have the form: 
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                          (2.78a) 
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                 (2.78b) 

Furthermore, it is advantageous to select small distance between frequencies in the 

frequency range of interest, to ensure that all details of the time-domain data are captured. 

The terms to compute the finite Fourier transform applying the chirp z-transform have 

the form: 

                                                         0 , 0,1,2,..., 1kf f k f k M= + ∆ = −                          (2.79) 

                                                                    1 0( )
.

( 1)

f f
f

M

−∆ =
−

                                            (2.80) 

The steps of the procedure now can be written 

(i) Choose three of the four values in (2.80) and then compute the remaining 

value. This determines the frequencies for the analysis. 
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(ii) Calculate the M values of θ  from (2.76). 

(iii) Use the chirp z-transform to compute the discrete Fourier transform for 

the selected frequencies applying (2.72-73). 

(iv) Compute the high accuracy finite Fourier transform by using (2.77-78) 

2.4.2 Frequency domain ML estimator for linear dynamic model 

In order to derive frequency domain ML methods, it is first necessary to transform the 

linear dynamic model to the frequency domain. Model equations for linear continuous-time 

dynamic system with process noise and discrete-time measurements have the form: 

                                [ ]
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( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ), ( ),
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                         (2.86) 

where noises ( )w t  and ( )v i  are assumed to be independent and white. They have the 

following properties: 

                                                

[ ]
[ ]

( ) 0,

( ) 0,

( ) ( ) ( ),

( ) ( ) .

T
j i

T
ij

E w t

E v i

E w t w t Q t t

E v i v i R

δ

δ

=

=

  = − 

  = 

                                            (2.87) 

The unknown parameter vector θ  occurs in the system and covariance matrices. As was 

shown in the previous section, estimation of all of the parameters is extremely difficult. This 

problem can be simplified by replacing the Kalman filter with its steady-state version. Using 

terms from (2.14) and (2.30-33), the modified filter equations can be written in the form 

                       
ˆ ˆ( 1) ( ) ( 1) ( ) ( ), ( 1) ,

ˆ ˆ( ) ( 1) ( )

d
x t i A x t i B u t i t t i t

dt
x i i x i i K (i),

θ θ

θ

 −  = − + − ∆ ≤ ≤ ∆ 

= − + v
                 (2.88) 

where the innovations 

                                                   ˆ( 1) ( ),(i)= z(i) - Cx i i Du i− −v                                       (2.89) 

with  
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                                              (2.90) 
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The elements of the unknown parameter vector are the elements of A,B,C,D,K and B. Then, 

the equations are written in the form of their Fourier series expansion. The components of 

( )x i  can be written by (2.78) as 

                                            
1

(2 / )

0

( ) ( ) , 0,1,2,... 1
N

j k N i

i

x k t x i e k Nπ
−

−

=
= ∆ = −∑ɶ                     (2.91) 

As was mentioned earlier, the finite Fourier transform can be approximated by (2.91) and 

for practical applications it can be replaced by a high-accuracy calculation presented in the 

next chapter. Dynamic equations now can be written as 

                                          ( ) ( ) ( ) ( ) ( ) ( ),kj x k A x k B u k K kω θ θ= + + ɶɶ ɶ ɶ v                             (2.92) 

or 
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where kω  is the kth frequency. The transformed innovations ( )kɶv  are uncorrelated 

Gaussian random variables. 
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where vvS  is a real matrix with diagonal elements equal to the power spectral densities of 

the elements of ( )iv , and †(i)ɶv  is the complex conjugate transpose of ( )iv . The left side of 

(2.93) requires that the trend and bias term be removed from the sequence ( )x t , since 
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It can be written from (2.93) 
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                        (2.96) 

where G1 and G2 are the system transfer matrices. 
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                         (2.97) 

According to the Kalman filter representation in (2.88) is invertible; thus G2 is nonsingular, 

and the innovations can be written as: 
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                                        1 1
2 2 1( , ) ( ) ( , ) ( , ) ( ),(k)= G k z k G k G k u kθ θ θ− −−ɶ ɶɶv                      (2.98) 

In order to develop the likelihood function, a NV  vector that consists of all innovations up to 

and including the frequency for which 1k N= −  is introduced. 

