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Summary 

Electronic Nose technology has been rapidly emerging and extended in recent 

years, thanks to the advances in materials, sensors, and machine learning technologies. 

The electronic nose (E-Nose) is a sensor fusion device consisting of an array of Metal-

Oxide (MOx) sensors that detect Volatile Organic Compounds (VOCs) in its 

environment. The electric resistance of the sensors generates electric signals that change 

when they encounter and absorb different types of molecules, and afterward, the signals 

are processed by machine learning algorithms. The edge advantages of such devices are 

rapidity, portability, and compactness. As a result, these devices are becoming widely 

used in the food and beverage industry, agriculture and forestry, pharma, security, and 

environmental monitoring. 

In a real environment, sensors detect a mixture of odors. Hence, it is beneficial to 

identify the individual components of such a mixture. This process is called Blind Source 

Separation (BSS), where there is no (or little) information about the sources or the mixing 

process. One approach to this problem is to have a good understanding of the possible 

individual sources. Then, by using this pre-obtained information, we can segregate the 

sources, hopefully separating at least one of the sources. In this context, machine learning 

models and more advanced ones, deep learning models, data analysis, and pattern 

recognition can be used. 

This research aims to employ and evaluate different models regarding their 

effectiveness, suitability, and performance. Besides, several other samples relating to the 

food industry are to be measured using the Electronic Nose device. 
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Kivonat 

Az elektronikus orr-technológia az utóbbi években gyorsan fejlődött és bővült az 

anyagok, érzékelők és gépi tanulási technológiák fejlődésének köszönhetően. Az 

elektronikus orr (Electronic Nose) egy érzékelőfúziós eszköz, amely fém-oxid (Metal-

Oxide) érzékelők sorából áll, amelyek érzékelik az illékony szerves vegyületeket 

(Volatile Organic Compound) a környezetében. Az érzékelők elektromos ellenállása 

elektromos jeleket generál, amikor különböző típusú molekulákat abszorbeálnak. Ezt 

követően a jeleket gépi tanulási algoritmusok dolgozzák fel. Az ilyen eszközök előnye a 

gyorsaság, a hordozhatóság és a kompaktság. Ennek eredményeként ezek az eszközök 

széles körben használatosak az élelmiszer- és italiparban, a mezőgazdaságban és az 

erdészetben, a gyógyszeriparban, a biztonságban és a környezetfelügyeletben. 

Valós környezetben az érzékelők szagok keverékét érzékelik. Ezért előnyös az 

ilyen keverék egyes összetevőinek azonosítása. Ezt a folyamatot BSS-nek (Blind Source 

Separation) nevezik, ahol nincs (vagy kevés) információ a forrásokról vagy a keverési 

folyamatról. Ennek a problémának az egyik megközelítése a lehetséges egyéni források 

megfelelő ismerete. Ezután az előre megszerzett információk felhasználásával a források, 

vagy legalábbis az egyik forrás, remélhetőleg elkülöníthetők lesznek. Ebben az 

összefüggésben gépi tanulási modelleket és fejlettebbeket, mély tanulási modelleket, 

valamint adatelemzési és mintafelismerő eszközöket fognak használni. 

Ebben a kutatásban különböző modellek alkalmazását és értékelését célozzuk 

meg azok hatékonysága, alkalmassága és teljesítménye szempontjából. Emellett számos 

különböző élelmiszeripari mintát kell mérni az Electronic Nose készülékkel. 
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1. Introduction 

Thanks to advances in sensor technologies and computer algorithms, Electronic 

noses (E-noses) are increasing the margin of attention. They have numerous applications 

in the food industry, pharma, forestry, agriculture, etc. E-noses are rapid and accurate 

tools to detect and identify odors and volatile organic compounds, and they are developed 

to replicate the human olfactory system.  

Despite the extensive application of E-noses in the automatic detection of odors, 

one crucial underdeveloped area is separating individual signal components from a 

mixture signal. This process is called signal separation, source separation, or blind source 

separation. Nonetheless, in E-nose research, the term odor approximation is also used. 

Odor approximation is necessary in E-nose systems, enabling accurate identification of 

odor components and improving the system performance. However, the computer 

algorithms to process E-nose signal in that way is not trivial.  An E-nose equipped with 

precise computer algorithms to decompose complex and overlapping odors and then 

accurately detect compositions may benefit food quality control, environmental 

monitoring, medical diagnosis, etc.  

This research focuses on developing an odor approximation model, which can be 

utilized in the case of E-noses to extract the subcomponent of a mixture signal. In this 

study, we gather various samples and analyze our models on these samples. Our findings 

can contribute to broadening the E-nose application circle, improving its performance and 

reliability, and opening doors for odor recognition in diverse applications since we rarely 

have a single component to be detected in the real environment.  

This study will first develop an AE model to capture the underlying pattern in the 

data by encoding it and then recreating it from the latent space. We will find the optimal 

structure of the AE through individual component analysis. Next, we will use the 

developed AE network for odor approximation. We will examine its performance by 

testing this network on combination samples.  

To increase the accuracy and specificity of the model, we will introduce the 

domain adaptation concept. We will examine this new model by analyzing its 

performance on multiple combination samples taken over time.  
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The following chapter of this thesis is as follows: Chapter 2 comprehensively 

reviews E-nose technology, its application, and existing solutions in the literature. 

Chapter 3 outlines the methodologies in this study concerning the E-nose device sample 

collection. In Chapter 4, we present our findings by analyzing the model performance. 

Finally, in Chapter 5, we summarize our results and highlight ways for further research. 

 

Keywords: electronic nose, signal separation, odor approximation. 
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2. Literature Review 

2.1. Related Works 

The first E-Nose for classification and identification purposes was created using 

three Figaro semiconducting gas sensors acting as transducers by (Persaud and Dodd, 

1982) from the University of Warwick, England. This device demonstrated the capability 

of discriminating odors like the mammalian olfactory system. Continuous studies have 

been conducted in this field until now, and these devices are becoming more and more 

utilized in the food industry, pharma, security, and environmental monitoring.  

The application of an electronic nose for industrial odors and gaseous emissions 

measurement and monitoring was reviewed by (Deshmukh et al., 2015). They examined 

the electronic nose's applications in industrial emissions monitoring, emphasizing its 

advantages compared to traditional models. Despite its potential, its industrial use 

remains underexplored. The study discusses applications, calibration methods, and 

sampling and explores the electronic mucosa system as an improvement. The review 

concludes by discussing the pros and cons of artificial olfaction in industrial contexts. 

In another study, (Tan and Xu, 2020) reviewed the use of electronic noses (E-

noses) and electronic tongues (E-tongues) in assessing food quality. The study discusses 

their principles, applications, and limitations, comparing widely used pattern recognition 

algorithms such as artificial neural networks and support vector machines. The review 

concludes that e-nose and e-tongue, when combined with these algorithms, are powerful, 

cost-effective tools for rapid and accurate food quality analysis. They are applicable in 

both in-line and off-line measurements, aiding food processing monitoring and final 

product quality detection. They also carefully control sample preparation, sampling, and 

data processing. 

