---”IIIIIIIIIII;;;:...:!!! Oioio
MUEGYETEM 1782

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Networked Systems and Services

Clustering [oT Malware Samples based on Binary

Similarity

Scientific Students’ Association Report

Authors:

Marton Laszlo Bak

Csongor Tamas

Advisors:

Dorottya Futoné Papp
Levente Buttyan, habil. PhD

2019

Contents

Kivonat
Abstract
1 Introduction

2 Background

2.1 Industry Approach to Malware Analysis
2.2 Program Similarity L Lo
2.3 Clustering

3 Methodology

4 Data Collection
4.1 Malware Families in Scope
4.2 VirusTotal Searches
4.3 COorpus o

5 Filtering Our Corpus
5.1 Binary Entropy-based Filtering
5.2 YARA-rules

5.3 Filtered Corpus L

ii

11

11

12

12

14

6 Clustering
6.1 TLSH threshold selection
6.2 K-Medoid
6.3 OPTICS e

7 New Clustering Algorithm
7.1 Clustering Lessons Learned
7.2 New Clustering Approach
7.3 Evaluation

8 Conclusion

Acknowledgements

Bibliography

17

17

21

23

25

25

26

28

33

35

35

Kivonat

A dolgok internete (Internet of Things, IoT) a bedgyazott rendszereket 6sszek6td, gyorsan
fejlédé technoldgia, ami az elkdvetkezO években hozzavetSlegesen tobb millidrd eszkozt
fog fel6lelni. Erre valaszul a tdmadok 4j rosszindulati programcsalddokat fejlesztettek ki,
amelyek kifejezetten IoT eszkozoket tdmadnak, mint példaul a Mirai botnet, az Amnesia
rootkit, és mas egyéb csaladok. Az 1j rosszindulatd programmintdk hatékony elemzése
érdekében fontos, hogy a viruskeres6 cégek képesek legyenek pontosan besorolni 6ket ismert
csalddokba. A TrendMicro <al a kézelmultban javasolt, TLSH néven ismert hasonlésagi
lenyomat-készité eljarasrol megmutattak, hogy feliillmiilja a tobbi megkozelitést ugyanazon
rosszindulatti programcsalad varidnsainak detektaldsdban.

A dolgozatban azt vizsgédljuk, hogy hogyan lehet a TLSH hasonlésagi értékeket
felhasznalni rosszindulati programmintak csoportositasara, illetve hogy a meglévd
klaszterezési algoritmusok képesek-e helyesen osztalyozni a hasonlé mintakat. A
kutatas soran 12993 mintat gyijtottiink a VirusTotalrdl, melyek mindegyike 29 IoT
specifikus rosszindulatt programcsaladbdl valé. Az adathalmazt két, széleskorben elterjedt
algoritmussal klasztereztiik: a Partitioning Around Medoids (PAM) csoportba tartozé k-
Medoid algoritmussal, illetve a stirliség-alapi OPTICS algoritmussal. Megallapitottuk,
hogy a tesztelt klaszterezési algoritmusok feltételezései nem &allnak fenn rosszindulati
programcsaladok varidnsainak azonositdsakor, és a kiszamitott klaszterek nem tiikrozik
pontosan az adathalmazunk szerkezetét. A kutatdsunk konklizidja, hogy a meglévd
klaszterezési algoritmusok nem felelnek meg a gyakorlatban valészintleg fellelhetd

rosszindulattd programokbdl all6 mintahalmazok klaszterezésére.

ii

Abstract

The Internet of Things (IoT) is a rapidly growing technology of interconnected embedded
devices, estimated to encompass billions of them in the upcoming years. In response,
attackers have been developing new malware families specifically targeting IoT devices,
such as the Mirai botnet, the Amnesia rootkit and others. In order to efficiently analyze
new malware samples, it is important for antivirus companies to accurately classify them
as members of known families. To this end, the industry employs a number of techniques
including similarity digests, e.g. ssdeep and sdhash. A recently proposed similarity digest
by TrendMicro, called TLSH, has been shown to outperform other approaches in the

context of detecting variants of the same malware family.

In this paper, we study how TLSH similarity scores can be used for clustering malware
samples and whether existing clustering algorithms can correctly classify similar samples.
We collected 12993 samples for our study from VirusTotal, each of which is associated with
one of 29 IoT specific malware families. We cluster the dataset using two widespread al-
gorithms: the Partitioning Around Medoids (PAM) algorithm k-Medoid, and the density-
based algorithm OPTICS. We find that the assumptions of the tested clustering algorithms
do not hold in the context of identifying variants of existing malware families, and the
calculated clusters do not accurately reflect the underlying structure of our sample set.
We conclude that existing clustering algorithms are not appropriate for clustering malware

sample sets likely to be encountered in practice.

Chapter 1

Introduction

The concept of malicious software — or malware, as it is called in the computer security
community — is almost as old as computers themselves. The theory of self-reproducing
automata was originally proposed by Janos Neumann himself back in the 1960’s, and his
theory was put in practice just a few years later in 1971 by Bob Thomas, who devel-
oped Creeper, the first self-replicating computer program!. Creeper ran on DEC PDP-10
machines and moved between machines using the ARPANET, the precursor of today’s
Internet. Creeper did not do any harm, it was developed for experimental purposes only.
However, malware created in later years, such as viruses and worms, used similar self-
replication and propagation from one machine to another, and besides that, they often
carried out malicious activities as well. Interestingly, with Creeper, the first anti-virus
program, Reaper, was also born: it was developed to search out for copies of Creeper and

destroy them.

After writing malware essentially for fun in early years, malware development became a
profitable business for miscreants at the end of the last century with the growing number of
personal computers and the proliferation of Internet connectivity and Web based services.
Later, at the beginning of the millennium, smart phones appeared, and attackers started
developing malware for mobile devices too. And today, we are witnessing a new trend: all
sorts of embedded devices, including home entertainment systems, industry equipment,
vehicles, transport infrastructure devices, and medical equipment are being connected to
the Internet, which is rapidly transforming into an Internet of Things, or IoT for short. Not
surprisingly, malware development followed the new trend, and malware is now developed

for embedded IoT devices as well.

A significant problem is that the number of IoT devices is already large and grows ex-

ponentially, which means that connected IoT devices can be converted into a substantial

"https://en.wikipedia.org/wiki/Creeper_(program) (visited: 25 Oct 2019)

https://en.wikipedia.org/wiki/Creeper_(program)

attack infrastructure by infecting them with malware and organizing the infected devices
into botnets. Actually, such botnets have already appeared in the wild. An infamous
example is the Mirai botnet, and the importance of the problem is illustrated by the fact
that it holds the record for the most intensive DDoS attack in history ever [3]. Of course,
malware infected IoT devices can be used not only for building botnets, but also for all

sorts of other misdeeds, such as click fraud and bitcoin mining.

On the defense side, some companies, such as Symantec, Kaspersky, and McAfee, de-
velop and sell anti-virus programs, which detect known malware samples based on their
characteristic byte patterns (called signatures) or other heuristics. To avoid detection
by anti-virus programs, modern malware uses polymorphism and metamorphism, which
means that self-replication is combined with mutation that results in new samples that
are functionally equivalent but their binary code is different. If done well, then the new
variants escape detection by the anti-virus programs. Also, malware developers can add
new features to their creatures, resulting in new variants that are still somewhat similar to
the previous version of the malware. So anti-virus companies must constantly keep track
of the appearance of new malware variants and update their signature databases. As tens
of thousands of new malware variants may appear every day, sample analysis, extraction

of signatures, and update of the signature database require a huge effort.

Anti-virus companies often rely on malware classification methods to identify relating
samples. Classifying malware into malware families makes sense, as members of the same
family, while being different at the binary level, exhibit similar behavior. So if the analysts
of the anti-virus company have already analyzed samples of a given family, then a new
variant from the same family may not need to be analyzed, because its behavior can be
assumed to be known already. This greatly reduces the load on the analysts and they can
focus on samples that are not similar to any known sample, hence, they probably have

completely new features.

In this document, we address the problem of clustering malware samples based on their
binary similarity. Such clustering can be used to identify groups of samples that are
related, and hence, probably belong to the same malware family. The data set we used
to demonstrate our results is restricted to malware samples developed for embedded IoT
devices. We decided to focus on IoT malware due to the importance of this new trend.

We note, however, that our clustering method is applicable to other types of malware too.

We obtained around 12 000 samples from Virus Total? that belong to 9 IoT specific mal-
ware families according to their labels produced by different anti-virus tools. After some
cleaning (e.g., filtering out packed and encrypted samples), our corpus shrank to around
9 000 samples. We studied the performance of two clustering algorithms, k-medoid and

OPTICS, on this data set in terms of resulting cluster sizes, cluster diameters, and the

“https://www.virustotal.com/ (visited: 25 Oct 2019)

https://www.virustotal.com/

distribution of anti-virus labels assigned to samples in each cluster. Both clustering al-
gorithms rely on the ability to measure distances between data points to be clustered.
In our case, data points are malware samples, and their distances are measured with the
TLSH similarity metric3, where TLSH is a fuzzy hash algorithm developed by Trend Micro
[11]. We found that neither of the two clustering algorithms has acceptable performance:
k-medoid produced clusters with unacceptably large diameter, meaning that it put unre-
lated samples into the same cluster, whereas OPTICS failed to cluster more than half of
the samples in our data set. So we developed a new clustering algorithm, which is based
on OPTICS, and achieves a performance superior to both k-medoid and OPTICS.

