
 

Budapesti Műszaki és Gazdaságtudományi Egyetem 

Villamosmérnöki és Informatikai Kar 

Távközlési és Médiainformatikai Tanszék 

 

 

 

 

 

 

Horváth Márton Áron 

Arm Movement Recognition with Deep Learning 

 

 

 

 

 

 

 

 

 

 

 

 

         Consultant 

Dr. Fehér Gábor 

 

Budapest, 2020 



Arm Movement Recognition with Deep Learning | Horváth Márton Áron 
 

2 
 

Contents 
Kivonat ..................................................................................................................................................... 3 

Abstract ................................................................................................................................................... 4 

1. Introduction ..................................................................................................................................... 5 

2. Technological backround................................................................................................................. 6 

2.1 Microcontrollers ............................................................................................................................ 6 

2.2 Sensors .......................................................................................................................................... 6 

2.3 Neural networks ............................................................................................................................ 6 

3. Hardware construction and programming ...................................................................................... 7 

3.1 Select the hardware components ............................................................................................... 7 

3.2 Hardware programming ............................................................................................................ 10 

3.2.1 How to Initialize the device .................................................................................................. 10 

3.2.2 Read value from MPU6050 .................................................................................................. 13 

3.2.3. What the microcontroller needs to use? ............................................................................ 15 

3.3 Read the data when an event happened .................................................................................. 16 

4. Data processing, and preparation of the samples for learning ..................................................... 18 

4.1 Selection of samples .......................................................................................................... 18 

4.2 Receive samples on the PC ................................................................................................ 19 

5 Neural network and teaching ........................................................................................................ 23 

6 Problems with implementation on a microcontroller ................................................................... 26 

7 Experimenting with efficiency ....................................................................................................... 34 

7.1 Efficiency of model2 .......................................................................................................... 35 

7.2 Efficiency of model3 .......................................................................................................... 36 

7.3 Efficiency of model4 .......................................................................................................... 37 

7.4 Efficiency of model5 .......................................................................................................... 38 

7.5 Evaluation of results .......................................................................................................... 39 

8 Frequency reduction tests ............................................................................................................. 40 

8.1 Efficiency of model6 .......................................................................................................... 42 

8.2 Efficiency of model7 .......................................................................................................... 43 

8.3 Evaluation of the results .................................................................................................... 44 

9 Conclusion ..................................................................................................................................... 47 

Bibliography ........................................................................................................................................... 48 

 

  



Arm Movement Recognition with Deep Learning | Horváth Márton Áron 
 

3 
 

Kivonat 
 

Számos technológia hozzájárul a mai világunk modernségéhez, szeretnék három területet kiemelni, 

amik nagyban hozzájárultak a technológiai fejlettséghez. Az első az AI (Artificial Intelligence – 

Mesterséges Intelligencia), ami a hétköznapi életünket több aspektusban is megkönnyíti. A 

mikrokontrollerek, amik mindenhol ottvannak, szinte mindenben. És végül az IoT (Internet of Things- 

Dolgok Internete), ami azt jelenti, hogy a tárgyak körülöttünk adatot gyűltének, információval látnak 

el, és egy kis feldolgozási munkálat után hasznos következtetéseket vonhattunk le a gyűjtött adatokkal.  

De mi lenne, ha lenne valami, amivel kombinálni lehetne ezen három technológiát és elvinni egy 

teljesen másik irányba? Habár az IoT képes nagymennyiségű hasznos adatot gyűjteni, amit aggregálás 

után analizálhatunk a felhőben, majd ezt követően konklúziót vonhatunk le. A kommunikációval 

bithibákat okozhatunk és lelassíthatjuk a döntési eljártást. 

De mi lenne, ha az adatok feldolgozásának egy részét helyben végeznénk el? Ha a dolgok körülöttünk 

nem csak mérnének és mentenének adatokat, hanem fel is dolgoznák, és egy if-else ágnál komolyabb 

döntések meghozására lenne képes? Az alkalmazások megpróbálja a felsorolt technológiák előnyeit 

kihasználni. Amit létrehozok az gyakorlatilag egy kézmozgásfelismerő, amely különböző mozdulatok 

felismerésére alkalmas. Két gyorsulásmérő és giroszkóp szenzort használ fel ehhez. 

Kiolvashatjuk az adatokat a szenzorból és kimenthetjük a számítógépre. Habár a számítógépeknek 

határtalan számítási kapacitása van a mikrokontrollerekhez képes, a mikrokontrollerek is nagy 

teljesítménybéli fejlődésen mentek át, néhány éve még elképzelhetetlen volt, hogy mesterséges 

neurális hálót fútassunk egy egyszerű mikrokontrolleren. De a technológia eleget fejlődött, hogy 

lehetővé tegye.  

A munkám megpróbálja kideríteni, hogy hogyan lehet mesterséges neurális hálót futtatni 

mikrokontrollereken, mik a lehetőségeink. A mikrokontrollerek limitált memóriával rendelkeznek, 

mégis mennyi memória szükséges az egyes megoldásokhoz? Mennyi hatékonyságot kell feláldoznunk 

ehhez? 

Az dolgozatomban ezekre a kérdésekre választ fogok adni. Kifejtettem különböző speciális mérési 

eredményeit a jól ismert mélytanuló algoritmusoknak, mint például a TensorFlow, és megmértem, 

hogy mennyi hatékonyság veszett oda a mikrokontrollerre optimalizált verzió használatával. Adatokat 

szolgáltatok arról, hogy az egyes megoldások mennyi memóriát használnak fel és hatással voltak-e a 

sebességre akár negatív, akár pozitív irányba.  
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Abstract 
 

Plenty of technology has contributed to the modernity of our world today, I would like to highlight 

three different, which are playing a huge role in technological advancement. The first is AI (Artificial 

Intelligence), which has made everyday life easier in many aspects. The microcontrollers, which are 

almost everywhere, and they are in everything. And finally, the IoT (Internet of Things), which means, 

the objects around us collect data, provide us with information, and after doing a little processing task, 

we can make useful conclusions with the gathered data.  

But what if there was something that could combine these three technologies and take them in a whole 

new direction? Although IoT can collect a wealth of useful data, which can be analyzed after 

aggregation in the cloud, and after then we can make useful conclusions. But it takes a lot of 

bandwidth, we must collect a lot of data and process them in the cloud. With communication, we can 

cause bit errors and slow down the decision-making process. 

But what if some of the data processing has already been done locally. If the objects around us could 

not only measure data and save, but also process it, and make more complex decisions, than if-else 

statements? My application seeks to take advantage of these benefits of the listed three technology. 

What I create is actually a hand motion recognizer, and that can detect different gestures. It uses two 

accelerometer and gyroscope sensors for this.  

We can read the data out of the sensor, and save it on the computer. Although the computer has 

limitless counting capacity compared to the microcontrollers, microcontrollers had a huge 

performance improvement too, a few years ago, that was unimaginable, to run an ANN (Artificial 

Neural Network) on a simple MCU (Microcontroller Unit). But technology has improved enough and it 

has become possible. 

My work would like to figure out, how can we run an ANN on microcontrollers, what are the solutions, 

the microcontroller has limited memory, how many memory each solution requires? How much do we 

need to let go of efficiency? 

