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Összefoglaló 

A felhő alapú számítástechnika világában az elmúlt évek során egyre nagyobb 

szerepet kezdett betölteni az edge computing. Ezeknek a rendszereknek a legnagyobb 

előnye a felhős erőforrások elosztottságában rejlik. A centralizált felhővel szemben az 

edge architektúráknak a decentralizált, lokális kiszolgálás a feladata, ezáltal nem csak a 

hardveres erőforrások elosztottsága, de a hálózati terheltség kiegyenlítése (load 

balancing) is megvalósítható. Az egyik legnagyobb szabványosító szervezet, az ETSI, 

Multi-Access Edge Computing [1] néven azonosítja a modellt, amelynek célja egy, a 

jövő hálózataiba hatékonyan, problémamentesen integrálható, szabványos elosztott 

felhőinfrastruktúra rendszer kialakítása. Fontos kiemelni, hogy az 5. generációs 

celluláris mobilhálózatok (5G) architektúrális felépítése kézenfekvő alapot nyújt a MEC 

rendszerekkel való közös működésre [2]. Ötvözve az edge computing koncepció 

előnyeit az 5G-s rendszerek szolgáltatásaival, rengeteg új használati eset valósítható 

meg és a korábbi szolgáltatások hatékonyabbá tétele is kivitelezhető. Ennek az egyik 

legnagyobb haszonélvezője az autóipar lehet, ahol a járműkommunikációs (V2X) 

szolgáltatásokból eredő nagy mennyiségű adat hatékony feldolgozására van szükség. 

Ezen a területen a MEC rendszerek legnagyobb előnyét az adja, hogy a járműveken való 

lokális információfeldolgozás helyett ezek a feladatok kiszervezhetőek az edge 

erőforrásokra. Így lehetőség nyílik a szenzor adatok kollektív, fúzióval erősített 

feldolgozására, amely elősegíti a való világ hatékonyabb virtuális leképezését. A több 

forrásból gyűjtött információ segítségével sokkal pontosabb, megbízhatóbb 

visszajelzések generálhatók a forgalmi résztvevők részére, ezzel biztonságosabbá és 

hatékonyabba téve a közlekedést. Az 5G és MEC rendszerek ötvözésével olyan 

használati esetek implementálására lesz lehetőség a jövőben, mint a valós idejű, nagy 

felbontású HAD térképek [3] vagy az optimális járműforgalom-menedzsment. A V2X 

vonatkozású MEC alkalmazásokban a mesterséges intelligencia tölt majd be 

kiemelkedő szerepet, melynek nagy előnyét a kollektív adatgyűjtés és adatfúzió mellett 

a hálózati késleltetések csökkentése és a felhasználói eszközök tehermentesítésének 

lehetősége adja. 

Ezeknek a technológiáknak hatékony implementálása komplex feladat, továbbá 

olyan biztonság-kritikus területen, mint az autóipar, számos követelmények is meg kell 

felelni. A valós infrastruktúrákon, valós járművekkel végzett vizsgálatokat megelőzően 
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az egyik legfontosabb feladat a MEC rendszerek tesztelése, validálása. Erre nyújt 

megoldást a korábban kialakított, azóta számtalan fejlesztésen átesett Cloud-in-the-Loop 

(CiL) szimulációs keretrendszer [4], amely forgalomszimulátorból kinyert adatok alapján 

képes egy valós méretű, telco-grade szintű, Kubernetes [5] alapú edge cloud 

infrastruktúrát vezényelni és azon nagyfelbontású mérési adatokat gyűjteni. Ez a MEC 

rendszer teljesítményanalízise mellett lehetőséget teremt komplex, járműipari használati 

eseteket kiszolgáló cloud-native alkalmazások működésének és teljesítményének 

mélyreható elemzésére is. A dolgozatban a célom a keretrendszert alkalmazva, a 

járművek által a MEC infrastruktúra felé továbbított videójel alapú szenzoradatfolyamot 

modellezve, egy valós, mély tanulás alapú objektumdetekciós modellt implementáló, 

saját fejlesztésű cloud-native alkalmazás gyakorlati vizsgálata autóipari felhasználás 

szempontjából. A mérések fókuszában az edge architektúra elosztott erőforrásai közötti 

váltások okozta hatások vizsgálata áll, továbbá a MEC rendszer által kiszolgált 

felhasználók (járművek) okozta háttérterhelés miatti teljesítménycsökkenés elemzése. A 

vizsgálatok során különböző járműforgalmi szituációkat implementálva az AI-alapú 

objektumdetekciós alkalmazás működését analizálom az edge csomópontok 

terheltségének, a hálózat bizonyos Quality of Service (QoS) paramétereinek, és a cloud 

native működés különféle mechanizmusainak a szempontjából.  
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Abstract 

Edge computing has become increasingly significant in cloud-based computing in 

recent years. The distribution of cloud resources is one of these systems' main advantages. 

In contrast to the centralized cloud, edge architectures provide local, decentralized 

services, making it possible to balance network traffic and distribute hardware resources. 

One of the largest standardization organizations, ETSI, identifies the model as Multi-

Access Edge Computing (MEC) [1], which aims to create a standard distributed cloud 

infrastructure system that can be efficiently and seamlessly integrated into future 

networks. It is important to emphasize that the 5th generation cellular mobile network's 

architectural structure (5G) provides an apparent basis for joint operation with MEC 

systems [2]. By combining the advantages of the edge computing concept with the 

services of 5G systems, many new use cases can be implemented, and previous services 

can be made more efficient. One of the biggest beneficiaries of this could be the 

automotive industry, where it is necessary to efficiently process large amounts of data 

resulting from vehicle communication (V2X) services. The primary benefit of MEC 

systems in this area is the ability to outsource information processing tasks to edge 

resources rather than performing it locally on vehicles. This makes it possible to process 

sensor data collectively, enhanced by fusion, which promotes a more effective virtual 

representation of the real world. With the help of information collected from several 

sources, much more accurate and reliable feedback can be generated for road users, thus 

making traffic safer and more efficient. By combining 5G and MEC systems, it will be 

possible to implement such use cases in the future as real-time, high-resolution HAD 

maps [3] or optimal road traffic management. In V2X-related MEC applications, artificial 

intelligence will play a prominent role, the great advantage of which is the possibility of 

reducing the load on user devices in addition to collective data collection. 

Effective implementation of these technologies is a complex task, and several 

requirements must also be met in a safety-critical field such as the automotive industry. 

One of the most important tasks before tests on existing infrastructures with actual 

vehicles is evaluating and validating MEC systems. A solution for this problem is the 

Cloud-in-the-Loop (CiL) simulation framework [4], which was developed earlier and has 

since undergone numerous developments. It can orchestrate a real-size, telco-grade level, 

Kubernetes-based [5] edge cloud infrastructure based on information gathered from a 
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traffic simulator and performing fine-grained benchmarking and data collection. In 

addition to the performance analysis of the MEC system, this also creates an opportunity 

for an in-depth examination of the operation and performance of cloud-native 

applications serving complex automotive use cases. My goal in this paper is to use the 

framework and model video signal-based sensor data transmitted by the vehicles to the 

MEC infrastructure to examine a self-developed cloud-native application implementing 

an actual, deep learning-based object detection model from an automotive use 

perspective. The measurements focus on exploring the effects caused by relocations 

between the distributed resources of the edge architecture and the analysis of the 

performance degradation due to the background load caused by the users (vehicles) 

served by the MEC system. By implementing various vehicle traffic situations during the 

tests, I will analyze the operation of the AI-based object detection application in terms of 

the load on the edge nodes, particular Quality of Service (QoS) factors, and various 

mechanisms of cloud-native service provisioning. 
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1 Introduction 

In recent years, cloud-native-based services have gained more and more 

recognition. The technology is already used in many areas, from information 

communication through web services to banking systems. Cloud-native applications are 

easily scalable, deployable, and flexible software packages and, due to their design, can 

be run in any cloud-based environment. Cloud-based technologies have also expanded 

into a new area called the edge computing paradigm, the most crucial feature of which is 

that hardware resources are distributed. As a result, the services are closer to the 

consumers, thereby speeding up information processing and ensuring high-performance 

computing for the applications that provide the services. By applying these innovative 

technologies, new solutions have also emerged, such as the 5G Service-Based 

Architecture (SBA) [6] approach, which implements the network functions that build up 

the core network of mobile networks with cloud-native applications. With this approach, 

modern 5G systems can be integrated with edge cloud deployments, thereby taking 

benefit of the most significant advantages of the two new technologies. One of the largest 

European standardization organizations, ETSI, is also actively integrating the two 

systems [2]. Furthermore, the organization has already achieved several results in 

unifying edge cloud systems. This model is called Multi-Access Edge Computing (MEC) 

[1]. Many service areas will be able to utilize the opportunities created by the combination 

of 5G and MEC systems. One such area is Vehicle-to-Everything (V2X) communication. 

