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Abstract

The most recent issue of The Economist magazine’s Technology Quarterly, an informative report
on technological progress, was printed with a picture of a man driving a smartphone on its cover.
Over the driver’s head, a connectivity signal appears. This piece of drawing is supposed to sym-
bolize one of humanity’s newest achievements, the connected car. An article inside the report
suggests, that although the number of cars with some sort of networking ability today is only 8%
of the global total, by 2020 around a quarter of cars will be online. BMW is already embedding
SIM cards in all its new cars, and by 2020, around 90% of all manufacturers’ new models are
likely to have them. These advancements in road vehicles, complemented with the recent emer-
gence of mobile computing, open up yet another area of our everyday life to software services.
One can imagine, for instance, how both cautious drivers and insurance companies would benefit
from a service that analyzes drivers’ behavior and calculates premiums accordingly. However,
it is quite challenging to successfully navigate on a field, which has so many untried ideas and
so little standardization, and it is also evident, that the most interesting services profit from a
stable server-side infrastructure that takes their raw datasets and adds value to them. These
inherent complexities urge individual service developers to unite their skills and work together,
and indeed, in the recent year, a remarkable group came into existence on our campus from
those, who wish to conquer this new area of software services. The cooperation involves three
departments from our faculty, and several contributors from the Faculty of Transportation Engi-
neering and Vehicle Engineering, reflecting the interdisciplinary nature of the field. The authors
of this work have volunteered to create a framework, which other service developers can depend
on. On the client side, features include collecting and visualizing data and communicating with
the infrastructure. To aid service developers, we created an Android background application and
multiple libraries for these purposes. On the infrastructure side, we established a counterpart
that receives and makes this large amount of data accessible for processing. Cloud technology,
being a natural companion to connected mobile devices, was a great asset in our work. Instead
of investing in our own hardware infrastructure, we were able to prototype a cluster of data pro-
cessing nodes using Google’s cloud services. On the cluster, we deployed Hadoop, an open-source
framework for storage and processing of large datasets, and experimented with the possibility
of a highly accessible data store, capable of handling Big Data. Based on our research in the
field, we have delivered a preliminary version of the Framework, which is already used by several
teams. This work summarizes our progress and discoveries we have made so far.



Introduction

Since its birth in the mid-twentieth century, computer software has come a long way from being
a smart tool for scientists and mathematicians for their calculations. After irreversibly changing
how enterprises do their business and transforming telecommunications into infocommunications,
we are now witnessing the process of software services changing how people live their lives.
Technological innovations of the previous two decades are fusing together into concepts we
could only imagine even ten years ago. Ubiquitous internet, ever more powerful mobile devices,
embedded computing facilities in everyday objects and the ability to intelligently process large
datasets, together make it possible to conquer another part of our life for software services.
It is likely, that in less than a decade, connected cars (cars with internet access) will become
as common as smartphones were a few years ago. Even today, ordinary road vehicles can be
upgraded to connected cars with the help of drivers’ mobile devices, making it possible to do
the pioneering steps in the territory way before natively connected cars become ubiquitous.

In early 2014, lecturers and students from two faculties and several departments of Budapest Uni-
versity of Technology and Economics started to work out the details of a possible collaboration
aimed to enter the field of the connected car. People with very different backgrounds expressed
their interest in the subject, leading to a colorful group with many competences. Members of
the Faculty of Transportation Engineering and Vehicle Engineering strengthen the project by
providing their expertise regarding the vehicle domain. The Faculty of Electrical Engineering
and Informatics, on the other hand, is responsible for the software and service relations of the
project. The group unites teams from the Department of Networked Systems and Services, the
Department of Telecommunications and Media Informatics and the Department of Automation
and Applied Informatics. All teams have ideas for connected car services, and if most of those
ideas become reality, the group will be able to present a whole ecosystem of related services.
The authors of this paper have created a framework, to help making all this happen.

The fact, that this project has come into existence, showcases the ability of our campus to
provide an environment in which engineers and computer scientists from different faculties and
departments can put their skills together in order to come up with a large-scale practical solu-
tion to a highly relevant contemporary problem. Our industrial partners are already expressing
their interest and curiosity towards the concepts. The project will hopefully also leave behind
a competent team, experienced in the practical design and implementation of mobile services
backed by cloud infrastructure and Big Data processing. This experience can be applied later
to other domains as well, which might be the greatest value of all.
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Furthermore, the project will certainly provide quality material for several Project Laboratories,
BSc Thesis Projects, Diploma Thesis Projects, papers for conferences of Scientific Students’
Associations, and other publications.