                                                [ ](0) (1) ... ( 1) ,NV N= −ɶ ɶ ɶv v v                                    (2.99) 

( )kɶv  has a probability density ( )p ɶɶ v , then it can be written applying the definition of 

probability densities: 

                                                 1 1( ) ( 1) ( ).N N Np V p N V p V− −=  −  ɶv                               (2.100) 

Repeated use of (2.100) leads to the expression of the likelihood function: 
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The distribution of ( )kɶv  is Gaussian, thus the distribution of kV  is also Gaussian. Hence, 

the probability density for this complex Gaussian vector is 
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Combining (2.101) and (2.102), the negative log-likelihood function ( ; )NL V θ  is 
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The term on the far right side can be neglected, because it is unaffected by θ , the cost 

function to be minimized then can be written as 
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The ML parameter vector estimate is the value of θ  that minimizes the (2.104). The 

estimate of ˆ
vvS  has the form of 
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where θ̂  is an estimate of the parameter vector θ . The initial state of ˆ
vvS  can be computed 

by using 0θ  that is the nominal starting value of the unknown parameter vector θ . The 

estimates of the remaining parts can be done by using the modified Newton-Raphson 

method. For a given ˆ
vvS  the cost function is 
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that is minimized by iteratively computing 

                                                                 0
ˆ ,θ θ θ= + ∆                                                 (2.107) 

where the parameter vector update is 

                                                          1
0

ˆ ( ) '( ),M Jθ θ θ−∆ = −                                          (2.108) 

and M is the Fisher information matrix: 
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Since, θ̂∆  is a vector with only real elements, and the negative log-likelihood function is 

also real, the first and second-order derivatives of the cost function ( )J θ  are also real: 
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The elements of both cost derivatives can be expressed as 
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where the estimates of the input spectral density matrix and the cross spectral density 

matrix, are respectively  
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 The final estimates have the same properties given in section 2.3.2. 
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2.4.3 Output-error method 

As was done in the time-domain analysis, the ML in the frequency domain can be 

simplified when there is no process noise. Hence, the resulting system is deterministic. 
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where  
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and vvS  the spectral density matrix of ( )iv . The innovations are reduced to the output-

errors 

                                       ( , ) ( ) ( , ) ( ) ( , ) ( ),k z k y k z k G k u kθ θ θ= − = −ɶ ɶ ɶɶ ɶv                        (2.117) 

The negative log-likelihood function and ˆ
vvS  then can be written 
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In order to estimate the unknown parameters, the modified Newton-Raphson method is 

used. The elements of the first and second-order derivatives are computed by simplifying 

(2.112) and (2.113), where G2 = I and G1 = G: 
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Estimates of the input spectral density matrix and the cross spectral density matrix have 

the same form given in (2.114). The negative log-likelihood function, its derivative and the 

information matrix can be expressed as 
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where ( )S k  is the output sensitivity matrix with dimensions 0 pn n×  given by 
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                                          (2.125) 

The modified Newton-Raphson step is given by (2.107) and (2.108).  

When the measured data is in the form of frequency response functions, the output-error 

parameter estimation algorithm can be easily modified. In this particular case, the cost 

function can be written 

               [ ] [ ]
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†† 1
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N

E vv E
k

J N u k G k G k S G k G k u kθ θ θ
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=
= − −∑ ɶ ɶ                   (2.126) 

where ( , )G k θ  is matrix with transfer functions as elements, and ( )EG k  is a matrix of 

experimentally determined frequency responses. Cost functions in (2.122) or (2.126) then 

can be minimized with respect to unknown parameter vector θ . When the dynamic system 

has only one input, the output-error cost function can be written as 

                   [ ] [ ]
1

†* 1

0

( ) ( ) ( ) ( , ) ( ) ( , ) ( ),
N

E vv E
k

J N u k G k G k S G k G k u kθ θ θ
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−

=
= − −∑ ɶ ɶ              (2.127) 

In order to optimize the cost functions, it is not necessary to include all of the frequencies. 