The application of E-Noses in medical settings was reviewed in a study (Thaler 

and Hanson, 2005). Their reviews conclude promising results in medical applications 

such as detecting sinusitis, pneumonia, and cancer. Nonetheless, Challenges include 

improving data analysis and gaining medical community acceptance.  

Regarding how E-Nose devices work, these devices work on the principle of 

mimicking a human nose's olfactory function. According to (Dunkel et al., 2014),  the 
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human olfactory system consists of three parts. First is the odor receiver, which comprises 

olfactory receptor glands and scent delivery systems. Second, the nervous systems are 

responsible for signal transmission to the brain. Third, a decision system to recognize and 

identify the smell. An E-Nose, likewise, has three main parts: a sample delivery system, 

a detection system, and a computing system, according to (Karami, Rasekh, and Mirzaee-

Ghaleh, 2020). In this regard, the definition of an E-Nose must be restricted to intelligent 

chemical array sensor systems or devices designed to detect odorant molecules like the 

human nose.  

According to (Gardner and Bartlett, 1994), “An electronic nose is an instrument, 

which comprises an array of electronic chemical sensors with partial specificity and an 

appropriate pattern-recognition system, capable of recognizing simple or complex 

odors.” 

 

Figure 2.1 An analogy between the human olfactory system and E-Nose.  
This image was taken from a study by Chiu and Tang published in 2013 (Chiu and Tang, 2013) 

 

In the E-nose system, the olfactory receptor segment incorporates the odor 

delivery unit, which consists of pipes, pumps, and valves, facilitating aroma delivery into 

the sensor chamber. The sensor array, the heart of any E-nose, includes several different 

gas sensors acting as human olfactory receptors. 

 In one study to develop a wearable E-nose carried out by (Seesaard, 

Lorwongtragool, and Kerdcharoen, 2015), they proposed using conducting 

polymers/SWNT-COOH nanocomposites. They found that the sensors could detect 

numerous volatile compounds prevalent in human body wastes, and by incorporating 

simple pattern recognition, they could discriminate the human body odor from two 
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persons. In another study by (Seekaew et al., 2014), they developed an E-nose to detect 

ammonia using the same conducting polymer nanocomposite sensors. 

Another type of sensor made from carbon-based nanomaterial was proposed in 

studies conducted by (Kondee et al., 2022),(Seekaew et al., 2019), and (Kerdcharoen and 

Wongchoosuk, 2013). Carbon-based materials, including nitrogen-doped carbon oxide 

quantum dots (NCQDs), graphene, and carbon nanotubes (CNTs), were utilized in 

research due to their exceptional properties. NCQDs demonstrated high humidity 

sensitivity, stability, and linear response. Graphene and its derivatives offered versatility 

in applications like sensors, energy storage, and solar cells, benefiting from their unique 

electronic properties. CNTs, especially with metal oxides, enhanced gas sensor sensitivity 

and versatility through various preparation and characterization techniques. 

Metal-oxide (MOx) sensors are another type of sensor, which is proposed by 

(Traiwatcharanon, Timsorn, and Wongchoosuk, 2017), (Arayawut, Kerdcharoen and 

Wongchoosuk, 2022), (Traiwatcharanon et al., 2022), and (Chaloeipote et al., 2021). 

Researchers utilized metal oxide sensors, including silver nanoparticles for humidity 

sensing, lead oxide nanoparticles for paraquat detection, and copper oxide via 3D printing 

for ammonia gas sensing. These sensors demonstrated high sensitivity, stability, and 

selectivity in their respective applications. The studies showcased innovative fabrication 

methods and optimized sensor performance, emphasizing the practical potential of metal 

oxide sensors in scientific and environmental monitoring.  

In 2005, (James et al. 2005) reviewed chemical sensors for E-Nose. This study 

investigated conducting polymers, metal oxide semiconductors, piezoelectric, optical 

fluorescence, and amperometric gas sensors.  

Despite the wide usage of these sensors, a few studies have focused on the specific 

type of sensor for odor separation tasks, also called odor approximation. The term odor 

approximation refers to identifying or reproducing a particular scent from a mixture of 

scents. In a study by (Muñoz-Aguirre et al., 2007), they utilized quartz crystal 

microbalance (QCM) sensors to approximate complex fruit flavors. QCM sensors were 

coated with specific materials to enhance sensitivity and selectivity. The sensors were 

employed to measure responses to individual odor components and mixtures in orange 

and melon flavors. This approach allowed quantitative analysis, aiding in identifying and 

evaluating key odor components in a mixture. 
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These sensors absorb odorous molecules based on physisorption and 

chemisorption principles. Upon the presence of molecules on the material's surface, 

expediting expansions of volume, transfer of charges, ion exchange, and interaction with 

ion species results in a change in electrical conductivity or resistivity. Afterward, the 

generated signal by the sensor arrays is undergone through data analysis performed via 

supervised or unsupervised machine learning with statistical methods. 

 

In one study on the discrimination of pathogenic bacterial volatile compounds, 

(Seesaard et al., 2020) used Principal Component Analysis (PCA). This analysis showed 

that the first principal component (PC1) explained 92.4% of the variance, while the 

second principal component (PC2) explained 7.2%. This finding highlights the critical 

role of PC1 in effectively distinguishing between various bacterial species. In another 

study on discriminating red wine conducted by (García et al., 2006), they incorporated 

PCA. Researchers successfully differentiated red wines from the same cellar, grape 

variety, and geographic origin. Nonetheless, the PCA method had an 80% success rate 

due to interference from water and ethanol vapors. 

Other machine learning models applicable in research on E-nose delivering 

favorable result is as follows: Hierarchical Cluster Analysis (CA) (da Silva Torres, 

Garbelotti and Moita Neto, 2006), (Le Thanh-Blicharz and Lewandowicz, 2020), Linear 

Discriminant Analysis (LDA) (Kiselev et al., 2018), partial least squares discriminant 

analysis (PLS-DA) (Huang et al., 2017)  multivariate data analysis (Buvé et al., 2022), 

and Artificial Neural Network (ANN) (Thazin, Pobkrut and Kerdcharoen, 2018), (Zhang 

and Tian, 2014) etc. 

In 2020, a survey on “Electronic Nose and Its Application” (Karakaya, Ulucan, 

and Turkan, 2020) reviewed the recent technologies applicable to E-Nose devices. At 

first, they opened an introduction to E-nose technology, how it works, and its applications. 

