

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Networked Systems and Services

Students' Scientific Conference

paper

Levente Márk Maller

Multi-Access Edge Computing and

Deep Learning supported Collective

Perception in a Cloud-in-the-Loop

simulator

SUPERVISORS

Dr. László Bokor – BME-HIT

Péter Suskovics – Ericsson

BUDAPEST, 2022

 2

Table of Contents

Összefoglaló ... 3

Abstract.. 5

1 Introduction ... 7

2 Multi-Access Edge Computing (MEC) ... 9

2.1 Vehicle-to-Everything (V2X) communication in MEC systems 11

2.1.1 MEC-based Vehicle-to-Cloud use cases ... 12

2.1.2 Collective Perception Services (CPS) in MEC systems 14

3 The Cloud-in-the-Loop simulation framework .. 15

3.1 Design and implementation of a telco-grade cloud cluster .. 17

3.1.1 The layout of the devices .. 17

3.1.2 Software setup... 19

3.2 Implementation of a UDP traffic benchmarking tool ... 20

3.2.1 UDP traffic benchmarking tool client component 21

3.2.2 UDP traffic benchmarking tool server component 22

3.3 Network traffic control ... 24

4 Design and implementation of automotive use cases into the Cloud-in-the-

Loop simulator .. 26

4.1 Deep Learning-based automotive use case implementation 27

4.1.1 Client application .. 27

4.1.2 AI-based edge application component .. 28

5 Measurements and evaluation ... 31

5.1 Evaluating the QoS of the integrated distributed environment 32

5.2 Evaluation of the Deep Learning-based automotive use case implementation 35

6 Summary.. 40

References .. 42

List of figures, tables and code snippets ... 45

List of abbreviations ... 46

Appendix .. 47

Appendix 1. Python code implementing a deep learning-based object detection application 47

 3

Összefoglaló

A felhő alapú számítástechnika világában az elmúlt évek során egyre nagyobb

szerepet kezdett betölteni az edge computing. Ezeknek a rendszereknek a legnagyobb

előnye a felhős erőforrások elosztottságában rejlik. A centralizált felhővel szemben az

edge architektúráknak a decentralizált, lokális kiszolgálás a feladata, ezáltal nem csak a

hardveres erőforrások elosztottsága, de a hálózati terheltség kiegyenlítése (load

balancing) is megvalósítható. Az egyik legnagyobb szabványosító szervezet, az ETSI,

Multi-Access Edge Computing [1] néven azonosítja a modellt, amelynek célja egy, a

jövő hálózataiba hatékonyan, problémamentesen integrálható, szabványos elosztott

felhőinfrastruktúra rendszer kialakítása. Fontos kiemelni, hogy az 5. generációs

celluláris mobilhálózatok (5G) architektúrális felépítése kézenfekvő alapot nyújt a MEC

rendszerekkel való közös működésre [2]. Ötvözve az edge computing koncepció

előnyeit az 5G-s rendszerek szolgáltatásaival, rengeteg új használati eset valósítható

meg és a korábbi szolgáltatások hatékonyabbá tétele is kivitelezhető. Ennek az egyik

legnagyobb haszonélvezője az autóipar lehet, ahol a járműkommunikációs (V2X)

szolgáltatásokból eredő nagy mennyiségű adat hatékony feldolgozására van szükség.

Ezen a területen a MEC rendszerek legnagyobb előnyét az adja, hogy a járműveken való

lokális információfeldolgozás helyett ezek a feladatok kiszervezhetőek az edge

erőforrásokra. Így lehetőség nyílik a szenzor adatok kollektív, fúzióval erősített

feldolgozására, amely elősegíti a való világ hatékonyabb virtuális leképezését. A több

forrásból gyűjtött információ segítségével sokkal pontosabb, megbízhatóbb

visszajelzések generálhatók a forgalmi résztvevők részére, ezzel biztonságosabbá és

hatékonyabba téve a közlekedést. Az 5G és MEC rendszerek ötvözésével olyan

használati esetek implementálására lesz lehetőség a jövőben, mint a valós idejű, nagy

felbontású HAD térképek [3] vagy az optimális járműforgalom-menedzsment. A V2X

vonatkozású MEC alkalmazásokban a mesterséges intelligencia tölt majd be

kiemelkedő szerepet, melynek nagy előnyét a kollektív adatgyűjtés és adatfúzió mellett

a hálózati késleltetések csökkentése és a felhasználói eszközök tehermentesítésének

lehetősége adja.

Ezeknek a technológiáknak hatékony implementálása komplex feladat, továbbá

olyan biztonság-kritikus területen, mint az autóipar, számos követelmények is meg kell

felelni. A valós infrastruktúrákon, valós járművekkel végzett vizsgálatokat megelőzően

 4

az egyik legfontosabb feladat a MEC rendszerek tesztelése, validálása. Erre nyújt

megoldást a korábban kialakított, azóta számtalan fejlesztésen átesett Cloud-in-the-Loop

(CiL) szimulációs keretrendszer [4], amely forgalomszimulátorból kinyert adatok alapján

képes egy valós méretű, telco-grade szintű, Kubernetes [5] alapú edge cloud

infrastruktúrát vezényelni és azon nagyfelbontású mérési adatokat gyűjteni. Ez a MEC

rendszer teljesítményanalízise mellett lehetőséget teremt komplex, járműipari használati

eseteket kiszolgáló cloud-native alkalmazások működésének és teljesítményének

mélyreható elemzésére is. A dolgozatban a célom a keretrendszert alkalmazva, a

járművek által a MEC infrastruktúra felé továbbított videójel alapú szenzoradatfolyamot

modellezve, egy valós, mély tanulás alapú objektumdetekciós modellt implementáló,

saját fejlesztésű cloud-native alkalmazás gyakorlati vizsgálata autóipari felhasználás

szempontjából. A mérések fókuszában az edge architektúra elosztott erőforrásai közötti

váltások okozta hatások vizsgálata áll, továbbá a MEC rendszer által kiszolgált

felhasználók (járművek) okozta háttérterhelés miatti teljesítménycsökkenés elemzése. A

vizsgálatok során különböző járműforgalmi szituációkat implementálva az AI-alapú

objektumdetekciós alkalmazás működését analizálom az edge csomópontok

terheltségének, a hálózat bizonyos Quality of Service (QoS) paramétereinek, és a cloud

native működés különféle mechanizmusainak a szempontjából.

 5

Abstract

Edge computing has become increasingly significant in cloud-based computing in

recent years. The distribution of cloud resources is one of these systems' main advantages.

In contrast to the centralized cloud, edge architectures provide local, decentralized

services, making it possible to balance network traffic and distribute hardware resources.

One of the largest standardization organizations, ETSI, identifies the model as Multi-

Access Edge Computing (MEC) [1], which aims to create a standard distributed cloud

infrastructure system that can be efficiently and seamlessly integrated into future

networks. It is important to emphasize that the 5th generation cellular mobile network's

architectural structure (5G) provides an apparent basis for joint operation with MEC

systems [2]. By combining the advantages of the edge computing concept with the

services of 5G systems, many new use cases can be implemented, and previous services

can be made more efficient. One of the biggest beneficiaries of this could be the

automotive industry, where it is necessary to efficiently process large amounts of data

resulting from vehicle communication (V2X) services. The primary benefit of MEC

systems in this area is the ability to outsource information processing tasks to edge

resources rather than performing it locally on vehicles. This makes it possible to process

sensor data collectively, enhanced by fusion, which promotes a more effective virtual

representation of the real world. With the help of information collected from several

sources, much more accurate and reliable feedback can be generated for road users, thus

making traffic safer and more efficient. By combining 5G and MEC systems, it will be

possible to implement such use cases in the future as real-time, high-resolution HAD

maps [3] or optimal road traffic management. In V2X-related MEC applications, artificial

intelligence will play a prominent role, the great advantage of which is the possibility of

reducing the load on user devices in addition to collective data collection.

Effective implementation of these technologies is a complex task, and several

requirements must also be met in a safety-critical field such as the automotive industry.

One of the most important tasks before tests on existing infrastructures with actual

vehicles is evaluating and validating MEC systems. A solution for this problem is the

Cloud-in-the-Loop (CiL) simulation framework [4], which was developed earlier and has

since undergone numerous developments. It can orchestrate a real-size, telco-grade level,

Kubernetes-based [5] edge cloud infrastructure based on information gathered from a

 6

traffic simulator and performing fine-grained benchmarking and data collection. In

addition to the performance analysis of the MEC system, this also creates an opportunity

for an in-depth examination of the operation and performance of cloud-native

applications serving complex automotive use cases. My goal in this paper is to use the

framework and model video signal-based sensor data transmitted by the vehicles to the

MEC infrastructure to examine a self-developed cloud-native application implementing

an actual, deep learning-based object detection model from an automotive use

perspective. The measurements focus on exploring the effects caused by relocations

between the distributed resources of the edge architecture and the analysis of the

performance degradation due to the background load caused by the users (vehicles)

served by the MEC system. By implementing various vehicle traffic situations during the

tests, I will analyze the operation of the AI-based object detection application in terms of

the load on the edge nodes, particular Quality of Service (QoS) factors, and various

mechanisms of cloud-native service provisioning.

 7

1 Introduction

In recent years, cloud-native-based services have gained more and more

recognition. The technology is already used in many areas, from information

communication through web services to banking systems. Cloud-native applications are

easily scalable, deployable, and flexible software packages and, due to their design, can

be run in any cloud-based environment. Cloud-based technologies have also expanded

into a new area called the edge computing paradigm, the most crucial feature of which is

that hardware resources are distributed. As a result, the services are closer to the

consumers, thereby speeding up information processing and ensuring high-performance

computing for the applications that provide the services. By applying these innovative

technologies, new solutions have also emerged, such as the 5G Service-Based

Architecture (SBA) [6] approach, which implements the network functions that build up

the core network of mobile networks with cloud-native applications. With this approach,

modern 5G systems can be integrated with edge cloud deployments, thereby taking

benefit of the most significant advantages of the two new technologies. One of the largest

European standardization organizations, ETSI, is also actively integrating the two

systems [2]. Furthermore, the organization has already achieved several results in

unifying edge cloud systems. This model is called Multi-Access Edge Computing (MEC)

[1]. Many service areas will be able to utilize the opportunities created by the combination

of 5G and MEC systems. One such area is Vehicle-to-Everything (V2X) communication.