Our main contributions are summarized as follows:

e We propose to cluster malware samples based on the TLSH similarity measure.

e We determine by empirical means the TLSH similarity threshold under which sam-

ples can be considered variants of the same malware.

e« We study two distance-based clustering algorithms, k-medoid and OPTICS, and
evaluate their clustering performance on a large corpus of IoT malware samples.
Our results show that neither of them achieves acceptable performance, and hence,

cannot be used for clustering malware samples.

e We propose a new clustering algorithm that outperforms both k-medoid and OP-

TICS, and which is suitable for malware clustering.

The organization of the document is as follows: In Section 2, we provide some background
on malware analysis practices, program similarity measures, and clustering. In Section 3,
we give an overview on our research methodology, parts of which are expanded in later
sections. In particular, Section 4 describes the way we collected the samples and obtained
our initial corpus, and Section 5 explains how this initial corpus was cleaned to obtain
the corpus we finally used in our evaluation. In Section 6, we introduce the k-medoid
and the OPTICS clustering algorithms and evaluate their performance on our corpus of
samples. This section also describes how the TLSH similarity threshold is selected. We
describe our own clustering algorithm, evaluate its performance, and compare it to that
of k-medoid and OPTICS in Section 7. Finally, we conclude our report and sketch some

possible future work in Section 8.

3We note that the TLSH similarity metric is not really a distance measure in the mathematical sense.

Chapter 2

Background

2.1 Industry Approach to Malware Analysis

In response to polymorphism and metamorphism employed by modern malware, anti-virus

123 i1 order to detect malware.

companies have began to utilize multi-layered approaches
The layers include techniques for metadata-analysis, static analysis, dynamic analysis and
machine learning. In order to achieve better protection, companies also deploy network-

based techniques, however, these are out of scope for this report.

Metadata-analysis consists of checking a file’s reputation, the origin point of download
and additional threat analysis reports based on often global threat intelligence networks.
Metadata-analysis allows early detection of malware. It often results in blacklists: files on

the blacklist are automatically neutralized from analyzed systems.

During static analysis, the instructions and bytes of the analyzed sample are analyzed.
Because the sample is not executed, such approaches typically scale better and can provide
a quick first glance at the sample. A number of techniques can be used as static analysis,
including signature detection, heuristics and program similarity. Our study is concerned
with the applicability of a specific program similarity technique called TLSH. Thus, we

provide more details on program similarity in Section 2.2.

Dynamic analysis of samples requires their execution, which is usually done either by emu-
lation or in a sandbox environment. Such techniques allow companies to perform behavior
monitoring and extract precise information about execution. This includes logging which

files were modified by the sample, which system calls and in what order were invoked, etc.

"https://www. kaspersky.com/enterprise-security/wiki-section/home (visited: 25 Oct 2019)
Zhttps://www.eset.com/int/about/technology/ (visited: 25 Oct 2019)
*https://www.symantec.com/products/atp-content-malware-analysis (visited: 25 Oct 2019)

https://www.kaspersky.com/enterprise-security/wiki-section/home
https://www.eset.com/int/about/technology/
https://www.symantec.com/products/atp-content-malware-analysis

Extracted information from both static and dynamic analyses can be used as features for
machine learning. Using machine learning, companies aim to extract models of malicious
behavior based on large data sets of benign and malicious samples. The expected benefit
of machine learning in the future is a generalized model of malware which is capable of
detecting previously unseen malicious samples. Another benefit of learning algorithms is
the ability to classify the large number of samples anti-virus companies need to handle
daily. In this report, we study the applicability of two clustering algorithms, k-medoid
and OPTICS, whose details are presented in Section 2.3.

The classification of previously encountered samples all collected in so called malware
families. Families are constructed such that members of the same family share common
features, e.g. exploit techniques, communication patterns and protocols, malicious activi-
ties and required technology on the victim’s machine. Malware families tend to specialize
for specific use-cases and technologies, some of them targeting the IoT ecosystem specifi-

cally. Such families include trojan horses, backdoors and remotely controlled botnets.

Accurately categorizing samples into families is challenging. Implementations of separate
families may share code segments, e.g. after Mirai’s source code was leaked?, it was reused
in other families such as Hide N’ Seek®. Families also slightly change their features as new
versions are released. The different versions are often referred to as variants. For example,

Mirai has several improved versions of its code, including Satori, Okiru and Masuta [7].

2.2 Program Similarity

The goal of program similarity is to compare programs and find similar instances. There
are several approaches to this problem, including locality sensitive hashes and similarity
digests. Locality sensitive hashing (LSH) algorithms, including context triggered piece-
wise hashing algorithms, have the property that a small change to the file being hashed
results in a small change to the hash [11]. As a result, comparing hash values reveal
similar files. ssdeep is a context triggered piece-wise hashing algorithm (CTPH), which
is the de facto approach in industry, used by companies such as VirusTotal, VirusShare
and Malwr. It generates string hashes roughly up to 100 bytes that are concatenations
of 6-bit piece-wise hashes. The hash value then can be compared with other hashes to
measure how many character operations are necessary to transform one string into the
other. Because of the bounded-size hash it produces, it quickly loses granularity and only

works for relatively small files of similar sizes.

‘https://securityaffairs.co/wordpress/51868/cyber-crime/mirai-botnet-source-code.html
(visited: 25 Oct 2019)
"https://www.fortinet.com/blog/threat-research/searching-for-the-reuse-of-mirai-code--hide--n-seek-bof
html (visited: 25 Oct 2019)

https://securityaffairs.co/wordpress/51868/cyber-crime/mirai-botnet-source-code.html
https://www.fortinet.com/blog/threat-research/searching-for-the-reuse-of-mirai-code--hide--n-seek-bot.html
https://www.fortinet.com/blog/threat-research/searching-for-the-reuse-of-mirai-code--hide--n-seek-bot.html

Similarity digests attempt to solve the nearest neighbor problem using a digest that is
superficially similar to a cryptographic hash. sdhash [14], another popular similarity
digest tool, is slower then ssdeep, however, it overcomes its main limitation of being
sensitive to byte ordering. However, the scoring method used by sdhash results in the
undesirable property that similarities are not transitive. The authors treat any score in
the range of [21,100] as "strong" in terms of correlation, which does not provide enough
flexibility [13].

TLSH [10] stands for Trend Micro Locality Sensitive Hash, bearing the name of the devel-
oping company. Since its release in 2013 it hasn’t received much attention, probably due
to its static approach which is considered ineffective in malware classification. However,
recent research [12, 17] and have showed that TLSH is not only more precise than previous

methods, including ssdeep and sdhash, it is also applicable for malware classification.

The TLSH digest of an input byte string, e.g. malware sample, is calculated in the

following four steps.

1. The byte string is processed in a 5-byte-long sliding window and counters associated

with byte triplets are incremented as the triplets are encountered in the input.

2. Based on the value of counters, quartile points are calculated such that counter

values are separated into four equal regions.

3. The 3-byte-long digest header is constructed. The first byte is a checksum of the
byte string. The second byte represents the logarithmic length of the byte string
(modulo 256). The third byte is derived from the quartile points.

4. The remainder of the digest is computed based on the counter values.

The result is a 70-byte-long digest. The algorithm uses the sliding window in order to
capture the correlation between neighboring instructions. Such neighboring instructions
designate the program’s functionality. In order to calculate similarity between files, TLSH
differences have to be computed. TLSH differences are in the range of [0, ~ 1100], with 0

indicating identical files.

TLSH works well as long as the input binary is not packed. Packed executables contain
only a small portion of executable code, most of the files’ contents are filled with high
entropy data. These highly dissimilar portions decrease the accuracy of TLSH, resulting

in large differences even for files with the same origin.

2.3 Clustering

Clustering is a machine learning problem with the goal of grouping observations together
such that members of a group are similar to each other, while also being different from
members of other groups. Such algorithms can be both supervised and unsupervised. In
this document, our goal is to cluster malware samples based on their TLSH differences
such that clusters represent variants of malware families. In this scenario, we can measure
similarity but we have no information about the number and nature of variants, i.e. we do
not know the correct labeling of the input data points. As a result, we use unsupervised
learning which does not require labeling of samples before analysis. We evaluate the

performance of two widely-used algorithms: k-medoid and OPTICS.

K-medoid [6] is a PAM-based algorithm in which clusters can have only valid data points
as their centers (also called medoids). The algorithm has one input parameter, k, which
determines how many clusters will be present in the output of the algorithm. The algo-
rithm first selects k medoids, then it tries to fit all data points to the nearest cluster head.
Medoid selection and re-clustering is repeated iteratively until an optimum is reached.
The measure of goodness for the algorithm is s(k). It is calculated for every data points,
denoted s(i), measuring the gain in assigning the data point to a specific cluster based
on distance. In order to compute s(k), individual s(i) values are summed up. Singleton
clusters (clusters with only one data point) are punished by reducing their s(i) value to

0. In order to find the optimal clustering setup, s(k) has to be maximized.

OPTICS [2] is a density-based algorithm capable of identifying dense and sparse regions
in the input data set. It can also cluster data points using the the extracted structural
information. It takes two parameters, €,,4, and minPts. € describes the radius of an area
which contains at least minPts number of samples. The algorithm dynamically calculates
¢ values for data points such that data points have at least minPts — 1 samples in their €
radius. This output is referred at as the reachability distribution. If no initial €,,,, value
is set, the algorithm uses oo as its upper bound. OPTICS also have a built-in clustering
algorithm, &, which clusters data points by detecting abrupt changes in the reachability

distribution.