In the dissertation, I gave the answers to these questions. I described specific measurement results of 

the effectiveness of a well known deep learning algorithm, such as TensorFlow, and I measured how 

much efficiency get lost with a microcontroller-optimized version. I provided data on how much 

memory each solution requires and whether it affected speed, either in a positive or negative 

direction. 

 

 

  



Arm Movement Recognition with Deep Learning | Horváth Márton Áron 
 

5 
 

1. Introduction 
 

Microcontrollers play a major role in the technological advancement of our world today, they are 

almost everywhere, and although they are outnumbering traditional computers, we can find they in 

almost every electrical device around us. Whether it is a microwave oven, a washing machine, or a 

more serious embedded system, the performance development of microcontrollers opened a lot of 

new ways for technology. Plenty of already imagined concepts became feasible, which was a pre-

existing concept, only the right resource requirements were not given for implementation. An example 

is IoT, a concept coined by Kevin Ashton in 1999, although the first IoT device is said to be a cola 

machine on the campus of Carnegie Mellon University, the performance of microcontrollers at the 

time was insufficient to implement the entire concept. Today’s high-performance and energy-saving 

microcontrollers have given way to the rise of sensors and sensor networks. 

Another crucial technology is Artificial Intelligence. It can be found in more and more places today, it 

is starting to replace people in many areas, for example, there are websites where chatbots have 

replaced the role of support staff, that makes everyday life easier. It can also be divided into several 

groups in the field of artificial intelligence. Artificial intelligence is the widest concept, which, although 

it has several definitions, includes all artificially created, consciously shaped intelligence. There are 

several types, variants of which require continuous intervention to achieve learning, but there are 

variants of which take place without human intervention. One branch of AI Artificial Intelligence is 

Deep Learning, a category within Machine Learning. The special feature of Deep Learning is that it tries 

to virtually mimic the neurons found in the human body and thus the learning can be realized. 

Both technologies are the flagships of the modernity of our modern world today. Undoubtfully many 

other things are responsible for the existence of the technological revolution, but these two 

technologies are tremendously advancing, and there are still plenty of untapped areas to explore. 

There are many applications that we already consider essential and based on these technologies, such 

as the pedometer in our phone, the activity sensor on our smartwatch that tells us whether we are 

sitting, standing, walking, running, or possibly climbing stairs. 

In our project, we would like to use two sensors with gyroscopes and accelerometers, and with the 

data, we would like to predict the movement of the arm. It can be very useful in many areas. 

If we can categorize certain events, take the right number of samples that can be well separated from 

each other, then coupled with artificial intelligence, a plethora of applications can be implemented. 

The primary role of artificial intelligence in our case is to be able to assign labels to certain situations, 

of course, this is just a very small slice of artificial intelligence, but this is the main purpose and main 

application of deep learning. 
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2. Technological backround 
 

I have divided the technological background section into three different areas, which include 

microcontrollers that perform calculations. Sensors, which make a connection with the outside world. 

And finally, neural networks, which, like many other engineering applications, virtualize a biological 

function, and implement it artificially.  

 

2.1 Microcontrollers  
 

The fundamental difference between microcontrollers and microprocessors is that the 

microprocessor, which is also found in computers, requires even more peripherals, while the 

microcontroller is a microprocessor-based control system built on a single chip. It is small and practical, 

but capable of everything a microprocessor can do and even contains the necessary peripherals 

(however, its clock speed is usually slower, and its memory is smaller).  

 

2.2 Sensors 
 

By its broadest definition, a sensor is a device, a module, a machine, or a subsystem designed to detect 

events or changes in their environment and transmit this information to other electronic devices. The 

sensors are used in everyday objects such as touch-sensitive lift buttons (tactile sensors) and lamps. 

With the development of microcontroller platforms, the use of sensors goes beyond traditional 

temperature, pressure, or flow measurement ranges. Besides, analog sensors such as potentiometers, 

thermistors, and force-sensing resistors are still widely used. They are used in many fields, such as 

manufacturing, aerospace, space, automobiles, medicine, robotics, and many other areas of our daily 

lives. 

Several other sensors measure the chemical and physical properties of materials. Some examples are 

optical sensors for measuring refractive index, vibration sensors for measuring the viscosity of a liquid, 

and electrochemical sensors for checking the pH of liquids. 

 

2.3 Neural networks 
 

Artificial Neural Networks (ANN) are computer systems inspired by the biological neural networks that 

make up the brain. Such systems "learn" to perform tasks by considering examples, mostly without 

programming the specification of the task. For example, in image recognition, they can learn to identify 

images of cats by analyzing sample images labeled cat or "not cat" and using the results to identify cats 

in other images. This is done without a priori knowledge, do not function like our brains, for instance, 

cats have fur, tails, whiskers, and cat-like faces. Instead, they automatically create identifiers from the 

processed examples.  
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3. Hardware construction and programming 
 

The work can be divided into two parts. The first part is building and programming the hardware. The 

right devices must be selected and then the right data must be extracted from the sensors, and 

obviously in the right format. 

The second part is that we need to create a model by using the extracted data, then test the model 

with new samples, and finally we have to make it all possible to run on a microcontroller. 

 

3.1 Select the hardware components 
 

To implement the application, we need a hardware that can measure the movements and store and 

process the measured results. Once everything is working properly, ANN should also be run on the 

hardware. 

 

 

We only need a limited number of hardware components for the development. First, we will need an 

adequate microcontroller that will perform the necessary calculations and the required controlling 

functions for us, and so on. Two pieces of sensors, which will perform the measurements. And finally, 

other axillary elements such as wires, a serial-to-parallel converter, and a programming device, which 

is suitable for our microcontroller. 

 

figure 1 The built circuit 
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The most important component is the microcontroller, which is the brain of the application. I have 

chosen a printed circuit board with a STM32F401CCU6 microcontroller (figure 2 STM32F401CCU6), 

because it has a small size, unlike the most popular development boards in STM series, like Nucleo and 

Discovery boards. The MCU (Micro Controller Unit) has the following parameters: 

• Max clock speed: 84 MHz  

• Flash: 256 Kbytes 

• SRAM: 64 Kbytes 

• Up to 3 × I2C interfaces (1Mbit/s, SMBus/PMBus) 

The MCU has all the requirements, it has multi-channel DMA, and multiple lines of I2C, the only 

deficiency is the small size of memory. That is the reason, why I needed to change it to a little bit 

stronger version later, after I recorded the samples, because that memory size was insufficient for the 

ANN (Artificial Neural Network). 

As a sensor I have chosen two MPU-6050 (figure 4 MPU-6050 (back)3, figure 3 MPU-6050 (front)), they 

have gyroscopes and accelerometer sensors, which means we will have 12 different data: x, y, z axes 

of gyroscopes, and accelerometer sensors.  

Sensor parameters: 

• Gyro full scale range: ± 250, ±500, ±1000, ± 2000 (°/sec)  

• Accel full scale range: ± 2, ± 4, ± 8, ± 16(g) 

• 400kHz fast mode I2C for communicating with all registers. 

figure 2 STM32F401CCU6 figure 3 MPU-6050 (front) figure 4 MPU-6050 (back) 
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Now we have all the necessary components for the measurement, but somehow, we should program 

the microcontroller. We have more option, I have chosen the official programmer (figure 5 ST_LINK V2 

Programmer), called ST-LINK V2, but we could solve the problem with serial-parallel converter, too. 