The application of these technologies opens up many new use cases, such as sensor fusion

applications based on collective perception. These rely on deep learning-based object

detection technologies, for which the distributed resources of the MEC systems provide

an excellent execution environment. Furthermore, with the help of 5G systems, a low-

latency, high-data-speed communication can be provided, which ensures a stable

connection between user equipments and edge servers. In the first part of this work, I will

introduce the above technologies and activities and how they are related to my research.

The effective implementation of these technologies is a complex task, and many

requirements must be met. Furthermore, building a real system is a costly task. Before

this, it is essential to carry out tests related to the operation and performance of these

systems. The apparent basis for this is provided by test systems that can replace expensive

real-life tests. Among others, these aspects motivated the design and implementation of

 8

the Cloud-in-the-Loop (CiL) simulation framework [4], which currently integrates a

traffic simulator called SUMO [7] with a real distributed cloud-based environment. With

the help of the framework, the operation of edge cloud systems and cloud-native

applications can be investigated and evaluated. Using the CiL simulator, I have already

achieved research results [4][8]. Since then, I have made numerous improvements to the

system. The framework was integrated into a telco-grade edge cloud environment, the

component implementing the orchestration of the whole framework was supplemented

with new features, and functions executing more detailed and accurate measurements

were also implemented. Furthermore, I also developed new supporting application

components compatible with the framework. In Chapter 3 of this paper, I will give a

comprehensive presentation of the CiL framework and the improvements I have made to

it in the last period. Unlike the measurements carried out in the past, using the improved

framework, my goal was to examine a cloud-native application implementing an

automotive use case from the Quality of Experience point of view. For this, I implemented

a cloud-native, deep learning-based object detection application. The task of the edge

application is to process the sensor data transmitted by V2C-capable vehicles and then

generate relevant feedback for the vehicles based on the extracted information. The

implemented application is discussed in detail in Chapter 4. During the measurements

presented in the paper (Chapter 5.), I searched for the answer to how the operation of the

application in the edge environment affects its functionality at the application-level and

its QoE. To do this, I defined a KPI and specified scenarios that realize various loads on

the edge cloud environment and then investigated and evaluated their impact.

Furthermore, I also performed measurements examining the Quality of Service (QoS) of

the integrated distributed environment.

 9

2 Multi-Access Edge Computing (MEC)

MEC systems' main advantage comes from the distribution of physical cloud

resources. These resources are also located close to the user equipments (UEs) in the

network architecture. This way the computational tasks can be executed locally in a

decentralized manner, which also creates an opportunity to offload certain tasks that were

originally performed on the UEs. Due to their architectural design, MEC systems can also

balance the traffic load over the network. By processing data at the edge, these systems

can reduce the volume of the data to be sent. Multi-Access Edge Computing is meant to

be the enabler of various 5G functionalities in the future [9]. To provide high bandwidth,

ultra-reliable connection integrating MEC is the key. One of the most prominent

standardization organizations, ETSI [10], also developed a model that defines the joint

operation of the 5th-generation cellular mobile networks with MEC systems [2]. One of

the most significant innovations in 5G systems is the Service-Based Architecture (SBA),

which defines a cloud-native, modular core network. In SBA, all Network Functions

(NFs) can communicate over a service-based interface, and the whole architecture relies

on network virtualization, and Software Defined Networking (SDN). SBA's cloud-native

approach provides an optimal basis for integrating MEC architectures. In [2] ETSI also

presents the functionalities of the 5G specification that are key enablers for MEC

integration. These functionalities are defined in 3GPP's 5G specification [11]:

1. Local Routing and Traffic Steering: The ability provided by the 5G Core

Network to select the traffic in the local area network to be routed to the

applications in the distributed cloud.

2. The ability to control User Plane Function (UPF) selection and traffic routing

by an Application Function (AF) using the Policy Control Function (PCF) or

the Network Exposure Function (NEF).1

1
https://telecompedia.net/5g-core-network-overview/ (Accessed 30 Oct. 2022)

https://telecompedia.net/5g-core-network-overview/

 10

3. The ability to use specific Session and Service Continuity2 (SSC) modes in

different mobility scenarios.

4. The ability provided by the 5G Core Network to support MEC applications to

connect Local Area Data Networks (LADN) in an area where they are

deployed.

In the SBA all functions (NFs/AFs) expose or accept services. All services are

based on request-response or subscribe-notify communication models. The API

framework (defined in cit ETSI ISG MEC) of MEC systems implements a similar

communication model between its applications to that of the SBA. This makes the

information exchange between the entities of the systems remarkably efficient. The nearly

identical APIs enable very close integration of the two systems. This way, MEC systems

can natively communicate with the 5GC's NFs (e.g., PCF, NEF), control data plane traffic

between UEs and MEC applications, and optimize the operation of the distributed cloud

resources to provide efficient services (Figure 2.1).

Figure 2.1 5G and MEC integration [2]

Such a deep integration of the two systems creates an opportunity to exploit the

main advantages of distributed cloud-based computing and the most important

innovations of 5th Generation mobile networks. Thanks to the distributed computing

resources of MEC systems, applications can be placed close to user devices. With the

modern radio access networks of 5G systems, a reliable, high-bandwidth connection can

be established between network entities. Furthermore, through the close cooperation of

2 https://www.cisco.com/c/en/us/td/docs/wireless/ucc/smf/2020-03-0/b_ucc-5g-smf-config-and-admin-guide_2020-

03/SMF_chapter_0111.pdf (Accessed 30 Oct. 2022)

https://www.cisco.com/c/en/us/td/docs/wireless/ucc/smf/2020-03-0/b_ucc-5g-smf-config-and-admin-guide_2020-03/SMF_chapter_0111.pdf
https://www.cisco.com/c/en/us/td/docs/wireless/ucc/smf/2020-03-0/b_ucc-5g-smf-config-and-admin-guide_2020-03/SMF_chapter_0111.pdf

 11

the two systems based on cloud-native processes, all services can be managed together;

thus, the operation of the applications running in the cloud can be adjusted to the network

conditions and the mobility aspects of the UEs. To take advantage of the functions

provided by the integrated system, it is also necessary to develop new use cases and

applications. The option of offloading processing tasks should be highlighted, the great

advantage of which is that load on the UEs can be reduced. The latter is especially

beneficial for IoT devices, where support for limited hardware resources can be ensured

in addition to energy efficiency. By taking advantage of local processing, it is also

possible to distribute the entire network load since, after processing on the edge servers,

only the relevant information needs to be forwarded to the other entities of the network.

However, one of the most significant advantages is the possibility of joint, fusional

processing of data delivered by UEs.

2.1 Vehicle-to-Everything (V2X) communication in MEC

systems

One of the most promising areas that will be able to utilize MEC systems is the

automotive industry. There are already many areas of V2X communication that provide

direct, Wi-Fi-based (802.11p [12]), low bandwidth, and low latency communication

between road users (vehicles, pedestrians) and roadside units. Services based on these

technologies are reliable but have several limitations. One of their disadvantages is that

they are incapable of high-speed data transmission, which is not ideal for forwarding large

amounts of data collected by sensors on modern vehicles. Furthermore, if the density of

users increases - due to the finite channel capacity - throughput decreases, thereby

degrading the quality of the service [13] and endangering functional safety [14][15].

However, these systems can ensure low-latency, reliable communication, which is

extremely important in a safety-critical area such as traffic safety. For the Vehicle-to-

Cloud (V2C) communication model, providing low latency is currently the critical factor.

Yet, MEC systems integrated with 5G can bring a breakthrough in reducing

communication delay. Creating an efficient, reliable system is a complex task, so it is

conceivable that solutions based on new technologies will serve the needs in a hybrid way

with the techniques already used in practice [16]. MEC-based V2C models supported by

the 5G system also enable the implementation of many new use cases that were not

possible before. Furthermore, it can improve the efficiency of previous use cases

 12

developed on other technologies. The most significant advantage of the new approach is

that the processing of the environmental sensor data collected by the vehicles can be

offloaded to the distributed edge resource of the MEC systems, which provide the best

access in terms of network availability. This allows sensor data fusion and simultaneous

environmental information processing from multiple sources. This way, the physical

environment can be mapped onto the digital representation more accurately and reliably.

ETSI is also actively involved in applying MEC systems to V2X technologies. A

unique API system was created for efficient integration called the V2X Information

Service (VIS) API [17]. This service enables interoperability in V2X communication in

environments with multiple vendors, networks, and access types. In the case of MEC-

based V2X use cases, it is essential to maintain service continuity, especially in cases

where, due to the movement of the vehicle, its service has to be relocated into another

MEC system or when it changes mobile networks between countries. With the help of

VIS, information can be provided about V2X services, which can be used to prepare

vehicles for these handovers and minimize service downtimes. In addition to ETSI, 3GPP

[18] is also actively involved in V2X communication solutions supported by mobile

network communication. They created a so-called V2X Application Server concept [19].

By integrating it into the core network, these V2X Application Servers, like the VIS,

would help interoperability between different domains.

2.1.1 MEC-based Vehicle-to-Cloud use cases

By applying MEC systems, it is possible to implement many new automotive use

cases or to develop previously developed solutions further. ETSI has defined four

categories for classifying use cases [20]. The first, the safety category, encompasses those

use cases intended to increase traffic safety and reduce the risk of accidents. An example

of such a use case is Intersection Movement Assist, which helps coordination at road

intersections, especially when vehicles cannot see each other. Other categories include

the convenience type of use cases, for example, software updates or telematics.