Chapter 3

Methodology

The high-level overview of the methodology we followed during this research is shown in

Figure 3.1. The methodology can be divided into three main steps:

1. data collection, which results in a data set of IoT malware samples,
2. filtering, which removes packed and/or encrypted samples from the data set, and

3. clustering, which identifies variants in the data set by grouping malware samples

based on their pair-wise TLSH differences.

In order to acquire a data set of IoT malware samples, we first need to select a specific
IoT platform which the data set should target. This is a required step as the different
instruction sets could cause TLSH to measure big differences between variants compiled for
different platforms. For this study, we selected samples targeting the ARM platform, since
it is widespread use in the IoT world. Secondly, we compile a list of malware family names
based on previous studies of the IoT malware landscape [5, 4, 18]. We use the compiled list
to search for and download malware samples from VirusTotal!, a publicly available site to
which users can upload executables and submit URLs. The site scans uploaded executables
with a number of anti-virus tools and returns to the user the collected results, including
the malware family names under which tools detected the executable. In addition, the
site can perform more in-depth analysis of samples, e.g. extracting information from the
files’ headers. For a subscription fee, users can also download samples from VirusTotal’s
database. We download not only relevant samples but the corresponding anti-virus scan
results as well. The scan results are fed to AVClass [16], which outputs the most likely
malware family name. Throughout our study, we use AVClass’s output as the ground

truth for all samples.

"https://www.virustotal.com (visited: 25 Oct 2019)

https://www.virustotal.com

\ List of
malware —> VirusTotal

families

Filtering packed/encrypted sample

A
™ Entropy
i YARA rules
calculation
N ‘
\ Non-packed / non-encrypted
\ Clustering]
\ (TLSH diff) Clusters
\\\\\\\\\\ - ~ ~al _: CI uster
N — |statistics
A
AVClass o= Most likely _
— | malware family

Figure 3.1: Overview of Methodology

The second step in our methodology is to filter the downloaded samples. The step is
required because calculating TLSH differences is a static analysis technique and as such,
it cannot efficiently work with packed and/or encrypted samples. We use two approaches
for filtering our data set. Firstly, we use binary entropy calculation [8], which calculates
the empirical entropy of a file based on the contained bytes. There exist best practices
telling which calculated entropy values signal packed executables. Secondly, we use YARA
rules?, a technique commonly employed in malware research. YARA rules allow human
analysts to describe various strings and sequences of bytes in the binary, whose presence
signal the fulfillment of a semantic criterion. For example, YARA-rules can be written to
detect whether an executable was packed with a specific packer as certain packers leave

traces in the binary, e.g. their names.

The final step in methodology is clustering. Our goal is to group samples based on their
TLSH difference, thereby detecting variants of malware families. Initially, we cluster the
data set with two widespread algorithms, k-medoid and OPTICS. However, the resulting
clusters prove to be difficult to interpret which can be attributed to a mismatch between
the algorithms’ assumptions and our setting. As a result, we develop a new clustering

algorithm, which we describe in Chapter 7.

*nttps://yara.readthedocs.io/en/latest/ (visited: 25 Oct 2019)

10

https://yara.readthedocs.io/en/latest/

Chapter 4

Data Collection

As discussed in Chapter 3, the first step of our methodology is data collection. Our goal
is to acquire a data set consisting of malware samples from IoT-specific malware families.
To this end, we first reviewed existing literature [5, 4, 18] for relevant malware family
names and compiled a list of 29 names. Afterwards, we queried VirusTotal in order to
find and download malware samples as well as their anti-virus scan results. By the end of

this phase, our corpus consisted of 12993 samples.

4.1 Malware Families in Scope

We compiled a list of 29 malware family names based on existing literature [5, 4, 18], which
is shown in Table 4.1. These malware families specifically target the IoT ecosystem. Many
of them implement the ability to infect other machines and connect them to an existing
botnet. The botnet is remotely administrated by the attacker via various channels, e.g.

IRC or HTTP-based communication. Samples from these families take various commands

hydra psybot chucknorris

dofloo (spike, mrblack) gafgyt (bashlite, lizkebab) | elknot (billgates)

themoon pnscan persirai

remaiten (ktnrm, routrem) | newaidra (irctelnet) mirai (satori, okiru, ma-
suta, puremasuta)

ballpit (lizardstresser) ddostf chinaz

aidra (lightaidra, zendran) | muhstik mayday

darrloz (zollard) luabot jenx (jennifer)

znaich bossabot amnesia

ZOTTO ddoser tsunami (kaiten)

xorddos (xarcen) xorddos (xarcen)

Table 4.1: List of In Scope Malware Families

11

from the attacker via a command & control server, for example, the kind of attack to carry
out (denial of service attacks, remote code execution, etc.), configuration options related
to attacks and other management options. As we discussed previously, families also share

similar traits as they are known to copy features from each other.

4.2 VirusTotal Searches

In order to acquire samples belonging to any of the previously listed 29 malware families,
we queried VirusTotal through its API service. The APT allows developers and researches
to automate the search and download process of required samples. VirusTotal provides
two kinds of API, a private and a public one. While many of their endpoints and features
are freely available to registered users, some of them are restricted to premium customers
only!. The public API allows users to download anti-virus scan results of specific samples.
The private API, on the other hand, provides additional features. Users can query samples
based on various search criteria, e.g. source metadata, and it allows users to download

both the samples and their extended report files, including all metadata.

We implemented Python scripts to query the private API based on the following search
criteria. Samples must be detected by at least one engine as a family present on our list;
they must have the ELF format and must be written for the ARM platform. We then
compiled a list of the returned SHA256 hashes and downloaded the samples as well as their
extended reports. The search returned 11957 samples, however, out of the 29 families,

only 9 were present.

We repeated the query a few days later with slightly modified search criteria: instead of
allowing any engine to detect our samples, we focused solely on Kaspersky’s and Syman-
tec’s engines. Our expectation was that the returned list by these queries would yield a
subset of the original query, however, this wasn’t the case. The query for Kaspersky’s
engine returned 11222 samples, but only contained samples out of 5 families. The query

for Symantec’s engine returned 5804 samples from 3 families.

4.3 Corpus

The result of all three of our queries is shown in Figure 4.1. The total number of unique
hashes returned by VirusTotal was 12993, of which 5295 was returned in all three queries.
There were unique hashes in all three queries, 624 and 23 samples by Kaspersky and

Symantec, respectively. When no specific engine was specified, VirusTotal produced 1651

'https://developers.virustotal.com/reference#getting-started (visited: 25 Oct 2019)

12

https://developers.virustotal.com/reference#getting-started

Kaspersky No spgciﬁc
engine

624 4914 1651

5295

389
97

23

Symantec

Figure 4.1: VirusTotal query results

unique hashes. All the other hashes in our data set were returned by more then one
queries. A likely explanation for this is that VirusTotal’s database is working with a
sliding window, that only indexes a limited set of samples at a time. However there is no

certainty in this, because the inner workings of the API are not well documented.

To extract the ground truth for the acquired samples, we used AVClass [15], an open-
source malware labeling tool. AVClass takes as input the anti-virus scan report file(s), as
well as aliases for detected malware and a generic token list for label stripping purposes.
The tool outputs the malware family reported by the majority of anti-virus tools that
detect the sample as malicious. In the alias file, we provided the tool our list shown in
Table 4.1 with aliases specified in parenthesis to any given family. However, we needed
to make changes to the tool’s source code as initially, it could not provide a label for
a number of samples. In order for AVClass to cast a majority vote, it needs at least 4
detections per sample. As some of our samples had lower detection rates, we removed this

requirement.

13

Chapter 5

Filtering Our Corpus

Before clustering our data set, we needed to filter packed and/or encrypted samples as
TLSH differences for these type of samples are meaningless. We first used binary en-
tropy calculation, which calculates the empirical entropy of a sample based on the bytes
contained in the binary. There exist best practices on what values signal packed and /or en-
crypted executables. We also used YARA-rules, a widely used pattern matching approach

in malware analysis, to statically look for leftover traces of packers.

5.1 Binary Entropy-based Filtering

Binary entropy calculation [8] detects packed and/or encrypted binaries by calculating the
empirical entropy of their bytes. The algorithm operates with a 256-byte sliding window.
For every window, the algorithm calculates the byte entropy using the Shannon formula
(H(x) = — Y i p(i)logy p(i)). Executables generally contain many blocks of zero-value
data bytes in order to pad or align code sections. Thus, the algorithm does not take into
consideration blocks with more than 128 zero bytes. Empirical best practices for entropy

values are shown in Table 5.1.