In the next chapter, a method that allows using arbitrary frequencies is introduced. This 

method is called the high-accuracy finite Fourier transform. Using arbitrary frequencies, 

automatically discards some of the power in the time-domain data. Generally, this is 

equivalent to a zero-lag, low-pass filtering procedure, which improves the convergence and 

accuracy of the parameter estimates. The weighting matrix in the cost function is the 

spectral density matrix, which is ideally estimated as a function of frequency index k. 

Nevertheless, in most practical cases, the frequencies that correspond to the bandwidth of 

the dynamic system modes are used; which is also the bandwidth where most of the residual 

power resides in case of colored residuals. Hence, using a constant vvS  over frequencies used 

in the analysis is a good approximation of the spectral density of the residual power. 

Accordingly, the assumed noise model matches well to reality, and it is not necessary to 



 
 

 35 

compute the estimated error bounds for colored residuals when parameter estimates are 

done in the frequency domain.  

 

3  Identification methods applied to simulated flight data  
 

In this chapter, identification methods presented in the earlier parts are used to 

estimate non-dimensional aerodynamic parameters of an aircraft. In order to verify our 

experiments, the methods are used in the case of measured data gathered virtually in 

MATLAB/Simulink environment.  

 

3.1   Outline of aircraft modeling 

In this subsection, necessary information about aircraft modeling is given based 

mainly on [7]. Similarly to [4], the FDC-1.2 Simulink Toolbox [7] was used for the 

simulations. In this toolbox, a well parameterized nonlinear dynamic model of the De 

Havilland DHC-2 Beaver can be found. The aircraft is depicted on Figure 3.1.  

 

 
Figure 3.1 De Havilland DHC-2 Beaver 

 
This work, does not deal how to build a nonlinear dynamic model for an aircraft; 

therefore the results and notations as in [4] and [5] are used to describe aerodynamic 

parameters, angular rates/velocities/accelerations and the orientation of the aircraft. The 

state and the input vector of the Beaver are 

 

                                 [ ]T

e ex V p q r x y Hα β ψ θ ϕ=                          (3.1) 
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T

e a r fu δ δ δ δ =                                             (3.2) 

 
An explication of the elements of the state and input vector can be found in the Table 3.1.  
 

Table 3.1 Description of the elements of the state and input vector 

State Description Dimension 
V absolute velocity m/s 
α  angle of attack rad 
β  sideslip angle rad 
p  roll rate rad/s 
q  pitch rate rad/s 
r  yaw rate rad/s 

ψ  Euler heading angle rad 
θ  Euler pitch angle rad 
ϕ  Euler roll angle rad 

ex  x coord. in NED 
frame 

m 

ey  y coord. in NED 
frame 

m 

H  altitude m 

eδ  elevator deflection rad 

aδ  aileron deflection rad 

rδ  rudder deflection rad 

fδ  flaperon deflection rad 

 
In aircraft control and simulation theory, several coordinate frames are used. 

Generally, measured data are gathered in the Aircraft Body Coordinate system (ABC) or in 

the Wind-axis coordinate system. In case of both, the origin is the center of gravity of the 

aircraft. The ABC and the Wind frame can be seen in Figure 3.2 and 3.3, respectively.  It 

can be seen on Figure 3.3 that the angle of attack (α ), the sideslip angle ( β ) and the 

absolute velocity are considered in the Wind-axis coordinate system. Furthermore, the 

angular rates ( p , q , r ), the Euler angles (ϕ ,θ ,ψ ) are considered in the ABC frame. X,Y,Z 

are the body-axis components of aerodynamic force acting on the aircraft and L,M,N are the 

body axis components of aerodynamic moment acting on the aircraft (Figure 3.2). The input 

vector contains the deflections of the actuators (Figure 3.3). The position of the aircraft is 

considered in the NED (North-East-Down) coordinate system; in which the origin is on the 