Furthermore, an advanced driving assistance category was also defined, which provides

for use cases based on sharing large amounts of data with high reliability and low latency.

An example of this is the High Definition (Local) Maps use case, which will be able to

use the potential of MEC systems effectively. By processing the environmental data

transmitted by the vehicles with the help of HD Maps, it is possible to implement

 13

continuously updated local maps running on edge servers. These multi-layered maps can

contain various information, such as processed environmental information transmitted by

vehicles and virtual representations of other traffic participants (Figure 2.2). Object

recognition AI applications running on edge servers are especially suitable for these tasks.

Such applications can process data collected by several vehicles connected to an edge

server, thereby implementing sensor fusion. MEC systems supported by 5G networks can

efficiently process the data transmitted by vehicles, enabling local HD maps to provide

accurate, near real-time information to traffic participants [21]. Furthermore, ETSI also

defined a vulnerable road user category, which includes use cases meant to increase the

safety of pedestrians and cyclists by using smartphones, which provide opportunities for

sharing and receiving V2X-related information as dedicated devices. In addition to ETSI,

several other organizations research edge cloud-based V2X communication. One of these

larger groups is AECC [22], which also defines the use cases that can exploit the potential

of these systems. They currently have a Use Case and Requirements [23] documentation,

but this is only publicly available at the Table of Contents level. However, detailed

research is conducted on the structure and operation of High Definition Map use cases

[21].

Figure 2.2 Layers of HD maps [21]

 14

2.1.2 Collective Perception Services (CPS) in MEC systems

The Collective Perception Service is a concept standardized by ETSI in Europe,

the essence of which is that vehicles equipped with sensors should be able to transmit

information about detected objects to other road users in a standardized form [24]. The

purpose of CPS is to expand the perception of the vehicles. For this, the so-called

Collective Perception Messages (CPM) [25] are exchanged in a one-hop geobroadcast

manner. These messages also contain information about the devices that record the sensor

data (station data), about the sensors themselves (how far they detect, what area they see),

and about the detected objects, e.g., how they move (speed, position) or what size and

what shape they have (Figure 2.3). CPM messages are transmitted by the devices at a

given periodicity (time-triggered way), always providing the latest and most up-to-

date/fresh sensor data.

Figure 2.3 Structure of CAM messages [26, p. 4]

This information can be utilized by many automotive use cases and solutions

based on MEC systems. Currently, the source of CPM messages is vehicles or RSUs.

Later, these messages can also be provided by applications running on edge resources.

MEC systems can give an apparent technological basis for implementing Collective

Perception Services. The system can produce accurate and reliable information by

simultaneously processing sensor data from multiple sources. CPS is also ideally suited

to share this information, thus exploiting the potential of these technologies and raising

collective perception to a higher level.

 15

3 The Cloud-in-the-Loop simulation framework

The Cloud-in-the-Loop (CiL) simulation framework [4][8] results from several

years of research and development and provides the basis for the achievements presented

in this work. Based on information extracted from a simulator that models the behavior

of user devices, the framework can orchestrate a closely integrated, real, distributed

cloud-based environment and run and test real cloud-native applications in it. In the

current construction of the framework, it is configured to examine V2C use cases;

accordingly, the simulation environment is provided by a very versatile, multi-modal

traffic simulation software called SUMO [7]. The orchestration of the distributed cloud-

based environment is realized by the Kubernetes (k8s) widely used, open-source

platform, which already plays a prominent role in operating SBA-based 5G Core

networks nowadays [27] and can also be used excellently for managing edge cloud

systems. The CiL framework consists of three main system components (Figure 3.1):

- Automotive traffic simulator: The simulation environment is realized by the

vehicle traffic simulator called SUMO. The software can model real, large-

scale road networks and simulate detailed, high-precision traffic models.

Furthermore, detailed information on the behavior of each simulated object

and vehicle can be extracted, and their run-time configuration is also provided.

- CiL Orchestrator: The orchestration component is a software developed in

Java, which is one of the essential elements of the framework. This is where

the control of the distributed cloud-based environment is realized based on the

information extracted and processed from the simulator. It enables the

implementation of various automotive use cases and the logic and algorithms

controlling the distributed environment. Furthermore, this component ensures

detailed data collection during the measurements.

- Distributed cloud environment: The distributed cloud environment is realized

by a Kubernetes (k8s) platform-based real-scale hardware cluster. The nodes

of k8s represent the edge servers that form a cluster. The software also enables

cloud-native applications that implement automotive use cases on distributed

resources.

 16

Figure 3.1 The architecture of the Cloud-in-the-Loop simulation framework

An important aspect of MEC systems is examining the effect of switching

between edge resources resulting from the mobility of user devices, which affects the

system's operation in many ways. In such cases, relocating applications that provide

services to user devices may also be necessary, and service continuity must also be

ensured. The system must also manage the redirection of the network connection giving

access to the servers. In addition to relocation, the performance and operation of the

system are also affected by the network and resource load, which largely depends on the

number of devices served, the type of applications providing the service, and the data

traffic generated. With the help of the CiL framework, based on the information extracted

from the simulator, the operation of real applications can be examined, and fine-grained

benchmarking and data collection can also be performed. Accordingly, many

improvements have been made to the system and its supporting applications since I

published my initial results in [4][8]:

- Telco-grade level, real distributed edge infrastructure was integrated into the

framework (See in detail: 3.1).

- Specialized client and server application components were implemented to

test UDP traffic and generate/evaluate QoS metrics (See in detail: 3.2).

- Client applications were designed and deployed that model services running

on user equipments and generate UDP test traffic directly forward packets to

edge applications running on the corresponding node. K8s networking no

longer performs the entire traffic management as before (See in detail: 3.3).

 17

- Simulation control and cloud system control were parallelized with

appropriate thread management.

- A deep learning-based application component was designed and implemented,

modeling an automotive use case featuring AI-supported object detection for

MEC-level sensor fusion and related applications (See in detail: 4.1).

3.1 Design and implementation of a telco-grade cloud cluster

This chapter thoroughly describes the design and implementation of the telco-

grade test infrastructure that was integrated into the Cloud-in-the-Loop framework. The

leading goal of the system is to evaluate V2C applications' operations and functionalities

on an actual, high-performance server cluster. To test these functionalities, it was essential

to plan the structure of the servers and arrange the software components accordingly. The

orchestration and management of the distributed environment are realized by the

Kubernetes (k8s) platform, a powerful software to control multi-node cloud systems

dealing with the orchestration and management tasks of the distributed environment.

Besides the fact that k8s allow for fully functional cluster deployment, it is essential to

evaluate how the software manages and operates services and functionalities that support

the V2C concept and its use cases.

3.1.1 The layout of the devices

The first important task of the cluster design was planning the network and

hardware elements that implement an actual cloud hardware environment based on the

Edge Cloud paradigm. To evaluate various V2C scenarios and use cases, the k8s cluster

was deployed with three worker nodes and a master node, which also runs the main

software components of the Cloud-in-the-Loop framework. The deployment also includes

a server entirely dedicated to running applications that realize and model V2C

applications. Each server is interconnected through a high-performance switch with two

10 Gbit ports, an Operation and Maintenance, and a traffic port. These links can also be

aggregated to create a 20 Gbit/s bonded connection between the servers. The selection

and arrangement of the devices were aimed at developing an actual distributed cloud

deployment that would be possible to be integrated into a real network. According to this

intention, the hardware is capable of solving demanding computational tasks and serves

a significant number of clients. Thus, this hardware platform enables the investigation

 18

and evaluation of use cases and validation of the concept on a telco-grade level. The

cluster design also allows the integration of 5G functionalities in the future to which a

high-performance server is prepared. The hardware environment consists of 6 devices

(Figure 3.2). The details of the hardware components are shown in Table 3.1.

Device

model

Role Hardware description Networking

Dell R630 Kubernetes master node,

Running the CiL

Orchestrator and the traffic

simulator component

CPU: 28 cores (56 threads),

2.4 GHz, 3.3 GHz w/ Turbo

RAM: 128 GB, 2.4 GHz

Storage: 4 x 372 GB SSD

2 x 10 Gbit/s

Dell R630 Edge server 1 (k8s:

worker1 node)

CPU: 24 cores (48 threads),

2.5 GHz, 3.3 GHz w/ Turbo

RAM: 128 GB, 2133 MHz

Storage: 4 x 372 GB SSD

2 x 10 Gbit/s

Dell R630 Edge server 2 (k8s:

worker2 node)

CPU: 24 cores (48 threads),

2.5 GHz, 3.3 GHz w/ Turbo

RAM: 128 GB, 2133 MHz

Storage: 4 x 372 GB SSD

2 x 10 Gbit/s

Lenovo

x3650

Edge server 3 (k8s:

worker3 node)

CPU: 20 cores (40 Threads),

2.3 GHz

RAM: 144 GB, 2133 MHz

Storage: 5 TB SSD/HDD

2 x 10 Gbit/s

Lenovo

x3650

Application server:

running client and central

server application

components

CPU: 20 cores (40 Threads),

2.3 GHz

RAM: 144 GB, 2133 MHz

Storage: 5 TB SSD/HDD

2 x 10 Gbit/s

Dell R640 Not in use currently. Its

future task: Running

Cloud-Native 5G network

functions

CPU: 40 cores (80 Threads), 2

GHz, 3.7 GHz w/ Turbo

RAM: 384 GB, 2666 MHz

Storage: 8 x 480 GB SSD

2 x 10 Gbit/s

Table 3.1 The specification of the hardware environment

 19

Figure 3.2 The actual hardware environment (on the left)

3.1.2 Software setup

To run the Cloud-in-the-Loop frameworks and the Kubernetes platforms'

components, selecting an operating system that also properly utilizes the hardware's

capabilities was necessary. All of the devices were installed with Ubuntu 18.04., a very

stable and reliable version with good compatibility with various software used in the

framework. With a functioning OS, the next step was to install Kubernetes, which

required multiple preparatory steps. These include disabling the SWAP function (to make

the software work properly), configuring the iptables and firewalls, and, most

importantly, installing the Docker engine (version 20.10.7) on the nodes. Kubernetes is

constantly tweaked and frequently updated with new functions. Hence, it was essential to

install the newest version (version 1.23.3) of the software to be up-to-date with the

framework and be able to produce measurement results with state-of-the-art technology.