The measured empirical entropy values of our data set is shown in Figure 5.1. Taking

the previously discussed best practices into consideration, there’s a clear cut between a

Data type Average entropy
Plain text 4.347
Native executable 5.099
Packed executable 6.801
Encrypted executable 7.175

Table 5.1: Empirical entropy values

14

3500 3189

3000 2852

o

a 2500

| =

[}

v 2000 0

bl 1701

= 1506

o 1500 1295

=2 1164

=

= 1000

= 665

500 310
11 4 5 8 10 68 7 6 12 2 3 2 0 o a 8 12

P m N m ke o T KR 8 m B N kR g =% R &8 m B o oo N
[=] - [3¢] = [Ta] P~ o h — (3] m = w P~ o [==] i ('] = V3] [¥=] = ch [=] -
= = = = = = = o A oo\ W o\ W Wl wE w W W w P
[= N O VT N - - N S N S = SO SN« S« N BT W - R Y N Y = S B R N~ N T
(=] (=] — sl =t L = -] [=4] — (o]] LN (-] = -] [=] — (o] =t LA T~} [(=11 (=]

Calculated Entropy Values

Figure 5.1: Entropy distribution of our dataset

set of native executables and a set of packed and/or encrypted samples. As a result, we

excluded 2817 samples from our data set.

5.2 YARA-rules

Binary entropy calculation has one major limitation, namely, that large sections of low-
entropy bytes can lower the calculated overall entropy. In order to remove this limitation
from the filtering process, we also used YARA-rules. YARA is a tool mainly used in
malware research to identify and classify malware samples' based on patterns. Packers
can leave traces in the binary, e.g. specific strings and/or byte sequences unique to the

packer. Byte sequences can be coded into YARA-rules and detected statically.

A YARA-rule has three main sections: metadata, strings and conditions. The meta section
can be used to store key-value pairs, metadata and other sorts of information. The strings
section is used to define variables, strings, for which analysis should search for. Three
types of strings can be used: ASCII-text, hexadecimal strings and regular expressions.
In the third section, condition, boolean expressions can be defined using strings from the

previous section. If the condition is satisfied by the analyzed sample, the sample is marked.

rule DummyRule{
meta:
name = "Dummy Rule"
purpose = "Example"
strings:
$vart = {1A 2B 3C}
$var2 = "Random string"
condition:
$varl in (0..100) and $var2 in (0..1024)
+

"https://yara.readthedocs.io/en/latest/ (visited: 25 Oct 2019)

15

https://yara.readthedocs.io/en/latest/

Listing 5.1: YARA example code

In Listing 5.1, we demonstrate a very basic YARA-rule. We define two variables, $var1
and $var2, a hexadecimal string, and a text string. The condition section specifies that if
$varl is found in the offset range [0,100] and $var2 is found in the offset range [0, 1024],
the input file must be marked.

We ran YARA-rules for UPX and other packers on our whole data set, looking for packed
binaries. We found a total of 980 packed samples, all of which were packed with UPX.

However, these samples have already been filtered using binary entropy calculation.

5.3 Filtered Corpus

6108 | mirai

3711 | gafgyt

163 | dofloo

92 tsunami

63 ddostf

_
Ne

presenoker?

dnsamp?

oneeva

ditertag

zergrush

luabot?

lightaidra

cloxer

SINGLETON:a15990a6650a7290042356d40350acc2799ef3b42be84b25d739¢£2662c568b3

SINGLETON:99337f0add529b4e9e433175cc05e03b62b079edb45e501842710cbdel3466ac

(51 1 [y sy pruy pramy iy ey FNCI R SRS

unclassified

Table 5.2: Distribution of Malware Families in the Filtered Corpus

The distribution of malware families in the filtered data set is shown in Table 5.2. The
malware family names are the outputs of the AVClass tool and include names which were
not part of our original list. This is due to the process by which we collected samples: we
required at least one engine to detect a given sample as member of a relevant malware
family. By contrast, AVClass took into consideration all labels and cast a majority vote
on the malware family name. SINGLETON denotes samples whose malware family could
not be determined. There were 5 samples for which AVClass was unable to produce a

malware family name.

16

Chapter 6

Clustering

Our goal is to group similar malware samples based on their pair-wise TLSH difference
in order to detect variants of malware families. As a first step, we need to determine the
maximum TLSH difference such that two malware samples are of the same variant. We
detail our approach for finding such a TLSH difference in Section 6.1. We then apply
two widespread clustering algorithms to our data set: k-medoid [6] and OPTICS [2]. The

results of each clustering algorithm are detailed in Sections 6.2 and 6.3, respectively.

6.1 TLSH threshold selection

As we need a reliable method for malware similarity detection, our main priority is having
zero false matches. Tamds[17] suggested a threshold of 70 to be used for few false positives.
His suggestion was based on a relatively small set of 477 samples with most of the files
being from two families. In order to define a globally applicable TLSH threshold for

malware similarity, a measurement had to be carried out at a much bigger scale.

Initially, we selected a labeled malware data set and searched for the maximum threshold
that yielded no false positives. This method heavily depends on the quality of the available
data set. In order to achieve the most precise results, we selected the EMBER][1] data set,
the only large enough labeled malware data set available at the time of writing!.Of the
data set, we processed the test set, containing 100 000 malicious samples from 917 malware
families. The data set only contains extracted features but not the actual samples, which
posed a challenge as calculating TLSH differences requires the actual binaries. We were
able to find and download 62 863 samples from Ukatemi Technologies’s malware repository
to carry out our measurement. This is a great enough portion of the samples and its

distribution is close to the original test set as shown in Figure 6.1.

12019.10.01

17

Available (62863) All (100000)

4
10 104 |

3]
10 103 .

of samples in the family
of samples in the family

malware families malware families
Figure 6.1: Distribution of available samples versus the original

The second step was calculating the pair-wise TLSH of downloaded samples. The process
took 21 minutes and resulted in a 248 GB database. The final step was calculating the
maximal threshold with which only files in the same groups are deemed similar. This
could be achieved using the available labels and one pass over the difference database.
The results showed that only a threshold of 1 is suitable. This opposed previous results,

thus, it needed manual investigation.

A closer look at the files revealed that the labels of the data set are wrong in many
cases. For example, 163ced. . . (xtrat)? and57566b. .. (zusy)? have a very small TLSH
difference of 10 but they belong to different families based on their labels. Our manual
investigation also supported the TLSH difference, as we found the two files very similar
to each other. In fact, the only difference on their VirusTotal details pages are their hash
values and the EXIF Metadata TimeStamp. The pages detailing their behavior (Tecent
HABO) are different simply because for one of the files, the system was unable to extract
the Process And Service Actions section. The same stands for 5c¢851b. .. (lethic)?

and c47af6. .. (mods)® with a TLSH difference of 5, as well as 402223. . . (zbot)® and
1c6a53. .. (bulta)” with a TLSH difference of 1. All in all, we were able to identify
75683 pairs in the data set where samples had different labels but their TLSH distances

were below 30.

The problem lies in the labels that anti-virus products put on the samples. There is

no standardized naming convention for malware as there is no widely accepted definition

2163ced46c18e£09d8e2f0eedblbdect74a533f22ba3b599c72a6730435£32¢c9
357566b2141d30f4ecedababbedacchd714091dc5ceead240a5b3ct2e6e799290
45¢851b1a7¢507435da84be04b2a62bf0d710d35b4a283854e47e6dcc2747582d
5c47af677£0ad6df3£31ec39679b6eb3d04£064bb7501a4ba8fbdb9921f23aec3
6402223dee86b39bb24da9ae7363b294908d2872b51£82cd9061 1be7d536d20¢9
71c6a53819f££dd663aded0f023671d9384cccedbfaf 7b94e3bcafd75ea4a8512

18

Family name ## of samples
Allaple'™ 6441275
Undetected / Zegost'! 1965557
Linkury'? 1611130
Nimda / Dinwod'? 1082076
Regrun'* 1011604
Vilsel®® 982216
Dinwod'® 939631
FlyStudio'” 903952
Vtflooder'® 854867
Vobfus!® 805437

Table 6.1: The 10 largest similarity groups in the database

for malware family or malware variant. As a result, different anti-virus vendors create
their own interpretations of the concepts, leading to a lack of a standardized malware

classification data set.

The results of our initial experiment showed the need for manual verification. Our ap-
proach was similar to the previous approach: searches were to be performed with a can-
didate threshold and if false matches were found, the threshold was reduced.We first
considered the VirusTotal details and behavior pages, if they were available. When those
did not provide enough information, we further investigated with IDA® and the Diaphora’

plugin.

We used samples from a data set of 355795714 available malware samples, courtesy of
Ukatemi Technologies. We randomly selected samples to be included in the search corpus.
The database is not labeled but probabilistic statistical information is available about
the incorporated samples. There are approximately 110000000 similarity groups in the

database, considering very closely similar files. The 10 largest groups are displayed in
Table 6.1.