Then, they precisely elaborated the E-Nose components and the types of sensors, detailing 

eight different kinds of sensors. In the following, they featured the most used machine 

learning (ML) and Deep learning (DL) algorithms, elaborated eight algorithms, and 

concluded the frequently used data analysis methods based on each sensor type. They 

compared five algorithms, followed by a system performance evaluation. Next, they listed 

12 commercial E-Nose- devices and their usage area. In the rest of the paper, they 

enumerated the application of E-Nose. Based on their gatherings, E-Noses are widely 
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utilized in the food and beverage industry (including meat quality assessment, chocolate 

and cocoa beans, alcoholic beverages, tea quality, coffee quality, oil and vinegar, dairy 

products, and water quality and monitoring), forestry and agriculture, medicine and 

healthcare (including the detection of asthma, cancer, tuberculosis, sinusitis, cyst fibrosis, 

etc.), indoor and outdoor monitoring, system security, and packaging. Ultimately, they 

pointed out the main challenges in the E-Nose system, an outlook, and concluded. 

According to them, the main challenges are sensor sensitivity, sensor selectivity, 

humidity, sensor shift, sensor stability, reproducibility, sensor fault tolerance, cross-

sensitivity, sensor array size, material selection, algorithms, parameter selection, and lack 

of data.  

Despite extensive research on E-Nose devices and their commonly used 

applications, a few studies focused on the signal separation of the given odor mixture by 

an E-Nose device. Signal separation, also called Blind Source Separation (BSS), is a 

technique in signal processing aimed at separating signals and decomposing them into 

their subcomponents given an unknown mixed signal.  

In one study (Phaisangittisagul and Nagle, 2011), they strived to approximate the 

components in a mixture. Their data comprised regular coffee, Sumatra coffee, and green 

tea. They proposed wavelet analysis and support vector machine (SVM) to predict the 

waveform of the odor mixtures. Then, they evaluate the performance by how close the 

prediction result to the measured individual waveform is. Their findings were significant 

because they presented algorithm solutions instead of special hardware.  

Another study on odor approximation (Prasetywan and Takamichi, 2020) used the 

essential oil mass spectrum database. They used non-negative matrix factorization (NMF) 

to extract the basis vectors, and then they used the non-negative least-squares technique 

to determine the recipe. Their studies resulted in approximating essential oils using 30 

odor components. 
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2.2. Auto-encoder 

An Auto-encoder (AE) is a kind of unsupervised learning artificial neural 

network. The AE consists of two main parts: an encoder and a decoder. The encoder 

transforms the input data and represents it in a lower dimension, and the decoder recreates 

the input data from the reduced dimensions. The output of the encoder is called latent 

space. (Kramer, 1991). 

AE has numerous variations and applications. For instance, we have regularized 

AE for classification tasks, variational AEs as generative models, feature detection, 

anomaly detection, and facial recognition. Figure 2.2 shows the general structure of the 

AE. 

 

 

Figure 2.2 The General Structure of Auto-encoder1 

 

 

1 Author: Steven Flores, Year: 2019, " Variational Autoencoders are Beautiful", accessed Oct 2023, 

https://www.compthree.com/blog/autoencoder/.  
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2.3. Domain Adaptation 

Domain adaptation is a field between machine learning and transfer learning. This 

method is beneficial when we want to model and apply source data distribution to 

different but related data.  

The domain adaptation models are trained on one or more source domains to 

different target domains. This transformation is called domain shift, also known as 

distributional shift. Figure 2.3 shows the domain adaptation.  

 

 

Figure 2.3 Illustration for domain adaptation.  

This picture was taken from a study by (Li et al., 2019) 
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3. Methodology 

This chapter will introduce the E-nose device, its components, sample chamber, 

sample collections, and data processing.  

3.1. The Electronic Nose Device Design   

The body of the electronic nose device is constructed using a 3D printer with a 

pipe diameter of 2 cols. There is a fan to inhale the o placed on the top of the body. The 

device consists of sensor arrays to detect volatile organic compounds (VOC), an MCU 

board, a microcontroller to read sensor values and transmit the data to the backend, and 

an analog multiplexer. An analog multiplexer instead of an adorning analog-to-digital 

converter (ADC) is necessary due to the surplus of sensors compared to available ADC 

ports. These sensors are linked to the MCU board through a multiplexer. Figure 3.1 shows 

the electronic nose device. 

 

 

 

Figure 3.1 The Electronic Nose Device 
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3.2. Sensor Array 

The sensors embedded in the E-Nose device are MOx sensors; see Figure 3.2. 

MOx sensors consist of a metal oxide film, typically made of materials like tin dioxide 

(SnO2), tungsten oxide (WO3), or zinc oxide (ZnO), which acts as the sensing element. 

The metal oxide film is heated to a high temperature, usually around 200-500 degrees 

Celsius, increasing its gas sensitivity. 

When the metal oxide film is exposed to specific volatile organic compounds 

(VOCs), the VOC molecules interact with the film's surface, leading to changes in the 

electrical conductivity of the sensor. These changes are then measured and converted into 

a gas concentration reading.  

MOx sensors are known for their low cost, compact size, and fast response time. 

They can detect various gases and are particularly sensitive to certain pollutants and toxic 

gases. However, they may also exhibit cross-sensitivity to other gases, meaning they can 

respond to multiple gases simultaneously, complicating their readings in certain 

situations. Figure 3.1 illustrates the sensors used in the E-nose device, and Table 3.1 

provides a comprehensive overview and applications for each sensor type. 

 

Figure 3.2 MOx Sensors Embedded in E-Nose Device2 

 

2 Unknown Author, Unspecified Year, "Gas Detection Module," Aliexpress, accessed Oct 2023, 

https://www.aliexpress.com/item/1005004315461088.html.  
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Model Detection Type Target Gases Applications 
MQ-2 Combustible 

gases 
Methane (CH4), Propane 
(C3H8), Butane (C4H10), 

and other flammable 
gases 

Gas leak detection, 
safety systems 

MQ-3 Alcohol vapors Alcohol vapors in the air Breathalyzers, alcohol 
detection systems, 

safety devices 
MQ-4 Alcohol vapors Alcohol vapors in the air Breathalyzers, alcohol 

detection systems, 
safety devices 

MQ-5 Flammable gases Liquefied Petroleum Gas 
(LPG), Methane (CH4) 

Gas leak detection, 
safety systems 

MQ-6 Liquefied 
Petroleum Gas 

(LPG) 

Liquefied Petroleum Gas 
(LPG) 

Gas detection, safety 
equipment, industrial 

systems 
MQ-7 Carbon Monoxide 

(CO) 
Carbon Monoxide (CO) 

gas 
Gas detection, safety 

equipment, 
environmental 

monitoring 
MQ-8 Coal, Gas, 

Hydrogen 
Coal, Gas, Hydrogen Gas detection, industrial 

applications 
MQ-9 Carbon Monoxide 

(CO), Flammable 
Gases 

Carbon Monoxide (CO), 
Methane (CH4), Propane 

(C3H8) 