 

Wiring is very simple: 

• GND – GNG 

• SWCLK – SWCLK 

• SWDIO – SWDIO 

• 3V3 – 3V3 

The last component is the serial-parallel converter (figure 6 Serial parallel converter), because we 

would like to send data to the computer, we use the UART communication protocol for that purpose. 

We need to send data to the computer, because we will build the ANN on the computer side, which 

means we need to send data to computer, prepare it for the network and build the model.  

Once the model is ready, we no longer need to send the data to the UART, but we still need to send 

the result of the prediction. 

Wiring is the following: 

• GND – GND 

• VCC – VCC 

• TX – USART_RX 

• RX – USART_TX 

We have built the connection vice versa, but we never send data from pc to the controller, so we could 

spare the TX-USART_RX cable, but does not interfere with the measurement, I have kept is. 

We already have all the components, can start the programming phase. 

figure 5 ST_LINK V2 Programmer figure 6 Serial parallel converter 
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3.2 Hardware programming 
 

The first step in programming is to configure the two sensors. This is the first function that runs, when 

the microcontroller starts until it has not run down, we cannot make measurements with the sensors. 

To configure properly, we need to thoroughly review the datasheet, try out a lot of settings, and be 

familiar with the options. MPU6050 has a lot of functions and I will not cover all of them, but the most 

necessary ones. 

 

3.2.1 How to Initialize the device 
 

I don’t want to go into details, how to connect the sensors to the microcontroller, because we have to 

do it in the standard way, which means setting on the microcontroller which I2C channel we want to 

use and then connecting the appropriate legs of the sensor to the selected pins. If the transmission is 

working properly, you can start configuring the sensor. 

Let us start with the initialization of the MPU6050. To initialize the sensor, we need to perform the 

following actions: 

• First, we need to check if the sensor is responding by reading the "WHO_AM_I (0x75)" 

Register. If the sensor responds with 0x68, this means it is available and good to go. 

• In Second step we will wake the sensor up and to do that we will write to the "PWR_MGMT_1 

(0x6B)" Register. The register content is below: 

PWR_MGMT_1 

Figure 7 PWR_MGMT_1 register 

On writing (0x00) to the PWR_MGMT_1 Register, sensor wakes up and the Clock sets up to 8 MHz. 

• Third, we must set the Data output Rate or Sample Rate. This can be done by writing 

into "SMPLRT_DIV (0x19)" Register. This register specifies the divider from the gyroscope 

output rate used to generate the Sample Rate for the MPU6050. 

SMPRT_DIV 

Figure 8 SMPRT_DIV register 

As the formula says Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV). Where Gyroscope 

Output Rate is 8KHz, To get the sample rate of 1KHz, we need to use the SMPLRT_DIV as ‘7’, but during 

Register (Hex) Register (Decimal) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 

6B 107 DEVICE _RESET SLEEP CYCLE - TEMP_DIS CLKSEL[2:0] 

Register 
(Hex) 

Register 
(Decimal) 

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 

19 25 SMPLRT_DIV[7:0] 
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the development I ran into the problem that 1kHz is too fast, so I needed reduce it, so I loaded a 

value of 0x15. As a result, the frequency dropped to around 400 Hz, but so the speed was already 

manageable. 

 

• Fourth Step is configuring the Accelerometer and Gyroscope registers and to do so, we need 

to modify "GYRO_CONFIG (0x1B)" and "ACCEL_CONFIG (0x1C)"Registers. 

To configure the gyroscope the following table must be examined: 

 
GYRO_CONFIG 

Figure 9 GYRO_CONFIG register 

For us now, bits 3 and 4, which are important, can be used to set the measuring range of the gyroscope, 

in the following table we can see which ranges we can choose from. 

 

 

 

 

 

Initially, I set the measurement range to ± 500 °/s, but when I took measurements, I realized that there 

are still a lot of signal values between ± 500-1000 °/s , and in this way it filter out all the data in that 

range. So, I loaded a value of 0x10 into the register. 

 

We can configure the accelerometer in the same way by examining this table: 

ACCEL_CONFIG 

Figure 11 ACCEL_CONFIG register 

An again, the bits 3 and 4, which are important, can be used to set the measuring range of the 

accelerometer, in the following table we can see which ranges we can choose from. 

 

 

 

Register 
(Hex) 

Register 
(Decimal) 

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 

1B 27 XG_ST YG_ST ZG_ST FS_SEL[1:0] - 

FS_SEL Full Scale Range 

0 ± 250 °/s 

1 ± 500 °/s 

2 ± 1000 °/s 

3 ± 2000 °/s 
Figure 10 gyroscope measurement ranges 

Register 
(Hex) 

Register 
(Decimal) 

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 

1C 28 XA_ST YA_ST ZA_ST AFS_SEL[1:0] - 

FS_SEL Full Scale Range 

0 ± 2g 

1 ± 4g 

2 ± 8g 

3 ± 16g 

Figure 12 accelerometer measurement ranges 
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Initially, I set the measurement range to ± 4g, but when I took measurements, I realized that there are 

still a lot of signal values between ± 4-8 , and in this way it filter out all the data in that range.  So, I 

loaded a value of 0x10 into the register. 

Then the sensors are configured, we can already read the values from the corresponding registers, but 

since we want to read the values from FIFO, we even must set it on the sensor. 

To do this, you must first enable FIFO, using the following table: 

USER_CTRL 

Register 
(Hex) 

Register 
(Decimal) 

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 

6A 106 - FIFO_EN I2C_MST 
_EN 

I2C_IF 
_DIS 

- FIFO_REST I2C_MST 
_RESET 

SIG_COND 
_RESET 

Figure 13 USER_CTRL register 

 

Since we want to enable FIFO, we need to set bit 6 to one. This means that 0x40 must be loaded. 

Then we need to choose which measurement data we want to load exactly into the FIFO, the selected 

values will be placed in the FIFO in order so that we will be able to decode them properly. 

FIFO_EN 

Register 
(Hex) 

Register 
(Decimal) 

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 

23 35 TEMP_ 
FIFO_EN 

XG_ 
FIFO_EN 

YG_ 
FIFO_EN 

ZG_ 
FIFO_EN 

ACCEL 
_FIFO_EN 

SLV2 
_FIFO_EN 

SLV1 
_FIFO_EN 

SLV0 
_FIFO_EN 

Figure 14 FIFO_EN register 

The value 0x78 must be loaded because we want to get both the Accelerometer data and the values 

of all the axes of the gyroscope. 

Our last task is to set the sensor to send an interrupt after the FIFO is full and ready to read. 

INT_ENABLE 

Register 
(Hex) 

Register 
(Decimal) 

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 

38 56 - - - FIFO 
_OFLOW 

_EN 

I2C_MST 
_INT_EN 

- - DATA 
_RDY_EN 

Figure 15 INT_ENABLE register 

For that we need to set FIFO_OFLOW_EN bit. 