Azorult The first analysis was performed on 9 samples also included in the EMBER
database, all of which are labeled as Azorult. The samples vary in sizes from 172KB to
3.45MB but their behavior is much the same. The smallest TLSH difference between
any of the corpus files selected from Ukatemi Technologies’s malware database was 71
(a8b3bd... and 4513a8...), all other differences were above 160. The first threshold

$https://www.hex-rays.com/products/ida/ (visited: 25 Oct 2019)

“nttps://github.com/joxeankoret/diaphora (visited: 25 Oct 2019)

1051£331664d8a3b8a72d2a983d34d1de6ab0c1938389cba8dcd45f6dc61fd24c2
10£7394932£5b30ba3c74£8161 cac505a0832693d0c6654b31ba33a9bbe0ad682d
124£843ebf83949fa7£6898819d7132f 1498¢12a9b50990ecca24f909992c39134
134ab87be67e3cd3569a0£371b1dd8dae312c0cbee7d4cbd32f 246e2e56£d7b5d61
14903£0f 1cf4eac92439991222007952d2f6£301f1783423305edd150ce3467e7b
15812344106€92e0925034f2falf4f837df cd07797952c33dc59¢2380e 12368235
1601b953baf60f726d3e27ed24aa4b554032112033f c60c4b0dcf8627£498bab0dc
17 faee50d5ea97907523e04de0c0a6226acccf689a661dd3c075e3ee63bd51b715
1853b78b8bb54c70638de500f585ea2f 36af 173fd5chb7ecabe766b70fbb7bcab38
1962665c15e13707cc1f510136a61c2caf438bcaefdbd009b699313£53¢23791aa

19

https://www.hex-rays.com/products/ida/
https://github.com/joxeankoret/diaphora

was selected to be 50 because previous searches had showed that there are cases with false
matches above this threshold. The results are displayed in Table 6.2. The numbers include

the searched samples themselves.

SHA256 # of similar samples
2561354cb2da849deedbc39bde8580180dcf 148ba0a9931490874d429a873927 133
42a1a74d93109d172eee8704£7591041b58526f£3281adc4392855240d7415b8a 48

4513a86aa72b4f093d76a0a057f3b6ff9594e667049ea7daf6d7cdedlaa9acht 5
6be100fda8b64a161ef67d27f4b7300bb0e6b01325¢14d67d2353dafd2382249 1
70900b5777ead48f4c635f780597605e9bdbbeed69b3052f 1bd0088a1d18£85d3 1
a8b3bd2a34cba3c865463ca2f19764a9ad3eedcb020d6d363bedac25aff2bcbe 9
bd2bbb963c3a2cab679701a3bb868c3e3f5042321f7a6da06d61bbfc4abbcfb48 8

£ad892142£180312391ad036ab7d32110604994262ee00988c4cfe752a96001e 62
fe44ddb6ab5a43d2bbce9e36c9638e5bab62d4d0b4b9c67d7a42574b758432eb7d 33
total 300

Table 6.2: Number of Similar Samples Found with Threshold Value 50 (Azorult)

Manual evaluation showed that all discovered similarities were correct. In fact, there were
several samples with much larger differences, yet their labels were the same. Some of the
largest differences and the files in connection are displayed in Table 6.3. This experiment

showed that in case of the Azorult samples, the threshold of 50 yields 0 false matches.

Lightneuron The next search was performed with the threshold of 50 on 3 Lightneuron
samples whose pair-wise differences are displayed in Table 6.4. The results are displayed
in Table 6.5. There were no similar samples in the database to 14f530... with this
threshold, there would have been with a threshold of 70.

A closer look at 88c90c. .. and 001424. . ., whose difference is 49, revealed that they were
very different files. While the first is a Lightneuron malware sample detected by 50/68
anti-virus products on VirusTotal at the time of writing, the second is a valid but not
signed SAGEM SmartCard Reader DLL from 2012, clearly not a malware. As a result, we
reduced the threshold to 48 in order to eliminate the false match. The other similarities

were correct.

SHA256 TLSH Difference
0b0a21e081b0ceba7e0240210fba86df2ac9£2235387d1052857c0cc61baeal9 111
£9dc3170d1£31d4c4053f450e2deac8d21f7415f808bbaeff6e79a3618d179d4
3e500940b1a910e7ec345542919c554b0d88005a94f4f6bb66b645aec86e5e87 119
cb09c170d0cd71116006925b17f606ef47d25e405ea8d7af4d4b804d5786f2b3
3e500940b1a910e7ec345542919c554b0d88005a94f4f6bb66b645aec86e5e87 197
cdbf52£231d69a3a0c78£0062ae1a50a08df10£f3e992f2¢7188ed3a0709fc71d
cdb5f52£231d69a3a0c78f0062ae1a50a08df10£3e992f2¢7188ed3a0709fc71d 115
£87be2bc2896e449d4d253007115a74a3bd6249d5e656aad561db3abfb677897

Table 6.3: Examples for Files with Larger TLSH Differences.

20

SHA256 TLSH Difference
14£530e16e8c6dbac02f1bdeb3594f01b7edab9c45c4c371a3093120276ffafl 61
26facbc4265ca90f0508e77e97elebfcc7e46f6ccal316b251b06d41232f6360¢
88c90c2b123a357423ab3241624cbad9d57122ee3b8ff4130504090¢174bb09d 549
14£530e16e8c6dbac02f1bdeb3594f01b7edab9c45c4c371a3093120276ffafl
88c90c2b123a357423ab3241624cbad9d57122ee3b8f£4130504090¢174bb09d 613
26facbc4265ca90f0508e77e97elebfcc7ed46f6ccal316b251b06d41232f6360¢

Table 6.4: Pair-wise TLSH Differences of the Lightneuron Samples

25facbc4265ca90£0508e77e97elebfcc7e46£6ccald316b251b06d41232£6360c¢

SHA256 TLSH Difference
1e0084dad4ce9933a8b8d87050d54b60722308167999a49a9a40966df4326f9%¢ 43
ce01c8087368b7938175b217e9d4e2b50bbd3007d6f9b786d9b86a38alachbc85 8

88c90c2b123a357423ab3241624cbad9d57122ee3b8f£4130504090c174bb09d

SHA256 TLSH Difference
20£e600cbalff61c16f5e3e06438e3c4db006£22bcO9b3b9b51ef440462444252 7
0014242564012f64897351497d23113128deead1£83¢cf3c69d3d3d5878febche 49

Table 6.5: Similar Lightneuron Samples Found with Threshold 50

Pioneer The next search was performed on 10 samples, all labeled Pioneer in the EM-
BER data set. The number of similar samples found with threshold 48 is shown in Table
6.6. Manual evaluation showed that all matches are correct. As a result, we did not reduce
the threshold after this search.

The experiment showed that if two malware samples have a TLSH distance bellow ~ 48,
there is little chance of them not being related or variants of the same malware family.

This is the threshold we will use to evaluate the goodness of cluster configurations.

6.2 K-Medoid

K-medoid is an algorithm with the goal of finding k representative objects among the
objects of the data set [6]. There are several rationales behind choosing this particular
algorithm. It is an unsupervised learning algorithm, meaning that there is no need to
supply any additional data, only the similarity measurements between samples. Another
reason is that the algorithm only selects existing data points as cluster heads. This is
useful in our scenario, because analyzing cluster heads could give us information about
samples in the same cluster. The disadvantage of this algorithms is that we have to specify
the input k& for the algorithm. Unfortunately, we did not know how many variants there
were in our data set, therefore, we calculated cluster configurations for all potential &
values. For our experiments, we used the k-medoid implementation from the Pyclustering
library [9].

21

SHA256 ## of similar samples
158087ae428208a602107f87b7d106e46bfb73f902bfa96cbca0609bec6fecOf 1304
20577e1899e08bd3076bd32f£8a3f65d85b59f30c18c3428acdf468d111fcOac 373
229814bc1d1730bd7ad53db44716fa33da705b44e1d43737069a20af7e8566b4 1
293861fe236f4f8c4b414d60835cfcb5b050de6c648dded6d21be388ddbc9c7c 14
2c3ed75775d0e0f ceelbaf87205915£800£54200b3f4097b577b4b2afO0bbedd1 269
3074£9£2331112482edd5c0033496e410169ed7f02ac510afc98782fac49bbfa 2653
4f9c4d47ad44b8c3af8084bfcf495de20f2989029a3781fcbaa94ed9bffce8a7 530
506ad785bcec1df04c103d7be9f55a4c88936d07cfa3ddal1653e0albf67ceeb2 10
5426cbfa81de3b15b7ff9048331a1fe3e1£53804984e00b3b3739204229c7ac9 2
71a05ca48c9b2512a04939d43eecdffb13a53f834c348f91¢29a7e30b588fb82 146
726714c7799fb8604fe14d4561c9cf6b817170222b8835a36€4b832a3089bf6a7 556
98021d3£85e8d54978c9bbcdedbd2aefbadd209a5088e6191621abcc9676£70d 2
c4edddd836ff31a04ea83323442d28a5c40d7b40a9cafladelf4ebededb07eda 2
eb000938c8b412630bcc3e5ce032784f£43c0afdb912a348d1bf3c698£9550a8 7
£1401179252bb5dc6e5e991822304a42b42e8e2a055d050622db553660bb2255f 86

total 6025

Table 6.6: Number of similar samples found with threshold of 48

0.965
0.96

0.955
095
0.945
Z 094
0935
093
0.925
092
0.915
318 625 232 925 306 381 871 861 599 1043 1072 714 570 538 504 247

1021
k

Figure 6.2: Best s(k) values of our dataset

The challenge we faced after calculating the cluster configurations was to choose between
them. There exists a metric, s(k)[6], which can be used to select the best k value. The
metric captures how well the clusters group objects by calculating how the diameters of
clusters would change if objects were clustered differently. The closer the metric is to 1,
the better the setup. We computed the s(k) metric for all cluster configurations in order

to rank our setups.