Gas detection, safety 
equipment, industrial 

monitoring 
MQ-135 Various air 

pollutants and 
gases 

Ammonia (NH3), 
Nitrogen oxides (NOx), 

Alcohol vapors, Benzene 
(C6H6), Carbon 

monoxide (CO), Volatile 
organic compounds 

(VOCs) 

Air quality monitoring, 
environmental 

assessment, safety 
applications 

Table 3.1 Gas Detection Sensors: A Comprehensive Overview for Diverse Applications 

 

3.3. MCU 

The MCU is utilized to gather sensor signals and transmit the data to the backend 

through the Internet. The project utilizes an ESP32-WROOM-32S board. It is used to 

digitize sensor data, collect sensor data, connect to Wi-Fi, connect to the backend, and 

send data to the backend. 
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3.4. Sample Collection 

The sample collection for this study comprised five everyday food items: Vinegar, 

Bread, Beef, and Chicken. All samples were procured from a local market and stored at 

room temperature throughout the measurement process to simulate real-world conditions. 

Measurements were taken at regular intervals of 12 hours and conducted four 

times to ensure accuracy and reliability. During each measurement session, individual 

items, along with the combinations of two items, were taken. Each measurement session 

lasted for 3 minutes. Table 3.2 presents an overview of the sample collection, indicating 

the items studied and their combinations during the measurement process. 

In subsequent sections of this paper, each measurement will be denoted as ‘Mx.’ 

For instance, the combination of Vinegar and Beef for the first measurement will be 

represented as ‘Vinegar+Beef M1’, and for the second measurement, it will be denoted 

as ‘Vinegar+Beef M2’, where ‘M2’ indicates the second measurement session. 

   

Samples replicates 

Bread 4 

Vinegar 4 

Beef 4 

Chicken 4 

Bread+Beef 4 

Bread+Chicken 4 

Vinegar+Beef 4 

Vinegar+Chicken 4 

Table 3.2 Sample Collection 

3.5. Experiment Procedure 

The E-Nose device was positioned adjacent to a chamber containing the items to 

prepare the device for measurements. A fan was placed in the center of the chamber, and 

there were holes on all four sides to maintain the airflow to the E-Nose device. 

The E-Nose device is connected to Wi-Fi, enabling access to the backend website 

for recording measurements. Finally, the recorded data is stored in a CSV file, as 
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illustrated in Table 3.3, showcasing the initial 12 measurements from 9 MOx sensors. The 

signal generated by the E-nose for Vinegar M1 is shown in Figure 3.3. 

Ticks mq2 mq3 mq4 mq5 mq6 mq7 mq8 mq9 

5525514807 142 1130 990 1773 142 558 1021 1248 

5525519684 142 1130 990 1773 142 558 1021 1248 

5525529684 142 1130 990 1773 142 558 1021 1248 

5525539688 142 1130 990 1773 142 558 1021 1248 

5525549684 142 1130 990 1773 142 558 1021 1248 

5525559684 142 1130 990 1773 142 558 1021 1248 

5525569684 142 1130 990 1773 142 558 1021 1248 

5525579684 142 1130 990 1773 142 558 1021 1248 

5525589715 142 1130 990 1773 142 558 1021 1248 

5525599684 142 1130 990 1773 142 558 1021 1248 

Table 3.3 A Snippet of CSV file for Vinegar 

 

 

   Figure 3.3 Signal Generated by E-nose for Vinegar M1 

Before each measurement, the E-nose was warmed up for 30 minutes. The 

measurements were conducted at room temperature, with special care to minimize other 
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odors. Samples were also separated from each other to prevent interference. Table 3.4 

provides information regarding the environmental condition during the measurements.  

Measurement Mean Temperature Mean Humidity 

1st 25° C 56% 

2nd 24° C 59% 

3rd 24° C 58% 

4th 25° C 64% 

Table 3.4 Environment Condition during the Measurement 
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4. Results 

4.1. Auto-Encoder 

Autoencoders (AE) are unsupervised machine learning algorithms designed to 

reconstruct input data. This model is constructed with an encoder network, which reduces 

the input data's dimensionality, followed by a decoder network that reconstructs the 

original data from the reduced representation. Essentially, an AE comprises an encoder 

and a decoder interconnected. The primary objective in designing an AE is to identify a 

bottleneck in the architecture where dimensions can be reduced without substantial 

information loss. The output of this reduced dimensionality, produced by the encoder, is 

referred to as the latent space. 

In this study, we utilized an AE encoder trained on a single sample, which was 

subsequently validated with other samples. The validation sample demonstrating the 

minimum reconstruction loss is considered the closest approximation to our ground truth. 

This method aligns with the application of AE in anomaly detection. In the subsequent 

analysis, we aim to identify the ideal latent space dimension, optimizing it to minimize 

loss without compromising data integrity. 

In the AE's structure, ReLU activation functions are employed in encoder layers 

to introduce non-linearity and counter the vanishing gradient problem. Leaky Rectified 

Linear Unit (LeakyReLU) activation functions are used in decoder layers (except the last 

layer) to prevent neuron inactivity. The final layer of the AE utilizes the sigmoid 

activation function for reconstructing the original data. The model is optimized using the 

mean square error (MSE) loss function and the Adaptive Moment Estimation (Adam) 

optimizer. 

We have developed a deep autoencoder (AE) architecture, achieving optimal 

results by reducing the dimensionality to 4. The architecture comprises layers arranged 

as follows: (9-8-7-6-5-4-5-6-7-8-9), which satisfies the step-by-step reduction and 

subsequent expansion of dimensions within the AE network. 

Table 4.1, Table 4.2, Table 4.3 and Table 4.4 display the reconstruction losses for 

the tested data. The first column corresponds to the various training sets in each table, 

while the first row represents the respective test sets. Notably, the minimum loss occurs 
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when the autoencoder (AE) is tested with its corresponding true data, indicating an 

impressive accuracy in reconstructing the original samples. 

This analysis highlights the AE's ability to discern between different samples and 

individual measurements within the samples. For instance, in Table 4.1, the minimum 

loss for Bread M1 is 0.000079, while the loss increases incrementally from Bread M1 to 

Bread M4, reaching 0.121675. This observation underscores the AE's discriminative 

power in capturing subtle variations within the data. 