surface of the Earth, the x axis points to north, the y axis points to east and the z axis points 

to down. To build the nonlinear dynamic model of an aircraft, kinematic, aerodynamic, 

moment and navigational equations are used [5]. Furthermore, the given model can be 

divided into two decoupled subsets [5]. One of them describes the longitudinal while the 
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other one describes the lateral motion. The longitudinal state variables are the angle of 

attack (α ), absolute velocity (V), pitch rate ( q ) and the Euler pitch angle (θ ).The variables 

describing the lateral motion are the sideslip angle ( β ), roll rate ( p ), yaw rate ( r ), Euler 

roll angle (ϕ ) and Euler heading angle (ψ ).  

In the following, non-dimensional aerodynamic parameters will be identified. So a 

particular focus is placed on the aerodynamic force equation. Aerodynamic forces and 

moments depend always on the flight condition. In the case of Beaver aircraft, it has the 

following form 

                                                  1( , , )aero aeroF dp x x u= ɺ                                              (3.3) 

where aeroF is a vector of aerodynamic forces, 1p is a polynomial vector-functions containing 

the non-dimensional aerodynamic coefficients and d converts the non-dimensional 

coefficients to dimensional forces and moments. Note the polynomial function depends 

on xɺ too. It is only taken into account by βɺ  in the case of aerodynamic side force coefficient 

( aY ). 1p  describes the aerodynamic forces and moment coefficients in ABC. It has the 

following form: 
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Coefficients in the equations above are constant in the entire modeled region. Real values 

are given in the next subsection. 
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Figure 3.2 The ABC coordinate frame 

 

 
Figure 3.3 The Wind-axis coordinate frame 

 
 

 
Figure 3.4 The actuators 
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3.2   Virtual test flight 

In order to estimate the values of the coefficients in 1p , necessary data sequences are 

obtained by virtual test flight using FDC 1.2 Toolbox [7] in MATLAB/Simulink 

environment. In this work, only the lateral coefficients are estimated. Hence, only the 

second, fourth and the last row of (3.4) are used. In the previous work [4], data sequences 

were gathered by simulation. However for this work I executed a new virtual test flight 

which was a lateral maneuver. For the simulation, the nonlinear dynamic model of the 

Beaver aircraft was used. Table 3.2 contains the applied trim values. Gathered simulated 

data is depicted on Figure 3.5.  

 

Figure 3.5 Measured input and output variables 
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Table 3.2 Applied trim values in the virtual test flight 

State Trim value 

V 45  m/s 

α  0.14724 rad 

β  -0.011814 rad 

p  -0.009.7782 rad/s 

q  0.032429 rad/s 

r  0.080425 rad/s  

ϕ  0 rad 

θ  0.11229 rad 

ψ  0.38328 rad 

ex  0 m 

ey  0 m 

H 1000 m 

As was mentioned earlier, this work is a continuation of a previous and similar work 

[4] that was prepared for the Student Science Conference in 2010. In that work, regression 

techniques and equation-error method were used to estimate the aerodynamic coefficients. 

So the equations in (3.4) were used directly to perform a one-step least squares estimation. 

Here, least squares estimates are used to obtain decent initial values for recursive maximum 

likelihood output-error methods, both in frequency and time domain. Note that in the case 

of maximum likelihood output-error methods linear dynamic equations (3.5) are used 

instead of the entire nonlinear model given in (3.4). This reduced model came from [1] and 

[5].  
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                                        0
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where values with subscript 0 are constants denoting the trim values from Table 3.2. 

Furthermore, , ,xz x zI I I  are inertia quantities, , ,S b m  are the wing reference area, the 

wingspan and the mass of the aircraft, respectively. ya is the acceleration along the y axis. 

All of the dynamic equations (3.5) include a bias parameter. These are to estimate the 

constant terms in (3.4). Note that all of the variables on the left side of the equations are 

measured quantities. Equations (3.5) and (3.6) can then be written in state space form: 
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The parameter vector to be estimated has the following form: 
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3.3  Simulation results 

Firstly, time domain output-error method is used to estimate the lateral aerodynamic 

coefficients. In the case of output-error method, all of the coefficients are estimated at the 

same time. Note that these algorithms depend highly on the initial parameter values. 