As shown in Figure 6.2, the best s(k) values of our data set barely differ, however, the
corresponding k values have a wide range. This makes it unclear which setup to choose.
In order to overcome this challenge, we extended our requirements based on previously
discovered TLSH threshold. Variants have a TLSH difference lower then 48, as a result,
cluster heads of different clusters should have a TLSH difference score higher than 48.
With this requirement in mind, we looked at our cluster configurations and found, that
with TLSH thresholds ranging from 30 to 70, k = 17 has the achieves s(k) value.

Statistics of about the cluster configuration & = 17 is shown in Table 6.7. In this config-
uration, the calculated cluster diameters range from 180 to 1038, the mean being 468. In

our scenario, cluster diameter can be interpreted at the largest TLSH differences between

22

s(k) 0.4054158410234883
Number of clusters 17
Maximum diameter 1038
Minimum diameter 180

Mean diameter 467.823529411
Largest cluster size 1110
Smallest cluster size 35

Mean cluster size 573.294118

Table 6.7: Statistics for k = 17

any two samples in the same cluster. Cluster sizes in the setup range from 35 to 1110

samples.

There are a number of issues with the kK = 17 setup. Firstly, our threshold for variants
was determined to be 48. None of the clusters in this setup come close to this TLSH
difference, the lowest being 180. Thus, we can conclude that clusters should be split into
smaller clusters. Secondly, we had families with only a small number of samples in our
data set. By contrast, the setup did not have any singletons or small clusters. Therefore,
we conclude, that the k-medoid algorithm does not perform well for the goal of clustering

malware samples based on TLSH differences.

6.3 OPTICS

The second algorithm we tested is the density-based algorithm, OPTICS [2]. The algo-
rithm is able to detect dense and sparse regions in the data set. This characteristic makes
it favorable in our scenario, since we have families with only a few samples as well as
families with thousands of samples, as shown in Table 4.1. The algorithm can also adapt

in clustering size, i.e. small and large clusters can both be found.

As discussed before, the algorithm takes two additional parameters besides a precomputed
distance matrix: minPts and €,,,,. We can specify an upper bound for €,,,, as the
maximum TLSH difference in our data set. However, selecting minPts is a challenge
without knowledge about the internal structure of our data set. To gain this knowledge,
we ran OPTICS with different parameter setups: €4, values were set to be 40, 50, 60
and 70, while minPts was set to be 1, 2, 5, 10, 20, 40, 50, 70, 100, 150 and 200.

The resulting cluster configurations were again unsatisfactory. In all configurations, the
number of unclassified samples was very high. The least number of unclassified samples
was achieved when minPts was set to low values. Different values of €,,4; did not af-
fect this trait: setting minPts to 2, €nae = 40 yielded 1800 unclassified samples, while

€mazr = 70 resulted in 1721 unclassified samples. The more we increased minPts, the more

23

unclassified samples were returned. The configuration €,,,, = 70, minPts = 200 resulted

in 6934 unclassified samples, which is 68% of our data set.

Choosing lower minPts values produced more clusters, with less members in each cluster
and with a smaller diameter for each cluster. By contrast, higher min Pts values produced
fewer clusters with more samples and higher diameters. For example, the setup with
€maz = 90, minPts = 50 had 43 clusters. The maximum diameter was 191, the minimum
was 6 and the mean was 83. The smallest cluster contained 51 samples in it, the largest
192. After increasing minPts to 150, the number of clusters decreased to 12, the maximum
diameter changed to 176, minimum being 2. However the mean diameter decreased to 49.
The cluster sizes also increased, the smallest cluster containing 171 samples, while the
largest had 440 samples in it. To summarize, clusters generated with different parameters

were quite similar, however, all setups resulted in a large number of unclassified samples.

24

Chapter 7

New Clustering Algorithm

7.1 Clustering Lessons Learned

The results of both tested algorithms present issues for malware analysis. Firstly, the
k-medoid algorithm produces clusters whose diameters are too large to represent variants
of malware families. We determined that the threshold TLSH difference for variants is 48,
however, k-medoid’s diameters ranged between [180,1038]. OPTICS’s cluster diameters
were more in line with our threshold value, however, as much as 68% of our samples were

detected as outliers.

The main limitation of these algorithms when used with TLSH differences is their as-
sumptions about the distance matrix. Namely, they assume values to be mathematical
distances. TLSH differences, however, are not distances in the mathematical sense as the
triangle inequality does not hold for computed values. Sample a being similar to sample

b and sample b being similar to sample ¢ does not imply that samples a and ¢ are similar.

In addition, these algorithms were originally developed to cluster measurements which
may be noisy. In order to remove noise, the data set must be cleaned and for optimal
clustering results, it must also be balanced. A balanced data set in our case requires
exclusion of samples from families with very high and very low sample counts. Such a
step, however, is undesirable during malware analysis as potential outliers may represent

previously unseen variants or even entire families.

In summary, our experiments have shown that existing clustering algorithms are inade-
quate to cluster malware samples based on their TLSH differences. What is more, their
innate assumptions limit their use when the data set is unbalanced. As a result, new
clustering algorithms are needed which take into consideration the previously discussed

specialties.

25

7.2 New Clustering Approach

Our goal is to create a new clustering algorithm which meets the following requirements.
Firstly, it has to cluster samples based on their binary similarity expressed as TLSH
differences. Secondly, it has to be able to find even the smallest clusters in a varying
density data set. The input data set may contain singleton clusters, i.e. samples dissimilar
to every other sample, however, these must not be treated as noise because these are the

most interesting samples for malware analysis.

Our developed algorithm is based on OPTICS, however, we replaced its default clustering
algorithm, &. Our algorithm can be divided into three major phases, as shown in Listing
7.1. In the first phase, we extract information about the structure of the data set. In the
second phase, we generate a greedy, initial cluster configuration based on TLSH differences.
In the last phase, we merge clusters in order to compensate for the greedy mechanism in

the previous phase.

structureData = getDatasetStructureData(dataset)
clusters = calculateInitialClusters(structureData)

return joinClusters(clusters)

Listing 7.1: High-level Overview of Proposed Algorithm

In order to extract structural information from the data set, we reuse OPTICS with
input parameters minPts and €,;,4,. OPTICS can compute the reachability distribution
of the data set which gives the e values required to form a cluster around individual
samples. Samples with low e values represent dense regions while samples with high €
values represent sparse regions. We sort the resulting reachability distribution such that
samples in dense regions come first in the list. The overview of this phase is shown in
Listing 7.2.

reachabilityDistribution = 1ist(OPTICS(minPts, €))
structureData = list ((sample_id, reachabilityDistribution[sample_id]))

sort sturctureData based on reachability[sample_id]

Listing 7.2: Extraction of Structural Data based on OPTICS

Our initial clustering is greedy in the sense that it organizes the densest regions into cluster
first. We begin with no clusters and choose the first sample in the sorted reachability
distribution. This sample represents the densest region of the data set and it becomes
the first cluster head. We then put all samples into the selected head’s cluster which
are considered similar enough, captured by the parameter maxIntraDissimilarity. The
selected head and the grouped samples are then removed from the reachability distribution.
Subsequent cluster heads are selected such that they have the lowest corresponding e value
and they are significantly dissimilar to previously selected cluster heads. There may be

cases when new cluster heads cannot be selected this way. In such cases, we select the

26

sample with the maximum dissimilarity to every other cluster head. We repeat this process

until all samples are clustered. The pseudo code is shown in Listing 7.3.

selected_cluster_heads = []

clusters = []

cluster_head = structureDatal[0]

DO
new_cluster = [cluster_head]
append every item to cluster, which are similar enough to the head
for each item in structureData:

new_cluster.append(item if difference to cluster_head < maxIntraDissimilarity)

append new cluster to array of clusters

clusters.append(new_cluster)

exclude clustered samples
for all sample in new_cluster:

structureData.remove (sample)

select the head of the new cluster
for all sample in structureData:
check if threshold dissimilarity rule can be used to select new head
cluster_head = sample if dissimilarity to all other heads > headDissimilarity
if sample not selected:
try maximum dissimilarity rule
cluster_head = sample if dissimilarity to all other heads is maximum
retry with another sample if both rules fail
if sample not selected:
continue
else:
cluster_head = sample

selected_cluster_heads.append (sample)

REPEAT until structureData is empty

Listing 7.3: Initial Greedy Clustering Approach

The data set may contain dense regions whose diameter is larger than the maximum
allowed dissimilarity. In such cases, the initial clustering strategy faces a limitation as it
groups the center of the region into one large cluster and generates several small clusters
on its perimeter. In order to overcome this challenge, we try to detect such perimeter
clusters and merge them with the center cluster. This process is shown in Listing 7.4.
We combine two clusters if the combined cluster’s diameter either remains under 48 (our
empirical threshold for variants), or merging increases the diameter of the center cluster

by a fixed parameter.

function to decide if we can combine two clusters
function can_combine(cl, c2){
save the original diameter of the larger cluster
originalDiameter = diameter(cl)
if diameter(c2) > originalDiameter:
originalDiameter = diameter(c2)
merge clusters
cJoined = list(join cl with c2)

return result of applying merge rules

27

return diameter(cJoined) < 48 or originalDiameter * fixedValue

+

DO
for each cl in clusters:
for each c2 in clusters:
if cl == c2:
continue
if we can combine the two clusters, make them one, and delete the two originals
if can_combine(cl, c2):
new_cluster = cl + c2
clusters.remove(cl)
clusters.remove (c2)
clusters.append(new_cluster)