 

 

Table 4.1 Reconstruction Losses of Autoencoder for Bread Samples 

  

         Test Data                                                

Train Data
Bread M1 Bread M2 Bread M3 Bread M4

Bread M1 0,00008 0,01183 0,01771 0,12167
Bread M2 0,00756 0,00011 0,01436 0,05782
Bread M3 0,00561 0,00832 0,00005 0,02699
Bread M4 0,04692 0,04452 0,03020 0,00028

Vinegar M1 0,04408 0,01400 0,02305 0,01083
Vinegar M2 0,00517 0,08635 0,00729 0,03400
Vinegar M3 0,00442 0,00184 0,00677 0,01209
Vinegar M4 0,01132 0,01441 0,02244 0,03811

Beef M1 0,00586 0,02700 0,02030 0,15280
Beef M2 0,00374 0,01298 0,03448 0,30164
Beef M3 0,01133 0,01066 0,04598 0,22751
Beef M4 0,01653 0,03406 0,06296 0,27046

Chicken M1 0,00246 0,02980 0,03440 0,15738
Chicken M2 0,00923 0,01973 0,10838 0,33760
Chicken M3 0,00925 0,02520 0,02138 0,11644
Chicken M4 0,02442 0,03756 0,06231 0,19387

Minimum Loss
3 Decimal Loss
2 Decimal Loss
1 Decimal Loss
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Table 4.2  Reconstruction Losses of Autoencoder for Vinegar Samples 

 

Table 4.3  Reconstruction Losses of Autoencoder for Beef Samples 

         Test Data                                                

Train Data
Vinegar M1 Vinegar M2 Vinegar M3 Vinegar M4

Bread M1 0,06458 0,03491 0,03024 0,02876
Bread M2 0,02438 0,00608 0,01052 0,01350
Bread M3 0,03804 0,01277 0,01276 0,02367
Bread M4 0,00924 0,03159 0,03831 0,03385

Vinegar M1 0,00002 0,01042 0,01520 0,01693
Vinegar M2 0,00476 0,00300 0,00928 0,00508
Vinegar M3 0,00846 0,01142 0,00031 0,00779
Vinegar M4 0,01037 0,01872 0,00729 0,000031

Beef M1 0,09499 0,04252 0,04574 0,03109
Beef M2 0,07727 0,07408 0,04849 0,04883
Beef M3 0,07411 0,02285 0,02061 0,05238
Beef M4 0,15807 0,05083 0,06954 0,03459

Chicken M1 0,12856 0,03275 0,05873 0,03272
Chicken M2 0,13473 0,11366 0,06384 0,09866
Chicken M3 0,12373 0,04316 0,04243 0,04780
Chicken M4 0,11279 0,11639 0,05628 0,03222

Minimum Loss
3 Decimal Loss
2 Decimal Loss
1 Decimal Loss

         Test Data                                                

Train Data
Beef M1 Beef M2 Beef M3 Beef M4

Bread M1 0,00504 0,00308 0,00552 0,01024
Bread M2 0,01489 0,00438 0,00903 0,00737
Bread M3 0,00656 0,00525 0,00323 0,03342
Bread M4 0,04965 0,06754 0,08542 0,07457

Vinegar M1 0,03865 0,03315 0,03566 0,02883
Vinegar M2 0,01193 0,00436 0,02754 0,00397
Vinegar M3 0,00922 0,00616 0,00444 0,00240
Vinegar M4 0,01397 0,00895 0,02910 0,00293

Beef M1 0,00025 0,02884 0,01751 0,01606
Beef M2 0,01310 0,00010 0,00553 0,01431
Beef M3 0,00782 0,00358 0,000048 0,00659
Beef M4 0,02489 0,01969 0,01264 0,00059

Chicken M1 0,00476 0,00389 0,00348 0,01257
Chicken M2 0,02047 0,00108 0,00570 0,01285
Chicken M3 0,00793 0,01302 0,00650 0,02369
Chicken M4 0,03916 0,03223 0,02879 0,00612

Minimum Loss
3 Decimal Loss
2 Decimal Loss
1 Decimal Loss
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Table 4.4 Reconstruction Losses of Autoencoder for Chicken Samples 

Now, we extend our studies to combinations after finding the optimal structure 

and hyperparameter for the AE. Here, the AE is first trained on individual components 

and then tested on mixtures. We aim to assess the AE’s ability to capture the underlying 

patterns observed in single components when given a combination, especially when one 

or both components of the mixture are present.  

Table 4.5, Table 4.6, Table 4.7, and Table 4.8 show the reconstruction losses of 

the autoencoder (AE) trained on individual samples and tested on combinations. Overall, 

to some extent, the model can reconstruct samples within their relevant classes, but not 

precisely to the exact measurements. 

In Table 4.5, in the case that the AE is trained on Bread M1, it shows the minimum 

loss when tested on “Bread+Beef M1”. However, when tested on “Bread+Beef M2”, the 

minimum reconstruction loss still corresponds to the model trained on “Bread M1”. 

Notably, an incorrect minimum reconstruction loss occurs outside its relevant class for 

“Bread+Beef M3” when the AE is trained on “Chicken M3”. 

 

         Test Data                                                

Train Data
Chicken M1 Chicken M2 Chicken M3 Chicken M4

Bread M1 0,00856 0,00371 0,01784 0,01706
Bread M2 0,01393 0,00485 0,02448 0,01066
Bread M3 0,00556 0,05451 0,00522 0,02247
Bread M4 0,06448 0,09345 0,07425 0,07806

Vinegar M1 0,04106 0,08587 0,07964 0,03554
Vinegar M2 0,00796 0,00443 0,01661 0,02995
Vinegar M3 0,01714 0,03549 0,01445 0,00571
Vinegar M4 0,01264 0,00605 0,02930 0,02065

Beef M1 0,00394 0,03005 0,01961 0,03253
Beef M2 0,00751 0,00446 0,01574 0,02209
Beef M3 0,00791 0,00798 0,01033 0,01636
Beef M4 0,01661 0,01315 0,04170 0,01184

Chicken M1 0,00022 0,00354 0,01009 0,02981
Chicken M2 0,00468 0,00257 0,02140 0,02184
Chicken M3 0,00653 0,01489 0,00015 0,03380
Chicken M4 0,03382 0,02517 0,06969 0,00318

Minimum Loss
3 Decimal Loss
2 Decimal Loss
1 Decimal Loss



  20 

Noticeably, the Vinegar samples show substantially better results, as shown in 

Tables 4.7 and 4.8. The AE effectively identifies the underlying patterns of Vinegar 

samples, which enables the decomposition and discrimination of the signals in the 

mixture and even for each measurement. In this case, the vinegar showed to be the 

predominant odor. This finding suggests the significance of considering odor intensity 

and its masking effect in future studies concerning signal decomposition or odor 

approximation. 

