
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of telecommunications and media informatics

Graph separation algorithm for incremental
resource (de)allocation in hierarchical

orchestration

Scientific Students’ Associations Paper

Creator Supervisor
Recse Ákos Dr. Szabó Róbert

October 27, 2017

Contents

Abstract 3

1 Introduction 4
1.1 Network Fuction Virtualization . 4
1.2 Motivation . 5
1.3 Precedent Use-Case . 8

2 Design 10
2.1 Requirements . 10
2.2 Infrastructure Node . 11
2.3 Ports . 11
2.4 Links . 11
2.5 Virtual Network Function . 12
2.6 Flowentry . 12
2.7 Algorithm . 13

2.7.1 Borders of Algorithm . 13
2.7.2 Patch the graph . 14
2.7.3 Create operation . 17
2.7.4 Delete operation . 23
2.7.5 Remerge . 24

3 Implementation 26
3.1 NewtorkX . 26
3.2 CytoscapeJS . 27
3.3 Queue Server . 28

4 Evaluation and Validation 30
4.1 Robotics Example . 30
4.2 cProfile . 35

5 Conclusion 36

Appendix 38
F.1 Additional images . 38

List of Figures

1.1 Difference between present-day and NFV approach 4
1.2 Abstracting infrastructure in several levels 6
1.3 Example for a service chain between two SAPs 7
1.4 Basic setup of robotics use-case . 8

2.1 Boundaries of the system and involved actors 13
2.2 The theoretical tree of network elements . 15
2.3 Flowchart of identifying individual elemetns and belongig operation 16
2.4 Radix tree of the example . 17
2.5 Flowchart of applying create operation on a port element 18
2.6 Example for cloning a port 1. 20
2.7 Flowchart of applying create operation on a Flowentry element 20
2.8 Recursive method to build a service chain path 21
2.9 Example for cloning a port 2. 22
2.10 Flowchart to remove a port from the graph 24

3.1 Class diagram of python implementation . 27
3.2 The graphical user interface to visualize the result of algorithm 28

4.1 State ot the graph after 2. request of robotics demo 30
4.2 State ot the graph after 4. request of robotics demo 31
4.3 State ot the graph after 6. request of robotics demo 32
4.4 State ot the graph after 8. request of robotics demo 32
4.5 State ot the graph after 9. request of robotics demo 33
4.6 State ot the graph after 12. request of robotics demo 34
4.7 State ot the graph after 13. request of robotics demo 34

F.1.1Flowchart of counting the follow tag. 38
F.1.2Flowchart of applying delete operation on a flowentry element 39
F.1.3State ot the graph after 1. request of robotics demo 39
F.1.4State ot the graph after 3. request of robotics demo 40
F.1.5State ot the graph after 5. request of robotics demo 40
F.1.6State ot the graph after 7. request of robotics demo 41
F.1.7State ot the graph after 10. request of robotics demo 41
F.1.8State ot the graph after 11. request of robotics demo 42

2

Abstract

In order to deliver end-to-end services, virtualization providers must cooperate to overcome
their physical and virtual boundaries. Federation or hierarchies of autonomous systems will
emerge where customers will receive single stop shop global service offerings. The under-
lying orchestration system (virtualization management), however, must support custom
operational policies, request aggregation and de-aggregation, constraints on resource or
service level performance indicators, etc. Since requests in these systems do not travel
unaltered vertically through the layers, but rather are aggregated together, subordinate
systems must employ mechanisms to separate (likely) independent sub-requests in order
to maximize their freedom in resource allocation. Additionally, requests are usually formu-
lated as updates (change set) over an existing configuration (see netconf[RFCxxxx]).

The resource allocation problem can be formulated as a multi-constrained graph alloca-
tion: a service graph must be embedded into a given topology of resources and capabilities,
where the service graph consists of capability typed vertices and edges with local, segment
or end-to-end constraints (e.g., end-to-end latency).

Under such conditions, the construction and the continuous reconstruction of indepen-
dent allocation graphs based on incremental aggregated inputs is highly not trivial. Such
separation provides base for the constraint based embedding but also to debugging and
visualization tools, when an overview of end-to-end services across autonomous systems
and orchestration layers are needed. For example, it is highly non trivial how to follow
embedded encapsulations in order to recover individual services over aggregated network
segments.

3

Chapter 1

Introduction

Today 5G slowly comes into play so as Network Fuction Virtuailzation[5] which owns an
important role in 5G’s approach. In this chapter we would like to give a high level picture
of Network Function Virtualization to be able to drill down into the specific subtopic this
paper is about.

1.1 Network Fuction Virtualization

The main idea behind Network Function Virtualization follows cloud approaches but they
are transplanted into network solutions. This topic is very common today however there
are several challenges appearing when talking about such a system. It assumes we can
access all the benefits derived from cloud considerations in networking if we replace current
hardware based network functions to software based ones. In case we do so a whole spectrum
of adventages come into play which can be beneficial both for service providers and the
customers.

Today sarting a new network function can be a complex task and entails several chel-
lenges in the system. Thanks to the current workflow of launching new network services
it needs widespread knowledge and may requires high amount of cost to complete beacuse
the concrete infrastructure is involved in the process. Also a pressing factor can be the
contantly growing complexity of network functions.

Figure 1.1: Difference between present-day and NFV approach

4

The difference between the current and the Network Fucntion Virtualization approach
can be seen on figure 1.1. in details. On the left side you can see the present-day satus
which shows individual and hardware based newtork functions. While the right side depicts
scheme behind Network Fuction Virtualization: there are only general purpose computers
in the system and all functionality realized in software. In term of Network Function Vir-
tualization we can apply a cut between physical infrastructure and the Network Functions
based on the separation described before. The first one in often called Network Function
Virtualization Infrastructure or NFVI and contains the underlying network and devices
whilte the latter is Virtual Network Function or VNF refering to their software based
manner.