In the Kubernetes environment, Pod-to-Pod networking [28] is a critical part of cluster

networking. It enables communication between the pods that encapsulate the

containerized applications. It is a necessary function for the platform to operate. This type

of communication can be realized by different technologies that are implemented mainly

through third-party software components. In this implementation, the system is installed

with the Container Network Interface (CNI) plugin called Calico [29]. Unlike other CNI

plugins, Calico realizes the communication in the network layer (layer 3), using BGP

routing protocol instead of relying on network virtualization. This way, additional

encapsulation of the packets can be avoided, resulting in better performance [30]. The

plugin also supports network policies, which can be very useful for regulating the network

 20

traffic between pods. After installing all the necessary software, the cluster was ready to

install the components of the simulation framework.

3.2 Implementation of a UDP traffic benchmarking tool

One of the most critical aspects of benchmarking edge cloud systems is evaluating

the effects of network and hardware resource load resulting from serving user devices.

Furthermore, it is important to consider that since it is a distributed system, this load is

distributed among the individual resources according to the users and the implemented

load-balancing algorithms. During the planning of MEC services and systems, it is a vital

aspect to be able to ensure the QoS required by the requirements in all cases. This is

particularly important in areas with strict requirements, such as the automotive industry.

Degradation of service quality is caused by errors and outages in application-level

network traffic. To investigate this in the CiL framework, it became necessary to integrate

an application that can be appropriately scaled and is capable of generating network

traffic.

On the other hand, it can also create QoS metrics based on the generated data. In

this way, the load caused by various automotive use cases can be modeled on the actual

edge cloud system integrated with the framework, and the system's performance can also

be examined in terms of service quality. The performance and operation of the systems

can be well examined from the point of view of the packet loss metrics of the traffic

generated by the applications, a UDP-based network test traffic is ideal for such

measurements. To this end, I previously integrated the iperf [31] application into the

framework, resulting in the generation of incorrect metrics during measurements in the

edge cloud environment. It has become necessary to use a tool that is prepared for

adequately handling errors occurring during operation in MEC systems and for proper

representation in metrics. The basis of the self-developed UDP traffic benchmarking tool

was an open-source application [32] developed in python, which primarily focuses on

measuring network latency. I made several modifications to the application, preparing it

for proper operation in a distributed environment. During the measurements, the

application was running in two replicas:

- Client-side application (3.2.1): This component compiles and forwards the

packets with the appropriate information, which is used to evaluate the

generated data traffic and detect network errors.

 21

- Server-side application (3.2.2): This component receives the network traffic

generated by the client and ensures the processing of the information extracted

from the packets and the generation of QoS metrics based on them.

3.2.1 UDP traffic benchmarking tool client component

During the measurements, UDP data transmission sessions (with a definable time

interval and data rate) provide the basis for the QoS metrics. Therefore, it was important

to develop a concept in which the components can differentiate and identify these sessions

regardless of the implemented use case and the network paths of the edge cloud

infrastructure. The functionality on the client side is defined by the Client class of the

python code, in the constructor of which the UDP socket on the sending side is created

based on the IP addresses and port numbers specified as parameters. The essential element

of the class is the send function, which is responsible for the assembly and forwarding of

the UDP packets. The size of the payload is determined within the function, which at the

application level only contains zero bytes. The application-level header includes the

information required for the functionality of the tool. In addition, so that the application

can differentiate each session, its current session number is read from a separate file.

During the initialization of the send function, the session's start time is also determined,

as well as the number of packets to be transmitted and the length of the packet

transmission periods based on the frequency (or bandwidth) passed as a parameter

(Snippet 3.1).

_payload_size = packet_size - HEADER_SIZE
_fill = b''.join([b'\x00'] * (_payload_size))

if os.path.exists(self.path):
 with open(self.path) as fp:
 session_id = fp.read()
 with open(self.path, 'w') as fp2:
 fp2.write(str(int(session_id) + 1))
if not os.path.exists(self.path):
 session_id = 1
 with open(self.path, 'w') as fp2:
 fp2.write(str(session_id))

start_time = time.time_ns()
total_packets = frequency * running_time
print(int(total_packets))
running_time = running_time * 1e9
period = 1 / frequency

total_packets = round(total_packets)
total_packets_bytes = int(total_packets).to_bytes(6, 'big')

Snippet 3.1 Part of the Python code that implements the UDP benchmarking tool (send)

 22

The packets sent in each data transmission session are assembled and transmitted

in a while loop of the function. Each package receives a unique serial number and contains

the given session's identifier. Similarly, the number of packets belonging to a given

session is also transmitted so that all the properties of a given session can be extracted

from a single packet on the receiving side. Furthermore, the code can also set the dynamic

transmission period time. As a result, the data rate can be provided with an error rate

within a maximum of 1% [32]. Each session is closed by a single packet containing 0,

which indicates the last packet on the receiving side (Snippet 3.2).

while True:
 index_bytes = self.packet_index.to_bytes(4, 'big')
 current_time = time.time_ns()
 time_bytes = current_time.to_bytes(8, 'big')
 session_id_bytes = int(session_id).to_bytes(5, 'big')
 send_nums = self._udp_socket.sendto(
 index_bytes + time_bytes + session_id_bytes + total_packets_bytes + _fill,
 (self.remote_ip, self.to_port))
 self.log.append([self.packet_index, current_time, send_nums])

 ...

 if (current_time - start_time
) > running_time or self.packet_index == total_packets:
 break

 self.packet_index += 1

 if dyna:
 prac_period = (running_time - (current_time - start_time)) / (
 total_packets - len(self.log)) * (
 len(self.log) /
 (frequency *
 (current_time - start_time) * 1e-9)) * 1e-9
 prac_period = period if prac_period > period else prac_period
 else:
 prac_period = period

 time.sleep(prac_period)

self._udp_socket.sendto((0).to_bytes(4, 'big'),
 (self.remote_ip, self.to_port))
self._udp_socket.close()

Snippet 3.2 Part of the Python code that implements the UDP benchmarking tool (generating

packets)

3.2.2 UDP traffic benchmarking tool server component

The functionality on the receiving side is implemented by the Server class of the

python code. Similarly to the client side, the constructor ensures the creation of the UDP

socket based on the IP address and port number passed as parameters. The listening class

takes care of the reception of the packets, in which the information transmitted by the

packets is read, from which the program later generates the metrics. The code appends

the data extracted from packets belonging to a specific session to a log list. To

 23

differentiate between sessions, it reads the identifiers (session_id) from the first packet of

each transmission and only evaluates if the last packet containing a single 0 arrives.

However, in some cases, the last packet may not arrive due to packet loss. In such cases,

as soon as a packet for the next session arrives, it performs the evaluation and starts

logging the data of the new transfer (Snippet 3.3).

def listen(self, buffer_size, verbose, sync):

 …

 self.first_packet = True
 self.current_session_id = 0
 while True:
 msg, _ = self._udp_socket.recvfrom(buffer_size)
 recv_time = time.time_ns()
 packet_index = int.from_bytes(msg[:4], 'big')
 send_time = int.from_bytes(msg[4:12], 'big')
 session_id = int.from_bytes(msg[12:17], 'big')
 total_packets = int.from_bytes(msg[17:23], 'big')
 old_latency = latency
 latency = round((recv_time - send_time) * 1e-9 - self.OFFSET, 6)
 jitter = abs(latency - old_latency)
 recv_size = len(msg)

 …

 if packet_index == 0:
 server.evaluate()
 break

 if self.first_packet:
 self.current_session_id = session_id
 self.first_packet = False
 if not self.current_session_id == session_id:
 server.evaluate()
 self.first_packet = True
 self.log.clear()

 self.log.append(
 [packet_index, latency, jitter, recv_time, recv_size, total_packets])

Snippet 3.3 Part of the Python code that implements the UDP benchmarking tool (listen)

The evaluation and the calculation of the QoS metrics are performed by the

evaluate function, which is called from the listen function. Among the other results, the

data rate of the packets transmitted in the given session (based on the number of

transmitted packets) and packet loss (based on the ratio of the number of packets received

on the server side to the total number of transmitted packets) are calculated here (Snippet

3.4).

def evaluate(self):

 …

 cycle = (self.log[-1][3] - self.log[0][3]) * 1e-9
 latency_list = [row[1] for row in self.log]
 latency_max = max(latency_list)
 latency_avg = sum(latency_list) / len(latency_list)
 var = sum(pow(x - latency_avg, 2)
 for x in latency_list) / len(latency_list)

 24

 latency_std = math.sqrt(var)
 jitter = max(latency_list) - min(latency_list)

 bandwidth = sum([x[4] + 32 for x in self.log]) / cycle

 packet_loss = (int(self.log[0][5]) - len(latency_list)) / int(self.log[0][5])
 print('| ------------- Summary --------------- |')
 print('Sent packets: ' + str(self.log[0][5]))
 print('Total %d packets are received in %f seconds' %
 (len(self.log), cycle))
 print('Average latency: %f second' % latency_avg)
 print('Maximum latency: %f second' % latency_max)
 print('Std latency: %f second' % latency_std)
 print('bandwidth: %f Mbits' % (bandwidth * 8 / 1024 / 1024))
 print('Jitter (Latency Max - Min): %f second' % jitter)
 print('Packet loss: %f' % packet_loss)
 self.log.clear()

Snippet 3.4 Part of the Python code that implements the UDP benchmarking tool (evaluation)

During the measurements, a bash script logs the calculated and summarized

session statistics (Figure 3.3) on the server side. The aggregated log file is processed by

a post-process python script, which generates statistics from the QoS metrics and

implements the results' representation.