This completes the configuration of the sensors.  
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3.2.2 Read value from MPU6050 
 

We can read 1 BYTE from each Register separately or we can just read 6 BYTES all together starting 

from ACCEL_XOUT_H Register. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown above, The ACCEL_XOUT_H (0x3B) Register stores the higher Byte for the acceleration data 

along X-Axis and Lower Byte is stored in ACCEL_XOUT_L Register. So, we need to combine these 2 

BYTES into a 16-bit integer value. Below is the process to do that: - 

ACCEL_X = (ACCEL_XOUT_H <<8 | ACCEL_XOUT_L) 

we are shifting the higher 8 bits to the left and then ‘OR’ it with the lower 8 bits. 

 For Example, if ACCEL_XOUT_H = 11101110 and ACCEL_XOUT_L = 10101010, we will get the resultant 

16 bit value as 1110111010101010 

Similarly, we can do the same for the ACCEL_YOUT and ACCEL_ZOUT registers. These values will still 

be the RAW values and we still need to convert them into proper ‘g’ format. 

You can see in the picture above that for the Full-Scale range of ± 8g, the sensitivity is 4096 LSB/g. So, 

to get the g value, we need to divide the RAW from 4096.  

 

 

 

Register 
(Hex) 

Register 
(Decimal) 

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 

3B 59 ACCEL_XOUT[15:8] 

3C 60 ACCEL_XOUT[7:0] 

3D 61 ACCEL_YOUT[15:8] 

3E 62 ACCEL_YOUT[7:0] 

3F 63 ACCEL_ZOUT[15:8] 

40 64 ACCEL_ZOUT[7:0] 

AFS_SEL Full Scale 
Range 

LSB 
Sensitivity 

0 ±2g 16384 LSB/g 

1 ±4g 8192 LSB/g 

2 ±8g 4096 LSB/g 

3 ±16g 2048 LSB/g 

Figure 16 registers where the accelerometer values stored 

Figure 17 AFS_SEL register 
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Reading the gyroscope data is like reading the acceleration. We will start reading 6 BYTES of data from 

the GYRO_XOUT_H Register, Combine the 2 Bytes to get 16 bit integer RAW values. As we have 

selected the Full-Scale range of ± 1000 °/s, for which the sensitivity is 32.8 LSB /°/s, we have to divide 

the RAW values by 32.8 to get the values in dps ( °/s ).  

  

Register 
(Hex) 

Register 
(Decimal) 

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 

43 67 GYRO_XOUT[15:8] 

44 68 GYRO_XOUT[7:0] 

45 69 GYRO_YOUT[15:8] 

46 70 GYRO_YOUT[7:0] 

47 71 GYRO_ZOUT[15:8] 

48 72 GYRO_ZOUT[7:0] 

Figure 18 registers where gyroscope values stored 

FS_SEL Full Scale 
Range 

LSB 
Sensitivity 

0 ± 250 °/s 131 LSB/°/s 

1 ± 500 °/s 65.5 LSB/°/s 

2 ± 1000 °/s 32.8 LSB/°/s 

3 ± 2000 °/s 16.4 LSB/°/s 

Figure 19 FS_SEL register 
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3.2.3. What the microcontroller needs to use? 
 

The microcontroller performs the control, it is important to have the right pin assignment and the right 

tools. The pin assignment of the microcontroller looks like this: 

 

figure 20 pinout of the microcontroller 

 

We communicate with the sensors via I2C, which requires 2 I2C channels, the first channel using pins 

PB7 and PB8 and the second using pins PB3 and PB10. 

We use the I2C channels in fast mode, that means the speed is 400000 Hz. 

We use the I2C channels with DMA, each of them in FIFO mode. It is very important to use each DMA 

with different priority, because in case of conflict it should dicide which one goes first. If we use the 

same priority level it can be confusing for the MUC. 

We use two EXTI interrupts, we need it, because MPU-6050 can send interrupt, when its FIFO is full, 

and we would like to handle that interrupt. The priority is important in that case too, we should use 

them with different priority level and the explanation is the same as in the case of DMA. 

We need UART interface to communicate with the world. It uses pin PA2 and PA3. The baud rate is 

115200 bits/s, I tried to use it with exra high speed, with 1000000 and 2000000 bits per second, but it 

caused a lot of bit errors, so I have dicided to use it only on 115200 bit/s.  

As clock speed I use the maximum 100 MHz. 

We have configured everything except CUBE AI. We need to configure it, when the model is ready and 

we just need to upload it. In the first period of the development we do not need CUBE AI. 
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3.3 Read the data when an event happened 
 

The most difficult challenge during the programming of the hardware was, how we can determine 

when a sample starts, when I should start the recording. To solve this, I figured out that after a trigger 

event occurred, we should start to measure the sample and save it to memory. I have developed an 

algorithm to solve this problem.  

 

figure 21 Flow chart of the trigger event 
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Once the sensors are turned on, we initialize them, then we start measuring. Since we are measuring 

with FIFO, we need to make sure that the FIFO is full. If it is full, it discards the oldest value and accepts 

the new value instead. This is bad for us because the bytes come in line. AXH (Accelerometer, X axis, 

High Byte), AXL, AYH, AYL, AZH, AZL, GXH, GXL, GYH, GYL, GZH, GZL, however, if it is overwhelmed, the 

correct order may slip, and the data cannot be decoded afterwards. If we read more data, than the 

contents of the FIFO, it reads the last bit again and again, so the order also shifts. The correct read 

speed, which I could only achieve with DMA, is important. DMA is also important, because it saves us 

resources, because the CPU does not have to bother with reading, the DMA takes over this task from 

it. 

 

 

 

 

 

 

 

 

So, the greatest difficulty was, how we could detect the trigger event. I solved this by taking the High 

Byte of the 3 axes of the accelerometer, converting them to int, and then taking their absolute values, 

summing them, and checking that, if the value thus obtained is greater than a certain value. This certain 

value is the sensitivity, increasing it makes the sensor more insensitive to movements, reducing it can 

make it hypersensitive. 

abs (AXH) + abs (AYH) + abs (AZH) < value 

Once I was able to save the samples, I had to send them to the computer for process them and create 

the artificial neural network. 

 

  

figure 22 The trigger event 
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4. Data processing, and preparation of the samples for learning 
 

The most important resource of Deep learning is data, the most difficult steps in implementing Deep 

learning is to make and process the data. The network can interpret data only in suitable form, 

otherwise learning is no feasible. Before we can take samples, we need to define the application, what 

we want to realize with the network, and then we need to record the samples in the best way possible. 

 

4.1 Selection of samples 
 

As an application I have chosen an arm movement recognizer, the question was, what movements we 

would like to detect exactly. The movements are not so important in our case, once we have built a 

model, we will be able to build a different one with other movements. Thus, only the samples will 

affect what our application recognizes. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I came up with 5 different labels, which are: 

1. Clockwise-circle: This movement is a description of a clockwise hoop in the air. 

2. Counter-clockwise-circle: It is the same move, just in the opposite direction. 

figure 23 clockwise-circle figure 24 counter-clockwise-circle figure 25 train 

figure 26 twist (start position) figure 27 twist (end position) figure 28 wave 
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3. Twist: It is a twisting gesture, initially the sensor faces up and the end of the gesture is already 

down. 