REPEAT until no clusters can be joined

Listing 7.4: Merging Clusters

7.3 Evaluation

Presenoker Dnsamp ditertag
gafgyt/ | | Kaiten/ Mirai nscan zergrush
bashlite Tsunami P 9 ddostf
S | luabot elknot / spike /
darlloz / aidra / billgates dofloo /
zollard lightaidra mrblack /
wrkatk /
Oneeva cloxer sotdas /
aesddos

Figure 7.1: Relationships Between Families in Our Dataset

In order to evaluate the efficiency of our proposed clustering algorithm, we compared
it against the results of both k-medoid and OPTICS. During evaluation, we took into
consideration cluster diameters, the number of singleton clusters generated and two new
measures of goodness. The first measure of goodness shows how "pure" a cluster is in a
strict sense, i.e. how many samples of the cluster is of the family with the most samples in
that cluster. We note, that our experiments in Section 6.1 showed the untrustworthiness of
malware family labels. However, at the time of writing, no better alternative is available
as ground truth. We also need to take into consideration that malware families share
and/or copy features from each other which results in shared features. In response, the
relaxation of our measure of goodness considers not only the family with the most samples

in a given cluster but also families with which it is known to share features. The feature

28

k-medoid | OPTICS | Our algorithm
Number of clusters 17 13 745
Number of singletons 0 6058 353

Table 7.1: Comparison of the clustering methods

relationships are shown in Figure 7.1. Straight lines represent immediate relations, dotted

lines show indirect relationships.

The number of generated clusters and singleton clusters are shown in Table 7.1. K-medoid
and OPTICS both generated considerably less clusters than our algorithm. Their numbers
are more in line with the number of malware families our data set contains based on the
output of AVClass. Our algorithm generated 745 clusters of which 353 were singletons, a

negligible amount compared to OPTICS’s original clustering algorithm.

The diameters of cluster configurations from all three algorithms are shown in Figure 7.2.
As our clustering relied on TLSH differences, cluster diameters can be interpreted as the
maximum TLSH differences in each cluster. Our experiments have shown that in order to
detect variants of malware families, cluster diameters must be below 48. The figure shows
that both k-medoid’s and OPTICS’s cluster diameters are too large to denote variants.
The cluster configuration of our algorithm, however, are much closer to this threshold with
93.69% of our clusters having diameters below 50. As a result, our clusters are more likely

to represent malware variants.

Figure 7.3 shows the algorithms’ performance with respect to our strict measure of good-
ness: what the ratio of the most populated malware family in a cluster is to other families
in the same cluster. This metric can only be computer for non-singleton clusters as clusters
containing only 1 sample automatically achieve 100% ratio. As seen on the figure, cluster
configurations of both k-medoid and OPTICS typically achieve ratios between 0.56 and
0.63. By contrast, of the 392 non-singleton cluster produced by our algorithm, 185 have
ratios over 0.6 of which 103 outperform both OPTICS and k-medoid.

The relaxed measure of goodness ratios achieved by all cluster configurations are shown in
Figure 7.4. In this setting, singleton clusters can be included as well, since non-singleton
clusters have a chance of achieving 100% ratio due to the extensive relationships between
malware families. The figure shows that both OPTICS and k-medoid achieve ratios above
0.95. However, our algorithms produce clusters, whose relaxed ratios are well below those
achieved by k-medoid and OPTICS. While investigating this issue, we found another indi-
cation of poor anti-virus labels. Specifically, all clusters achieving ratios of 0.5 contained
2 samples and their malware family labels do not match. However, the diameters of these
clusters were quite low, the mean diameter being 30.71. Checking the samples’ VirusTotal
pages, we also saw that there were only a few labels on their scan pages. As a result, the

low ratios could be the result of misclassifications.

29

K-medoid

L=y T = L R ¥ IV T o I I T =

513}5N|3 Jo Jaquiny

(ozE'DTE]
{or£'o0E]
loog'osz]
loszioez]
logzioce)
loez'ooz]
{oaz'osz]
{osz'orz]
lorz'oEz]
loEz'oze]
{ozziotz)
{orziooz)
{coziost)
lostiost)
loatiocr)
loctioot)
{oatiost)
losTiowT]
{o#1'0ET]
{oET 0TT]
{ozriorr)
{ott'ooT]
oot o6l
los'os]
log'os]
losios)
o9'os]
{os'ow]
{o¥ oE]
{oE‘oz)
{oz'ot)

Diameter
OPICS

[Q) et T

5431503 JO JaGUInp

lozelote
lote'o0E]
(oog‘o6z]
loez'ogz)]
logzioLz)
locz'ooz)
{osz'osz]
losz'owz)]
lowziogz)
losz'ozz]
lozz'orz]
{otz'00z]
loozi0sT]
loeTi081]
lost'oLT]
(oeToe1]
{oa1i0sT]
losTiowT]
lovToET]
{oetiozT]
(4 Hi144]
lottioot
footios]
(o6 08]
{080
loslos]
{ogfos)
{os7o¥]
{ov'oE]
logfozl
lozfor)

Diameter
Our algorithm

435

165

200

{oze'onE]
lorsioos]
{ops'osz)
{osz'oaz)
{oazioLz]
{ocziooz]
{paz'osz]
losz'orz]
lorz'oez]
loez'ozz]
{ozziotz
{orz'ooz)
{oozosT]
los1i081]
loatiocr)
loct'ooT]
{oat'osT]
{ostiowt]
lorTioET]
{oet'ozT]
lozt'oTT]
{ortiooT]
ioo1'08)
{os'os]
log'oe)

= 1 10L'09]
™ |0a'05]

{osow]

T ‘ﬁ.v_.qﬁ.m.“_
= (DE°DE]
g == (0Z'0T]

Diameter

Diameters of All Cluster Configurations
30

Figure 7.2

K-medoi

= m L] — L]

51315N|3 Jo Jaquinpy

lteoieol

(0L 0'690]
Isr0'sg 0l
(80’290
(£90799°0]
(95°0'59'0]
(55°0'v90]
r0’e9 0]
(g90'z9 0]
lzoroite ol
(190’90l

(0%'0°65"0]
(650'85°0]
laso’Ls ol
(r50'as 0]
(95'0'55"0]
1550150l
50’50l
(gs0'z5 0]
lzsoits ol
(15°0'570]

(05076t 0]
(6t'0'8t 0]
(ato' Lol
(Lt 0'aw o]

Strict ratio value

OPTICS

-

o I

11 11

=

~

m] — =]

54315N[2 JO Jaquiny

(teofeal

locotssol
(sgoigeo]
{s¥0'ra0]
(£0'9970]
{390'590]
(ssaivaol
[vo'esal
leso'zeol
{zgoi10]
R ER-T

lowoles ol
leso'gs ol
(gsoiLsiol
l£50t95 0]
{gs0iss 0]
(sg0'%s0]
(+50'E570]
les0'zsol
lzgo'1g0]
{15°0'570]

loso'sto]
(eto'erol
latoliy ol
levoiarol

Strict ratio value

Our algorithm

9888R889883°

54315N[2 JO Jaquiny

(teoleol

loco'es ol
(sg0ig90]
LY
(t30'990]
lagoiseol
(s30'+90]
legoisa ol
lezo'zeal
{zooiteol
{13°0's0]

log0'es 0]
le5o'es ol
(8s0'cs0]
lesotes ol
[s5o'ss ol
(ssofpsiol
[v50'es ol
leso‘zs ol
lz5o'ts ol
{1570's0]

loso'erol
(e oiar ol
(s¥oiieol
(evoiarol

Strict ratio value

Strict Goodness Ratios of All Cluster Configurations

Figure 7.3

31

K-medoi

cd mmm T - T W.._. [—
T —— (00'T'86"0)] N —— (00'T'86'0] * ™ g (ooTEe]
~ = (860'960] (85096 0] = {z60'96 0]
{360'v6°0] {96 0've"0] m | (960'p60]
(v60'z6 0] lre0zE0] o 1 (b6 07260
lzs0's°0] (ze"0's°0l m | (2Z6°0'6°0]
{os0'ee 0] loso'es'0] - | |o50'EE0]
|g=ofeg o] {sg0'ag°0] {gzoisgo]
{9g0iva'0] {seoivecl {9g0'be'0]
veoizeol \vg0'z8°0] ~ 1 lbgoizeol
zzoeal ¥ lzgoigol 5 e | (z80'80]
logo'sen] _Emammhg m £ logo'sL 0]
{8£0'9L'0] _m 0 (zo'szol & g _“E.o.,mh.o_
tscowee) & Y TRV T B .m o | (9£0'%L0]
weozeg & B treoizeol x &0 vrotzeol
(ze0teo] & O zco'col ¥ m (zeoieol
lor0'es'0] = loco'sao] 5 {oco'esol
1850i88°0] (830'93°0] O m | (890'99'0)
(550'49°0] (99 0'va 0] {ss0iva0]
Iv9°0290] (ra0'ze 0] voo'zeo]
- (zo-0's0] zzro'eol
B logo's0] {og0'85°0]
(0w u.‘mm 0] (950'95°0] (g5 095'0]
{2570'35°0] f9s0'bs 0l {350'5 0]
t95°0'%5°0] I#s0zs 0] irsoizsal
“_wm._u_ﬂm._o__ lzs'ois 0] ~ 1 (25°0'5°0]
I5°0°5°0
A T T R R T S 2888 EEEBEC®
I A I TR - = @ M @ oM o Mmoo
L e | £1315N|3 Jo Jaguinp

S]SN|D JO JSgunp

Relaxed ratio value
ios of All Cluster Configura-
32

Relaxed Goodness Rat

tions

Figure 7.4

Chapter 8

Conclusion

In this document, we studied how binary similarity can be used to cluster malware samples
and identify variants of malware families. We queried VirusTotal and obtained 12 993
malware samples belonging to malware families targeting the IoT ecosystem. We filtered
the obtained data set using binary entropy calculation and YARA-rules in order to remove
packed and/or encrypted samples. We applied two wide-spread clustering algorithms on
the remaining 10 176 samples, k-medoid and OPTICS, using pair-wise TLSH differences

as a distance matrix.