This new stance carries numerous benefits which can save time or even money for the
infrastructure owners. One example for that relies on the financial costs of the infrastructure
itself. There is a high gap between the price of general purpose servers compared to some
task specific devices. So as at maintain cost of the mentioned hardwares what can be
reduced also. In case of maintainability there is not only cost reduction can be achieved
but the time and complexity of upgrading or fixing can be lower because we can think of
these tasks as software updates now. There is the possibility for testing the Virtual Network
Functions in the real environment which is not that trivial in case of the old approach. An
important adventage is the versatility of the system which makes possible to act upon to
the almost real-time utility.

However these adventages makes Network Function Virtualization attractive there are
some challenges which has to be solved. These are described in the following bullet points:

Compatibility Through the process of switching between concepts the legacy approach
must be supported without trade-off.

Performance A software running on general server can never be as fast as a dedicated
hardware for that task. Altough there have to be a way to minimize this performance
loss.

Simplicity We aim to create an easy to use system in general so clarity should be on top
of the agenda.

Security Refering back to cloud computing there are several security issues have to be
considered.

Management Important job is to manage virtual functions in an optimal way.

1.2 Motivation

In this section we would like to describe the incentive behind this new approach and palce
it in the network nunction virtualization workflow. As it was mentioned before in NFV we
would like to create software based network services and depoly them on general purpose
servers. These servers must be conneced together especially because we work with them
in a 5G related project. In this case the underlying infrastructure can be imagined as a

5

network of servers with the servers themself and the network links among them. We would
like to provide a simple way for starting new services in the system but this infrastructure
can be quite complex. It can contain several subparts built upon several technologies that
results a hard job to deploy these service requests to proper places what is all against the
goal to keep deploying simple. To avoid dealing with these wide range of technologies there
is an option for creating an abstraction layer over the physical infrastructure. As a result
the actor who sees the whole topology can show a simplified picture of the infrastructure
where there is enough knowledge for someone to be able to send a service request. Because
this request is defined on the compressed picture of the topology the actor who simplified
it have to make a mapping back to the extended physical infrastructure which procedure
is called orchestration. Also it is possible to apply abstraction over the already compressed
infrastructure view in many levels until only one infrastructure element is shown.

Figure 1.2: Abstracting infrastructure in several levels

Figure 1.2. depicts this abstraction through multiple levels. On the very bottom of the

6

figure there is a detailed view of some topology. Not neccesarily the physical infrastructure,
altought it can be. The dashed box encapsules the elements abstracted in the next level.
While the lower level contains 5 elements in this basic example on the next level there are
only 2 elements shown thanks to the abstaction. This can countinue over numerous steps
and at the end maybe one homogeneous domain will show up.

As service requests starts to come in they can build up a chain of individual services
defined between two fix points of the infrastructure. These fix points also serve as the base
of the orchestration where the upper layers compressed view can be connected to the lower
level detailed view. These fix points appear on both views as the services can be accessed
through these points and this is why we call them Service Access Points or SAP for short.
These are assigned to a general purpose server on the bottommost level or to be exact it
is a port of a server where services can be accessed. As we start to add abstraction over
the topology these ports start to transform into a logical element in the view of the actual
level.

An other aspect of the system to consider is its distributed manner. Each actor in the
network can show the abstracted view to several other actors who may want to send service
requests. These actors can stand for their own domain which can contain several elements.
We can think of domains like technically different groups supervised by an actor. Because
of this decentralized operation service requests can come in from several places at the same
time. This is important to notice these individual requests based on the same view of an
infrastructure. When we try to define service chains we can step over the boundaries of
domains what results a chain which consist of several partial requests from different actors.
However these requests arrive in multiple parts we would like to follow them and find out
they are coherent.

Figure 1.3: Example for a service chain between two SAPs

As it was mentioned before individual services can be connected together to form a
service chain. These service chains can be accessed through SAPs, however they may not

7

use the shortest path between the start and destination point because of other preferences
orchestration have to deal with. These introducing factors can be for example the provided
capability of a server which determines if it can run a Virtual Network Fuction or not. There
also can be requirements for resources like memory storage or computational performance.
As a result these service chains may pass through several servers and links until they reach
the destination SAP.

To provide human-processable representation of the infrastructure, applied abstractions
and service requests a visualization tool was created which also generated the Figure 1.3..
In this tool the visualization of these service chains take great part in distinctness of images.
It is easy to see each layer can be represented as a graph what visualization is also based
on. The arriving different requests for services most of the time does not contain complete
information only some partial data about where to put elements exactly. This is because
of the system works in a distributed way. On the one hand these individual requests must
be aggregated into one graph that represents the infrastructure. We must also be able to
show individual service chains based on the aggregated view of requests and on the ground
of local decisions. The algorithm detailed in this paper provides a real-time solution for
that problem.

1.3 Precedent Use-Case

In this section we would like to present an example use-case when this algorithm is applied.
This demo setup also used by Ericsson to showcase the 5G Exchange project because of that
the requests shown here saved from a real run of the algoithm and the underlying network.
To simulate this old run for presentation purposes requests sent by simulated source senders
but over this difference the process is the same from this systems perspective.

Figure 1.4: Basic setup of robotics use-case

In this setup there are 4 domain orchestrator actors take place. These can orchestrate
their own domain then send requests to the system. These domains are interconnected

8

through SAPs in a defined way which is shown on figure 1.4. As you can see the domain
orchestrators can own two kind of infrastructure nodes: one is a Docker Container and
the other is an SDN1 network. There are two additional actors appear called Robot1 and
Robot2. These were balancing LEGO robots with two wheels and tried to stand on those.
To perform this balancing they had basically a balancer service or a proportional-integral-
derivative (PID) controller. The robots can access this network through the SAPblue and
SAPred ports in SDN4 and SDN1 nodes. As you can see on the figure there are the two
virtual network functions (1-PID23 and 1-PID13) and the robots can access them with
their own service chains. Later this will be extended with most complex requests.

1Software Defined Network

9

Chapter 2

Design

This chapter aims to describe the components involved in the algorithm and the method
itself. As described before the algorithm runs on a graph representation of the unerlying
network or its abstracted view. To create the graph there should be a clear mapping of
network elements to the constructed graph. First of all we have to identify what elements
we will include in the graph. Through this chapter all required elements will be described
in details.