Motivation and Requirements

The large number of contributing teams recruited from many students and lecturers from multi-
ple departments of the campus made it unavoidable to design and implement a common frame-
work that solves the problems that most service creators face. Our research provided a base for
this work. In the current phase of the project, we have designed and created the VehicleICT
Framework as is. We released a preliminary version of the Framework in September, and it is
already used by service developer teams for different types of applications. In addition to that,
we have also implemented some applications to demonstrate the capabilities of the Framework.
These applications are the BoardComputer, EngineDetails, SocialDriving and EcoDriving. In
this work, we highlight mainly the BoardComputer, because it demonstrates the capabilities of
our Framework the best. For our convenience, we refer to the VehicleICT Framework simply as
the Framework or our Framework.

The Framework is intended to provide a common ground to connected car services that members
of the group are working on. By offering solutions to frequent problems, creating reusable com-
ponents for common tasks and maintaining a server-side infrastructure that handles the data
the services need, the Framework allows other teams to focus on their specific applications and
figuring out the way they can gain value from their data. With the help of the Framework, service
developer teams are able to write Android applications, which collect data from the internals of
the vehicle, and send the samples to a data center. The data center is, in turn, capable of storing
and processing the datasets, and most importantly, it transforms them into a highly accessible
format, which makes it possible for the teams to analyze their data effectively. These analyses
and summaries can provide useful information not just for the connected car services, but for
the vehicle industry or smart cities as well. Furthermore, looking at the Framework from an
appropriate distance reveals that it is not restricted to the special domain of connected vehicles.
On the contrary, it can easily be the basis of any group of services that gain their data mostly
from mobile devices and need to store and process them in large scales.

We consider our work to be a success if service developers are able to rapidly create applications
on mobile clients, which connect both to the car and to our infrastructure, and the infrastructure
is capable of receiving data from multiple applications, storing the datasets effectively and
making them available for both batch-oriented and low-latency analytic processing. We believe
that if the latter requirements are met, service developers can instantly start to realize their
ideas, bringing the notion of the connected car closer to reality.

The Concept of the Framework

As Figure 1 shows, four distinct components of the system architecture can be identified.
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Figure 1: Framework Architecture

The mobile devices and the applications that run on them are the main interface to the service
users, and accordingly, they need to be designed very carefully to meat the expectations of
the users. The Framework is represented to these applications by the Smart Client Platform.
Figure 2 shows the main components an Android Client application interacts with.

Figure 2: Smart Client Environment

Client applications are the central part of the Smart Client architecture. They are Android
applications created by service developers, intended to use the functionality the Framework
provides. Every Client application connects to the Platform, which is basically an Android
application without a user interface. This component encapsulates the functionality provided
by the Framework. It is responsible for data collection and communicates both with the Server
and with the Client applications. It functions as a bridge between the vehicle and the Client
applications, and applies solutions based on vehicle industry communication standards, like
OBD-II or CAN bus. Before connecting to the Platform, every Client application defines a
Configuration, which is used to influence the data sent to the Server, for example by forbidding
sending location information, or by specifying the frequency of the data sampling. In order to
create a Client application, developers need to include the Framework libraries in their projects.
The Platform library contains the client-side implementation of the Platform, and the UI Library
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provides useful UI widgets and view containers for uniform user interface development.

The Mediator Agent, as its name suggests, plays a central role in the Framework architecture,
functioning as a mediator between the mobile devices and the Data Center, and providing
APIs that other components can use, like uploading and querying the data. It also maintains
operational data for the services, most importantly the Data Contract, which is an agreement
between the server and the client regarding the content and format of the datasets. The Contract
is also used to automatically generate the environment for the services in the Data Center.

The Reporting Agent encompasses business intelligence tools that can be used to analyze the
data in an offline way. Although it is not the subject of this paper, its role is briefly described
in Chapter 3.

The Data Center also plays a crucial role by being the workhorse of the infrastructure. Built on
the Apache Hadoop framework [19], it stores the data of the services in a distributed manner,
and order them into analytic data stores, making it possible to do distributed processing on
them, like data mining or machine learning algorithms. Almost real-time stream processing of
incoming datasets, bypassing the data store, is also possible.

Figure 3 shows the components the Framework provides for every service, leaving out the Re-
porting Agent, which connects to the Data Store directly.

Figure 3: Framework Components of a Service

The Structure of the Paper

The paper is divided into three sections. Chapter 1–2 describe the Android-related aspects of
the Framework, Chapter 3–5 discuss the backend infrastructure, and Chapter 6–7 present a case
study and list related works.

Chapter 1 (Smart Client Platform for Connected Cars) starts with the client-side com-
ponent of the Framework, describing the vehicle-related data collection and the scheduling of
the sampling. Later on, additional features, such as configuration and multi-application support
are presented. The chapter also discusses features that aid debugging, and shows how service
developers can utilize the client libraries.
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Chapter 2 (Communicating with the Infrastructure) presents the details of communi-
cation between the clients and the infrastructure. The chapter starts with the common data
model, then the discussion of pre-processing and serialization follows. The last section of this
chapter describes the communication endpoints clients use to connect to the infrastructure.