Figure 3.3 Example of the summary of QoS metrics

3.3 Network traffic control

In real 5G-supported MEC systems, the mobile network delivers the packets sent

by the user equipments to the application components running on the edge servers. In the

framework, previously introduced services managed by Kubernetes ensured the

appropriate delivery of packages. During the measurements, all client applications

forwarded packets to the IP address of the k8s master node and the NodePort [33] of the

server-side application. After that, the system forwarded the data to the appropriate node,

where the receiving application encapsulating pod was running. In this implementation,

the packages traveled an unnecessarily long path, and the operation of realistic MEC

systems was not correctly modeled either. It became necessary to implement a solution

capable of changing the destination of sent packets at run-time, even in the case of UDP-

 25

based applications, where this function is not implemented at the application level.

Therefore, a UDP traffic control relay application component was implemented in the

framework's application server, which can forward UDP traffic generated by any client

to the server-side application component running on a given node (Figure 3.4). The relay

is controlled by the CiL Orchestrator component and is able to redirect traffic based on

the mobility information of the simulated vehicles. This is important in cases where

several edge servers have served a vehicle during its movement, and when entering a new

zone, where it is necessary to relocate the utilized services in which case the network

traffic is also redirected to the new server.

Figure 3.4 Operation of the UDP traffic control relay

 26

4 Design and implementation of automotive use cases

into the Cloud-in-the-Loop simulator

It is also necessary to create the proper simulation environment to examine the

MEC system integrated into the framework and the implemented use cases. Modeling this

is the task of the SUMO traffic simulator, which is also capable of implementing realistic

traffic maps. The simulation traffic map used for the current measurements - which

provides an excellent basis for testing edge systems - has already been implemented

during previous tests [4][8]. The map is based on Budapest XI. district's urban

environment around Infopark. The resources (servers) of the integrated edge cloud

environment are located virtually on this map. To achieve this, I defined so-called latency

zones (Figure 4.1) for the two edge servers of the cluster, which determine which resource

serves the vehicle moving in the given position. In reality, the shape of these zones is

affected by countless factors, such as the location of the base stations or the network

structure. However, the zones created in the current simulation environment implement

only one possible layout among many, but it is ideal from the point of view of testing

edge cloud systems. Because the measurements carried out in the framework currently

focus on the tests of the application components that model the operation of V2C use

cases and the operation of the distributed system.

Figure 4.1 Simulation map for the implemented use cases

 27

4.1 Deep Learning-based automotive use case implementation

One of the most promising functionalities of edge cloud systems is the possibility

of outsourcing computing tasks. This can be especially beneficial in areas such as

Vehicle-to-Cloud communication. Modern vehicles are equipped with many sensors,

including high-resolution cameras and LIDARs. Using these devices, vehicles can collect

large amounts of raw data about their environment, which are processed to support

various automotive use cases. The processing of environmental information requires

high-performance hardware resources, and the vehicles must also share the information

extracted from the processed data. With the help of edge cloud systems supported by 5G

and beyond cellular networks, it is possible for the processing of sensor data to be

implemented by the resources of the distributed environment. This makes it possible to

process data collected from individual sources jointly, increasing the accuracy and

reliability of environment detection. One of the most efficient ways to process sensor data

for object detection is to use Deep Learning-based networks. Using the CiL framework,

my goal in this work was to investigate the operation of an edge cloud-compatible, cloud-

native V2C application based on this technology. In the first step, it was necessary to

define and implement a use case that could be used to test the functionality of these

technologies.

According to the implemented use case scenario, a given V2C-capable vehicle

collects environmental data using its camera sensors and then transmits it to the edge

server currently serving it. On the edge server, an AI-based application processes the

video stream and sends relevant feedback information to the vehicle based on the data

collected from its environment. In a later phase, the scheme can also support MEC-aided

sensor fusion [34] and misbehavior detection [35] purposes. Modeling and testing the use

case in the framework required the design and development of two application

components.

4.1.1 Client application

The GStreamer multiplatform multimedia framework implements the client-side

application. The software can produce and forward a video stream recorded by a camera

and based on a file. Gstreamer uses so-called pipelines to define the processing method

of the resources passed to its input and also to set the output types. The pipelines offer

many configuration options; the video encoding procedure the software should use can

 28

be specified, which stream protocol to use during network transmission, and to which

network address the video stream should be forwarded (Snippet 4.1).

filesrc location=~/ai_testvid.mp4 ! decodebin ! autovideoconvert ! x264enc
tune=zerolatency ! queue2 ! rtph264pay ! udpsink host=10.96.20.3 port=32705

Snippet 4.1 Example of a gstreamer pipeline

I defined two clients that model two vehicles when implementing the use case.

During the measurements, these clients transfer video streams for processing to the two

edges implemented in the simulation environment. The basis of the sent video stream is

a 30-second video recording of a traffic scenario from a car perspective, modeling a real-

time stream recorded by a video sensor by an actual V2C-capable vehicle (Figure 4.2).

The CiL Orchestrator component manages clients' operation, deployment, and

scheduling.

Figure 4.2 Frame of the AI test video [36]

4.1.2 AI-based edge application component

From the point of view of the implemented use case, the edge application must

perform three critical tasks. 1) it must receive and process the video stream transmitted

by the clients. 2) it must perform object detection on the received video frames, and 3)

provide feedback to the client. The source code implementing the neural network was

supplied by a pre-developed python code [37]. The pre-trained object detection model is

based on the Google SSD [38] method, which is well suited for real-time processing

videos containing multiple objects simultaneously on one frame. The utilized

MobileNetSSD model was implemented with the framework called Caffee [39], the use

of which in the application is realized by the OpenCV [40] function library, which is

 29

compatible with CaffeModels. The pre-trained neural model can recognize 20 different

object types, including cars, buses, and motorcycles, which provides a perfect basis for

testing the functionality of the use case I am investigating. I also used the GStreamer

framework in the edge application to receive and process the transmitted video stream

because, in addition to being a versatile and efficient software, it is also supported by

OpenCV. OpenCV had to be recompiled with appropriate parameters because the

compiled libraries available in the repositories do not support GStreamer by default. I

implemented the feedback methodology with the help of UDP packets, which provide

feedback to the clients about the recognition confidence of the cars appearing on the

frames in accordance with the tests detailed in Chapter 5 (Snippet 4.2). On the client side,

I designed the reception and logging of the feedback signals with a script utilizing the

netcat software [41].

if recog_class == "car":
 print("Car detected")
 sock.sendto(bytes(str(count) + " " + label_glob + "\n", "utf-8"),
(ip_addr, port))

Snippet 4.2 Part of the object detection edge application's source code

After developing the source code of the object detection application, I tested the

operation of all functionalities (video stream reception, object detection, and feedback

transmission to clients) (Figure 4.3).

Figure 4.3 Visualizing the object detection on the AI test video

After that, creating a cloud-native, Kubernetes-compatible design for the

application became necessary. I implemented the encapsulation of the source code, the

 30

used function libraries, and dependencies with Docker [42] containerization. Then I

uploaded the docker image to a private Docker repository, which allows quick and easy

redeployment in the test executions. In a real environment, individual client-side

applications run on vehicle user equipments. In the framework, the running environment

of these applications is implemented by the dedicated application server. Edge-side

applications run on individual nodes (worker1/edge1, worker2/edge2) of the Kubernetes-

based distributed system integrated into the framework (Figure 4.4).

Figure 4.4 The integration of the AI-based automotive use case

 31

5 Measurements and evaluation

During the measurements, I focused on examining the application implementing

the automotive use case detailed in Chapter 4.1 and on the performance examination of

the integrated k8s-based distributed environment. For this, it was first necessary to create

a suitable test case. The most critical aspect of offloading computing tasks offered by

edge cloud systems is that the systems must ensure high Quality of Service (QoS) and the

proper Quality of Experience (QoE) at the application level. In the case of the AI-based

object detection application, I examined the QoE based on a pre-defined KPI, which

characterizes the application's performance and the distributed cloud-based environment

during the measurements. During the tests, with the help of the client-side applications

representing V2C vehicles (4.1.1), I transmitted a 30-second reference video material

implementing raw data from a camera sensor to the edge-side applications. I also

deployed two copies of the application components implementing the AI engine to both

k8s worker nodes implementing edge servers integrated into the simulation environment.

I calculated the performance of the object detection application and the QoE provided by

it from detecting a car-type object on the reference video. The application detects and

classifies objects frame by frame. It determines the confidence value for each recognized

object, which shows how accurately it identifies an object type based on the trained

model. At every frame evaluation, the application sends feedback to the client about the

recognition confidence of car-type objects. During the measurements, the average of the

(frame-by-frame) recognition confidences of the 30-second reference video provides the

KPI based on which the system's operation can be examined under different traffic and

network load scenarios:

𝐴𝑅𝐶 =
∑

∑ 𝑅𝐶𝑖,𝑗
𝑀𝑖
𝑗=1

𝑀𝑖

𝑁
𝑖=1

𝑁

(1)

Where 𝐴𝑅𝐶 stands for the average recognition confidence, 𝑁 is the number of

measurements, 𝑀𝑖 is the number of object detections performed in the i-th measurement,

and 𝑅𝐶𝑖,𝑗 is the j-th recognition confidence of the i-th measurement. During the tests, an

AI engine ran on both edges of the simulation environment. Accordingly, I ran two clients

 32

in the two latency zones (Chapter 4.), which forwarded the video stream to the edge

servers corresponding to the zones. I performed the measurements according to several

scenarios. To test the performance of the system and the application, I generated

background load UDP packet traffic using the UDP benchmarking tool (3.2.2) and the

simulator, according to different vehicle numbers and data speeds. In order to achieve

this, I placed vehicles performing movements causing application relocation operations

(zone switching) into the simulation environment and such generated a background load

corresponding to the number of vehicles.