2.1 Requirements

The goal of the algorithm is clear however there are some additional requirement towards
the implemented software and also important to define the existing ones.

Creation of graph

The algorithm have to create a graph from the incoming requests and should be able to
maintain it based on other incoming requests. These requests may associated with the
underlying network or with virtualized network functions.

Service chain

Within the algorithm independent service chains must be identified however they are may
not defined explicitly. This can happen by following defined paths between SAPs while we
become able to visualize the graph and get adventage for some graph management steps.

Distributed environment

Requests may come in from different senders who only knows their own part of the system.
Because of that in the recieving server these parts must be combined together to be able
visualize the intresting interdomain service chains.

10

Local decision

One of the most important feature it has to fulfill is the handling of requests with only
partial information. The individual requests must be aggregated but at the same time the
service chains must be discovered based on only local informations. Through the next sec-
tions we will introduce all the components involved during the execution of the algorithm.

2.2 Infrastructure Node

The main units that can serve Virtual Functions are called Infrastructure Nodes in this
environment. We can think of servers as infrastructure nodes so as their abstracted logical
identities. However these elements carry many essential information they do not appear in
the graph directly. Althought are stored and at the end of the algorithm a visualizable seri-
alization of this graph is created where these element take place. This is neccessary because
without infrastructure nodes the visualization would be meaningless. On the visualization
they are marked with green squares.

2.3 Ports

Port appear on two levels: once Infrastructure Nodes are connected through their ports
together. Second virtual network functions also own ports to be able to connect them to
their infrastructure node. After an abstraction these ports are rather logically called ports
than they really are. There is no limit for the number of ports an infrastructure node or a
virtual network function can have.

SAPs are special ports as described previously. These ports can mean a start or a
destination port of service chains while also play important role in abstraction. SAPs can
appear both at an infrastructure node and a virtual network function however in the latter
case they only have meaning inside the system. An other task SAPs have is to connect
infrastructure nodes and virtual network functions together without concrete links between
them. The need for this option derives from a higher level in this project.

Ports are marked with red circles on the visualization and they belong to the closest
containing node in the hierarchy. So if a port is contained by a virtual network function
and an infrastructure node also it is in term of virtual network function.

2.4 Links

Links are connecting infrastructure nodes together to present a network of them. If infras-
tructure nodes appear inside the same domain they can be connected via links directly. In
this case these links defined inside the request that responsibe for creating the proper part
in the graph. Althought links can be defined through SAPs as mentioned in section 2.3.
The service chains later can only follow the paths defined by these links as prohibited to
go directly between not connected infrastructure nodes. Most of the time these links are
multidirectional but in the graph we assume them to represent only one direction. As a

11

result usually there are two edges between connected infrastructure nodes showing the two
way permeable manner. Links are displayed with black arrows between the proper ports
inside the connected infrastructure nodes.

2.5 Virtual Network Function

Virtual network functions are virtualized services that actors can deploy on infrastructure
nodes and then they can be accessed through SAPs later. These can be anything from a
firewall to a Content Delivery Network or a routing service. However there are numerous
variants available from virtual network functions the type of a virtualized function is irrel-
evant from the perspective of this task and the work of the algorithm. In the workflow we
have to take care of the localization of virtual service and the accessibility of them.

A service chain denotes this two approaches together: the deployed virtual network
function on the defined infrastructure node and a path between the given SAPs where the
virtualized service can be accessed on. Additionally there is an option to define not only
individual virtual network functions but connect multiple of them on a service chain. In
this case we also have to construct a path which goes through not one but many virtual
services before it reaches the destination SAP.

When someone plans to start a virtualized service he has to deploy it on one of the
available infrastructure nodes. If the requests defined on an abstracted view this task leaks
down on the abstraction topology and affects the orchestration method. One way or an
other virtual network function have to be deployed on a proper infrastructure node with
the other virtual functions in the service chain. They can be deployed on any combination
of infra nodes - together or completly separated - until the path can follow the defined
orders. However this concept is important to understand the algorithm only comes in after
this procedure when all virtual network functions have the proper place where they are
deployed and the path is planned to and from SAPs. Virtual services are marked with blue
squares on the generated images with red ports in it if there is any.

2.6 Flowentry

There were less word about what is inside the infrastructure nodes or how VNFs deployed
in this theoretical level. When we place a virtual service on an infrastructure node it has
to be able to connect to the SAPs or to some other VNFs. Within infrastructure nodes
special rules can define connections between ports. These rules are called flowentries. By
the help of them we can connect VNFs’ port with the port of the containing infrastructure
node. These rules are carrying an important concept for the algorithm. When constructing
a rule to connect two ports we have 4 parameters to define:

• Start Port The port to connect with an other. As the connection is unidirectional the
orientation must be set here.

• Destination Port The destination point of the connection.

12

• Match In this parameter we can filter the data by an attribute which is called Tag.

• Action Here some tag modification actions can be performed. These actions will be
detailed later.

By filling these parameters with exact values we can define a flowentry which is mapped
into the graph as an edge. This edge will go from the Start Port to the Destination Port
making available to walk from one to an other and will be essencial while chaining virtual
services and identifying them.

Identification of services is also based upon the tags used in the system. As VNFs
deployed and connected together somehow the data have to follow service chains and can’t
be mixed with other service chains permanently altought they have to be aggregated to
commonly use links between infrastructure nodes. There are complex rules for tag handling
but these will identify the service chains.

2.7 Algorithm

At this point all of the concerned components are described and the requirements of the
result are defined. In the remaining part of this chapter we would like to present the
design procedure of the algorithm that is able to fullfill all described before. Until the
end of chapter all important steps will be detailed about the method however in 4.1 it is
illustrated on a concrate example which is in association with the use-case presented in
section 1.3

2.7.1 Borders of Algorithm

To create an algorithm for a proper task it is neccessary to determine the boundares, inputs
and outputs of it. This subsection would like to describe the responsibilities of the system
components and tries to introduce the input and output materials the algorithm will work
with.