The application of these technologies opens up many new use cases, such as sensor fusion 

applications based on collective perception. These rely on deep learning-based object 

detection technologies, for which the distributed resources of the MEC systems provide 

an excellent execution environment. Furthermore, with the help of 5G systems, a low-

latency, high-data-speed communication can be provided, which ensures a stable 

connection between user equipments and edge servers. In the first part of this work, I will 

introduce the above technologies and activities and how they are related to my research. 

The effective implementation of these technologies is a complex task, and many 

requirements must be met. Furthermore, building a real system is a costly task. Before 

this, it is essential to carry out tests related to the operation and performance of these 

systems. The apparent basis for this is provided by test systems that can replace expensive 

real-life tests. Among others, these aspects motivated the design and implementation of 
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the Cloud-in-the-Loop (CiL) simulation framework [4], which currently integrates a 

traffic simulator called SUMO [7] with a real distributed cloud-based environment. With 

the help of the framework, the operation of edge cloud systems and cloud-native 

applications can be investigated and evaluated. Using the CiL simulator, I have already 

achieved research results [4][8]. Since then, I have made numerous improvements to the 

system. The framework was integrated into a telco-grade edge cloud environment, the 

component implementing the orchestration of the whole framework was supplemented 

with new features, and functions executing more detailed and accurate measurements 

were also implemented. Furthermore, I also developed new supporting application 

components compatible with the framework.  In Chapter 3 of this paper, I will give a 

comprehensive presentation of the CiL framework and the improvements I have made to 

it in the last period. Unlike the measurements carried out in the past, using the improved 

framework, my goal was to examine a cloud-native application implementing an 

automotive use case from the Quality of Experience point of view. For this, I implemented 

a cloud-native, deep learning-based object detection application. The task of the edge 

application is to process the sensor data transmitted by V2C-capable vehicles and then 

generate relevant feedback for the vehicles based on the extracted information. The 

implemented application is discussed in detail in Chapter 4. During the measurements 

presented in the paper (Chapter 5.), I searched for the answer to how the operation of the 

application in the edge environment affects its functionality at the application-level and 

its QoE. To do this, I defined a KPI and specified scenarios that realize various loads on 

the edge cloud environment and then investigated and evaluated their impact. 

Furthermore, I also performed measurements examining the Quality of Service (QoS) of 

the integrated distributed environment.  
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2 Multi-Access Edge Computing (MEC) 

MEC systems' main advantage comes from the distribution of physical cloud 

resources. These resources are also located close to the user equipments (UEs) in the 

network architecture. This way the computational tasks can be executed locally in a 

decentralized manner, which also creates an opportunity to offload certain tasks that were 

originally performed on the UEs. Due to their architectural design, MEC systems can also 

balance the traffic load over the network. By processing data at the edge, these systems 

can reduce the volume of the data to be sent. Multi-Access Edge Computing is meant to 

be the enabler of various 5G functionalities in the future [9]. To provide high bandwidth, 

ultra-reliable connection integrating MEC is the key. One of the most prominent 

standardization organizations, ETSI [10], also developed a model that defines the joint 

operation of the 5th-generation cellular mobile networks with MEC systems [2]. One of 

the most significant innovations in 5G systems is the Service-Based Architecture (SBA), 

which defines a cloud-native, modular core network. In SBA, all Network Functions 

(NFs) can communicate over a service-based interface, and the whole architecture relies 

on network virtualization, and Software Defined Networking (SDN). SBA's cloud-native 

approach provides an optimal basis for integrating MEC architectures. In [2] ETSI also 

presents the functionalities of the 5G specification that are key enablers for MEC 

integration. These functionalities are defined in 3GPP's 5G specification [11]: 

1. Local Routing and Traffic Steering: The ability provided by the 5G Core 

Network to select the traffic in the local area network to be routed to the 

applications in the distributed cloud. 

2. The ability to control User Plane Function (UPF) selection and traffic routing 

by an Application Function (AF) using the Policy Control Function (PCF) or 

the Network Exposure Function (NEF).1 

 

1 
https://telecompedia.net/5g-core-network-overview/ (Accessed 30 Oct. 2022)   

https://telecompedia.net/5g-core-network-overview/
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3. The ability to use specific Session and Service Continuity2 (SSC) modes in 

different mobility scenarios. 

4. The ability provided by the 5G Core Network to support MEC applications to 

connect Local Area Data Networks (LADN) in an area where they are 

deployed. 

In the SBA all functions (NFs/AFs) expose or accept services. All services are 

based on request-response or subscribe-notify communication models. The API 

framework (defined in cit ETSI ISG MEC) of MEC systems implements a similar 

communication model between its applications to that of the SBA. This makes the 

information exchange between the entities of the systems remarkably efficient. The nearly 

identical APIs enable very close integration of the two systems. This way, MEC systems 

can natively communicate with the 5GC's NFs (e.g., PCF, NEF), control data plane traffic 

between UEs and MEC applications, and optimize the operation of the distributed cloud 

resources to provide efficient services (Figure 2.1). 

 

Figure 2.1 5G and MEC integration [2] 

Such a deep integration of the two systems creates an opportunity to exploit the 

main advantages of distributed cloud-based computing and the most important 

innovations of 5th Generation mobile networks. Thanks to the distributed computing 

resources of MEC systems, applications can be placed close to user devices. With the 

modern radio access networks of 5G systems, a reliable, high-bandwidth connection can 

be established between network entities. Furthermore, through the close cooperation of 

 

2 https://www.cisco.com/c/en/us/td/docs/wireless/ucc/smf/2020-03-0/b_ucc-5g-smf-config-and-admin-guide_2020-

03/SMF_chapter_0111.pdf (Accessed 30 Oct. 2022)   

https://www.cisco.com/c/en/us/td/docs/wireless/ucc/smf/2020-03-0/b_ucc-5g-smf-config-and-admin-guide_2020-03/SMF_chapter_0111.pdf
https://www.cisco.com/c/en/us/td/docs/wireless/ucc/smf/2020-03-0/b_ucc-5g-smf-config-and-admin-guide_2020-03/SMF_chapter_0111.pdf
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the two systems based on cloud-native processes, all services can be managed together; 

thus, the operation of the applications running in the cloud can be adjusted to the network 

conditions and the mobility aspects of the UEs. To take advantage of the functions 

provided by the integrated system, it is also necessary to develop new use cases and 

applications. The option of offloading processing tasks should be highlighted, the great 

advantage of which is that load on the UEs can be reduced. The latter is especially 

beneficial for IoT devices, where support for limited hardware resources can be ensured 

in addition to energy efficiency. By taking advantage of local processing, it is also 

possible to distribute the entire network load since, after processing on the edge servers, 

only the relevant information needs to be forwarded to the other entities of the network. 

However, one of the most significant advantages is the possibility of joint, fusional 

processing of data delivered by UEs. 

2.1 Vehicle-to-Everything (V2X) communication in MEC 

systems  

One of the most promising areas that will be able to utilize MEC systems is the 

automotive industry. There are already many areas of V2X communication that provide 

direct, Wi-Fi-based (802.11p [12]), low bandwidth, and low latency communication 

between road users (vehicles, pedestrians) and roadside units. Services based on these 

technologies are reliable but have several limitations. One of their disadvantages is that 

they are incapable of high-speed data transmission, which is not ideal for forwarding large 

amounts of data collected by sensors on modern vehicles. Furthermore, if the density of 

users increases - due to the finite channel capacity - throughput decreases, thereby 

degrading the quality of the service [13] and endangering functional safety [14][15]. 