4. Train: It is an up-and-down movement, the name was given from the honking movement of 

the steam locomotive driver. 

5. Wave: It is a simple waving gesture. 

 

4.2 Receive samples on the PC 
 

As I mentioned earlier, the samples are sent over UART and then we must receive that data somehow 

on the PC side. I saved the samples in a CSV (comma-separated values) file, during processing we will 

read the samples from here and after we will teach the ANN with these data. 

To take the samples, I wrote a program that can record and draw our samples. Drawing samples is 

important, because if we work with bad samples, it can spoil our efficiency of the ANN and after that, 

it is very difficult to trace back where the problem was, because we need to find the problem in millions 

of lines. 

The program, what I have written can record and draw samples. In the lower right corner, you can 

enter the sample ID. This means that when reading, assign a particular pattern to this ID, which means 

that if a pattern with such an ID already existed, it will be added to it again, so it is advisable to avoid 

this. And when drawing, use the ID variable to know which pattern to draw. 

figure 29 Program to measure samples 
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To help with the operation, I also added keyboard shortcuts to the program, the down arrow can be 

used to draw the given sample, the up arrow can be used to start the measurement and if we have 

entered a value for the ID, it can be confirmed with ENTER. Basically, I can record 1 sample when I 

press the record button, but when recording the samples I set it to call itself again after it hasfinished 

the measurement, so since the sensor hardware was also set to pick up the next one immediately after 

sending the recorded sample, so the samples could be taken up much faster than if everything had to 

be started one by one. Sampling is always a monotonous and lengthy job, with these features it was 

slightly easier to perform sampling. 

I wrote the GUI for my program with a python package called Tkinter, which is part of the python by 

default. 

 

The data saved in the CSV file looks like this: 

figure 30 Data structure in CSV file 
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A row contains one measurement data, one sample contains 2550 rows, which since 2 sensors it is de 

facto 1275. 

Data in a row in order: 

 

figure 31 fieldnames 

• id: This is the identifier of the sample, it separates the samples from each other. 

• sensorID: We take the data from 2 sensors, first take 1275 measurements from sensor1, and 

then take the same amount from sensor2. This field is used to distinguish this (sensors measure 

data simultaneously, but we save it into two different arrays). 

• label: That is what the ANN will predict. 

• count: It counts the measurements in samples. 

• Ax1, Ax2, Ay1, Ay2, Az1, Az2: Accelerometer data stores data in 2 bytes per axis. I saved raw 

data to the CSV file, because I need to process data on the microcontroller as well. 

• Gx1, Gx2, Gy1, Gy2, Gz1, Gz2: The gyroscope works in a similar way to the accelerometer. 

After recording the data, we can then draw it, using the matplotlib package. 

The patterns look like this: 

• clockwise-circle: 

 

  

 
 
 
 

 

 

 

• counter-clockwise-circle: 

 
 
 
 
 
 
 

 

figure 32 clockwise-circle (sensor1) figure 33 clockwise-circle (sensor2) 

figure 34 counter-clockwise-circle (sensor1) figure 35 counter-clockwise-circle (sensor2) 
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• twist 
 
 

 
 
 
 
 
 
 

 
 

 

• train 
 

 
 
 
 
 
 
 
 

 

• wave 
 

 
 
 
 
 
 

 
 
 

Once we have the samples, we can start the processing phase, so the data get suitable to ANN, and 

then we can start building up the ANN. 

 

  

figure 36 twist (sensor1) figure 37 twist (sensor2) 

figure 38 train (sensor1) figure 39 train (sensor2) 

figure 40 wave (sensor1) figure 41 wave (sensor2) 
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5 Neural network and teaching 
 

The samples are done, all that is left is to transform the data properly and create the neural network, 

then teach it. There are several frameworks available for deep learning, I used Tensorflow and Kerast. 

Tensorflow is a framework developed by Google, the essence of which is to process data in the form 

of a tensor, as the name implies. A tensor is a mathematical object that is a generalization of the 

concept of scalar and vector. Most of us are not unfamiliar with the concept of tensor. 

 

The processing process is summarized as follows:  

1. Label the data: During the data processing, we convert labels into numbers, so we will have an 

int value between 0-4. 

2. Data normalization: The network can only work with values between -1 and 1, so we need to 

normalize our data. We can achieve this by dividing the values with their maximums. 

3. We break separate data into samples: The samples need to be separated, so that we can treat 

one large data set as several small samples.  

4. We divide the data into two sets of ‘train’ and ‘test’: During learning, the network learns on 

the train data and then tests on the test data, and then evaluate, how successful the learning 

was.  

5. The data must be brought into the appropriate tensor shape: In the case of tensorflow, the 

network has its own expectation, that means we need to provide data in suitable dimension 

tensor. 

 

We can create the neural network and begin the process of teaching. The model  uses 5 layers:  

1. 2D convolution (window size: 2𝑥2, number of output channels: 16, activation: ReLu)  

2. 2D convolution (window size: 2𝑥2, number of output channels: 32, activation: ReLu)  

3. Flatten layer  

4. Dense (number of neurons: 64, activation: ReLu)  

5. Dense (number of neurons: 9, activation: Softmax) 

 

When selecting layers, this layer selection proved to be the most appropriate in terms of effectiveness. 

That's the number of layers needed, more are unnecessary. 
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I drew the layers with an application called netron, the web application of that is available at the 

following link: https://lutzroeder.github.io/netron/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a rule of thumb, it is generally worth choosing ReLU (Rectified Linear Unit) for the activation of the 

intermediate layers and Softmax for the output layer. 

The net is ready to start teaching, learning uses 10 epochs. 

The blue line indicates the effectiveness on the data used for learning, and the orange line indicates 

the effectiveness on the data used for testing. For us, the effectiveness of the test is important. As can 

be seen in the figure, the efficiency quickly settled to a certain value, in our case it fluctuates around 

98%. This is because the data set aside for learning has already been learned and there is no room for 

further development. You may also learn train data too well and may no longer be able to create 

normal prediction on test data. This explains why the efficiency of the model cannot be increased 

indefinitely. To achieve even better efficiency, we would need many more samples, but 98% is more 

than enough. 

  

figure 42 model0 

figure 43 model0 accuracy 

figure 44 model0 loss 

https://lutzroeder.github.io/netron/
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The model is ready, we have nothing else to do, but save and apply it in real situations as well. I have 

written a program that sign the readiness of a measurement with a sound of beep, after the beep 

sound, we can perform a movement, the trigger event start the recording and the data will have saved 

in an array. After we have the full sample, the program processes the data it formats it to suitable 

form, and we load the data in the model, and it makes a prediction for us.  

The model creates a probability value for each output in some way like this: 

 

Figure 45 array of predictions 

This can be interpreted as follows: ANN tells each output a percentage of what it thinks is the chance 

that this is the correct output. From the predictions, we select the maximum and say that according to 

the network, this is the prediction. From the figure it can be read that it is 99.99% sure that it was a 

clockwise-circle. Although it does not matter to the outside observer that the model is 51% or 99% 

certain in the output, it is interesting to note that the mesh run on the microcontroller will not only 

lose its efficiency, but if it makes a good prediction, it will be much less confident. 