Several experiments were made using different starting values; most of them diverged. 

Hence, results of the equation-error method were used as a starting value. Modified 

Newton-Raphson method was used to minimize the cost function in (2.42). The estimated 

parameter covariance matrix was computed from (2.50) as the Cramer-Rao lower bound 

1
0

ˆ( ) ( ).Cov Mθ θ−≥ Note that the residuals are assumed to be white. The solution took 53 

Newton-Raphson iterations. Parameter estimation results are written in Table 3.3-3.5. 

Time domain output-error model fit to measured data is shown in Figure 3.6. It can be seen 

that a quite good prediction is obtained by using the estimated parameters. 

Secondly, estimation of the same lateral non-dimensional aerodynamic parameters is 

done by applying frequency domain output-error method as well. Similarly, results from 

equation-error linear regression [1] done in frequency domain were used as initial 

parameters values. All relevant time series were transformed into frequency domain using 

the high-accuracy finite Fourier transformation described in subsection 2.4.1 with the 

frequency vector [ ]0.10 0.12 0.14 ... 1.5
T

f Hz= . All significant spectral components 

caught by applying this frequency range [1]. 

 

Figure 3.6 Time domain output-error model (red) fit measured data (blue) 
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The same linear dynamic model (3.6) was used to estimate the non-dimensional 

aerodynamic coefficients. The cost gradient and the information matrix were computed 

using (2.123) and (2.124), respectively. Parameter estimation results are also written in 

Table 3.3-3.5. It can be seen on Figure 3.7 that predicted outputs match quite well to the 

measured data. 

 

Figure 3.7 Frequency domain output-error model (red) fit measured data (blue) 

 
In Table 3.3-3.5 parameter estimation results are listed. In the first column, 

equation-error least squares estimates, based on (3.4) directly, can be found. The second 

column contains parameter estimation results applying the same method as in the first 

column. However, a reduced linear dynamic model (3.5) was applied. These values were 

used as initial parameter values in both time and frequency domain output-error method. 

Third and fourth columns show the results obtained by applying time and frequency domain 

output-error method, respectively. Real values of the coefficients are written in the last 

column. Note that in the case of frequency domain methods, constant parameters cannot be 

estimated because biases and trends were removed before Fourier transformation. The 

constant parameters and other biases must be estimated in time domain. Furthermore, it can 

be seen that the estimation procedures have to be developed in order to obtain more precise 

parameter estimates. Note that the use of the identification of an aircraft with known 

parameters is a verification procedure of the applied methods. In the case of real flight data 

there will also be measurement noises and any other disturbances which make the 

estimation procedure more complex. 
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Table 3.3 Parameter estimation results for YC   

 
YC  Parameter 

Parameter 
Nonlinear  

model, LS 

Linear model,  

LS 

Output-error  

in time domain 

Output-error 
in freq. 
domain 

Real value 

constant -0.0142 -0.0136 -0.0016 - -0,002226 

β  -0.7653 -0.7497 -0.7185 -0.7166 -0,7678 

pb

2V
 

-0.1092 - - - 
-0,1240 

rb

2V
 

0.3809 

 

0.3662 

 

0.4614 0.3761 
0,3666 

δa  -0.0280 - - - -0,02956 

δr  0.0601 0.2035 0.2094 0.1502 0,1158 

δ αr  0.8853 - - - 0,5238 

β
V

b

2

ɺ
 

-0.0352 - - - 
-0,1600 

 

Table 3.4 Parameter estimation results for nC  

 
nC  Parameter 

Parameter 
Nonlinear 

 model, LS 
Linear model, 

LS 

Output-error 

 in time domain 

Output-error 
in freq. 
domain 

Real value 

constant 0.0013 0.0013 -0.0028 - -0,003117 

β  0.0067 0.0106 0.0110 0.0131 0,006719 

pb

2V
 

-0.1585 -0.1639 -0.1398 -0.1202 
-0,1585 

rb

2V
 

-0.1112 

 