However, these systems can ensure low-latency, reliable communication, which is 

extremely important in a safety-critical area such as traffic safety. For the Vehicle-to-

Cloud (V2C) communication model, providing low latency is currently the critical factor. 

Yet, MEC systems integrated with 5G can bring a breakthrough in reducing 

communication delay. Creating an efficient, reliable system is a complex task, so it is 

conceivable that solutions based on new technologies will serve the needs in a hybrid way 

with the techniques already used in practice [16]. MEC-based V2C models supported by 

the 5G system also enable the implementation of many new use cases that were not 

possible before. Furthermore, it can improve the efficiency of previous use cases 
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developed on other technologies. The most significant advantage of the new approach is 

that the processing of the environmental sensor data collected by the vehicles can be 

offloaded to the distributed edge resource of the MEC systems, which provide the best 

access in terms of network availability. This allows sensor data fusion and simultaneous 

environmental information processing from multiple sources. This way, the physical 

environment can be mapped onto the digital representation more accurately and reliably.  

ETSI is also actively involved in applying MEC systems to V2X technologies. A 

unique API system was created for efficient integration called the V2X Information 

Service (VIS) API [17]. This service enables interoperability in V2X communication in 

environments with multiple vendors, networks, and access types. In the case of MEC-

based V2X use cases, it is essential to maintain service continuity, especially in cases 

where, due to the movement of the vehicle, its service has to be relocated into another 

MEC system or when it changes mobile networks between countries. With the help of 

VIS, information can be provided about V2X services, which can be used to prepare 

vehicles for these handovers and minimize service downtimes. In addition to ETSI, 3GPP 

[18] is also actively involved in V2X communication solutions supported by mobile 

network communication. They created a so-called V2X Application Server concept [19]. 

By integrating it into the core network, these V2X Application Servers, like the VIS, 

would help interoperability between different domains. 

2.1.1 MEC-based Vehicle-to-Cloud use cases 

By applying MEC systems, it is possible to implement many new automotive use 

cases or to develop previously developed solutions further. ETSI has defined four 

categories for classifying use cases [20]. The first, the safety category, encompasses those 

use cases intended to increase traffic safety and reduce the risk of accidents. An example 

of such a use case is Intersection Movement Assist, which helps coordination at road 

intersections, especially when vehicles cannot see each other. Other categories include 

the convenience type of use cases, for example, software updates or telematics. 

Furthermore, an advanced driving assistance category was also defined, which provides 

for use cases based on sharing large amounts of data with high reliability and low latency. 

An example of this is the High Definition (Local) Maps use case, which will be able to 

use the potential of MEC systems effectively. By processing the environmental data 

transmitted by the vehicles with the help of HD Maps, it is possible to implement 
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continuously updated local maps running on edge servers. These multi-layered maps can 

contain various information, such as processed environmental information transmitted by 

vehicles and virtual representations of other traffic participants (Figure 2.2). Object 

recognition AI applications running on edge servers are especially suitable for these tasks. 

Such applications can process data collected by several vehicles connected to an edge 

server, thereby implementing sensor fusion. MEC systems supported by 5G networks can 

efficiently process the data transmitted by vehicles, enabling local HD maps to provide 

accurate, near real-time information to traffic participants [21]. Furthermore, ETSI also 

defined a vulnerable road user category, which includes use cases meant to increase the 

safety of pedestrians and cyclists by using smartphones, which provide opportunities for 

sharing and receiving V2X-related information as dedicated devices. In addition to ETSI, 

several other organizations research edge cloud-based V2X communication. One of these 

larger groups is AECC [22], which also defines the use cases that can exploit the potential 

of these systems. They currently have a Use Case and Requirements [23] documentation, 

but this is only publicly available at the Table of Contents level. However, detailed 

research is conducted on the structure and operation of High Definition Map use cases 

[21]. 

Figure 2.2 Layers of HD maps [21] 
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2.1.2 Collective Perception Services (CPS) in MEC systems 

The Collective Perception Service is a concept standardized by ETSI in Europe, 

the essence of which is that vehicles equipped with sensors should be able to transmit 

information about detected objects to other road users in a standardized form [24]. The 

purpose of CPS is to expand the perception of the vehicles. For this, the so-called 

Collective Perception Messages (CPM) [25] are exchanged in a one-hop geobroadcast 

manner. These messages also contain information about the devices that record the sensor 

data (station data), about the sensors themselves (how far they detect, what area they see), 

and about the detected objects, e.g., how they move (speed, position) or what size and 

what shape they have (Figure 2.3). CPM messages are transmitted by the devices at a 

given periodicity (time-triggered way), always providing the latest and most up-to-

date/fresh sensor data. 

 

Figure 2.3 Structure of CAM messages [26, p. 4] 

This information can be utilized by many automotive use cases and solutions 

based on MEC systems. Currently, the source of CPM messages is vehicles or RSUs. 

Later, these messages can also be provided by applications running on edge resources. 

MEC systems can give an apparent technological basis for implementing Collective 

Perception Services. The system can produce accurate and reliable information by 

simultaneously processing sensor data from multiple sources. CPS is also ideally suited 

to share this information, thus exploiting the potential of these technologies and raising 

collective perception to a higher level. 
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3 The Cloud-in-the-Loop simulation framework 

The Cloud-in-the-Loop (CiL) simulation framework [4][8] results from several 

years of research and development and provides the basis for the achievements presented 

in this work. Based on information extracted from a simulator that models the behavior 

of user devices, the framework can orchestrate a closely integrated, real, distributed 

cloud-based environment and run and test real cloud-native applications in it. In the 

current construction of the framework, it is configured to examine V2C use cases; 

accordingly, the simulation environment is provided by a very versatile, multi-modal 

traffic simulation software called SUMO [7]. The orchestration of the distributed cloud-

based environment is realized by the Kubernetes (k8s) widely used, open-source 

platform, which already plays a prominent role in operating SBA-based 5G Core 

networks nowadays [27] and can also be used excellently for managing edge cloud 

systems. The CiL framework consists of three main system components (Figure 3.1): 

- Automotive traffic simulator: The simulation environment is realized by the 

vehicle traffic simulator called SUMO. The software can model real, large-

scale road networks and simulate detailed, high-precision traffic models. 

Furthermore, detailed information on the behavior of each simulated object 

and vehicle can be extracted, and their run-time configuration is also provided. 

- CiL Orchestrator: The orchestration component is a software developed in 

Java, which is one of the essential elements of the framework. This is where 

the control of the distributed cloud-based environment is realized based on the 

information extracted and processed from the simulator. It enables the 

implementation of various automotive use cases and the logic and algorithms 

controlling the distributed environment. Furthermore, this component ensures 

detailed data collection during the measurements. 

- Distributed cloud environment: The distributed cloud environment is realized 

by a Kubernetes (k8s) platform-based real-scale hardware cluster. The nodes 

of k8s represent the edge servers that form a cluster. The software also enables 

cloud-native applications that implement automotive use cases on distributed 

resources. 
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Figure 3.1 The architecture of the Cloud-in-the-Loop simulation framework 

An important aspect of MEC systems is examining the effect of switching 

between edge resources resulting from the mobility of user devices, which affects the 

system's operation in many ways. In such cases, relocating applications that provide 

services to user devices may also be necessary, and service continuity must also be 

ensured. The system must also manage the redirection of the network connection giving 

access to the servers. In addition to relocation, the performance and operation of the 

system are also affected by the network and resource load, which largely depends on the 

number of devices served, the type of applications providing the service, and the data 

traffic generated. With the help of the CiL framework, based on the information extracted 

from the simulator, the operation of real applications can be examined, and fine-grained 

benchmarking and data collection can also be performed. Accordingly, many 

improvements have been made to the system and its supporting applications since I 

published my initial results in [4][8]: 

- Telco-grade level, real distributed edge infrastructure was integrated into the 

framework (See in detail: 3.1). 

- Specialized client and server application components were implemented to 

test UDP traffic and generate/evaluate QoS metrics (See in detail: 3.2). 

- Client applications were designed and deployed that model services running 

on user equipments and generate UDP test traffic directly forward packets to 

edge applications running on the corresponding node. K8s networking no 

longer performs the entire traffic management as before (See in detail: 3.3). 
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- Simulation control and cloud system control were parallelized with 

appropriate thread management. 