Figure 2.1: Boundaries of the system and involved actors

The main workflow of the system depicted in figure 2.1. Our algoritm works wrapped
inside a server which waits for requests on a defined address. Request data arrives from

13

several senders who can only know its own domain so the information only covers the related
infrastructure nodes, VNFs and other network elements. However these domain specific
infrastructure nodes can be interconnected through their SAPs as detailed in section 2.3.
Also these incoming requests contains additional information over the payload where they
can specify an attribute called layer. As not all requests cohere together this attribute
provides a way to separate the different layers. Sometimes these layers can be mapped
to the abstarction layers but this is not neccessary. If different requests come in with the
same layer they have to be merged and check for available SAP connections which is the
algorithms responsibilitiy. One Source Sender can send requests into several layers if it has
the knowledge for that.

As these requests arrive the Queue Server component orders them by income time and
feeds the algoritm as a linear stream provider. This happens separated by layers because
the server maintains individual graph objects for each of them. The algoritm always runs
per layer and per every request altought not every input data contains change. The request
processing step is followed by a serialization task where the chagned graph stored in a file
which acts as input data for the visualization. Important to notice that Queue server during
the preprocessing step creates a difference graph of the actual status and the request where
determines what to create and what to delete within the graph instance.

Requests arrive in XML1 format which is parsed and preprocessed in the Queue Server.
This parsed XML object passed to the algorithm to work with. At the end of one processing
cycle the serialized data generated in JSON2 which is easily readable for the visualization
tool. The serialization process is responsible for providing the exact format the visualization
server can work with.

2.7.2 Patch the graph

Now all the input data is described and we are familiar with the expected result also. After
that we can walk through the steps required to achieve the goal we marked out. We know
that the input data for the algoritm is a reduced and preprocessed XML representation
which is parsed into an object. We also know what operations we would like to execute on
the individual elements. At this state the algoritm supports two of these operations: one
for creating and one for deleting elements from the topology.

According to this we process a request operation by operation. But not this is the
smallest element we work with. It is easy to notice the elements of the network can be
considered as a tree also that is why XML works well to store this data. On the top level
there is a layer where we interpret this. Within a layer there are infrastructure nodes also
they can be connected together with links. We can think of the SAP defined connections as
specially assigned links in this case. Inside the infrastructure nodes on the one hand there
are the ports of the node. On the other there can be VNFs deployed on them which can also
contains ports as described before in this chapter. The connection inside an infrastructure

1Extensible Markup Language
2JavaScript Object Notation

14

node is defined with flowentries which can be considered as a part of the node this way.
These relations illustrated on figure 2.2.

Figure 2.2: The theoretical tree of network elements

Incoming requests can contain operations refer to any of these elements. For example
when some infrastructural report arrives (e.g. a new infrastructure node is available) the
a create operation will come in to the proper infrastructure node. However if some virtual
service is stopped the system gets a delete request which points to the virtual function
inside an infrastructure node.

According to this the requests can be processed not only diversified by operation but
along individual elements also. If we follow the exact procedure of identifying operations
and elements we can construct the flowchart shown on figure 2.3. Here we can see how the
input called diff object is processed within the Patch function which means the entry point
for the algorithm. The procedure works recursively to fit perfectly for the tree-like manner.
First we check if we already found on operation or we are still in the root. If we didn’t do a
search for the next element and the belongign operation. If we can’t find any the processing
ends as we are done otherwise we call the Patch process again with the found element and
operation which will result the first condition evaluated true this time. Then we check if the
actually processed element is a graph element or not. We already defined what elements
are stored in the graph but notice these are equivalent to the elemetns shown in the tree
(Figure 2.2). If the element we processing is one of them we continue the processing in the
graph element related patch function. This step is responsible for the extendibility of the
algorithm with other network elements. We let each element to know from itself what it
requires when creating or deleting one. To give an example: if we are currently processing
a create request for a virtual network function we pass the diff object and the operation
type (create) to the proper specific patch method and let it perform the task itself.

If this step finished or the actual element is not from the stored elements then start
to process its children recursively if it has one. Important to notice at the beginig of the
patch we only process the request by operation and by element that means we don’t get

15

Figure 2.3: Flowchart of identifying individual elemetns and belongig opera-
tion

the children of an element if the operation comes to the parent. Consider the following
example: we get a request that aims to create an infrastructure node with two ports. In
this case the only element we get is the infrastructure node itself and not recursively its
ports. Althought we want to process them so after we finished the creation of the parent
object (the infrastructure node in the example) we recursively have to process its children
by calling the same patch function on them recursively.

16

Inside the patch function of a proper graph element the only thing we have to do
is decide what operation to perform and then continue the appropriate method. These
methods will be detailed through the next sections.

2.7.3 Create operation

Creation of network elements naturally depends on what kind of element it is. There are
some of them which is easy to create and others what requires a complex method to do so.

Infrastructure Node

This is one of the easiest element to parse because it is not stored in the graph only
stored in a radix tree. This data structure can fit perfectly for storing tree type data.
We use the path of nodes as their ID. In this case we can utilize the benefits of a radix
tree data structure. To make it clear think of the next simple example: we have only one
infrastructure node with two virtual services deployed on it. Call the node IN1 and the
virtual network functions VNF1 and VNF2. In this simple case the radix tree will be shown
on figure 2.4.

Figure 2.4: Radix tree of the example

If we would like to access the VNF1 element we stored we need to know its ID which
is /IN1/VNF1 in this exmaple.

Beyond that we only need to parse the attributes of the infrastructure node instance
like ID or its name and store it in the tree.

Virtual Newtork Function

As this way included in the previous example it is easy to notice virtual functions will
be stored with the same techique as infrastructure nodes. The only differenc here is in an
additional attirbute. There is the possibility to define the inside links within the virtual
service. As it is only an option if this not happens the algorithm tries to handle this. If there

17

are multiple ports and links are not defined by hand the algorithm assumes a full mesh
work inside the virtual service. Altought tries to keep the number of links on minimum so
insted of creating all edges at virtual service creation, the links added dinamically. This
means when we define an incoming flowentry (a port of the virtual function is a destination
port of a flowentry) we also define the edges between this very port and all the others in
the virtual service. If links defined by hand there is nothing much to do but we have to
create those edges. As a result service chains can only use these edges. It is important to
store the information about a virtal function if its edges are added automatically by the
algorithm or defined directly to be able to keep up dynamic processing of links.