5.1 Evaluating the QoS of the integrated distributed

environment

Before measuring the performance of the AI application, I also performed Quality

of Service performance tests on the integrated telco-grade edge cloud system. For this, I

used the UDP benchmarking tool presented in chapter 3.2.1. I used UDP relay

applications running on the edges already used in my previous measurements to carry out

the tests. In the simulator, I created a vehicle for each client application, which causes the

(live migration type) relocation of the relay applications on the edge servers due to the

zone changes resulting from their mobility. Each vehicle is served by a relay application

Figure 5.1 Application components of the QoS evaluation

 33

running on the edge server belonging to its zone. Relay applications forward UDP packets

received from clients to server-side applications (Chapter 3.2.2) running on the

application server. In this way, detailed QoS metrics describing the performance of the

system can be generated based on the evaluations carried out on the server side (Figure

5.1). The results obtained in this way describe the effect of background load (vehicle

number, generated data traffic) and the effects of application relocation events.

I performed measurements with 100, 150, 200, 250, and 300 simulated vehicles

within the 1,5 km2 map area and data traffic initiated from the client side with data rates

of 1, 2, 3, 4, and 5 Mbit/s. The average of 1,000 pcs 30-second sessions in each scenario

gives the results. I divided the results into those measurement results where application

relocation occurred during the 30-second sessions and those measurement results where

no migration occurred for the cars under test. The results are based on the packet loss

rates from the QoS metrics (Tables 5.1, 5.2, and 5.3; Figures 5.2, 5.3, and 5.4). Based on

this, the performance of the system under a given load and the impacts of relocation

events can be evaluated.

 1 Mbits/s 2 Mbits/s 3 Mbits/s 4 Mbits/s 5 Mbits/s

100 vehicles 3.032% 3.730% 4.072% 3.155% 3.264%

150 vehicles 3.524% 3.499% 4.049% 4.457% 3.639%

200 vehicles 3.334% 3.463% 3.593% 3.806% 6.678%

250 vehicles 2.439% 3.439% 3.869% 12.015% 55.287%

300 vehicles 2.214% 4.037% 13.269% 45.986% 72.099%

Table 5.1 Packet loss results aggregated

Figure 5.2 Visualizing packet loss results aggregated

 34

 1 Mbits/s 2 Mbits/s 3 Mbits/s 4 Mbits/s 5 Mbits/s

100 vehicles 0.890% 1.296% 1.522% 0.940% 1.030%

150 vehicles 0.982% 1.600% 1.699% 1.744% 1.549%

200 vehicles 1.161% 1.528% 1.792% 2.045% 5.300%

250 vehicles 0.825% 1.857% 2.990% 10.846% 54.090%

300 vehicles 0.716% 2.847% 12.495% 45.570% 72.768%

Table 5.2 Packet loss results without relocation events

Figure 5.3 Visualizing packet loss results without relocation events

 1 Mbits/s 2 Mbits/s 3 Mbits/s 4 Mbits/s 5 Mbits/s

100 vehicles 11.721% 14.557% 14.867% 12.541% 12.845%

150 vehicles 18.442% 14.486% 18.679% 19.489% 15.865%

200 vehicles 19.461% 17.977% 18.225% 19.691% 16.986%

250 vehicles 15.940% 18.615% 14.463% 23.813% 68.859%

300 vehicles 17.456% 15.566% 24.395% 53.149% 62.625%

Table 5.3 Packet loss results due to relocation events

 35

The measurement results clearly show that a lower load (fewer vehicles and lower

data speeds) results in a low packet loss rate, as expected. In some cases, a lower packet

loss rate occurred due to a higher load, but these differences are usually minimal.

However, there were also results when significantly lower packet loss rates were

generated under a higher load than in the case of a lower load. The packet loss rates

increase significantly above 250 vehicles and 4 Mbits/s data speed. In the results affected

by relocations (Figure/Table 5.3), for example, in the case of 250 veh/5 Mbps and 300

veh/5 Mbps, a lower packet loss rate due to higher load can be observed. I evaluate these

contrary-to-expected results in detail in Chapter 5.2.

5.2 Evaluation of the Deep Learning-based automotive use

case implementation

As discussed in the introduction of Chapter 5, I examined the results generated

from the average recognition confidences during the measurements with the application

components implementing the Deep Learning-based automotive use case. I reviewed the

operation of the application using methods that implement the background load, which is

the basis of the measurement results presented in Chapter 5.1. For this, I created various

measurement scenarios with 100, 200, and 300 simulated vehicles and data traffic

Figure 5.4 Visualizing packet loss results due to relocation events

 36

initiated from the client side with data rates of 1, 2, 3, 4, and 5 Mbits/s. In these, I

investigated how the average recognition confidence of car-type objects in the reference

videos changes due to a given background load (Table 5.4 and Figure 5.5). The results

are provided by the total average of the confidences generated by the application instances

running on the two worker nodes, with around 100 measurements for each scenario (1

measurement is given by the confidences calculated for each frame of the 30-second

reference video) per node. In order to be able to compare the results, I first measured the

KPI without load, which shows what QoE the AI engine can provide if the distributed

system does not serve any other clients. The average recognition confidence, in this case,

was 52.80% based on 718 measurements (per node).

 1 Mbits/s 2 Mbits/s 3 Mbits/s 4 Mbits/s 5 Mbits/s

100 vehicles 52.92% 52.91% 52.71% 52.86% 52.88%

200 vehicles 52.87% 52.86% 52.73% 52.71% 52.78%

300 vehicles 52.84% 52.77% 52.84% 52.64% 52.80%

Table 5.4 The averages of the object detection confidences in different scenarios

Based on the results, it can be concluded that the impact of the background load

occurring in these measurement scenarios essentially does not affect the efficiency of the

application (Table 5.4, Figure 5.5). It can also be observed that the average of the

recognition confidences calculated based on measurements in the scenario without

Figure 5.5 Visualizing the averages of the object detection confidences in different scenarios

 37

background load is lower than the result of certain load measurements (e.g., 100 vehicles,

1 Mbps). This clearly shows that changes in the background load do not necessarily cause

these differences in the measurement results. In addition to the averages, when examining

the individual measurement points, it can also be seen that the distribution of the

recognition confidence measurements for the scenario without background load and the

scenario with maximum generated load (300 vehicles, 5 Mbps) is almost identical (Figure

5.6, Figure 5.7).

Figure 5.6 Distribution of individual recognition confidence measurement results in a scenario

without background load (on worker1 node)

 38

The measurement results examining the QoE aspects of the AI application raise

the question of why the effects of the background loads are not reflected in the recognition

confidences. The main reason for this may be that the background load does not reach the

critical level that would exert its effect. At the same time, components such as GStreamer

is also able to prevent errors caused by packet loss to some extent with the help of the

RTP-based H.264 encoded video [39]. However, based on the results of the QoE

measurements, it can be stated that the implemented AI application works efficiently even

with the effects of the background loads realized by the predefined scenarios. During the

later measurements, it will be necessary to increase the background load so that I can

determine when its QoE starts to degrade and how it correlates exactly with the given

effects. Regarding the QoS measurements, it is important to highlight that the results

shown in Chapter 5.1 represent the current level of development of the tools, which still

have many opportunities for further enhancement. I concluded that the extremely high

packet loss rates are caused by a bottleneck (or more) in the system. Since this is a

complex system with many components, solving the problem is not a trivial task. The

Figure 5.7 The distribution of individual recognition confidence measurement results with 300

vehicles and 5 mbps (on worker1 node)

 39

source of the problem can arise from the network configuration, the cause of which can

be improper router configuration, k8s networking, or OS-level package management. At

the same time, it is also possible that a large amount of lost packets occurs during

transmission from the edge to the server. In contrast, during QoE measurements, a large

amount of data transfer is only carried out between clients and edge servers, and only

low-bandwidth feedback data transmission is realized from the edge to the client. The

next task in this regard is to find the source of the problem and localize the bottleneck.

This requires a detailed examination and possible modification of the components. After

that, it will be necessary to carry out measurements with each new composition and

deduce the problem based on the results. Furthermore, in order to make the QoS and QoE

measurements comparable in later tests, it will be necessary to design a new model and

transform the data path of the packets managed by the application components

implementing the UDP measurements. Then I will be able to examine the connection

between the results of the two types of measurements, and I will also be able to study the

exact correlation between packet losses and recognition confidences in the AI application.

 40

6 Summary

In my TDK paper, I presented Multi-Access Edge Computing, one of the

promising new directions of cloud-based technologies. I covered the integration of MEC

systems with 5G systems in detail. I gave an overview of the systems' network functions

and API-based communication. I also presented the advantages that the joint use of the

two systems can provide in the future. I gave an overview of the MEC-based automotive

use cases supported by 5G, focusing on Deep learning-based applications and use cases

based on collective perception. Furthermore, I summarized the standardization efforts that

will facilitate the real-life application of these innovative technologies. In the following

chapter, I gave a comprehensive overview of the Cloud-in-the-Loop framework, focusing

on recent developments. In this chapter, among other things, the integration of the telco-

grade distributed environment and the UDP benchmarking tool developed for QoS tests

were presented. In the second half of the paper, I showed the simulation environment that

forms the measurements' basis. I also introduced the implemented deep learning-based

automotive use case and the application components that model and implement them in

my CiL environment.