 

 

Table 4.5 Reconstruction Losses of Autoencoder Trained on Individual Samples and Tested on 

Bread+Beef Combinations 

         Test Data                                                
Train Data

Bread+Beef M1 Bread+Beef M2 Bread+Beef M3 Bread+Beef M4

Bread M1 0,00065 0,00367 0,03579 0,03164
Bread M2 0,02061 0,01366 0,03978 0,03117
Bread M3 0,02169 0,02035 0,01116 0,01480
Bread M4 0,05299 0,04848 0,05519 0,03901
Vinegar M1 0,04793 0,04169 0,06154 0,03437
Vinegar M2 0,00971 0,00929 0,03204 0,01871
Vinegar M3 0,00962 0,00814 0,02365 0,01729
Vinegar M4 0,01796 0,01879 0,04084 0,02654
Beef M1 0,01136 0,00873 0,01546 0,01672
Beef M2 0,00580 0,00851 0,03806 0,03803
Beef M3 0,00507 0,00359 0,03229 0,02986
Beef M4 0,02396 0,01962 0,07091 0,00708
Chicken M1 0,00643 0,00513 0,01616 0,07460
Chicken M2 0,01530 0,00971 0,04625 0,04485
Chicken M3 0,00699 0,00378 0,00456 0,03981
Chicken M4 0,05710 0,04713 0,09150 0,11572

Minimum Loss
3 Decimal Loss
2 Decimal Loss
1 Decimal Loss
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Table 4.6 Reconstruction Losses of Autoencoder Trained on Individual Samples and Tested on 

Bread+Chicken Combination 

 

Table 4.7 Reconstruction Losses of Autoencoder Trained on Individual Samples and Tested on 

Vinegar+Beef Combinations 

         Test Data                                                

Train Data
Bread+Chicken M1 Bread+Chicken M2 Bread+Chicken M3 Bread+Chicken M4

Bread M1 0,04684 0,05437 0,02983 0,03094
Bread M2 0,00526 0,00936 0,07429 0,10931
Bread M3 0,00717 0,00636 0,02086 0,01294
Bread M4 0,01516 0,04008 0,60130 0,25693

Vinegar M1 0,03997 0,04147 0,05374 0,04883
Vinegar M2 0,00707 0,01212 0,02726 0,02940
Vinegar M3 0,00728 0,02603 0,02328 0,02584
Vinegar M4 0,01393 0,02354 0,05865 0,04149

Beef M1 0,01776 0,01409 0,05421 0,06736
Beef M2 0,00881 0,01199 0,18893 0,09931
Beef M3 0,00544 0,00561 0,08905 0,09679
Beef M4 0,01324 0,03066 0,14600 0,38314

Chicken M1 0,00335 0,00663 0,02047 0,04939
Chicken M2 0,00537 0,02820 0,09847 0,27093
Chicken M3 0,00771 0,00220 0,07147 0,07306

Minimum Loss
3 Decimal Loss
2 Decimal Loss
1 Decimal Loss

         Test Data                                                

Train Data
Vinegar+Beef M1 Vinegar+Beef M2 Vinegar+Beef M3 Vinegar+Beef M4

Bread M1 0,01165 0,01367 0,03579 0,03164
Bread M2 0,02061 0,01366 0,03978 0,03117
Bread M3 0,02169 0,02035 0,01116 0,01480
Bread M4 0,05299 0,04848 0,05519 0,03901
Vinegar M1 0,00079 0,04169 0,06154 0,03437
Vinegar M2 0,00971 0,00129 0,03204 0,01871
Vinegar M3 0,00962 0,00814 0,00237 0,01729
Vinegar M4 0,01796 0,01879 0,04084 0,00265
Beef M1 0,01136 0,00873 0,01546 0,01672
Beef M2 0,00580 0,00851 0,03806 0,03803
Beef M3 0,00507 0,00359 0,03229 0,02986
Beef M4 0,02396 0,01962 0,07091 0,00708
Chicken M1 0,00643 0,00513 0,01616 0,07460
Chicken M2 0,01530 0,00971 0,04625 0,04485
Chicken M3 0,00699 0,00378 0,00456 0,03981
Chicken M4 0,05710 0,04713 0,09150 0,11572

Minimum Loss
3 Decimal Loss
2 Decimal Loss
1 Decimal Loss
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Table 4.8 Reconstruction Losses of Autoencoder Trained on Individual Samples and Tested on 

Vinegar+Chicken Combinations 

 

4.2. Domain Adaptation Auto-encoder 

As our next step, to bring the capability to discriminate between each 

measurement, even in the case of mixtures, we introduced domain adaptation to the AE. 

Domain adaptation is a method to improve the model performance on a target domain 

when there is a lack of sufficient annotated data.   

AE network is primarily intended to reconstruct its input data. Nonetheless, the 

AE is trained to construct a different output when incorporating domain adaptation. In 

other words, it transforms the input and shifts it to another domain. We trained the AE on 

combination samples to construct the individual components in our experiments. That is 

the minimum prior knowledge about the source. In this case, we have a dedicated AE 

network for each data. For instance, we train AE on “Bread+Beef M1” to construct the 

“Bread M1” and another AE to construct ‘Beef M1”. Afterwards, the Euclidean distance 

between the transformed “Bread M1” and the ground truth “Bread M1” is calculated. The 

minimum Euclidean distance shows the closest transformation to the true values in a 

hyperplane.  

         Test Data                                                

Train Data
Vinegar+Chicken M1 Vinegar+Chicken M2 Vinegar+Chicken M3 Vinegar+Chicken M4

Bread M1 0,08636 0,15700 0,10232 0,11659
Bread M2 0,04186 0,06882 0,05123 0,06690
Bread M3 0,05017 0,02244 0,03878 0,04091
Bread M4 0,01188 0,09200 0,01352 0,02664

Vinegar M1 0,01130 0,01079 0,02174 0,03971
Vinegar M2 0,00813 0,00937 0,05258 0,05682
Vinegar M3 0,00347 0,00569 0,06828 0,03471
Vinegar M4 0,05621 0,02122 0,00194 0,02746

Beef M1 0,08950 0,10170 0,10999 0,09923
Beef M2 0,16221 0,11001 0,16127 0,19360
Beef M3 0,18484 0,19921 0,08079 0,21422
Beef M4 0,32128 0,22959 0,24024 0,38386

Chicken M1 0,15171 0,00733 0,01278 0,18160
Chicken M2 0,17484 0,19092 0,17984 0,20755
Chicken M3 0,11891 0,14178 0,15194 0,02278
Chicken M4 0,22692 0,19344 0,19888 0,23648

Minimum Loss
3 Decimal Loss
2 Decimal Loss
1 Decimal Loss



  23 

The structure and hyperparameters of the AE network are similar to that of in 

section 4.1. Nonetheless, this network requires extensive training iterations, and 

consequently, it increases the amount of time for training. In this experiment, we set the 

epochs equal to 10000. However, even more iteration delivers better results.   

The Euclidean distance between the transformed combinations and the ground 

truth for each data is illustrated in Table 4.9, Table 4.10, Table 4.11, and Table 4.12. The 

first rows show the transformations, that is, the data that the AE model was trained on, in 

which each one is a dedicated model. The first column represents the test data, the 

combination, which was tested to assess the model performance for transformation in 

each case. Lastly, the last rows represent the ground truth, the individual components. 