Chapter 3 (Data Services) introduces the services the Framework provides to the Smart
Clients on the Infrastructure side. It discusses in detail, what the responsibility of a service
developer is if he or she wants to use the Framework, and presents the architecture of the
Mediator Agent. After that, a quick summary of the Reporting Agent follows. Finally, scaling
up options are examined, focusing on moving into the Cloud.

Chapter 4 (Data Processing Infrastructure) starts by estimating the storage needs of a
typical connected car service, which demonstrates the need for a Big Data class infrastructure.
After this demonstration, an introduction to the Apache Hadoop framework follows, which
describes the architecture on a high level and presents the Hadoop Ecosystem.

Chapter 5 (The Data Center) describes first, how we prototyped a Hadoop cluster with
limited resources in the Cloud, examining how this solution affects the performance of the
Framework. Given that, the soul of the Data Center is presented in the form of the main Data
Store where vehicle data is accessible for high-performance querying. The discussion follows the
dataflow, starting with data ingestion, and following through the transformation and processing
steps. The chapter ends with a benchmark on the performance of our Framework, focusing on
query performance.

Chapter 6 (Case Study) presents an already implemented mobile application using our
Framework. This chapter demonstrates the client-side usage of the Framework with the help
of the BoardComputer application.

Chapter 7 (Related Works) investigates related works in the connected car domain, and
compares our Framework to them.
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Chapter 1

Smart Client Platform for
Connected Cars

Mobile devices have a crucial role in our proposed Framework. The Smart Client side is divided
into two major parts. The Platform collects data samples from the internals of the vehicle and
from their environment, and forward them to a smart infrastructure, so in the entire concept,
this component plays the role of the data source. The User Interface Library is responsible
for displaying vehicle-related information. The service developers provide the third component,
which is the Client application that is built on the Framework. In this chapter, we describe the
Smart Client Platform, explain its features, and depict the way it serves Client applications.

1.1 Goals and Design

During the design of the Platform, our main goal was to provide a set of real-time vehicle
information for Android application developers, and to supply these data to the backend for
further analysis. To satisfy these needs, the Platform should meet the following requirements:

• connecting to vehicles and sampling vehicle data,

• pre-processing raw samples,

• sending pre-processed information to the infrastructure,

• supplying Client applications with the data,

• providing information from different sources transparently to Client applications,

• allowing application developers to set up custom behavior,

• serving multiple connected applications.
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In order to connect to the vehicles, the Platform creates a Bluetooth [4] connection between
the Android device and the car sensors, using communication methods that are standard in the
vehicle industry. The raw samples, available through this connection, should be converted into
a developer-friendly form during pre-processing, and than the information has to be forwarded
to the Clients and to the infrastructure. To provide these functionalities in parallel, the Plat-
form should use independent threads and scheduling mechanisms. To support several connected
applications without communication overhead, the Platform itself must be a Singleton applica-
tion, providing connection interfaces to the Client applications, and must serve the applications
in parallel and independent of each other. Each Client application must be able to configure
the Platform to satisfy its needs, and the Platform has to operate according to these config-
urations. The Platform should handle different sources of information (vehicle sensors, mobile
device sensors) and provide them to the Client applications as if they were coming from a single
source.

1.2 Data Sources

Based on the source of the information, vehicle-related data can be divided into two groups: data
from the internals of the vehicle and data from the Smart Client. The source of vehicle data are
the sensors in the connected car (e.g. Fuel pressure sensor), and the source of Smart Client data
are the sensors in the Android device (e.g. GPS data). Although the Platform acquires these
data from different sources, this is transparent to the Clients.

1.2.1 The Vehicle as a Data Source

In a vehicle-related framework, it is inevitable to have some kind of connection between the
Smart Client and the vehicle. One way to connect to the car is a special interface called On-
Board Diagnostics, but it is also possible to use the CAN bus of the vehicle.

On-Board Diagnostics is a vehicle industry standard, serial debugging interface, designed by car
manufacturers for testing and maintenance purposes. The development of early On-Board Diag-
nostics systems was initiated by Volkswagen in 1969, and later on, many manufacturers started
to work on their own implementations. This lead to different manufacturer-specific systems, and
to the need of standardization. We used On-Board Diagnostics II [3] in our solution, because it
is the most widespread. OBD II is a mandatory part of the cars sold since 1996 in the USA, and
EOBD (European version of OBD II) [40] is required in every car manufactured since 2003 in
the European Union. The implementation of this standard uses a special interface that can be
found under the driver panel in vehicles. Although this interface is wired and serial, fortunately
Bluetooth adapters are available to convert the serial communication into a wireless, Bluetooth-
based solution that mobile devices can connect to. Using this solution, every Bluetooth adapter
must be paired with the mobile device, and later string based queries and responses can be
interchanged over this connection.
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Figure 1.1: OBD II Bluetooth Adapter