The results of the applied algorithms raised a number of issues. Firstly, the diameters of
k-medoid’s clusters were too big to represent members as variants of the sample family.
We determined the threshold TLSH difference for variants to be 48 based on the EMBER
data set. By contrast, the smallest diameter of k-medoid’s cluster configuration was 180.
Several OPTICS configurations suffered from large cluster diameters as well. In addition,
its configurations detected many of our samples as outliers and did not include them in
any of the calculated clusters. The standard approach to deal with outliers is to remove
them from the data set, however, in our scenario, the outliers are the most interesting
samples. They can signal previously unknown malware families and/or behaviors. As a
result, such balancing is undesirable. Lastly, algorithms assume that values in the distance
matrix are distances in the mathematical sense. However, such an assumption does not

hold for TLSH which may explain the algorithms’ poor performances.

In order to overcome the limitations encountered by k-medoid and OPTICS, we developed
a new clustering algoritm which uses the data set structure information calculated by
OPTICS. The main idea of our approach is to first identify dense regions in the data set
and use the data points in the center of the dense regions as cluster heads. We include
a data point in a given cluster if and only if its TLSH difference from the cluster head is
within a threshold value. We also merge clusters together if they are found to be close to

each other and the merged cluster does not exceed a pre-specified diameter threshold.

33

Our experiments showed that our approach significantly outperforms k-medoid and OP-
TICS. Firstly, the cluster configuration calculated by our approach diameters much closer
to 48, they range between 1 and 64. This is better then diameters produced by either
OPTICS or k-medoid. Secondly, our approach detects a significantly lower number of
samples as outliers then OPTICS. Thirdly, the distribution of malware families in clusters

is purer than the distributions seen in k-medoid and OPTICS configurations.

We thus conclude, that TLSH can indeed be used for clustering malware samples into
variants of malware families. However, new algorithms are required which take into con-
sideration the specifics of TLSH differences. TLSH differences are not distances in the
mathematical sense and therefore should only be used in a pair-wise fashion. What is
more, TLSH differences have semantic meanings in the domain of malware analysis. New
algorithms must respect and potentially rely on such semantic meaning in order to cluster

samples more accurately.

34

Acknowledgements

The presented research has been partially supported by the SETIT Project (no. 2018-
1.2.1-NKP-2018-00004), which has been implemented with the support provided from
the National Research, Development and Innovation Fund of Hungary, financed under the
2018-1.2.1-NKP funding scheme, and by the European Union, co-financed by the European
Social Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research Collaborations

Grounding Innovation in Informatics and Infocommunications).

We are grateful to Ukatemi Technologies for providing us with access to VirusTotal’s

private API and to Ukatemi’s internal malware repository.

35

Bibliography

1]

2]

[6]

7]

H. S. Anderson and P. Roth. EMBER: An Open Dataset for Training Static PE
Malware Machine Learning Models. ArXiv e-prints, April 2018.

Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jorg Sander. Optics:
ordering points to identify the clustering structure. In ACM Sigmod record, volume 28,
pages 49-60. ACM, 1999.

Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Men-
scher, Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. Understanding
the mirai botnet. In 26th USENIX Security Symposium (USENIX Security 17),
pages 1093-1110, Vancouver, BC, August 2017. USENIX Association. ISBN 978-
1-931971-40-9. URL https://www.usenix.org/conference/usenixsecurity17/

technical-sessions/presentation/antonakakis.

Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti. Un-
derstanding linux malware. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 161-175. IEEE, 2018.

Michele De Donno, Nicola Dragoni, Alberto Giaretta, and Angelo Spognardi. Analysis
of ddos-capable iot malwares. In 2017 Federated Conference on Computer Science and
Information Systems (FedCSIS), pages 807-816. IEEE, 2017.

Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction

to cluster analysis, volume 344. John Wiley & Sons, 2009.

Ya Liu and Hui Wang. Tracking mirai variants. In VirusBulletin,
2018. URL https://www.virusbulletin.com/virusbulletin/2018/12/

vb2018-paper-tracking-mirai-variants/.

Robert Lyda and James Hamrock. Using entropy analysis to find encrypted and
packed malware. IEEE Security €& Privacy, 5(2):40-45, 2007.

36

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.virusbulletin.com/virusbulletin/2018/12/vb2018-paper-tracking-mirai-variants/
https://www.virusbulletin.com/virusbulletin/2018/12/vb2018-paper-tracking-mirai-variants/

[9]

[11]

[12]

[16]

Andrei Novikov. PyClustering: Data mining library. Journal of Open Source Software,
4(36):1230, apr 2019. DOI: 10.21105/joss.01230. URL https://doi.org/10.
21105/ joss.01230.

Jonathan Oliver, Chun Cheng, and Yanggui Chen. TIsh — a locality sensitive hash.
pages 7-13, 2013. DOI: 10.1109/CTC.2013.9. URL https://doi.org/10.1109/
CTC.2013.9.

Jonathan Oliver, Chun Cheng, and Yanggui Chen. Tlsh—a locality sensitive hash. In
2013 Fourth Cybercrime and Trustworthy Computing Workshop, pages 7-13. IEEE,
2013.

Fabio Pagani, Matteo Dell’Amico, and Davide Balzarotti. Beyond precision and
recall: understanding uses (and misuses) of similarity hashes in binary analysis. In
Proceedings of the Fighth ACM Conference on Data and Application Security and
Privacy, pages 354-365. ACM, 2018.

Edward Raff and Charles Nicholas. Lempel-ziv jaccard distance, an effective alterna-
tive to ssdeep and sdhash. Digital Investigation, 24:34-49, 2018.

V. Roussev. Data fingerprinting with similarity digests. IFIP Advances in
Information and Communication Technology, 337 AICT:207-226, 2010. DOL:
10.1007/978-3-642-15506-2_15. URL https://www.scopus.com/inward/
record.uri?eid=2-s2.0-78651093858&d0oi=10.1007%2f978-3-642-15506-2_15&
partnerID=40&md5=d72d586c1e2186£dc9519c8cal35661f9. cited By 88.

Marcos Sebastian, Richard Rivera, Platon Kotzias, and Juan Caballero. Avclass: A
tool for massive malware labeling. In Fabian Monrose, Marc Dacier, Gregory Blanc,
and Joaquin Garcia-Alfaro, editors, Research in Attacks, Intrusions, and Defenses,
pages 230-253, Cham, 2016. Springer International Publishing. ISBN 978-3-319-
45719-2.

Marcos Sebastian, Richard Rivera, Platon Kotzias, and Juan Caballero. Avclass:
A tool for massive malware labeling. In International Symposium on Research in

Attacks, Intrusions, and Defenses, pages 230-253. Springer, 2016.

Csongor Taméas and Boldizsar Bencsath. Method for similarity searching in large

malware repository. 2018.

Benjamin Vignau, Raphaél Khoury, and Sylvain Hallé. 10 years of iot malware: a

feature-based taxonomy. 2019.

37

http://dx.doi.org/10.21105/joss.01230
https://doi.org/10.21105/joss.01230
https://doi.org/10.21105/joss.01230
http://dx.doi.org/10.1109/CTC.2013.9
https://doi.org/10.1109/CTC.2013.9
https://doi.org/10.1109/CTC.2013.9
http://dx.doi.org/10.1007/978-3-642-15506-2_15
https://www.scopus.com/inward/record.uri?eid=2-s2.0-78651093858&doi=10.1007%2f978-3-642-15506-2_15&partnerID=40&md5=d72d586c1e2186fdc9519c8ca35661f9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-78651093858&doi=10.1007%2f978-3-642-15506-2_15&partnerID=40&md5=d72d586c1e2186fdc9519c8ca35661f9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-78651093858&doi=10.1007%2f978-3-642-15506-2_15&partnerID=40&md5=d72d586c1e2186fdc9519c8ca35661f9

	Kivonat
	Abstract
	Introduction
	Background
	Industry Approach to Malware Analysis
	Program Similarity
	Clustering

	Methodology
	Data Collection
	Malware Families in Scope
	VirusTotal Searches
	Corpus

	Filtering Our Corpus
	Binary Entropy-based Filtering
	YARA-rules
	Filtered Corpus

	Clustering
	TLSH threshold selection
	K-Medoid
	OPTICS

	New Clustering Algorithm
	Clustering Lessons Learned
	New Clustering Approach
	Evaluation

	Conclusion
	Acknowledgements
	Bibliography