The objective is to test each combination on the dedicated models, finding the 

transformation and then calculating the Euclidean distance between the transformations 

and the ground truth.  

Table 4.9 displays the results for the “Bread+Beef” samples. We can observe that 

the minimum Euclidean distances correspond to each class and each measurement. There 

are a few erroneous results in Table 4.11 and Table 4.12. The red cell represents the 

erroneous result, and the yellow cells represent the true negatives. This error can be due 

to insufficient training iterations.  

Overall, the dedicated domain adaptation AE network can be a powerful method 

in decomposing one signal component of the mixture when minimum prior information 

regarding the source is available. Nonetheless, the model requires extensive training data 

and numerous iterations, which can be computationally expensive. Hence, we propose 

this method when the working data in actual use cases is limited, and there can be 

minimum prior information about the data.  
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Table 4.9 Euclidean Distances Between Transformed Combinations and Ground Truth in Domain 

Adaptation Autoencoder to Decompose Bread+Beef Signals 

 

Table 4.10 Euclidean Distances Between Transformed Combinations and Ground Truth in Domain 

Adaptation Autoencoder to Decompose Bread+Chicken Signals 

      Transformations                                                              
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Bread+Beef M1 0,0216 0,3484 0,2312 0,4941 0,0166 1,3377 0,3982 0,3214
Bread+Beef M2 0,2245 0,0153 0,2799 0,4665 0,1363 0,1282 0,3899 0,3190
Bread+Beef M2 0,2279 0,6785 0,0929 0,4910 0,1240 1,5387 0,0694 0,3238
Bread+Beef M2 0,2836 0,2545 0,4654 0,0213 0,1416 1,5127 0,4789 0,0286
Bread+Chicken M1 0,4125 0,2972 0,3664 0,4686 0,1539 0,8619 0,4074 0,3180
Bread+Chicken M2 0,8196 0,9079 0,3682 0,4620 0,1498 1,1626 0,4067 0,3209
Bread+Chicken M3 0,3246 0,2324 0,5522 1,0092 0,1338 1,5299 0,4226 0,3272
Bread+Chicken M4 0,2699 0,2300 0,3987 0,9223 0,1397 1,5212 0,6816 0,3286
Vinegar+Beef M1 0,5905 0,2186 0,8162 7,4563 0,1723 1,5138 0,3596 0,3286
Vinegar+Beef M2 0,3949 0,2511 0,4137 6,7361 0,1619 1,5188 0,5284 0,3286
Vinegar+Beef M3 0,4114 0,2375 0,7070 4,9963 0,1528 1,5225 0,4214 0,3285
Vinegar+Beef M4 0,2993 0,2443 0,4507 2,3318 0,1509 1,5172 0,6663 0,3286
Vinegar+Chicken M1 0,5410 0,2286 0,8139 6,1857 0,1673 1,5168 0,3642 0,3285
Vinegar+Chicken M2 0,5934 0,3098 0,5387 8,4704 0,1798 1,5076 0,4178 0,3286
Vinegar+Chicken M3 0,5413 0,2508 0,7671 7,2111 0,1636 1,5132 0,4139 0,3286
Vinegar+Chicken M4 0,3104 0,2440 0,4551 3,1958 0,1553 1,5191 0,5595 0,3286
Ground Truth                Bread M1 Bread M2 Bread M3 Bread M4 Beef M1 Beef M2 Beef M3 Beef M4

      Transformations                                                              
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Bread+Beef M1 0,0995 0,1050 0,2327 0,3955 0,06985 0,31512 0,27307 1,52580
Bread+Beef M2 0,2175 0,2330 0,3333 0,3955 0,12446 0,42455 0,36918 1,57847
Bread+Beef M2 0,0673 0,2463 0,2741 0,3956 0,07013 0,34009 0,29931 1,00245
Bread+Beef M2 0,5379 1,2334 0,2294 0,3956 0,35756 0,29203 0,25326 0,80650
Bread+Chicken M1 0,0369 0,0915 0,2254 0,3954 0,05559 0,33844 0,28515 1,52852
Bread+Chicken M2 0,0605 0,0642 0,3061 0,3953 0,05960 0,23201 0,28993 1,50642
Bread+Chicken M3 0,1165 0,8220 0,0348 0,3956 0,23733 0,28315 0,25068 1,51321
Bread+Chicken M4 0,2161 0,9168 0,2931 0,3856 0,18601 0,31336 0,26632 0,75059
Vinegar+Beef M1 0,3445 1,2334 0,4487 0,3949 0,30216 0,31999 0,46460 1,54328
Vinegar+Beef M2 0,2237 1,2329 0,6215 0,3955 0,34665 0,31924 0,39591 1,55458
Vinegar+Beef M3 0,0738 0,9841 0,4066 0,3952 0,39725 0,27098 0,28488 1,55092
Vinegar+Beef M4 0,1909 1,0107 0,3576 0,3956 0,27327 0,30524 0,27343 1,54170
Vinegar+Chicken M1 0,2557 1,2197 0,3796 0,3950 0,31547 0,30157 0,39924 1,53722
Vinegar+Chicken M2 0,4494 1,2334 0,6630 0,3953 0,25788 0,41454 0,56485 1,54368
Vinegar+Chicken M3 0,2894 1,0140 0,5001 0,3949 0,34418 0,30063 0,41087 1,54621
Vinegar+Chicken M4 0,1321 1,0129 0,4076 0,3956 0,32736 0,30214 0,28555 1,01397
Ground Truth                Bread M1 Bread M2 Bread M3 Bread M4 Chicken M1 Chicken M2 Chicken M3 Chicken M4
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Table 4.11 Euclidean Distances Between Transformed Combinations and Ground Truth in Domain 

Adaptation Autoencoder to Decompose Vinegar+Beef Signals

 

Table 4.12 Euclidean Distances Between Transformed Combinations and Ground Truth in Domain 