- A deep learning-based application component was designed and implemented, 

modeling an automotive use case featuring AI-supported object detection for 

MEC-level sensor fusion and related applications (See in detail: 4.1). 

3.1 Design and implementation of a telco-grade cloud cluster 

This chapter thoroughly describes the design and implementation of the telco-

grade test infrastructure that was integrated into the Cloud-in-the-Loop framework. The 

leading goal of the system is to evaluate V2C applications' operations and functionalities 

on an actual, high-performance server cluster. To test these functionalities, it was essential 

to plan the structure of the servers and arrange the software components accordingly. The 

orchestration and management of the distributed environment are realized by the 

Kubernetes (k8s) platform, a powerful software to control multi-node cloud systems 

dealing with the orchestration and management tasks of the distributed environment. 

Besides the fact that k8s allow for fully functional cluster deployment, it is essential to 

evaluate how the software manages and operates services and functionalities that support 

the V2C concept and its use cases. 

3.1.1 The layout of the devices 

The first important task of the cluster design was planning the network and 

hardware elements that implement an actual cloud hardware environment based on the 

Edge Cloud paradigm. To evaluate various V2C scenarios and use cases, the k8s cluster 

was deployed with three worker nodes and a master node, which also runs the main 

software components of the Cloud-in-the-Loop framework. The deployment also includes 

a server entirely dedicated to running applications that realize and model V2C 

applications. Each server is interconnected through a high-performance switch with two 

10 Gbit ports, an Operation and Maintenance, and a traffic port. These links can also be 

aggregated to create a 20 Gbit/s bonded connection between the servers. The selection 

and arrangement of the devices were aimed at developing an actual distributed cloud 

deployment that would be possible to be integrated into a real network. According to this 

intention, the hardware is capable of solving demanding computational tasks and serves 

a significant number of clients. Thus, this hardware platform enables the investigation 
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and evaluation of use cases and validation of the concept on a telco-grade level. The 

cluster design also allows the integration of 5G functionalities in the future to which a 

high-performance server is prepared. The hardware environment consists of 6 devices 

(Figure 3.2). The details of the hardware components are shown in Table 3.1. 

 

Device 

model 

Role Hardware description Networking  

Dell R630 Kubernetes master node, 

Running the CiL 

Orchestrator and the traffic 

simulator component 

CPU: 28 cores (56 threads), 

2.4 GHz, 3.3 GHz w/ Turbo 

RAM: 128 GB, 2.4 GHz 

Storage: 4 x 372 GB SSD 

2 x 10 Gbit/s  

Dell R630 Edge server 1 (k8s: 

worker1 node) 

CPU: 24 cores (48 threads), 

2.5 GHz, 3.3 GHz w/ Turbo 

RAM: 128 GB, 2133 MHz 

Storage: 4 x 372 GB SSD 

2 x 10 Gbit/s 

Dell R630 Edge server 2 (k8s: 

worker2 node) 

CPU: 24 cores (48 threads), 

2.5 GHz, 3.3 GHz w/ Turbo 

RAM: 128 GB, 2133 MHz 

Storage: 4 x 372 GB SSD 

2 x 10 Gbit/s 

Lenovo 

x3650 

Edge server 3 (k8s: 

worker3 node) 

CPU: 20 cores (40 Threads), 

2.3 GHz  

RAM: 144 GB, 2133 MHz 

Storage: 5 TB SSD/HDD 

2 x 10 Gbit/s 

Lenovo 

x3650 

Application server: 

running client and central 

server application 

components 

CPU: 20 cores (40 Threads), 

2.3 GHz  

RAM: 144 GB, 2133 MHz 

Storage: 5 TB SSD/HDD 

2 x 10 Gbit/s 

Dell R640 Not in use currently. Its 

future task: Running 

Cloud-Native 5G network 

functions  

CPU: 40 cores (80 Threads), 2 

GHz, 3.7 GHz w/ Turbo 

RAM: 384 GB, 2666 MHz 

Storage: 8 x 480 GB SSD 

2 x 10 Gbit/s 

Table 3.1 The specification of the hardware environment 
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Figure 3.2 The actual hardware environment (on the left) 

3.1.2 Software setup 

To run the Cloud-in-the-Loop frameworks and the Kubernetes platforms' 

components, selecting an operating system that also properly utilizes the hardware's 

capabilities was necessary. All of the devices were installed with Ubuntu 18.04., a very 

stable and reliable version with good compatibility with various software used in the 

framework. With a functioning OS, the next step was to install Kubernetes, which 

required multiple preparatory steps. These include disabling the SWAP function (to make 

the software work properly), configuring the iptables and firewalls, and, most 

importantly, installing the Docker engine (version 20.10.7) on the nodes. Kubernetes is 

constantly tweaked and frequently updated with new functions. Hence, it was essential to 

install the newest version (version 1.23.3) of the software to be up-to-date with the 

framework and be able to produce measurement results with state-of-the-art technology. 

In the Kubernetes environment, Pod-to-Pod networking [28] is a critical part of cluster 

networking. It enables communication between the pods that encapsulate the 

containerized applications. It is a necessary function for the platform to operate. This type 

of communication can be realized by different technologies that are implemented mainly 

through third-party software components. In this implementation, the system is installed 

with the Container Network Interface (CNI) plugin called Calico [29]. Unlike other CNI 

plugins, Calico realizes the communication in the network layer (layer 3), using BGP 

routing protocol instead of relying on network virtualization. This way, additional 

encapsulation of the packets can be avoided, resulting in better performance [30]. The 

plugin also supports network policies, which can be very useful for regulating the network 
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traffic between pods. After installing all the necessary software, the cluster was ready to 

install the components of the simulation framework. 

3.2 Implementation of a UDP traffic benchmarking tool 

One of the most critical aspects of benchmarking edge cloud systems is evaluating 

the effects of network and hardware resource load resulting from serving user devices. 

Furthermore, it is important to consider that since it is a distributed system, this load is 

distributed among the individual resources according to the users and the implemented 

load-balancing algorithms. During the planning of MEC services and systems, it is a vital 

aspect to be able to ensure the QoS required by the requirements in all cases. This is 

particularly important in areas with strict requirements, such as the automotive industry. 

Degradation of service quality is caused by errors and outages in application-level 

network traffic. To investigate this in the CiL framework, it became necessary to integrate 

an application that can be appropriately scaled and is capable of generating network 

traffic. 

On the other hand, it can also create QoS metrics based on the generated data. In 

this way, the load caused by various automotive use cases can be modeled on the actual 

edge cloud system integrated with the framework, and the system's performance can also 

be examined in terms of service quality. The performance and operation of the systems 

can be well examined from the point of view of the packet loss metrics of the traffic 

generated by the applications, a UDP-based network test traffic is ideal for such 

measurements. To this end, I previously integrated the iperf [31] application into the 

framework, resulting in the generation of incorrect metrics during measurements in the 

edge cloud environment. It has become necessary to use a tool that is prepared for 

adequately handling errors occurring during operation in MEC systems and for proper 

representation in metrics. The basis of the self-developed UDP traffic benchmarking tool 

was an open-source application [32] developed in python, which primarily focuses on 

measuring network latency. I made several modifications to the application, preparing it 

for proper operation in a distributed environment. During the measurements, the 

application was running in two replicas: 

- Client-side application (3.2.1): This component compiles and forwards the 

packets with the appropriate information, which is used to evaluate the 

generated data traffic and detect network errors. 
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- Server-side application (3.2.2): This component receives the network traffic 

generated by the client and ensures the processing of the information extracted 

from the packets and the generation of QoS metrics based on them. 

3.2.1 UDP traffic benchmarking tool client component 

During the measurements, UDP data transmission sessions (with a definable time 

interval and data rate) provide the basis for the QoS metrics. Therefore, it was important 

to develop a concept in which the components can differentiate and identify these sessions 

regardless of the implemented use case and the network paths of the edge cloud 

infrastructure. The functionality on the client side is defined by the Client class of the 

python code, in the constructor of which the UDP socket on the sending side is created 

based on the IP addresses and port numbers specified as parameters. The essential element 

of the class is the send function, which is responsible for the assembly and forwarding of 

the UDP packets. The size of the payload is determined within the function, which at the 

application level only contains zero bytes. The application-level header includes the 

information required for the functionality of the tool. In addition, so that the application 

can differentiate each session, its current session number is read from a separate file. 