Port

Parsing ports both of infrastructure nodes and virtual functions is a cardinal step as the
graph works on them. However beyond parsing data of ports there are two steps to high-
light: one makes ground for a later approach while the other one is the interconnection of
infrastructure nodes via SAPs.

Figure 2.5: Flowchart of applying create operation on a port element

To be able to perform the latter one we maintain a dictionary of SAPs and when

18

a newone comes in check if we have to connect it somehow. The detailed procedure of
this step shown on figure 2.5. We start with a parsed port element which contains SAP
information. There are two information we need here: one is the SAP id which base of the
connection between two SAPs. The other one is the SAP type which can be provider or
consumer. The rule for these parameters is that we can only connect two SAPs if they own
different type but the same SAP ID. If we follow with the figure the next condition we
have to evaluate determines if there is a port added previously with the same SAP ID. In
case of no we have nothing to do only store the port to the proper array with SAP ID as
key. If there are already ports in the graph with the same ID we iterate through them and
check if the rule is fullfilled or not (yellow condition). If no continue with the next port
otherwise we apply the same steps to the individual ports of the found SAP pair. If there
is no link to any of the direction defined by hand we construct this link and add it to the
graph. After that we continue the iteration on SAP pairs.

At this point we also set a variable that stores the base of each port which will make
sense later but now notice is is same as the port ID and it remains unchanged. This value
called base port for a later created port.

Link

Parsing links is an easy operation again. We only get data from the preprocessed request
and construct an edge with the proper attributes. Then create an edge between the defined
ports of two infrastructure nodes. These added edges will supplement the links added based
on SAP definitions.

Flowentry

The most complex element creation procedure is in the flowentry creation by far. The
flowchart is on figure 2.7.

First we get the parsed data of the input flowentry which means we retrieve the start
and destination port and the match action values also (detailed in 2.6). Then we check if
the match value is defined or not. Here comes the essential idea of the whole algorithm.
Cloning ports will play important role from now as this will help in separating service
chains. The main idea behind it is when a service chain (defined through a flowentry)
arrives to a port instead of connecting the flowentry into the port it was defined to we
create a clone of that port along some rules detailed in a second and connect it into them.
The rules are constructed a way that ensures: two different service chains will never go
through the same exact port. Instead they will both have a cloned port which they hit
with their paths. The first rule is in association with the match field: if we match for any
tag we create a clone port or the Start node of the flowentry. See an example for port
cloning on figure 2.6. In this very simple example we assume there are two infrastructure
nodes IN1 and IN2 and they have the numbered ports connected in one direction. Here
we would like to create a flowentry between IN1-1 and IN1-2 ports with a given match tag
"A". In this case instead of adding an other edge between IN1-1 and IN1-2 we create a

19

Figure 2.6: Example for cloning a port 1.

clone port of IN1-1 and add the match tag to its id with a separation character say "/".
To keep the figure clean only the end of the ID id displayed the other can be constructed
based on the element tree walking from the root to the current element. Later we expand
this example as we move forward with the flowchart.

Figure 2.7: Flowchart of applying create operation on a Flowentry element

The next important step is depicted as count follow tag its flowchart can be found on
figure F.1.1. Here some additional information required about what actions can we perform
on tags. On the one hand we can push a tag to separate data from other and on the other

20

we can "pop tag" to concatenate it again together with all the data. The match fild filters
for these tags if it is defined. In this step we need a tag we want to follow to identify the
service chains. If the action is to pop the tag we the follow tag will be undefined to sign
we would like to follow the default chain. If action tag is not defined within the request we
avoid changing anything so follow the original tag which is in the match we filtered for. If
tag is directly defined in action field we will follow this one.

If the result of the previous thought train is some defined value (Action is not pop
tag) then we have to follow this tag until we can to identify the serveice chain we are
working on. In this case we also clone the destination port of the flowentry to keep the
rules and prevent collision of service chains. To perform this following procedure we created
a recursive function that goes from port to port until some obstacle prevents it from the
next jump or until it connects into a partial service chain which is a supplement part for
the current one.

Figure 2.8: Recursive method to build a service chain path

21

The name allocaion path in this context equivalent with service chain paht. We are
currently adding a flowentry to the graph while we had to clone the Start port to be able
to separate the service chains and now we build this chain until we can. We determine the
base port of the current cloned port which we got as an input. Now we run a depth first
traversal on the graph and apply some steps along the path until some conditions evaluated
ture. If follow with the flowchart we can see the start of an iteration on the neighbor nodes.
If there is any of them we check the edge towards it for two contitions: edges can only carry
given set of tags on them so we need to check if the current tag is among them. On the
other hand it is important to avoid circles and to keep the path short we try to push
out the service chain from the infrastructure nodes so it can only follow altering type of
edges: once it goes through a flowentry next it can only follow a link (links are between
infrastructure nodes and inside virtual functions). If any of these conditions fails we can
not got towards the neighbor so we have to check other ones. If we can continue this way
we calculate the extended ID of the neighbor port. This mean we guess what would be
the ID if we would clone the neighbor port without actually performing the copy method.
Then we check if this ID is already on the graph because in this case we can connect the
current port to this negihbors cloned port which also connects this service chain into an
other part what was constructed previously. This also results a cut in this branch of the
search and we can countiue with other neighbors. However if the guessed ID is not appears
in the graph we have to clone the neighbor and apply this methodology recursively with
the new entry points (this port and the neighbor). If this recursion is done so the path is
built until it was possible we only connect the currently examined node to the neighbors
cloned port and continue with other neighbors.

If we go back to image 2.6 and apply this on that example after we cloned the first port
we go through the following steps. Assume that the action here was undefined which means
we follow the match tag what was "A". Then we have to clone the destination port which
is IN1-2 So we create a node with IN1-2/A ID. Call the build allocation path recursive
method and keep in mind we used a flowentry this time so next we can only go on a link.
There is a neighbor of the base port which is reachable (assume the link can carry the
tag "A"). Then we guess the cloned ID of the neighbor port what will be IN2-1/A. We
see there is no port with this ID in the graph so we have to add it. Now we do it again
recursively: we can also reach the neighbor which already has the cloned port. In this case
we don’t go deeper: only stepping backward we conncet the path until the original port.
At this point the path is extended as mutch as it can be. Note that the dashed lines on

Figure 2.9: Example for cloning a port 2.