Adaptation Autoencoder to Decompose Vinegar+Chicken Signals 

      Transformations                                                              
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Bread+Beef M1 0,19513 1,11316 0,54652 1,05294 0,44022 1,97496 0,56482 1,08484
Bread+Beef M2 0,21145 0,65247 0,58710 1,04936 0,37725 1,94955 0,55319 1,08571
Bread+Beef M2 0,20306 0,37974 0,57033 1,05294 0,43842 1,87987 0,58921 1,08520
Bread+Beef M2 1,28471 2,77205 0,31688 0,31991 0,44740 0,99507 0,71260 0,61096
Bread+Chicken M1 0,19625 1,09765 0,59652 1,05294 0,44016 1,99233 0,57045 1,08439
Bread+Chicken M2 0,19700 0,73876 0,55854 1,05294 0,43374 1,99338 0,57575 1,08493
Bread+Chicken M3 0,60363 0,99186 0,31208 0,91119 0,43617 1,78644 0,52963 1,03829
Bread+Chicken M4 0,61227 0,87226 0,46954 0,96925 0,44402 1,01426 0,74198 0,96774
Vinegar+Beef M1 0,10664 1,56711 0,75542 0,41289 0,37503 1,71831 0,59283 1,17161
Vinegar+Beef M2 0,20083 0,10799 0,49643 0,43596 0,33973 1,06161 0,72204 1,07932
Vinegar+Beef M3 0,45961 1,54539 0,24599 0,35068 0,37367 1,66363 0,50777 0,69073
Vinegar+Beef M4 0,55893 0,88928 0,37659 0,11503 0,44027 0,99796 0,75631 0,59395
Vinegar+Chicken M1 0,34481 1,70530 0,64304 0,37862 0,38243 1,78326 0,56278 0,89574
Vinegar+Chicken M2 0,20550 0,77988 0,78694 0,50114 0,33903 1,18185 0,77440 1,33688
Vinegar+Chicken M3 0,19996 1,65530 0,61758 0,38936 0,35834 0,66158 0,60947 1,04312
Vinegar+Chicken M4 0,41919 0,53586 0,33176 0,26964 0,40152 0,99544 0,70988 0,61647
Ground Truth                Vinegar M1 Vinegar M2 Vinegar M3 Vinegar M4 Beef M1   Beef M2   Beef M3   Beef M4   
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Bread+Beef M1 0,21876 0,35729 0,44918 0,44134 0,79351 1,3896879 1,0116134 1,73358
Bread+Beef M2 0,22793 0,44628 0,55250 0,44134 0,82286 1,4346398 1,0621668 1,72549
Bread+Beef M2 0,22313 0,33438 0,53082 0,44134 0,78384 1,4698303 1,0569532 1,73127
Bread+Beef M2 0,28508 0,32295 0,82009 0,44123 0,63984 1,406739 1,0179622 1,85079
Bread+Chicken M1 0,22031 0,37096 0,46219 0,44134 0,83217 1,4233857 1,0335962 1,73517
Bread+Chicken M2 0,21881 0,36062 0,46228 0,44134 0,81954 1,425655 1,0286 1,73540
Bread+Chicken M3 0,20388 0,35446 0,38397 0,44126 0,63943 1,2492756 0,90524876 1,80239
Bread+Chicken M4 0,22589 0,34048 0,61042 0,44134 0,65650 1,4004908 1,0483528 1,73855
Vinegar+Beef M1 0,20350 0,34732 0,72272 0,44135 0,59912 1,093862 0,47397718 0,65079
Vinegar+Beef M2 0,21969 0,34194 0,35145 0,44122 0,58644 1,0388199 0,7191755 0,56619
Vinegar+Beef M3 0,21824 0,33407 0,33517 0,44134 0,63469 1,0198741 0,62725836 0,57408
Vinegar+Beef M4 0,22240 0,33378 0,55189 0,44137 0,60429 1,3346658 0,9969678 1,49560
Vinegar+Chicken M1 0,19587 0,35458 0,34762 0,44134 0,52195 1,051916 0,48437968 0,49263
Vinegar+Chicken M2 0,22077 0,25274 0,46857 0,44115 0,63305 1,00011 0,6107281 0,75324
Vinegar+Chicken M3 0,20668 0,35080 0,26788 0,44134 0,61955 1,0086931 0,31055294 0,44880
Vinegar+Chicken M4 0,22129 0,33377 0,49939 0,34134 0,58484 1,2686245 0,9311339 1,11428
Ground Truth                Vinegar M1 Vinegar M2 Vinegar M3 Vinegar M4 Chicken M1 Chicken M2 Chicken M3 Chicken M4
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5. Conclusion  

The Electronic nose (E-nose) device, blended with computer algorithms, is a 

powerful tool for accurately detecting odors or Volatile Organic Compounds (VOCs). It 

has a wide range of applications, and it is becoming more and more utilized. Even though 

it can detect and discriminate odors, a few studies have been conducted to approximate 

the odors in a mixture. In other words, approximating an odor in the mixture means 

separating/decomposing the signal generated by the E-nose device from a mixture of 

odors. That is called source/signal separation.  

This study employed an Auto-encoder (AE) network to reduce dimensionality and 

reconstruct the data from the latent space. The latent space had a dimension of 4. Then, 

we calculated the reconstruction losses, i.e., Mean Squared Error (MSE). In these cases, 

these models are trained on individual components and tested on the individual 

components. The AE showed an outstanding result in detecting and discriminating 

different items and even discriminating between each measurement of the items. These 

results suggest a practical application in food quality control. However, it is essential to 

note that the detailed exploration of this practical application falls outside the scope of 

this research. 

The optimal structure of the AE network from the individual component analysis 

is then incorporated to approximate the odors in a mixture. We trained the AE models on 

individual components, tested them on combination samples, and found the 

reconstruction loss. Ideally, the minimum reconstruction loss should represent the 

closeness of the data. The model's performance is not as good as AE's for detecting and 

discriminating the items. To some extent, this model could reconstruct most of the data 

within the same class. However, it was not able to discriminate between each 

measurement. The result of this experiment also brought the effect of odor 

intensity/strength. Some items have a more pungent odor, which may mask the other 

items in the mixture.  Our model showed promising capability of approximating the 

predominant odors in a mixture (i.e., Vinegar samples in our study). 

We conclude that AE network models can potentially approximate the odor 

classes in the mixture without prior knowledge of the source to some extent but not its 

corresponding measurement date, showing that this model cannot be utilized for odor 
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approximation and quality control in the case of food samples. However, its capability to 

approximate the predominant odor is effectual. 

 As a more advanced approach, we equipped the AE network with a domain 

adaptation technique to approximate the class odor in a mixture and its corresponding 

measurement occasion. We trained the AE on the combinations to construct its 

subcomponents. We have dedicated AE models for each sample to transform the data. 

This method calculates the Euclidean distance between the transformed data by AE and 

the ground truth (i.e., the individual components). The minimum Euclidean distance 

shows how close the transformed data to the ground truth is. This model showed 

promising results in approximating and decomposing the odor classes in the mixture and 

the measurement occasion. 

Nevertheless, dedicated domain adaptation AE models require some prior 

information regarding the source, extensive training data, and intensive computational 

resources. However, it can be practically applied when working data in actual use cases 

is limited.  

This study can be continued to make the domain adaptation AE independent from 

having prior knowledge. Eliminating the decoder part of the AE and incorporating the 

one-shot learning concept may potentially bring independence, allowing blind source 

separation. Having this level of autonomy in separating odors in a mixture has significant 

effects, and the ability to perform blind source separation could significantly impact fields 

such as food safety, which allows the precise detection of contaminants, resulting in an 

improvement of the overall quality of the food. 
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