The accuracy graph drawn during training does not always correspond to reality, so I took 20-20 

measurements on each label and looked at the actual accuracy. 

The results were the following: 

• clockwise-circle: 20 / 20 

• counter-clockwise-circle: 20 / 20 

• twist: 20 / 20 

• train: 20 / 20 

• wave: 20 / 20 

 

This means that our efficiency is appropriate, we can even say it is perfect. We might just get a wrong 

result, if we perform 1000, 10,000 or 1,000,000 measurements. Nevertheless, this means that ANN 

works well, it is not worth to improve its efficiency further.  

It makes sense to work with that neural network, it can be applied to an MUC. In that case if the 

network would not work properly, the performance degradation would not be representative. 
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6 Problems with implementation on a microcontroller 
 

The microcontrollers have limited amount of memory, at first, I was working with an STM32F401CEU6 

with a flash memory of 256 KB and a RAM of 64 KB. The size of the RAM was almost completely utilized 

already during the sampling process, and I didn't even have an idea of the size of the ANN at that time, 

so I switched to the one more powerful STM32F411CEU6, which has twice the size of Flash memory 

and RAM, 512 KB and 128 KB. 

 

Some stronger microcontroller memory sizes: 

Product lines Flash(Kbytes) Ram(Kbytes) 

STM32F469 512 – 2056 384 

STM32F429 512 – 2056 256 

STM32F427 1024 – 2056 256 

STM42F446 256 – 512 128 

STM32F407 512 – 1024 192 

STM32F405 512 – 1024 192 

STM32F401 128 – 512 up to 96 

STM32F410 64 – 128 32 

STM32F411 256 – 512 128 

STM32F412 512 – 1024 256 

STM32F413 1024 - 1536  320 
Figure 46 memory size of microcontrollers 

 
 

I obtained the data from the STMicroelectronics website at the link: 

https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-

arm-cortex-mcus/stm32-high-performance- mcus / stm32f4-series.html 

I looked at the M4 series, because this series is already capable of complex mathematical calculations 

and its energy consumption is also favorable. 

If we look at the table (figure 46), we can see the maximum Flash size is 2056 Kbytes (2 MB), and the 

maximum RAM is 384 Kbytes. We could use external memory if it needed, but they have not limitless 

sizes. 

Our model has a huge memory usage, 238 MB (figure 47), it is too big even for the toughest 

microcontrollers, so we need to shrink it as much as we can.  

 I tried to make it smaller with Tensorflow Lite, it decreases the model sizes. A very useful tool for 

mobile applications, because today data scientists use larger, and larger models for imitate the human 

brain better, but we can’t use hundreds of Megabytes large models on mobile phones, because 

average application size is about 15 MB. I could shrink the model for 79,6 MB with Tensorflow Lite, but 

it too large for a microcontroller, so I had to find another solution. 

 

Figure 47 size of the original model 

https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-high-performance-%20mcus%20/%20stm32f4-series.html
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-high-performance-%20mcus%20/%20stm32f4-series.html
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STM has a framework for run ANN on STM microcontrollers, and it has size decreasing effect too, so I 

tried to upload my model, and checked the result: 

 

figure 24 size of the model0 in CUBE AI 

It uses a huge chunk of flash and RAM too, I had to find a way to reduce the size to 100 KB. 

I wanted to reduce the size of the model, so I was forced to modify the model by reduce the number 

of neurons, vary the window size, and so on. The experimentation was mainly empirical, of course it 

took a good background knowledge, so that, and it is worth trying, there were many models, which 

immediately reduced the efficiency to a very low level, but in the following figures I will only illustrate 

those that were within the tolerance in loss of efficiency. 

 

 

 

 

 

 

Figure 48 model_4 Figure 49 model_5 Figure 50 model_6 Figure 51 model_7 

14,9 MB 3,76 MB 431 KB 272 KB 
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The size shrinkink in one figure: 

 

Figure 56 shrinkage the size of the model 

Figure 52 model_8 Figure 53 model_9 Figure 54 model_10 Figure 55 model_11 

154 KB 94 KB 94 KB 74 KB 
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The size of the model by this time is optimal, but its efficiency is an equally important issue, I have 

attached the figures below about the efficiencies of the models during teaching. 

 

 

 

 

 

 

 

 

 

 

 

These graphs are not entirely reliable, they are merely just the results of teaching process. If we take 

a closer look, we can see that the validation accuracy remained around 98%, but training accuracy was 

significantly reduced to around 60%. It is our only statistic during the teaching process, but the real 

efficiency always that we test with new samples. 

Figure 57 model_4 loss Figure 58 model_4 accuracy Figure 59 model_5 loss 

Figure 61 model_6 loss Figure 63 model_7 loss 

Figure 65 model_8 loss Figure 67 model_10 loss 

Figure 69 model_11 loss 

Figure 60 model_5 accuracy 

Figure 62 model_6 accuracy Figure 64 model_7 accuracy 

Figure 66 model_8 accuracy Figure 68 model_10 accuracy 

Figure 70 model_11 accuracy 
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Too nice is also suspicious, in the case of model_7 the accuracy is 1, but after I tested the model with 

real data, I experienced that the inaccuracy was high. 

 

At model_8 we had already reached the limit we wanted, it occupies a size of 80 KB, I saved the data 

at 2x15 KB, so it was border-line case, so the size of the model already looked fine. 

 

Figure 71 model_8 memory usage 

 

The next problem came when I would have started using ANN on the microcontroller. All that numpy, 

pandas and other python libraries can easily solve, I had to solve on the microcontroller at a low level. 

This was not a problem either, the single-line code can be implemented in many loops, but we need 

temporarily more arrays for processing, in which we can save the format we need. For example, the 

network expects normalized floats, and we save integer values to the arrays. The conversion is simple, 

it stores an axis value in 2 bytes, and the task can be easily accomplished with bit shifts and type 

casting. The problem is that the 2 bytes are doubled in this case since the size of the float is 4 bytes. 

I tried to make the samples with the highest possible sampling frequency, although I knew that similar 

solutions would be sampled at a much lower frequency. The reason for this was that it is easier to 

reduce backwards from oversampling than to increase posteriorly the sampling. In practice, this would 

mean re-sampling, which is a very lengthy task and it is not known in advance how effective it will be. 

Initially, I tried to sample at 1 KHz, this was too fast for the FIFO, the bytes started to shift, and other 

problems arose. To remedy this, I reduced the frequency to around 400 Hz, and I have taken samples 

with that frequency. Since leaving multiple neurons was no longer possible without the model 

completely losing its function, I was forced to change a frequency. 

At first, I wanted to halve the frequency, this can be seen at model_9 and model_10, but unfortunately 

this was not feasible, because the value thus obtained could not be divided by 1020. The divisibility 

with 1020 comes from the fact that FIFO has a memory of 1024 bytes, so I wanted to use as many slices 

as possible from its capacity. Since I am reading 12 bytes (AXH, AXL, AYH, AYL, AZH, AZL, GXH, GXL, 

GYH, GYL, GZH, GZL), hence it must be divisible by 12, otherwise the data will slip after I measured a 

whole sample, because I read 4 byte from the next sample and that 4 byte will have been missed from 

the next sample. In 1024, the largest number is 1020, which is divisible by 12, so I have chosen it. 