During the initialization of the send function, the session's start time is also determined, 

as well as the number of packets to be transmitted and the length of the packet 

transmission periods based on the frequency (or bandwidth) passed as a parameter 

(Snippet 3.1). 

_payload_size = packet_size - HEADER_SIZE 
_fill = b''.join([b'\x00'] * (_payload_size)) 
 
if os.path.exists(self.path): 
    with open(self.path) as fp: 
        session_id = fp.read() 
        with open(self.path, 'w') as fp2: 
            fp2.write(str(int(session_id) + 1)) 
if not os.path.exists(self.path): 
    session_id = 1 
    with open(self.path, 'w') as fp2: 
        fp2.write(str(session_id)) 
 
start_time = time.time_ns() 
total_packets = frequency * running_time 
print(int(total_packets)) 
running_time = running_time * 1e9 
period = 1 / frequency 
 
total_packets = round(total_packets) 
total_packets_bytes = int(total_packets).to_bytes(6, 'big')  

Snippet 3.1 Part of the Python code that implements the UDP benchmarking tool (send) 
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The packets sent in each data transmission session are assembled and transmitted 

in a while loop of the function. Each package receives a unique serial number and contains 

the given session's identifier. Similarly, the number of packets belonging to a given 

session is also transmitted so that all the properties of a given session can be extracted 

from a single packet on the receiving side. Furthermore, the code can also set the dynamic 

transmission period time. As a result, the data rate can be provided with an error rate 

within a maximum of 1% [32]. Each session is closed by a single packet containing 0, 

which indicates the last packet on the receiving side (Snippet 3.2). 

while True: 
    index_bytes = self.packet_index.to_bytes(4, 'big') 
    current_time = time.time_ns() 
    time_bytes = current_time.to_bytes(8, 'big') 
    session_id_bytes = int(session_id).to_bytes(5, 'big') 
    send_nums = self._udp_socket.sendto( 
        index_bytes + time_bytes + session_id_bytes + total_packets_bytes + _fill, 
        (self.remote_ip, self.to_port)) 
    self.log.append([self.packet_index, current_time, send_nums]) 
 
    ... 
 
    if (current_time - start_time 
    ) > running_time or self.packet_index == total_packets: 
        break 
 
    self.packet_index += 1 
 
    if dyna: 
        prac_period = (running_time - (current_time - start_time)) / ( 
                total_packets - len(self.log)) * ( 
                              len(self.log) / 
                              (frequency * 
                               (current_time - start_time) * 1e-9)) * 1e-9 
        prac_period = period if prac_period > period else prac_period 
    else: 
        prac_period = period 
 
    time.sleep(prac_period) 
 
 
self._udp_socket.sendto((0).to_bytes(4, 'big'), 
                        (self.remote_ip, self.to_port)) 
self._udp_socket.close() 

Snippet 3.2 Part of the Python code that implements the UDP benchmarking tool (generating 

packets) 

3.2.2 UDP traffic benchmarking tool server component 

The functionality on the receiving side is implemented by the Server class of the 

python code. Similarly to the client side, the constructor ensures the creation of the UDP 

socket based on the IP address and port number passed as parameters. The listening class 

takes care of the reception of the packets, in which the information transmitted by the 

packets is read, from which the program later generates the metrics. The code appends 

the data extracted from packets belonging to a specific session to a log list. To 
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differentiate between sessions, it reads the identifiers (session_id) from the first packet of 

each transmission and only evaluates if the last packet containing a single 0 arrives. 

However, in some cases, the last packet may not arrive due to packet loss. In such cases, 

as soon as a packet for the next session arrives, it performs the evaluation and starts 

logging the data of the new transfer (Snippet 3.3). 

def listen(self, buffer_size, verbose, sync): 
 
    … 
 
    self.first_packet = True 
    self.current_session_id = 0 
    while True: 
        msg, _ = self._udp_socket.recvfrom(buffer_size) 
        recv_time = time.time_ns() 
        packet_index = int.from_bytes(msg[:4], 'big') 
        send_time = int.from_bytes(msg[4:12], 'big') 
        session_id = int.from_bytes(msg[12:17], 'big') 
        total_packets = int.from_bytes(msg[17:23], 'big') 
        old_latency = latency 
        latency = round((recv_time - send_time) * 1e-9 - self.OFFSET, 6) 
        jitter = abs(latency - old_latency) 
        recv_size = len(msg) 
 
        … 
 
        if packet_index == 0: 
            server.evaluate() 
            break 
 
        if self.first_packet: 
            self.current_session_id = session_id 
            self.first_packet = False 
        if not self.current_session_id == session_id: 
            server.evaluate() 
            self.first_packet = True 
            self.log.clear() 
 
        self.log.append( 
            [packet_index, latency, jitter, recv_time, recv_size, total_packets]) 

Snippet 3.3 Part of the Python code that implements the UDP benchmarking tool (listen) 

The evaluation and the calculation of the QoS metrics are performed by the 

evaluate function, which is called from the listen function. Among the other results, the 

data rate of the packets transmitted in the given session (based on the number of 

transmitted packets) and packet loss (based on the ratio of the number of packets received 

on the server side to the total number of transmitted packets) are calculated here (Snippet 

3.4). 

def evaluate(self): 
 
    … 
 
    cycle = (self.log[-1][3] - self.log[0][3]) * 1e-9 
    latency_list = [row[1] for row in self.log] 
    latency_max = max(latency_list) 
    latency_avg = sum(latency_list) / len(latency_list) 
    var = sum(pow(x - latency_avg, 2) 
              for x in latency_list) / len(latency_list) 
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    latency_std = math.sqrt(var) 
    jitter = max(latency_list) - min(latency_list) 
 
    bandwidth = sum([x[4] + 32 for x in self.log]) / cycle 
 
    packet_loss = (int(self.log[0][5]) - len(latency_list)) / int(self.log[0][5]) 
    print('| -------------  Summary  --------------- |') 
    print('Sent packets: ' + str(self.log[0][5])) 
    print('Total %d packets are received in %f seconds' % 
          (len(self.log), cycle)) 
    print('Average latency: %f second' % latency_avg) 
    print('Maximum latency: %f second' % latency_max) 
    print('Std latency: %f second' % latency_std) 
    print('bandwidth: %f Mbits' % (bandwidth * 8 / 1024 / 1024)) 
    print('Jitter (Latency Max - Min): %f second' % jitter) 
    print('Packet loss: %f' % packet_loss) 
    self.log.clear() 

Snippet 3.4 Part of the Python code that implements the UDP benchmarking tool (evaluation) 

During the measurements, a bash script logs the calculated and summarized 

session statistics (Figure 3.3) on the server side. The aggregated log file is processed by 

a post-process python script, which generates statistics from the QoS metrics and 

implements the results' representation. 

 

Figure 3.3 Example of the summary of QoS metrics 

3.3 Network traffic control  

In real 5G-supported MEC systems, the mobile network delivers the packets sent 

by the user equipments to the application components running on the edge servers. In the 

framework, previously introduced services managed by Kubernetes ensured the 

appropriate delivery of packages. During the measurements, all client applications 

forwarded packets to the IP address of the k8s master node and the NodePort [33] of the 

server-side application. After that, the system forwarded the data to the appropriate node, 

where the receiving application encapsulating pod was running.  In this implementation, 

the packages traveled an unnecessarily long path, and the operation of realistic MEC 

systems was not correctly modeled either. It became necessary to implement a solution 

capable of changing the destination of sent packets at run-time, even in the case of UDP-
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based applications, where this function is not implemented at the application level. 

Therefore, a UDP traffic control relay application component was implemented in the 

framework's application server, which can forward UDP traffic generated by any client 

to the server-side application component running on a given node (Figure 3.4). The relay 

is controlled by the CiL Orchestrator component and is able to redirect traffic based on 

the mobility information of the simulated vehicles. This is important in cases where 

several edge servers have served a vehicle during its movement, and when entering a new 

zone, where it is necessary to relocate the utilized services in which case the network 

traffic is also redirected to the new server. 