-0.0875 -0.1087 -0.1259 
-0,1112 

δa  
-0.0039 

 

-0.0075 

 

-0.0018 0.0043 
-0,003872 

δr  
-0.0826 

 

-0.0799 -0.0809 -0.0864 
-0,08265 

δr  0.1595 - - - 0,1595 

β3  0.1373 - - - 0,1373 
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Table 3.5 Parameter estimation results for lC  

 
lC  Parameter 

Parameter 
Nonlinear  

model, LS 
Linear model, 

LS 

Output-error 

 in time domain 

Output-error 
in freq. 
domain 

Real value 

constant -0.0036 -0.0036 

 

0.0043 - 
0,0005910 

β  -0.0615 -0.0616 -0.0566 -0.0572 -0,06180 

pb

2V
 

-0.5040 

 

-0.5045 -0.5013 -0.4942 
-0,5045 

rb

2V
 

0.1719 

 

0.1722 0.2000 0.1632 
0,1695 

δa  -0.0992 -0.1122 -0.1111 -0.1047 -0,09917 

δr  0.0072 0.0073 0.0144 0.0017 0,006934 

αδ α  -0.0828 - - - -0,08269 
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4 Summary and concluding results 
 

In this work, time and frequency domain maximum likelihood identification methods 

were presented. Particular focus was placed on the output-error methods. In order to 

calculate decent initial values for the recursive output-error algorithms, equation-error least 

squares methods were used in time and in frequency domain as well. These latter methods 

were in the focus of a previous work [4]. According the obtained results, it can be seen that 

the applied methods are accurate in the estimation of non-dimensional aerodynamic 

parameters. Although, estimated parameters are not exactly the same as the real values; 

however, they are precise enough to build a decent linear dynamic model of the aircraft, as 

documented in Figures 3.6 and 3.7 both in frequency and time domain. Concerning the 

nonlinear terms in the vector-polynomial function (3.4), they can be estimated by applying 

equation-error least squares method. 

In reality, the measurements are always corrupted by noises or any other disturbances. 

Because of this, test flights are preferable on calm days without winds and gusts. Hence, 

other signal processing procedures will have to be used before identification methods. In 

addition, a part of the necessary variables sometimes are not measurable on the board. So, 

these variables have to be pre-estimated by applying; for instance: Kalman filtering.  

 In the following, longitudinal non-dimensional parameters will also be estimated by 

applying identification methods presented above. Then, additional measurement noises will 

be used in the virtual test flights. In other words, an adequate noise model of the sensors 

will be applied during simulations to test filtering and smoothing methods. Finally, the 

given and well tested identification algorithms will be used in the case of real measurements 

gathered on a UAV (Unmanned Aerial Vehicle). 

 Future research goal may be the identification of a real aircraft based on real flight 

data. In order to use the algorithms tested here, it is necessary to develop the fusion of GPS, 

IMU and magnetometer data and solve the state estimation problem. The methods 

presented in this work solved the first part of this large program and documented the 

applicability of the parameter estimation methods. 
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5 Appendix 

A. List of figures and tables 

Figure 2.1 Block diagram of filter-error method 

Figure 2.2 Block diagram of output-error method 

Figure 3.1 De Havilland DHC-2 Beaver 

Figure 3.2 The ABC coordinate frame 

Figure 3.3 The Wind-axis coordinate frame 

Figure 3.4 The actuators 

Figure 3.5 Measured input and output variables 

Figure 3.6 Time domain output-error model (red) fit measured data (blue) 

Figure 3.7 Frequency domain output-error model (red) fit measured data (blue) 

Table 3.1 Description of the elements of the state and input vector 

Table 3.2 Applied trim values in the virtual test flight 

Table 3.3 Parameter estimation results for YC  

Table 3.5 Parameter estimation results for lC  

Table 3.4 Parameter estimation results for nC  
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