22

the figures are only logical relations these are not edges in the graph. We can now add
all the network elements into the graph or store it somehow in paralell with the graph
maintenance. If we follow these rules and methodologies the graph will step alter between
consistent states only.

2.7.4 Delete operation

To provide the functionality of not only adding elements to graph but to delete them also
we have to support an other operation. When the request contains an order to delete some
elements the entry point for the algorithm remains the same: the patch function. Everything
goes as in case of a create operation until the element related patch methods choose to
apply delete proecdure instead of create. Althought every graph element responsible for its
own removal to keep up the easily extensible worlflow.

Infrastructure node, Virtual Function

As these elements are not stored in the graph directly their removal is easy and similar at
most points. If we would like to delete one of these elements for a clear remove we have to
first iterate through the children of this virtual function or infrastructure node then we can
safely delete the element itself. The maintained radix tree also has a good support for that
method: to remove all children it is enough to iterate over the cildren in the radix tree. If
we do so we can delete all children once. The only problem we have to deal with comes
when we try to delete an infrastructure node which contains a virtual network function
with port in it. At this point a sequence of deletes can come up where the virtual service
deletes its children and itself however after that its port also notified to delete itself. To
avoid this we have to examine if the element we would like to remove is since on the graph
or not.

Port

Next we have to deal with is the removal of a port what has some common steps with
removing a flowentry as they depend on each other.

The flowchart for removing a port appears on figure 2.10 where we can see how flowen-
tries involved in removal of a port. The first thing we have to examine is if any flowentries
are concerned about delete of the port to be concrete we have to check if the port has
incoming or outgoing flowentry. If the asnwer is no we can simply remove the port itself
from the graph. At this point we assume removing of a node from the graph entails the
removal of its all edges which can be a link in this context. If we have a flowentry on the
port we have to decide whether it is incoming or outgoing one. In both cases we remove
the flowentry with the later detailed method but if the flowentry is an outgoing one we
have to perform a process called dismount allocation path. This method can be thouth of
as the reverse of the build allocation path function. This recursively removes the service
chain while it can.

23

Figure 2.10: Flowchart to remove a port from the graph

Flowentry

As the flowentry was the most complex element to create it is the most difficult to remove
from the graph. When we start the removing procedure the first what we have to examine
if the indegree of the start port is 1 or more. If it is 1 we have to delete the port because
this flowentry is the only reason this cloned port is in the graph. However if the source
port is not added by the algorithm we can’t delete it. Than we have to reverse the build
allocation path procedure and dismount the built path. The exect steps of this method can
be seen on figure F.1.2.

2.7.5 Remerge

At this point we have a graph algorithm that can create the graph and also delete from it
to statisfy requriments defined previously. However if we examine the building graph we
can see this is actually a set of disjoint graphs separated along the service chains with lots
of cloned ports and their base ports which only hit by service chains if they don’t have any
tags. The question is how to create again a joint graph which contains only the ports were
defined by the requests.

To perform this we only have to iterate ovel all of the ports in the graph and check
if it is a cloned port or not. If it is we find its base port and reconnect all edges to that
makred with a mach-action pair to be able to differentiate them. If we passed all links and
flowentries to the base port we can simply remove the cloned port from the graph. For the
visualization purposes before this remerge step we assign color to each disjoint graph in
the set and color its edges.

24

This step ends the workflow of the algorithm where we ended up with a graph we only
have to serialize with the neccessary data about it. We saw how requests from multiple
source senders arrive to the algorithm input and get familiar with the graph built up
from these files. The idea behind service chain identification was also described so as the
remerging to a visible form of the graph. This is an important result in the project as we
can now discover cross domain service chains based on only local knowledge of each domain
orchestrators.

25

Chapter 3

Implementation

In chapter 2 we introduced the algorithm with a detailed but only theoretical approach.
Now we describe what technologies and tools we used to create a working system from the
theory.

The main language of the program based on python 2.7 to fit it into the parent project
which also uses this version. With these borders of the system where there are two con-
nection points to the outter world and both of them is a file we are language independent
form other projects however python is a perfect language for creating prototypes as it is
high level enough and has a great community support as a result almost everithing was
needed to create this algoritm was already impelented in some packages.

We don’t have to talk much about the radix tree package called pygtrie[3] which sup-
ports all functions we required. It provides option to store elements at every node of the
tree what we can utilized. It also able to give back all children under a given node what
was benefitial at infrastructure node or virtual function removal.

3.1 NewtorkX

A more complex package we used was NetworkX[2] which is a graph library to work with
graphs. It supports many features what was useful through the implementation period.
To see the how class hierarchy built up take figure 3.1. In this image you can disconver
how the model of individual element structure applied and stored in the graph. On the
right side there is the hierarchy which represents the network elements: basically there are
two types of them. A set of elements mapped for nodes in the graph others will create
edges instead. These all can be inherited from a common class called Graph Element. As
there is no abstract class in python we use this class to notify inherited classes to override
patch function by throwning a not implemented exception. Here we define ID and Name
what attibutes are associated with each element in the graph. Now depends on edge or
node created from an element we can inherit from the proper class. To do so we have to
implement Patch function to support create and delete operations right now. We have to
define what steps should be performed in case of these operations.

On the left side near this element tree we can see the other components of the system.

26

Figure 3.1: Class diagram of python implementation

There is the YangGraph class which coordinates the whole process on the graph. Also the
graph instance itself is stored within this class so as the radix tree and the parent nodes.
The latter one contains the infrastructure nodes and virtual services as they are not in
the graph but we need them through the creation procedure and at the visualization also.
We can see from the figure this class uses EdgeNX and NodeNX classes to store. It only
cares about this difference the other details are irrelevant here. The type of the concrete
instance only determined on runtime and there the proper patch function will be called.
By only keeping this function as an entry point we aimed to keep the program as extensible
as possible for the future element types may come in later.