 

Figure 3.4 Operation of the UDP traffic control relay 
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4 Design and implementation of automotive use cases 

into the Cloud-in-the-Loop simulator 

It is also necessary to create the proper simulation environment to examine the 

MEC system integrated into the framework and the implemented use cases. Modeling this 

is the task of the SUMO traffic simulator, which is also capable of implementing realistic 

traffic maps. The simulation traffic map used for the current measurements - which 

provides an excellent basis for testing edge systems - has already been implemented 

during previous tests [4][8]. The map is based on Budapest XI. district's urban 

environment around Infopark. The resources (servers) of the integrated edge cloud 

environment are located virtually on this map. To achieve this, I defined so-called latency 

zones (Figure 4.1) for the two edge servers of the cluster, which determine which resource 

serves the vehicle moving in the given position. In reality, the shape of these zones is 

affected by countless factors, such as the location of the base stations or the network 

structure. However, the zones created in the current simulation environment implement 

only one possible layout among many, but it is ideal from the point of view of testing 

edge cloud systems. Because the measurements carried out in the framework currently 

focus on the tests of the application components that model the operation of V2C use 

cases and the operation of the distributed system.  

 

Figure 4.1 Simulation map for the implemented use cases 
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4.1 Deep Learning-based automotive use case implementation 

One of the most promising functionalities of edge cloud systems is the possibility 

of outsourcing computing tasks. This can be especially beneficial in areas such as 

Vehicle-to-Cloud communication. Modern vehicles are equipped with many sensors, 

including high-resolution cameras and LIDARs. Using these devices, vehicles can collect 

large amounts of raw data about their environment, which are processed to support 

various automotive use cases. The processing of environmental information requires 

high-performance hardware resources, and the vehicles must also share the information 

extracted from the processed data. With the help of edge cloud systems supported by 5G 

and beyond cellular networks, it is possible for the processing of sensor data to be 

implemented by the resources of the distributed environment. This makes it possible to 

process data collected from individual sources jointly, increasing the accuracy and 

reliability of environment detection. One of the most efficient ways to process sensor data 

for object detection is to use Deep Learning-based networks. Using the CiL framework, 

my goal in this work was to investigate the operation of an edge cloud-compatible, cloud-

native V2C application based on this technology. In the first step, it was necessary to 

define and implement a use case that could be used to test the functionality of these 

technologies.  

According to the implemented use case scenario, a given V2C-capable vehicle 

collects environmental data using its camera sensors and then transmits it to the edge 

server currently serving it. On the edge server, an AI-based application processes the 

video stream and sends relevant feedback information to the vehicle based on the data 

collected from its environment. In a later phase, the scheme can also support MEC-aided 

sensor fusion [34] and misbehavior detection [35] purposes. Modeling and testing the use 

case in the framework required the design and development of two application 

components.  

4.1.1 Client application  

The GStreamer  multiplatform multimedia framework implements the client-side 

application. The software can produce and forward a video stream recorded by a camera 

and based on a file. Gstreamer uses so-called pipelines to define the processing method 

of the resources passed to its input and also to set the output types. The pipelines offer 

many configuration options; the video encoding procedure the software should use can 
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be specified, which stream protocol to use during network transmission, and to which 

network address the video stream should be forwarded (Snippet 4.1). 

filesrc location=~/ai_testvid.mp4 ! decodebin ! autovideoconvert ! x264enc 
tune=zerolatency ! queue2 ! rtph264pay ! udpsink host=10.96.20.3 port=32705 

Snippet 4.1 Example of a gstreamer pipeline 

I defined two clients that model two vehicles when implementing the use case. 

During the measurements, these clients transfer video streams for processing to the two 

edges implemented in the simulation environment. The basis of the sent video stream is 

a 30-second video recording of a traffic scenario from a car perspective, modeling a real-

time stream recorded by a video sensor by an actual V2C-capable vehicle (Figure 4.2). 

The CiL Orchestrator component manages clients' operation, deployment, and 

scheduling. 

 

Figure 4.2 Frame of the AI test video [36] 

4.1.2 AI-based edge application component 

From the point of view of the implemented use case, the edge application must 

perform three critical tasks. 1) it must receive and process the video stream transmitted 

by the clients. 2) it must perform object detection on the received video frames, and 3) 

provide feedback to the client. The source code implementing the neural network was 

supplied by a pre-developed python code [37]. The pre-trained object detection model is 

based on the Google SSD [38] method, which is well suited for real-time processing 

videos containing multiple objects simultaneously on one frame. The utilized 

MobileNetSSD model was implemented with the framework called Caffee [39], the use 

of which in the application is realized by the OpenCV [40] function library, which is 
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compatible with CaffeModels. The pre-trained neural model can recognize 20 different 

object types, including cars, buses, and motorcycles, which provides a perfect basis for 

testing the functionality of the use case I am investigating. I also used the GStreamer 

framework in the edge application to receive and process the transmitted video stream 

because, in addition to being a versatile and efficient software, it is also supported by 

OpenCV. OpenCV had to be recompiled with appropriate parameters because the 

compiled libraries available in the repositories do not support GStreamer by default. I 

implemented the feedback methodology with the help of UDP packets, which provide 

feedback to the clients about the recognition confidence of the cars appearing on the 

frames in accordance with the tests detailed in Chapter 5 (Snippet 4.2). On the client side, 

I designed the reception and logging of the feedback signals with a script utilizing the 

netcat software [41].  

if recog_class == "car": 
 print("Car detected") 
 sock.sendto(bytes(str(count) + " " + label_glob + "\n", "utf-8"), 
(ip_addr, port)) 

Snippet 4.2 Part of the object detection edge application's source code 

After developing the source code of the object detection application, I tested the 

operation of all functionalities (video stream reception, object detection, and feedback 

transmission to clients) (Figure 4.3).  

 

Figure 4.3 Visualizing the object detection on the AI test video 

After that, creating a cloud-native, Kubernetes-compatible design for the 

application became necessary. I implemented the encapsulation of the source code, the 
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used function libraries, and dependencies with Docker [42] containerization. Then I 

uploaded the docker image to a private Docker repository, which allows quick and easy 

redeployment in the test executions. In a real environment, individual client-side 

applications run on vehicle user equipments. In the framework, the running environment 

of these applications is implemented by the dedicated application server. Edge-side 

applications run on individual nodes (worker1/edge1, worker2/edge2) of the Kubernetes-

based distributed system integrated into the framework (Figure 4.4). 

 

Figure 4.4 The integration of the AI-based automotive use case 
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5 Measurements and evaluation 

During the measurements, I focused on examining the application implementing 

the automotive use case detailed in Chapter 4.1 and on the performance examination of 

the integrated k8s-based distributed environment. For this, it was first necessary to create 

a suitable test case. The most critical aspect of offloading computing tasks offered by 

edge cloud systems is that the systems must ensure high Quality of Service (QoS) and the 

proper Quality of Experience (QoE) at the application level. In the case of the AI-based 

object detection application, I examined the QoE based on a pre-defined KPI, which 

characterizes the application's performance and the distributed cloud-based environment 

during the measurements. During the tests, with the help of the client-side applications 

representing V2C vehicles (4.1.1), I transmitted a 30-second reference video material 

implementing raw data from a camera sensor to the edge-side applications. I also 

deployed two copies of the application components implementing the AI engine to both 

k8s worker nodes implementing edge servers integrated into the simulation environment. 

I calculated the performance of the object detection application and the QoE provided by 

it from detecting a car-type object on the reference video. The application detects and 

classifies objects frame by frame. It determines the confidence value for each recognized 

object, which shows how accurately it identifies an object type based on the trained 

model. At every frame evaluation, the application sends feedback to the client about the 

recognition confidence of car-type objects. During the measurements, the average of the 

(frame-by-frame) recognition confidences of the 30-second reference video provides the 

KPI based on which the system's operation can be examined under different traffic and 

network load scenarios:  

𝐴𝑅𝐶 =  
∑

∑ 𝑅𝐶𝑖,𝑗
𝑀𝑖
𝑗=1

𝑀𝑖

𝑁
𝑖=1

𝑁
 

(1)  

Where 𝐴𝑅𝐶 stands for the average recognition confidence, 𝑁 is the number of 

measurements, 𝑀𝑖 is the number of object detections performed in the i-th measurement, 

and 𝑅𝐶𝑖,𝑗 is the j-th recognition confidence of the i-th measurement. During the tests, an 

AI engine ran on both edges of the simulation environment. Accordingly, I ran two clients 
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in the two latency zones (Chapter 4.), which forwarded the video stream to the edge 

servers corresponding to the zones. I performed the measurements according to several 

scenarios. To test the performance of the system and the application, I generated 

background load UDP packet traffic using the UDP benchmarking tool (3.2.2) and the 

simulator, according to different vehicle numbers and data speeds. In order to achieve 

this, I placed vehicles performing movements causing application relocation operations 

(zone switching) into the simulation environment and such generated a background load 

corresponding to the number of vehicles.  