After that, in the last chapter, I discussed the process and results of the

measurements in detail. In the first part of the measurements, I examined the performance

of the implemented distributed environment with UDP packet traffic implementing

various loads. Here, I investigated what kind of QoS the distributed system can provide

based on packet loss ratios. After that, using the framework, I evaluated the implemented

AI application from a QoE point of view. I defined various background load measurement

scenarios and then investigated how the object detection ability of the application

degrades as a result of the load. The results indicated that the application is resistant to

the background loads I examined, and they do not affect its functionality. At the same

time, the QoS results showed that a large amount of packet loss occurs in the system due

to the investigated background loads. Based on these, I concluded that a bottleneck in one

of the components implementing the QoS measurements is the cause of the significant

packet losses. Therefore, the localization and correction of this problem will be highly

prioritized among the subsequent tasks. Furthermore, the following study for the QoE

tests performed with the AI application is to execute measurements under higher

background loads. With this, my goal is to identify the level at which the load already

 41

affects the operation of the AI-based application and to determine how the load correlates

with the QoE results. Future goals also include further development of the framework;

one of the priority targets is currently the integration of the CiL Orchestrator into the 5G

Core Network, the preparations for which have already begun.

 42

References

[1] ETSI, ‘Multi-access Edge Computing (MEC); Framework and Reference

Architecture (ETSI GS MEC 003)’. Mar. 2022.

[2] Sami Kekki et al., ‘MEC in 5G networks (ETSI White Paper No. 2)’, Jun. 2018.

[3] H. Ma, S. Li, E. Zhang, Z. Lv, J. Hu, and X. Wei, ‘Cooperative Autonomous

Driving Oriented MEC-aided 5G-V2X: Prototype System Design, Field Tests and AI-

based Optimization Tools’, IEEE Access, vol. PP, pp. 1–1, Mar. 2020, doi:

10.1109/ACCESS.2020.2981463.

[4] L. Maller, P. Suskovics, and L. Bokor, ‘Cloud-in-the-Loop simulation of C-V2X

application relocation distortions in Kubernetes based Edge Cloud environment’, in 2022

26th International Conference on Information Technology (IT), 2022, pp. 1–4. doi:

10.1109/IT54280.2022.9743520.

[5] ‘Kubernetes’. https://kubernetes.io/, Accessed 30 Oct. 2022.

[6] Ericsson, ‘5G Core (5GC)’. https://www.ericsson.com/en/core-network/5g-core,

Accessed 30 Oct. 2022.

[7] ‘Simulation of Urban MObility (SUMO)’. https://www.eclipse.org/sumo/,

Accessed 30 Oct. 2022.

[8] L. Maller, ‘Járműkommunikációs felhőtechnológiák modellezése és vizsgálata

Cloud-in-the-Loop szimulációs környezetben’, presented at the Villamosmérnöki és

Informatikai Kar 2021. évi TDK, 2021.

[9] M. Liyanage, P. Porambage, A. Y. Ding, and A. Kalla, ‘Driving forces for Multi-

Access Edge Computing (MEC) IoT integration in 5G’, ICT Express, vol. 7, no. 2, pp.

127–137, 2021, doi: https://doi.org/10.1016/j.icte.2021.05.007.

[10] ‘European Telecommunications Standards Institute (ETSI)’,

https://www.etsi.org/, Accessed 30 Oct. 2022.

[11] (3GPP TS 23.501 V15.1.0) 3rd Generation Partnership Project; Technical

Specification Group Services and System Aspects; System Architecture for the 5G System;

Stage 2 (Release 15). 2018.

[12] D. Jiang and L. Delgrossi, ‘IEEE 802.11p: Towards an International Standard for

Wireless Access in Vehicular Environments’, in VTC Spring 2008 - IEEE Vehicular

Technology Conference, 2008, pp. 2036–2040. doi: 10.1109/VETECS.2008.458.

[13] Y. Wang, X. Duan, D. Tian, G. Lu, and H. Yu, ‘Throughput and Delay Limits of

802.11p and its Influence on Highway Capacity’, Procedia - Soc. Behav. Sci., vol. 96, pp.

2096–2104, 2013, doi: https://doi.org/10.1016/j.sbspro.2013.08.236.

[14] J. Nilsson, C. Bergenhem, J. Jacobson, R. Johansson, and J. Vinter, ‘Functional

Safety for Cooperative Systems’, in SAE Technical Papers, Apr. 2013, vol. 2. doi:

10.4271/2013-01-0197.

[15] Jan Jacobson and Christian Grante, ‘Functional Safety in Systems of Road

Vehicles’. [Online]. Available: https://www.diva-

portal.org/smash/get/diva2:962529/FULLTEXT01.pdf

[16] M. Tahir and M. Katz, ‘Performance evaluation of IEEE 802.11p, LTE and 5G in

 43

connected vehicles for cooperative awareness’, Eng. Rep., vol. 4, Apr. 2022, doi:

10.1002/eng2.12467.

[17] ETSI, ‘Multi-access Edge Computing (MEC); V2X Information Service API

(ETSI GS MEC 030)’. May 2022.

[18] ‘3GPP’, https://www.3gpp.org/, Accessed 31 Oct. 2022.

[19] 3GPP, ‘3rd Generation Partnership Project; Technical Specification Group

Services and System Aspects; Architecture enhancements for V2X services (Release 17)

(3GPP TS 23.285)’. Mar. 2022.

[20] ETSI, ‘Multi-access Edge Computing (MEC); Study on MEC Support for V2X

Use Cases (ETSI GR MEC 022)’, Sep. 2018.

[21] AECC, ‘Operational Behavior of a High Definition Map Application (White

Paper)’, May 2020.

[22] ‘AECC’, https://aecc.org/, Accessed 31 Oct. 2022.

[23] AECC, ‘Use-case and Requirement Document (URD) Version 3.0.0’.

[24] A. Chtourou, P. Merdrignac, and O. Shagdar, ‘Collective Perception service for

Connected Vehicles and Roadside Infrastructure’, in 2021 IEEE 93rd Vehicular

Technology Conference (VTC2021-Spring), 2021, pp. 1–5. doi: 10.1109/VTC2021-

Spring51267.2021.9448753.

[25] ETSI, ‘Intelligent Transport Systems (ITS); Vehicular Communications; Basic

Set of Applications; Analysis of the Collective Perception Service (CPS); Release 2

(ETSI TR 103 562)’. Dec. 2019.

[26] F. Schiegg, N. Brahmi, and I. Llatser, ‘Analytical Performance Evaluation of the

Collective Perception Service in C-V2X Mode 4 Networks’, Oct. 2019, pp. 181–188. doi:

10.1109/ITSC.2019.8917214.

[27] Henrik Bäckström and Rakesh Bohra, ‘Why Kubernetes over bare metal

infrastructure is optimal for cloud native applications’, May 03, 2022.

https://www.ericsson.com/en/blog/2022/5/kubernetes-over-bare-metal-cloud-

infrastructure-why-its-important-and-what-you-need-to-know, Accessed 31 Oct. 2022.

[28] ‘Kubernetes - Cluster Networking’. https://kubernetes.io/docs/concepts/cluster-

administration/networking/, Accessed 31 Oct. 2022.

[29] ‘What is Project Calico?’ https://www.tigera.io/project-calico/, Accessed 31 Oct.

2022.

[30] ‘Comparing Kubernetes CNI Providers: Flannel, Calico, Canal, and Weave’.

https://www.suse.com/c/rancher_blog/comparing-kubernetes-cni-providers-flannel-

calico-canal-and-weave/, Accessed 31 Oct. 2022.

[31] ‘iPerf - The ultimate speed test tool for TCP, UDP and SCTP’.

https://iperf.fr/iperf-doc.php, Accessed 31 Oct. 2022.

[32] ‘ChuanyuXue/udp-latency (tool)’, https://github.com/ChuanyuXue/udp-latency,

Accessed 31 Oct. 2022.

[33] Thibault Debatty, ‘Exposing a Kubernetes application : Service, HostPort,

NodePort, LoadBalancer or IngressController?’ https://cylab.be/blog/154/exposing-a-

kubernetes-application-service-hostport-nodeport-loadbalancer-or-ingresscontroller,

Accessed 31 Oct. 2022.

 44

[34] A. Munir, E. Blasch, J. Kwon, J. Kong, and A. Aved, ‘Artificial Intelligence and

Data Fusion at the Edge’, IEEE Aerosp. Electron. Syst. Mag., vol. 36, no. 7, pp. 62–78,

2021, doi: 10.1109/MAES.2020.3043072.

[35] R. W. van der Heijden, S. Dietzel, T. Leinmüller, and F. Kargl, ‘Survey on

Misbehavior Detection in Cooperative Intelligent Transportation Systems’, IEEE

Commun. Surv. Tutor., vol. 21, no. 1, pp. 779–811, 2019, doi:

10.1109/COMST.2018.2873088.

[36] BMW e92 hood cam- Sunday drive ft.c63s. [Online Video]. Available:

https://www.youtube.com/watch?v=u-CTsTZxRBI&t=218s, Accessed 31 Oct. 2022.

[37] ‘KingArnaiz/Object-Detection-Tutorial’, https://github.com/KingArnaiz/Object-

Detection-Tutorial, Accessed 31 Oct. 2022.

[38] W. Liu et al., ‘SSD: Single Shot MultiBox Detector’, 2016. [Online]. Available:

http://arxiv.org/abs/1512.02325

[39] ‘Caffe (deep learning framework)’, https://caffe.berkeleyvision.org/, Accessed 31

Oct. 2022.

[40] ‘OpenCV’, https://opencv.org/, Accessed 31 Oct. 2022.

[41] ‘netcat’, https://linux.die.net/man/1/nc, Accessed 31 Oct. 2022.

[42] ‘Docker’. https://www.docker.com/, Accessed 31 Oct. 2022.