I could have decided to halve the data, but if the FIFO reads only 510 bytes, I will not use half of its 

capacity. The FIFO plays a major role in ensuring that the data is read using the DMA without a 

particular load on the CPU, so that the CPU can handle the other computational tasks. Although I tried 

to keep as many resources as possible to use ANN, I stopped reading while using ANN so it was not 

disturbed by the reads. The importance of the DMA was in the detection of the trigger event, as it had 

to be examined during a read. 

Since I wanted to devote the resource to data processing and ANN, I decided to trisect the frequency 

instead of halving it, because it was divisible by 1020. The scan frequency was decreased, it has 

dropped down to 140 Hz. 
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Since I reduced the size of the samples, I also reduced the size of the model, due to size decreasing of 

the input layer. In the case of model_9 and model_10 I halved the size of the samples, so the size was 

reduced from 154 KB to 94KB. After trisecting the frequency, it decreased to 74 KB. 

The memory space used by CUBE AI is 13.44 KB flash memory and 26.56 KB RAM. 

Since the original model has the name model0, I will call this model model1 from now, because this 

was the first model I have successfully used on the microcontroller. 

 

Figure 72 model1 memory usage 

 

 

 

 

 

 

 

 
 

On the uploaded model, the simplifications in Figure 73/74 are performed by CUBE AI, and memory 

usage is indicated in Figure 75. 

 

Figure 73 graph of 
model1 

Figure 74 C 
graph of model1 

Figure 75 memory usage diagram of model1 
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The uploaded network is just binary data, it looks like this: 

 

Figure 76 The model in hex 

 

To use the model, CUBE AI gives us auxiliary functions and variables, and we need to use them. There 

was not much documentation for these, so it was hard to figure out how to use them. 

 

I wrote the code, which converts the measured data into the required form, and it uploads it for the 

network. It prints out the results, which are 5 predictions. It finds the maximum value of these 

predictions, and it print out as the prediction of the model. 

 

Figure 77 prediction of the microcontroller 
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In our case, although it guessed well, it was not 99.99% sure, only 57%. 

 

I also took 20-20 measurements on this model and looked at how many predicted well: 

• clockwise-circle: 16 / 20 

• counter-clockwise-circle: 12 / 20 

• twist: 20 / 20 

• train: 19 / 20 

• wave: 18 / 20 

 
 

The accuracy is possibly 85%. It has a problem with, especially between circles, is not being able to 

decide in which direction the movement took place. 

 

In our case, we predict much faster, than when recording to a computer, because sending the data to 

the computer take a lot of time, we send the data through UART at a rate of 115200 Baud. We transmit 

characters with a size of 1 byte, the number of characters depends on how many digits the measured 

data consists, for example, if the measured data is one digit, then it is one byte, if it is 3 digits then 3 

bytes. It transmits an average of about 35 bytes per measurement. We perform 850 measurements 

per sensor, 1700 measurements for 2 sensors, 1700 * 35 bytes for 59500 bytes, this is multiplied by 8 

for 476000 bits, so it takes a little over 4 seconds to transmit with 115200 Baud. This time has already 

been eliminated by performing the calculation locally, and the continuous use of UART does not 

consume a lot of energy, so this solution is more energy efficient. 
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7 Experimenting with efficiency 
 

Examining the samples more closely, we can see that there is a more marked signal change at the 

beginning of the samples. If we would take shorter samples, the remaining memory area would also 

increase severalfold, because of the size of the arrays, which are needed to transform the data to 

correct form are also decreasing, and the size of ANN would also decrease as a result of the input layer 

decreasing, so more neurons could be used to build the neural network, it means we can use more 

complex models. 

  

Figure 78 The beginning of the samples is the most significant 

 

I read 1020 bytes 5 times, so I need to do 5 measurements, I have already measured the first one, its 

efficiency was 85%. I will see what happens if I only record 4 * 1020, 3 * 1020, 2 * 1020, 1 * 1020 bytes, 

but invest the earned memory in the size of the model. It is expected that at first the efficiency will 

start to increase and then it will suddenly decrease, because sooner or later I will start to cut useful 

things from the recorded samples. 

The size of the samples are fixed in length, the longest pattern is labeled with a wave. It is expected to 

be the first sample whose efficiency will be fall during the reduction of the length. 
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7.1 Efficiency of model2 
 

Before I created the model, I had reduced the size of the samples to 4/5 and increased the size of the 

model to improve its efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The size of the model increased to 162 KB, the efficiency apparently increased by a tiny bit according 

to the statistics, which have generated during teaching. 

I also took 20-20 measurements on this model and looked at how many predicted well: 

• clockwise-circle: 19 / 20 

• counter-clockwise-circle: 13 / 20 

• twist: 17 / 20 

• train: 20 / 20 

• wave: 20 / 20 

 

Efficiency increased to 89%. 

Figure 79 model2 

Figure 80 model2 loss 

Figure 81 model2 accuracy 

162 KB 
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7.2 Efficiency of model3 
 

Before I created the model, I had reduced the size of the samples to 3/5 and increased the size of the 

model to improve its efficiency. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The size of the model increased to 416 KB, the efficiency apparently decreased by a tiny bit according 

to the statistics, which have generated during teaching. 

I also took 20-20 measurements on this model and looked at how many predicted well: 

• clockwise-circle: 9 / 20 

• counter-clockwise-circle: 8 / 20 

• twist: 20 / 20 

• train: 19 / 20 

• wave: 2 / 20 

 

Efficiency decreased to 59%, we have already reached our peak efficiency,  

we have probably cut off important parts of the wave pattern. 

Figure 3 mode2l Figure 83 model3 loss 

Figure 84 model3 accuracy 

416 KB 

Figure 82 model3 

416 KB 
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7.3 Efficiency of model4 
 

Before I created the model, I had reduced the size of the samples to 2/5 and increased the size of the 

model to improve its efficiency. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The size of the model increased to 542 KB, the efficiency apparently increased by a tiny bit according 

to the statistics, which have generated during teaching. 

I also took 20-20 measurements on this model and looked at how many predicted well: 

• clockwise-circle: 7 / 20 

• counter-clockwise-circle: 0 / 20 

• twist: 20 / 20 

• train: 0 / 20 

• wave: 2 / 20 

 

Efficiency decreased to 27%, and probably it will be worse, if we decrease the length more. 

Figure 86 model4 loss 

Figure 87 model4 accuracy 
542 KB 

Figure 85 model3 
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7.4 Efficiency of model5 
 

Before I created the model, I had reduced the size of the samples to 1/5 and increased the size of the 

model to improve its efficiency. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The size of the model increased to 1 MB, the efficiency apparently increased a lot according to the 

statistics, which have generated during teaching. 

I also took 20-20 measurements on this model and looked at how many predicted well: 

• clockwise-circle: 7 / 20 

• counter-clockwise-circle: 0 / 20 

• twist: 20 / 20 

• train: 8 / 20 

• wave: 20 / 20 

 

Efficiency increased to 67%, it was a huge astonishment, that means the complexity of the model 

plays a key role in efficiency. 