5.1 Evaluating the QoS of the integrated distributed 

environment 

Before measuring the performance of the AI application, I also performed Quality 

of Service performance tests on the integrated telco-grade edge cloud system. For this, I 

used the UDP benchmarking tool presented in chapter 3.2.1. I used UDP relay 

applications running on the edges already used in my previous measurements to carry out 

the tests. In the simulator, I created a vehicle for each client application, which causes the 

(live migration type) relocation of the relay applications on the edge servers due to the 

zone changes resulting from their mobility. Each vehicle is served by a relay application 

 

Figure 5.1 Application components of the QoS evaluation 
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running on the edge server belonging to its zone. Relay applications forward UDP packets 

received from clients to server-side applications (Chapter 3.2.2) running on the 

application server. In this way, detailed QoS metrics describing the performance of the 

system can be generated based on the evaluations carried out on the server side (Figure 

5.1). The results obtained in this way describe the effect of background load (vehicle 

number, generated data traffic) and the effects of application relocation events. 

I performed measurements with 100, 150, 200, 250, and 300 simulated vehicles 

within the 1,5 km2 map area and data traffic initiated from the client side with data rates 

of 1, 2, 3, 4, and 5 Mbit/s. The average of 1,000 pcs 30-second sessions in each scenario 

gives the results. I divided the results into those measurement results where application 

relocation occurred during the 30-second sessions and those measurement results where 

no migration occurred for the cars under test. The results are based on the packet loss 

rates from the QoS metrics (Tables 5.1, 5.2, and 5.3; Figures 5.2, 5.3, and 5.4). Based on 

this, the performance of the system under a given load and the impacts of relocation 

events can be evaluated.  

 1 Mbits/s 2 Mbits/s 3 Mbits/s 4 Mbits/s 5 Mbits/s 

100 vehicles 3.032% 3.730% 4.072% 3.155% 3.264% 

150 vehicles 3.524% 3.499% 4.049% 4.457% 3.639% 

200 vehicles 3.334% 3.463% 3.593% 3.806% 6.678% 

250 vehicles 2.439% 3.439% 3.869% 12.015% 55.287% 

300 vehicles 2.214% 4.037% 13.269% 45.986% 72.099% 

Table 5.1 Packet loss results aggregated 

Figure 5.2 Visualizing packet loss results aggregated 
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 1 Mbits/s 2 Mbits/s 3 Mbits/s 4 Mbits/s 5 Mbits/s 

100 vehicles 0.890% 1.296% 1.522% 0.940% 1.030% 

150 vehicles 0.982% 1.600% 1.699% 1.744% 1.549% 

200 vehicles 1.161% 1.528% 1.792% 2.045% 5.300% 

250 vehicles 0.825% 1.857% 2.990% 10.846% 54.090% 

300 vehicles 0.716% 2.847% 12.495% 45.570% 72.768% 

Table 5.2 Packet loss results without relocation events 

 

 

Figure 5.3 Visualizing packet loss results without relocation events 

 

 1 Mbits/s 2 Mbits/s 3 Mbits/s 4 Mbits/s 5 Mbits/s 

100 vehicles 11.721% 14.557% 14.867% 12.541% 12.845% 

150 vehicles 18.442% 14.486% 18.679% 19.489% 15.865% 

200 vehicles 19.461% 17.977% 18.225% 19.691% 16.986% 

250 vehicles 15.940% 18.615% 14.463% 23.813% 68.859% 

300 vehicles 17.456% 15.566% 24.395% 53.149% 62.625% 

Table 5.3 Packet loss results due to relocation events 
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The measurement results clearly show that a lower load (fewer vehicles and lower 

data speeds) results in a low packet loss rate, as expected. In some cases, a lower packet 

loss rate occurred due to a higher load, but these differences are usually minimal. 

However, there were also results when significantly lower packet loss rates were 

generated under a higher load than in the case of a lower load. The packet loss rates 

increase significantly above 250 vehicles and 4 Mbits/s data speed. In the results affected 

by relocations (Figure/Table 5.3), for example, in the case of 250 veh/5 Mbps and 300 

veh/5 Mbps, a lower packet loss rate due to higher load can be observed. I evaluate these 

contrary-to-expected results in detail in Chapter 5.2. 

5.2 Evaluation of the Deep Learning-based automotive use 

case implementation 

As discussed in the introduction of Chapter 5, I examined the results generated 

from the average recognition confidences during the measurements with the application 

components implementing the Deep Learning-based automotive use case. I reviewed the 

operation of the application using methods that implement the background load, which is 

the basis of the measurement results presented in Chapter 5.1. For this, I created various 

measurement scenarios with 100, 200, and 300 simulated vehicles and data traffic 

Figure 5.4 Visualizing packet loss results due to relocation events 
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initiated from the client side with data rates of 1, 2, 3, 4, and 5 Mbits/s. In these, I 

investigated how the average recognition confidence of car-type objects in the reference 

videos changes due to a given background load (Table 5.4 and Figure 5.5). The results 

are provided by the total average of the confidences generated by the application instances 

running on the two worker nodes, with around 100 measurements for each scenario (1 

measurement is given by the confidences calculated for each frame of the 30-second 

reference video) per node. In order to be able to compare the results, I first measured the 

KPI without load, which shows what QoE the AI engine can provide if the distributed 

system does not serve any other clients. The average recognition confidence, in this case, 

was 52.80% based on 718 measurements (per node). 

 1 Mbits/s 2 Mbits/s 3 Mbits/s 4 Mbits/s 5 Mbits/s 

100 vehicles 52.92% 52.91% 52.71% 52.86% 52.88% 

200 vehicles 52.87% 52.86% 52.73% 52.71% 52.78% 

300 vehicles 52.84% 52.77% 52.84% 52.64% 52.80% 

Table 5.4 The averages of the object detection confidences in different scenarios 

Based on the results, it can be concluded that the impact of the background load 

occurring in these measurement scenarios essentially does not affect the efficiency of the 

application (Table 5.4, Figure 5.5). It can also be observed that the average of the 

recognition confidences calculated based on measurements in the scenario without 

Figure 5.5 Visualizing the averages of the object detection confidences in different scenarios 
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background load is lower than the result of certain load measurements (e.g., 100 vehicles, 

1 Mbps). This clearly shows that changes in the background load do not necessarily cause 

these differences in the measurement results. In addition to the averages, when examining 

the individual measurement points, it can also be seen that the distribution of the 

recognition confidence measurements for the scenario without background load and the 

scenario with maximum generated load (300 vehicles, 5 Mbps) is almost identical (Figure 

5.6, Figure 5.7). 

 

 

 

 

Figure 5.6 Distribution of individual recognition confidence measurement results in a scenario 

without background load (on worker1 node) 
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The measurement results examining the QoE aspects of the AI application raise 

the question of why the effects of the background loads are not reflected in the recognition 

confidences. The main reason for this may be that the background load does not reach the 

critical level that would exert its effect. At the same time, components such as GStreamer 

is also able to prevent errors caused by packet loss to some extent with the help of the 

RTP-based H.264 encoded video [39]. However, based on the results of the QoE 

measurements, it can be stated that the implemented AI application works efficiently even 

with the effects of the background loads realized by the predefined scenarios. During the 

later measurements, it will be necessary to increase the background load so that I can 

determine when its QoE starts to degrade and how it correlates exactly with the given 

effects. Regarding the QoS measurements, it is important to highlight that the results 

shown in Chapter 5.1 represent the current level of development of the tools, which still 

have many opportunities for further enhancement. I concluded that the extremely high 

packet loss rates are caused by a bottleneck (or more) in the system. Since this is a 

complex system with many components, solving the problem is not a trivial task. The 

Figure 5.7 The distribution of individual recognition confidence measurement results with 300 

vehicles and 5 mbps (on worker1 node) 
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source of the problem can arise from the network configuration, the cause of which can 

be improper router configuration, k8s networking, or OS-level package management. At 

the same time, it is also possible that a large amount of lost packets occurs during 

transmission from the edge to the server. In contrast, during QoE measurements, a large 

amount of data transfer is only carried out between clients and edge servers, and only 

low-bandwidth feedback data transmission is realized from the edge to the client. The 

next task in this regard is to find the source of the problem and localize the bottleneck. 