 45

List of figures, tables and code snippets

Figure 2.1 5G and MEC integration [2] ... 10

Figure 2.2 Layers of HD maps [21] ... 13

Figure 2.3 Structure of CAM messages [26, p. 4] ... 14

Figure 3.1 The architecture of the Cloud-in-the-Loop simulation framework 16

Figure 3.2 The actual hardware environment (on the left) .. 19

Figure 3.3 Example of the summary of QoS metrics .. 24

Figure 3.4 Operation of the UDP traffic control relay ... 25

Figure 4.1 Simulation map for the implemented use cases ... 26

Figure 4.2 Frame of the AI test video [35] .. 28

Figure 4.3 Visualizing the object detection on the AI test video ... 29

Figure 4.4 The integration of the AI-based automotive use case .. 30

Figure 5.1 Application components of the QoS evaluation ... 32

Figure 5.2 Visualizing packet loss results aggregated ... 33

Figure 5.3 Visualizing packet loss results without relocation events .. 34

Figure 5.4 Visualizing packet loss results due to relocation events .. 35

Figure 5.5 Visualizing the averages of the object detection confidences in different scenarios . 36

Figure 5.6 Distribution of individual recognition confidence measurement results in a scenario

without background load (on worker1 node) ... 37

Figure 5.7 The distribution of individual recognition confidence measurement results with 300

vehicles and 5 mbps (on worker1 node) .. 38

Table 3.1 The specification of the hardware environment .. 18

Table 5.1 Packet loss results aggregated ... 33

Table 5.2 Packet loss results without relocation events... 34

Table 5.3 Packet loss results due to relocation events ... 34

Table 5.4 The averages of the object detection confidences in different scenarios..................... 36

Snippet 3.1 Part of the Python code that implements the UDP benchmarking tool (send) 21

Snippet 3.2 Part of the Python code that implements the UDP benchmarking tool (generating

packets) .. 22

Snippet 3.3 Part of the Python code that implements the UDP benchmarking tool (listen) 23

Snippet 3.4. Part of the Python code that implements the UDP benchmarking tool (evaluation)

 ... 24

Snippet 4.1 Example of a gstreamer pipeline .. 28

Snippet 4.2 Part of the object detection edge application's source code...................................... 29

https://bmeedu.sharepoint.com/sites/Cloud-in-the-LoopaktivitsokEricssonBME/Megosztott%20dokumentumok/General/TDK%202022/AUVJS5_TDK_dolgozat_2022_FINAL_2.docx#_Toc118223837
https://bmeedu.sharepoint.com/sites/Cloud-in-the-LoopaktivitsokEricssonBME/Megosztott%20dokumentumok/General/TDK%202022/AUVJS5_TDK_dolgozat_2022_FINAL_2.docx#_Toc118223847
https://bmeedu.sharepoint.com/sites/Cloud-in-the-LoopaktivitsokEricssonBME/Megosztott%20dokumentumok/General/TDK%202022/AUVJS5_TDK_dolgozat_2022_FINAL_2.docx#_Toc118223848
https://bmeedu.sharepoint.com/sites/Cloud-in-the-LoopaktivitsokEricssonBME/Megosztott%20dokumentumok/General/TDK%202022/AUVJS5_TDK_dolgozat_2022_FINAL_2.docx#_Toc118223850
https://bmeedu.sharepoint.com/sites/Cloud-in-the-LoopaktivitsokEricssonBME/Megosztott%20dokumentumok/General/TDK%202022/AUVJS5_TDK_dolgozat_2022_FINAL_2.docx#_Toc118223851
https://bmeedu.sharepoint.com/sites/Cloud-in-the-LoopaktivitsokEricssonBME/Megosztott%20dokumentumok/General/TDK%202022/AUVJS5_TDK_dolgozat_2022_FINAL_2.docx#_Toc118223852
https://bmeedu.sharepoint.com/sites/Cloud-in-the-LoopaktivitsokEricssonBME/Megosztott%20dokumentumok/General/TDK%202022/AUVJS5_TDK_dolgozat_2022_FINAL_2.docx#_Toc118223852
https://bmeedu.sharepoint.com/sites/Cloud-in-the-LoopaktivitsokEricssonBME/Megosztott%20dokumentumok/General/TDK%202022/AUVJS5_TDK_dolgozat_2022_FINAL_2.docx#_Toc118223853
https://bmeedu.sharepoint.com/sites/Cloud-in-the-LoopaktivitsokEricssonBME/Megosztott%20dokumentumok/General/TDK%202022/AUVJS5_TDK_dolgozat_2022_FINAL_2.docx#_Toc118223853

 46

List of abbreviations

3GPP 3rd Generation Partnership Project

AF Application Function

C-V2X Cellular-Vehicle-to-Everything

CAM Cooperative Awareness Message

CiL Cloud-in-the-Loop

ETSI European Telecommunications Standards Institute

k8s Kubernetes

KPI Key Performance Indicator

LADN Local Area Data Networks

MEC Multi-Access Edge Computing

NEF Network Exposure Function

NF Network Function

PCF Policy Control Function

QoE Quality of Experience

QoS Quality of Service

RSU Road-Side Unit

SBA Service-Based Architecture

SSC Session and Service Continuity

UDP User Datagram Protocol

UE User Equipment

UPF User Plane Function

V2C Vehicle-to-Cloud

V2X Vehicle-to-Everything

 47

Appendix

Appendix 1. Python code implementing a deep learning-based

object detection application

import the necessary packages
import sys
import socket

from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import cv2

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # UDP
count = 1

construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True,
 help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
 help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
 help="minimum probability to filter weak detections")
ap.add_argument("-p1", "--pipeline1", required=False,
 help="The gstreamer pipeline 1")
ap.add_argument("-ip", "--ipfeedback", required=False,
 help="IP address where the feedback is sent to")
ap.add_argument("-port", "--portfeedback", type=int, required=False,
 help="Port number where the feedback is sent to")
args = vars(ap.parse_args())

initialize the list of class labels MobileNet SSD was trained to
detect, then generate a set of bounding box colors for each class
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
 "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
 "dog", "horse", "motorbike", "person", "pottedplant", "sheep",
 "sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

ip_addr = args["ipfeedback"]
port = args["portfeedback"]
#port = int(port)

load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
net2 = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])

initialize the video stream, allow the cammera sensor to warmup,
and initialize the FPS counter
print("[INFO] Capturing video stream...")
#cap_pipe = 'udpsrc port=5000 caps="application/x-rtp, media=(string)video, clock-
rate=(int)90000, encoding-name=(string)H264" ! rtpjitterbuffer ! rtph264depay ! queue2 !
avdec_h264 ! autovideoconvert ! appsink'
cap_pipe = args["pipeline1"]
#cap_pipe2 = args["pipeline2"]
out_pipe = "appsrc ! decodebin ! autovideoconvert ! x264enc tune=zerolatency ! queue2 !
rtph264pay ! udpsink host=10.96.20.5 port=9999"

#vs = VideoStream(src=0).start() // ORIGINAL
vs = cv2.VideoCapture(cap_pipe, cv2.CAP_GSTREAMER)

 48

time.sleep(2.0)
fps = FPS().start()
label_glob = []
recog_class = []

fourcc = cv2.VideoWriter_fourcc(*'H264')
print(fps)
out = cv2.VideoWriter(out_pipe, fourcc, 60, (400, 225), True)

loop over the frames from the video stream
while True:
 # grab the frame from the threaded video stream and resize it
 # to have a maximum width of 400 pixels

 frame = vs.read()[1]
 #print(frame)
 frame = imutils.resize(frame, width=480)

 # grab the frame dimensions and convert it to a blob
 (h, w) = frame.shape[:2]
 blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
 0.007843, (300, 300), 127.5)

 # pass the blob through the network and obtain the detections and
 # predictions
 net.setInput(blob)
 detections = net.forward()

 # loop over the detections
 for i in np.arange(0, detections.shape[2]):
 # extract the confidence (i.e., probability) associated with
 # the prediction
 confidence = detections[0, 0, i, 2]

 # filter out weak detections by ensuring the `confidence` is
 # greater than the minimum confidence
 if confidence > args["confidence"]:
 # extract the index of the class label from the
 # `detections`, then compute the (x, y)-coordinates of
 # the bounding box for the object
 idx = int(detections[0, 0, i, 1])
 box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
 (startX, startY, endX, endY) = box.astype("int")

 # draw the prediction on the frame
 label = "{}: {:.2f}%".format(CLASSES[idx],
 confidence * 100)
 cv2.rectangle(frame, (startX, startY), (endX, endY),
 COLORS[idx], 2)
 y = startY - 15 if startY - 15 > 15 else startY + 15
 cv2.putText(frame, label, (startX, y),
 cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
 label_glob = label
 recog_class = CLASSES[idx]

 # show the output frame
 # cv2.imshow("Frame", frame)
 # Alt: send the output frames
 #out.write(frame)
 key = cv2.waitKey(1) & 0xFF
 #print(label_glob)
 if recog_class == "car":
 print("Car detected")
 sock.sendto(bytes(str(count) + " " + label_glob + "\n", "utf-8"), (ip_addr, port))
 count = count + 1

 # if the `q` key was pressed, break from the loop
 if key == ord("q"):
 break

 49

 # update the FPS counter
 fps.update()

stop the timer and display FPS information
fps.stop()
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()

	Összefoglaló
	Abstract
	1 Introduction
	2 Multi-Access Edge Computing (MEC)
	2.1 Vehicle-to-Everything (V2X) communication in MEC systems
	2.1.1 MEC-based Vehicle-to-Cloud use cases
	2.1.2 Collective Perception Services (CPS) in MEC systems

	3 The Cloud-in-the-Loop simulation framework
	3.1 Design and implementation of a telco-grade cloud cluster
	3.1.1 The layout of the devices
	3.1.2 Software setup

	3.2 Implementation of a UDP traffic benchmarking tool
	3.2.1 UDP traffic benchmarking tool client component
	3.2.2 UDP traffic benchmarking tool server component

	3.3 Network traffic control

	4 Design and implementation of automotive use cases into the Cloud-in-the-Loop simulator
	4.1 Deep Learning-based automotive use case implementation
	4.1.1 Client application
	4.1.2 AI-based edge application component

	5 Measurements and evaluation
	5.1 Evaluating the QoS of the integrated distributed environment
	5.2 Evaluation of the Deep Learning-based automotive use case implementation

	6 Summary
	References
	List of figures, tables and code snippets
	List of abbreviations
	Appendix
	Appendix 1. Python code implementing a deep learning-based object detection application