Figure 89 model5 loss 

Figure 90 model5 accuracy 
1 MB 

figure 88 model5 
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7.5 Evaluation of results 
 

I plotted the measured results on a diagram: 

 

        figure 91 Effectiveness of the models 

Observing the efficiency of the models, the most surprising results was the efficiency of model5, 

because after model4 I expected its efficiency to converge to around 0, but nevertheless an increase 

in performance was observed, in that case we achieved even better results than model3. 

Although I calculated the effectiveness of the models by including each tag with equal weight in the 

aggregation, a kind of personal characteristic can still be observed for each tag. 

The twist was the best-hit tag, which may have been, because one distinct pattern, vastly different 

from the others, was easier to distinguish. For clockwise-circle and counter-clockwise-circle, the 

uncertainty was constant for all models. The biggest oscillation was for the train and the wave, some 

models took the obstacle well, some models were almost unable to determine that output. The wave 

was the one that lasted the longest, when choosing the length of the samples I mainly considered that 

it would still fit, so the time window was originally 3 seconds. Reducing this slightly, it was not 

surprising that the sample did not become undetectable, but in the case of model4, we have already 

cut off important parts of the sample. Nevertheless, we were again able to determine with high 

accuracy with model5. 

I originally planned no more measurements, but the result of model5 was surprised and I wanted to 

do some more measurements, during which I did not reduce the length, but I take the most successful 

time window model, in our case model2 and I measure with that window size so that I reduced the 

frequency once to half and once to a quarter. 
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8 Frequency reduction tests 
 

First, let us look at a sample at the original 400Hz, then the trisected 140 Hz, then the further halved 

70 Hz, and finally the halved once more 35 Hz. 

 

 

          Figure 92 A sample with 400Hz sampling frequency 

 

           Figure 89 A sample with 140 Hz sampling frequency 

There was little visible difference between the 400 Hz and 140 Hz sampling, when we look at it with 

bare eye, and from the information could not be lost too much. 
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          Figure 93 sample with 70 Hz sampling frequency 

 

At 70 Hz, it noticeably cuts things off the figure. 

 

          Figure 94 sample with 35 Hz campling frequency 

 

At 35Hz, the picture is almost completely square, hopefully it still contains the information. 
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8.1 Efficiency of model6 
 

Before I created the model, I had halfed the frequency and increased the size of the model to improve 

its efficiency. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The size of the model increased to 1 MB , the efficiency apparently increased by a lot according to the 

statistics, which have generated during teaching. 

I also took 20-20 measurements on this model and looked at how many predicted well: 

• clockwise-circle: 8 / 20 

• counter-clockwise-circle: 13 / 20 

• twist: 20 / 20 

• train: 20 / 20 

• wave: 7 / 20 

Efficiency decreased to 68%, we have probably cut off important parts from samples. 

Figure 96 model6 loss 

Figure 97 model6 accuracy 
1 MB 

Figure 95 model 6 
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8.2 Efficiency of model7 
 

Before I created the model, I had quartered the frequency and increased the size of the model to 

improve its efficiency.  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although the size of this model is 1 MB, as the input layer decreases, the model is more complex, a 

larger model can no longer fit on the microcontroller. I also took 20-20 measurements on this model 

and looked at how many predicted well: 

• clockwise-circle: 9 / 20 

• counter-clockwise-circle: 18 / 20 

• twist: 18 / 20 

• train: 12 / 20 

• wave: 18 / 20 

Efficiency increased to 68 it was also a huge astonishment, that is another proof for the complexity 

of the model plays a key role in efficiency. 

1 MB 

Figure 99 model7 loss 

Figure 98 model7 

figure 100 model7 accuracy 
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8.3 Evaluation of the results 
 

Although the decrease in frequency had a negative effect on the results, it was a surprising result that 

the quarter-frequency model performed better than the halved one. From this, it can be concluded 

that the results can also be improved by minimally increasing the complexity of the model, so that you 

probably do not need a quarter GB of storage space for a working model. 

Albeit I assigned relative efficiencies to the models as to what percentage were effectiveness, we still 

can noticed that each model achieved different efficiencies on each sample, on this basis we should 

look at the model efficiencies on each label.

 

Figure 101 clockwise-circle accuracy on models 

This sample needed a decent sampling frequency, when I reduced the time window just a little bit, it 

caused no problem as we can see on the efficiency of model2, but it is important to do the full 

movement, the full circle, it is difficult to make an accurate prediction only from the beginning of the 

sample. 
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Figure 102 counter-clockwise-circle accuracy on models 

The same is true for this pattern as clockwise-circlere. The reason that model6 and model7 showed 

greater accuracy than in the case of the clockwise-circle is that the resulting model tended to look at 

everything counter-clockwise-circle, which may have been due to the fact that the smoothed samples 

noise was also very similar to counter-clockwise-circle. If I left it on the table and only moved it a little, 

it always gave a counter-clockwise-circle as prediction. 

 

Figure 103 twist accuracy on models 

 

This pattern is the most characteristic, this was very well recognized by all models, only model7 had 

less uncertainty, but 90% of the models could predict it prefectly. 
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Figure 104 train accuracy on models 

 

In the case of this sample, as the measurement time interval decreased, the efficiency did not decrease 

at first, but then dropped suddenly. Frequency drop do not have effect on efficiency after first halved, 

but 35 Hz seemed a little bit bare for it.  

 

Figure 105 wave accuracy on models 

It was the most complex pattern, and it caused the biggest surprises. As the sample time interval 

decreased, its recognizability dropped to around 0 very abruptly, and then when I increased the 

strength of the model, it went back. In the case of model5 and model7, it can be noticed that the 

complexity of the model is more important than the content of the samples. 

0

5

10

15

20

25

train

train

model1 model2 model3 model4 model5 model6 model7

0

5

10

15

20

25

wave

wave

model1 model2 model3 model4 model5 model6 model7



Arm Movement Recognition with Deep Learning | Horváth Márton Áron 
 

47 
 

9 Conclusion 
 

In today’s world, we use larger and larger models for deep learning, but the memory of 

microcontrollers is finite, but that does not mean microcontrollers cannot take their share of artificial 

intelligence. Although one direction is to imitate human thinking better and better by using larger and 

larger models, the other direction is to shrink the models enough to run it on a microcontroller 

environment. They are coming up with better and better solutions in this area as well. For example 

ARM and Google work together on tinyML, a fast growing field of machine learning technologies and 

applications, that enable ultra-low power ML at the edge 

In our case, we wanted to upload a 238 MB ANN to a 512 KB flash memory and 128 KB RAM. At first it 

seemed like an unsolvable problem, but a lot of measurements proved that it could be done with 

relatively good accuracy. We had quite a bit of memory, but we were still able to make a lot of 

improvements with minimal changes. You can see in figure46 that there are microcontrollers that have 

twice the amount of memory. They can be loaded data with higher sampling rate, they can use more 

complex models, and even if this amount of memory is not enough, we can use external memory as a 

supplement. 

MUCs are already quite suitable for running simple neural networks. The memory of microcontrollers 

is getting bigger and bigger, we can compress the models smaller and smaller in size. Perhaps in the 

future we will be able to apply increasingly complex, increasingly sophisticated deep learning solutions 

on microcontrollers, thus makes smarter the objects around us.  

It seems like a beautiful future, isn't it? 
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