This requires a detailed examination and possible modification of the components. After 

that, it will be necessary to carry out measurements with each new composition and 

deduce the problem based on the results. Furthermore, in order to make the QoS and QoE 

measurements comparable in later tests, it will be necessary to design a new model and 

transform the data path of the packets managed by the application components 

implementing the UDP measurements. Then I will be able to examine the connection 

between the results of the two types of measurements, and I will also be able to study the 

exact correlation between packet losses and recognition confidences in the AI application. 
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6 Summary 

In my TDK paper, I presented Multi-Access Edge Computing, one of the 

promising new directions of cloud-based technologies. I covered the integration of MEC 

systems with 5G systems in detail. I gave an overview of the systems' network functions 

and API-based communication. I also presented the advantages that the joint use of the 

two systems can provide in the future. I gave an overview of the MEC-based automotive 

use cases supported by 5G, focusing on Deep learning-based applications and use cases 

based on collective perception. Furthermore, I summarized the standardization efforts that 

will facilitate the real-life application of these innovative technologies. In the following 

chapter, I gave a comprehensive overview of the Cloud-in-the-Loop framework, focusing 

on recent developments. In this chapter, among other things, the integration of the telco-

grade distributed environment and the UDP benchmarking tool developed for QoS tests 

were presented. In the second half of the paper, I showed the simulation environment that 

forms the measurements' basis. I also introduced the implemented deep learning-based 

automotive use case and the application components that model and implement them in 

my CiL environment.  

After that, in the last chapter, I discussed the process and results of the 

measurements in detail. In the first part of the measurements, I examined the performance 

of the implemented distributed environment with UDP packet traffic implementing 

various loads. Here, I investigated what kind of QoS the distributed system can provide 

based on packet loss ratios. After that, using the framework, I evaluated the implemented 

AI application from a QoE point of view. I defined various background load measurement 

scenarios and then investigated how the object detection ability of the application 

degrades as a result of the load. The results indicated that the application is resistant to 

the background loads I examined, and they do not affect its functionality. At the same 

time, the QoS results showed that a large amount of packet loss occurs in the system due 

to the investigated background loads. Based on these, I concluded that a bottleneck in one 

of the components implementing the QoS measurements is the cause of the significant 

packet losses. Therefore, the localization and correction of this problem will be highly 

prioritized among the subsequent tasks. Furthermore, the following study for the QoE 

tests performed with the AI application is to execute measurements under higher 

background loads. With this, my goal is to identify the level at which the load already 
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affects the operation of the AI-based application and to determine how the load correlates 

with the QoE results. Future goals also include further development of the framework; 

one of the priority targets is currently the integration of the CiL Orchestrator into the 5G 

Core Network, the preparations for which have already begun. 
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Appendix 

Appendix 1. Python code implementing a deep learning-based 

object detection application 

# import the necessary packages 
import sys 
import socket 
 
from imutils.video import VideoStream 
from imutils.video import FPS 
import numpy as np 
import argparse 
import imutils 
import time 
import cv2 
 
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # UDP 
count = 1 
 
# construct the argument parse and parse the arguments 
ap = argparse.ArgumentParser() 
ap.add_argument("-p", "--prototxt", required=True, 
 help="path to Caffe 'deploy' prototxt file") 
ap.add_argument("-m", "--model", required=True, 
 help="path to Caffe pre-trained model") 
ap.add_argument("-c", "--confidence", type=float, default=0.2, 
 help="minimum probability to filter weak detections") 
ap.add_argument("-p1", "--pipeline1", required=False, 
 help="The gstreamer pipeline 1") 
ap.add_argument("-ip", "--ipfeedback", required=False, 
 help="IP address where the feedback is sent to") 
ap.add_argument("-port", "--portfeedback", type=int, required=False, 
 help="Port number where the feedback is sent to") 
args = vars(ap.parse_args()) 
 
# initialize the list of class labels MobileNet SSD was trained to 
# detect, then generate a set of bounding box colors for each class 
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", 
 "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", 
 "dog", "horse", "motorbike", "person", "pottedplant", "sheep", 
 "sofa", "train", "tvmonitor"] 
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) 
 
ip_addr = args["ipfeedback"] 
port = args["portfeedback"] 
#port = int(port) 
 
# load our serialized model from disk 
print("[INFO] loading model...") 
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"]) 
net2 = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"]) 
 
 
# initialize the video stream, allow the cammera sensor to warmup, 
# and initialize the FPS counter 
print("[INFO] Capturing video stream...") 
#cap_pipe = 'udpsrc port=5000 caps="application/x-rtp, media=(string)video, clock-
rate=(int)90000, encoding-name=(string)H264" ! rtpjitterbuffer ! rtph264depay ! queue2 ! 
avdec_h264 ! autovideoconvert ! appsink' 
cap_pipe = args["pipeline1"] 
#cap_pipe2 = args["pipeline2"] 
out_pipe = "appsrc ! decodebin ! autovideoconvert ! x264enc tune=zerolatency ! queue2 ! 
rtph264pay ! udpsink host=10.96.20.5 port=9999" 
 
#vs = VideoStream(src=0).start() // ORIGINAL 
vs = cv2.VideoCapture(cap_pipe, cv2.CAP_GSTREAMER) 
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time.sleep(2.0) 
fps = FPS().start() 
label_glob = [] 
recog_class = [] 
 
fourcc = cv2.VideoWriter_fourcc(*'H264') 
print(fps) 
out = cv2.VideoWriter(out_pipe, fourcc, 60, (400, 225), True) 
 
 
# loop over the frames from the video stream 
while True: 
 # grab the frame from the threaded video stream and resize it 
 # to have a maximum width of 400 pixels 
 
 frame = vs.read()[1] 
 #print(frame) 
 frame = imutils.resize(frame, width=480) 
 
 
 # grab the frame dimensions and convert it to a blob 
 (h, w) = frame.shape[:2] 
 blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 
  0.007843, (300, 300), 127.5) 
 
 
 # pass the blob through the network and obtain the detections and 
 # predictions 
 net.setInput(blob) 
 detections = net.forward() 
 
 # loop over the detections 
 for i in np.arange(0, detections.shape[2]): 
  # extract the confidence (i.e., probability) associated with 
  # the prediction 
  confidence = detections[0, 0, i, 2] 
 
  # filter out weak detections by ensuring the `confidence` is 
  # greater than the minimum confidence 
  if confidence > args["confidence"]: 
   # extract the index of the class label from the 
   # `detections`, then compute the (x, y)-coordinates of 
   # the bounding box for the object 
   idx = int(detections[0, 0, i, 1]) 
   box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) 
   (startX, startY, endX, endY) = box.astype("int") 
 
   # draw the prediction on the frame 
   label = "{}: {:.2f}%".format(CLASSES[idx], 
    confidence * 100) 
   cv2.rectangle(frame, (startX, startY), (endX, endY), 
    COLORS[idx], 2) 
   y = startY - 15 if startY - 15 > 15 else startY + 15 
   cv2.putText(frame, label, (startX, y), 
    cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) 
   label_glob = label 
   recog_class = CLASSES[idx] 
 
 
 # show the output frame 
 # cv2.imshow("Frame", frame) 
 # Alt: send the output frames 
 #out.write(frame) 
 key = cv2.waitKey(1) & 0xFF 
 #print(label_glob) 
 if recog_class == "car": 
  print("Car detected") 
  sock.sendto(bytes(str(count) + " " + label_glob + "\n", "utf-8"), (ip_addr, port)) 
  count = count + 1 
 
 # if the `q` key was pressed, break from the loop 
 if key == ord("q"): 
  break 
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 # update the FPS counter 
 fps.update() 
 
# stop the timer and display FPS information 
fps.stop() 
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed())) 
print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) 
 
# do a bit of cleanup 
cv2.destroyAllWindows() 
vs.stop() 
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