We can also recognize the inheritance from the NetworkX class. In a previous version
the usage this package happened through a class variable what instanciated the package
class. By this approach change we achieved several benefits as we can acceess all function
right in this wrapper class instead of its variable. We can use YangGraph class as a graph
itself while we can override any neccessary function. We extended the methods with some
others depicted on figure.

On the very left side there is the Queue Server which uses this class and keep this kind
of graph up to date inside. These graphs are associated with layers as detailed before. This
is how these classes work together to perform the algorithm.

3.2 CytoscapeJS

After running the algorithm we would like to evaluate the constructed graph what requires
some kind of representation. The fastest way to process graph information is maybe through
visual data. In this case we need a graph visualization library that can draw these special
graphs. However NetworkX owns a builtin visualization based on mathplotlib it has small
set of options and doesn’t provide an interactive interface.

We decided to use a graph visualization tool but also implement it in a web-based

27

environment. The main requerements toward this visualization was an interactive operation
and to support hierarchical visualization as infrastructure nodes, virtual services and ports
are considered as a hierarchical tree (see figure 2.2). After trying several tools we started
work with cytoscape.js[1] which fullfills all of these requirements. We just had to set some
properties and generate the requred data structure and the visualization was ready and
interactive.

We used the Tornado[4] python package to implement the webserver. An additional
responsibility of this component is to monitor the input file with a given frequency. As
the algorithm only serialize the graph into the same file again and again somehow we have
to detect changes. To perform this the webserver generates a hash value of the serialized
graph at every 500ms and if the hash changed there was change in the file.

The user interface has playback support also which means the changes are stored and
can be replayed and analyze individually. Also the graphs are separated along the layer
attribute. With these functionalities the visualization tool currently provides the following
user interface.

Figure 3.2: The graphical user interface to visualize the result of algorithm

An important benefit of cytoscape is to easili extensible with third-party layout algo-
rithms. Also there is a way to define a layout by hand. In this setup a hybrid solution
works and we can chagne between the two on the right side of each layer.

3.3 Queue Server

This server coordinates the system from recieving requests through the execution of the
algtorithm to the serialization. This server was also implemented in pyton 2.7. To power
up the system we have to start this server and to see the results the visualization webserver
also. When this server is up and running it is ready to recieve requests at a given port and
IP address. When these start to arrive the server order them by time and starts to process
them. After recognizing the layer they belong to it calls the patch function of the proper
graph instance. However this is currently not implemented we can expect a growth in the

28

performance if we apply paralell processing by layer. Other point where we can consider
multi-thread approach are mentioned at the Evaluation chapter while we are searching for
performance bottlenecks.

29

Chapter 4

Evaluation and Validation

4.1 Robotics Example

The robotics use-case mentioned in section 1.3 provides a great opportunity to test the
algorithm. Now we can understand this in details, follow and identify the steps of the
algorithm based on the visualized data.

There are 3 type of virtual services which will be deployed on one of the infrastructure
nodes. One is to help balance the LEGO robot, and two additional to help share these
virtual services: a splitter and a PID Helper virtual function. There are also two marked
SAPs the SAPblue and the SAPred where the robots can access the network. The requests
can come in from 4 source senders as there are 4 domains in this setup. Please note some
of the steps are only included in the appendix.

If the request start to arrive from the working system components we first recieve infras-
tructure information which means the domains notify us about the available infrastructure
nodes and the connections between them. As all of the requests arrived in association with
the infrastructure we get the following state:

Figure 4.1: State ot the graph after 2. request of robotics demo

After that in the demo the first virtual was deployed on Docker Container 3. It was
a PID controller with two flowentries defined: from and to the SAP23 port. Figure 4.2

30

depicts this step on the right side of the picture. On the next requests two flowentries were
requested within DC1 which caused changes on the left side of the image.

Figure 4.2: State ot the graph after 4. request of robotics demo

If we examine the first request of this two we can identify the steps of the algorithm:
On the one hand we created a virtual service with a port inside it. Then we created the
defined flowentries with red color within the DC3 node and if we remember to the flowentry
creation shown on figure 2.7 we can recognize why there is an additional red edge if we only
requested two flowentries. This is the result of the build allocation path recursive function
because the destination port of a flowentry had available neighbors. Also important to
notice that the flowentry is logically not connected into the SAP23 itself instead it ends in
the clone port of SAP23. This also true for the port inside the virtual function. The figure
we see is only the result of the remerge procedure.

Interesting step happened on the left side also. In the request there were two flowentries
with create operation between the two ports of DC1 in the two direction. The match and
action fields of these were not the same. Two thigs have to be considered here: once we
can see again how the allocation path is built across the available link and however the
backward link is also available the edge types must alter on the path so the recursion stops
there. Second we have to notice the two different color we see. In the logical graph these
two path parts are disjoint nevertheless they are connected on the drawn graph. Because
the match-action fields are different they will connect to diversified cloned ports. After
coloring these with two colors after remerge we see the expected result.

On figure 4.3 we can again see the result of two requests. In the first one we created two
flowentries within SDN2 between SAP12 and SAP23. As before, the building of allocation
path drilled deeper. Not stopped because of altering edges conditoin but because it found
the cloned port and only connected the current one into it. Thanks to the similarity of
match and action pairs now the two partial path connected together which means in the
logical graph they are not disjoint anymore. The other is easy to see: in SDN1 we requested

31

Figure 4.3: State ot the graph after 6. request of robotics demo

for two flowentries between SAP11 and SAPred to connect the service chain to the access
point where the robot can access it. Now we got one PID deployed and connected with a
service chain.

On the next step we repeat this but in different order. First we create flowentries in
SDN4 between SAPblue and SAP44. They will appear with different colors as the match
and action pairs differ. We can also see the build allocation path working. Than we deploy
the second virtual function within DC4 node and connect it with flowentries to the proper
port. The aggregated result of this two steps will be two completly separated but one-by-
one joint allocations. That state shown on figure 4.4.

Figure 4.4: State ot the graph after 8. request of robotics demo

Here comes the interesting part: we start an other virtual service within the DC3
however we want to separate it from the previously built service chain. First of all we create

32

a service on the proper node and connect it with the other service with two flowentries.
We use match and acition fields to separate the service chain when we connect it to the
SAP23 port. To achieve this we have to push an unused tag to the flowentry right before we
connect it to the common port. Also we have to filter with the match tag for the flowenty
coming from the common port to the service. The result of these steps shown on figure
4.5. Here we can also see how the recursive function added an extra edge. Note here the

Figure 4.5: State ot the graph after 9. request of robotics demo

three colors: one is the original red stay unchanged. Second is the green which represents
the outgoing data from the virtual service and the important result is the separation of
these chains on the link between SDN2 and DC3. The next virtual service we would like
to start is a splitter funciton which will be deployed on SDN4. To complete the service
chain we create two flowentries in SDN2 from SAP23 to SAP24 where we can continue the
path to SDN4. The build allocation path method will extend it with two additional edges
on the two concerned links. Now between DC3 and SDN2 there is a service chain with
two directions colored with red and two other disjoint partial service chains with one and
riverse directional edges.

Now we deploy the splitter and an other PID Helper near the other PID Controller
and we also define flowentries to connect them into a service chain. The splitter sheperds
the data into two directions. Here we can also recognize the smart link addition inside the
virtual service. While in PID Helpers it was defined by hand there is no link within the
virtual function here the links added automatically as soon as it is neccessary. We can also
notice there are no unwanted links between the ports where is no incoming flowentry. The
end of these steps can be seen on figure 4.6. What is important to see here is that there are
three service chains marked with greed purple and red. Sometimes these share a common
link and goes throuh the same port on this visualized graph. Thanks to the algorithm
we can separate these service chains and differentiate with various colors. To perform this
we only use requests from local actors with limited knowledge on the whole system. This

33

Figure 4.6: State ot the graph after 12. request of robotics demo

also means we can use the system as part of a distributed ecosystem where not only one
information source presented.

To validate the work of delete operation take a request which removes the first PID
Helper from the graph. We can see not only the virtual service disappeared itself but the
flowentries connected to it also. In addition we can see the reverse of building an allocation
path: the recursive dismount method which clears up the service chain over the link where
it was defined by hand so it can’t be removed further.

Figure 4.7: State ot the graph after 13. request of robotics demo

By these examples we covered the requirements towards the algorithm an as it was
shown all of them is fullfilled.

34

4.2 cProfile

While the algorithm passed the functional requiremets it is important to analyze the
methodology by performance. cProfile is a profiling tool for pyhton. It measures times
and counts function calls within a script. We made these tests at every notification and to
choose the most relevant we show the one that last longer than others.

In this case we can get the following values:

Number of calls Total Time Cummulated Time Percall Function

1012913 0.680 2.810 0.001 Python deepcopy
35395 0.235 2.785 0.021 Python deepcopy reconstruct
1 0.000 2.625 2.625 Visual serialization
1 0.019 1.413 1.413 Remerge

These are the top few lines of the created cProfile log. In the first and second row we
can see the program calls the pythons builtin deepcopy function more than a million times
and however it runs only 0.001 second as an avarage it costs 2.810 second to perform this
amount of copy. On the third row we can see the longest own function is when we serialize
the data also the remerge of disjoint ports lasts long. It is worthy to consider to transform
these methods to use multiple threads as they can be altered with relative easily.

If we would like to evaluate the performance we can say there are some functions that
lasts quite long compared to others. However these methods’ call time is in order of second
if we take in account the incoming frequency of requests we can still call the algorithm
online.

35

Chapter 5

Conclusion

In this paper we introduced the desing procedure of an algorithm that ia capable to identify
service chains in a distributed orchestration environment. An other important benefit of
this new approach lies in the scope of knowledge what each domain orchestrator handles.
They only familiar with the related part of the infrastructure nevertheless we can identify
service chains within a global range. However at this point it supports all operations those
are essential to fit into the workflow we succesfully kept the exntesibility on a high level.

We also have to keep in mind the performance measurements as this algorithm should
work online. According to the results of section 4.2 we know what methods should be
reconstructed to decrease runtime projected on one request processing.

36

Bibliography

[1] Reference page of cytoscape.js. http://js.cytoscape.org/. 2017.10.27.

[2] Reference page of networkx. https://networkx.github.io/index.html. 2017.10.27.

[3] Reference page of pygtrie. http://pygtrie.readthedocs.io/en/latest/. 2017.10.27.

[4] Reference page of tornado web server. http://www.tornadoweb.org/en/stable/.
2017.10.27.

[5] Maysam Mirahmadi Hassan Hawilo, Abdallah Shami. NFV: state of the art, chal-
lenges, and implementation in next generation mobile networks (vEPC). IEEE Net-
work, 28(6):18–26, Nov-Dec 2014.

37

http://js.cytoscape.org/
https://networkx.github.io/index.html
http://pygtrie.readthedocs.io/en/latest/
http://www.tornadoweb.org/en/stable/

Appendix

F.1 Additional images

Figure F.1.1: Flowchart of counting the follow tag.

38

Figure F.1.2: Flowchart of applying delete operation on a flowentry element

Figure F.1.3: State ot the graph after 1. request of robotics demo

39

Figure F.1.4: State ot the graph after 3. request of robotics demo

Figure F.1.5: State ot the graph after 5. request of robotics demo

40

Figure F.1.6: State ot the graph after 7. request of robotics demo

Figure F.1.7: State ot the graph after 10. request of robotics demo

41

Figure F.1.8: State ot the graph after 11. request of robotics demo

42

	Abstract
	Introduction
	Network Fuction Virtualization
	Motivation
	Precedent Use-Case

	Design
	Requirements
	Infrastructure Node
	Ports
	Links
	Virtual Network Function
	Flowentry
	Algorithm
	Borders of Algorithm
	Patch the graph
	Create operation
	Delete operation
	Remerge

	Implementation
	NewtorkX
	CytoscapeJS
	Queue Server

	Evaluation and Validation
	Robotics Example
	cProfile

	Conclusion
	Appendix
	Additional images