On-Board Diagnostics standard specifies a number of Parameter Identifiers (PID) [3], to access
the debug information provided by different sensors of the car. Every data field has its own PID,
and to access the value of the field, this PID must be sent as a query parameter. The response
contains the requested PID, and the value of the data field in a string-based, hexadecimal format.
Here is an example of reading Vehicle Speed using OBD II:

>> 010D (01 - Mode 1 - Data bank reading , 0D - Vehicle Speed PID)
<< 010 D1F (Code to answer (010D), value 1F = 31 km/h)

To send and receive OBD commands over Bluetooth, we created a communication module, based
on an open-source library. We extended this library with special scheduling and multi-threading
support to be able to connect it to the Platform.

Although OBD II is a widespread standard, it is worth mentioning, that there are other solutions
based on Controller Area Network (CAN) bus [5], too. CAN bus is a multi-master serial bus
for connecting Electronic Control Units inside the car, and it is also used by OBD II as a sub-
standard. Although OBD II has its advantages, it has limitations, too. OBD II only supports
a subset of sensor data available in the car, and as it hides the internal details, it is hard
to extend. In order to directly access the internals of the vehicle and acquire more types of
data, a specific CAN-based solution is under development. This solution consists of an Android-
side implementation and a custom hardware placed in the vehicle in order to access internal
information. Although this solution is still under active development, we are planning to extend
the Framework to support this alternative data source.

1.2.2 The Mobile Device as a Data Source

In order to complement the data acquired from the vehicle, the mobile device sensors are also
used as a data source. The smart devices have location sensors (GPS) and a synchronized system
clock, which can improve the usability of OBD data. Location sensors provide GPS coordinates
and speed information, which can be used to bind vehicle related data to a geographical location
in a specific time, using the system clock. The combination of these data sources offer a lot of
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opportunities for Framework users. It does not matter where the data comes from, the Framework
provides it to Client applications in the same way.

1.3 Applications and Inter-Process Communication

The Platform is a Singleton Android application, with a unique architecture and a purpose
to serve other clients. Unlike most Android applications, the Platform does not have a user
interface, and cannot be launched via the application launcher. Only one Platform application
can exist on an Android device, and only one instance of this application can run on it at once.
This instance starts when the first connection attempt towards the Platform is initiated. The
same instance of the Platform handles several connected applications, and as long as at least
one connection is alive, the instance continues to exist. When the last connection is closed, the
Platform stops. To provide this functionality, the Platform application was implemented with
Android Bound Services [15].

Figure 1.2: Applications and Inter-Process Communication

In order to let Client applications access the Platform service, a special communication solution
must be applied. As the Platform runs as a separate application, it runs in a separate process, too.
Client applications, as independent applications, run in different processes as well. To establish
a connection between separate processes, the Android Interface Definition Language [14] and
remote processes are used. All Client applications must declare the Platform service as a remote
service in their manifest file, and the interface of remote objects must be defined using AIDL.
Although the Platform is the remote service, it is not only the Platform service that has an
AIDL definition. To support callback functionality for clients, the Platform Callback objects
have an AIDL definition, too. These definitions are available both in the Platform and in the
Client applications, but the implementations are not. The Platform Service is implemented in the
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Name Type Description

Application ID String Client application
identifier

User ID long Client user
identifier

Device address String Bluetooth adapter
address

Table 1.1: Required Parameters

Platform application and the callbacks are implemented in each Client application separately.
During inter-process communication, every object must be serialized, so all non-primitive data
are stored in a string representation (in a JSON format). The detailed structure of components
can be found in Figure 1.2.

1.4 Configuration

Although only one instance of the Platform runs per device, more Client applications can use
the same Platform. As Client applications require different data in different ways, they need to
use the Platform with different preferences. To provide this, all Client applications must define a
Configuration upon connecting to the Platform. Configurations consist of required and optional
preferences. Required parameters must be defined by every application to build up a connection,
but optional preferences have a default value, which can be modified if needed.

1.4.1 Required Parameters

Configurations have three required parameters that all client applications must supply. Upon
connecting to the Platform, every application must set an Application ID in a string format.
It must be a unique value, because it identifies the application. This ID is used by both the
Platform (for callbacks, and scheduling) and the server (to separate information for different
applications).

The second parameter is User ID, which is a long, and identifies a Client application user. This
information is used by the server for user-related reports. Although the Framework supports
user handling, the authentication is the responsibility of the Client applications.

The third parameter is the Bluetooth device address. This string identifies the Bluetooth adapter
that the Platform must connect to. The Platform supports only one Bluetooth device connection
at one time.

10



Name Type Default Value Description

ReportInterval ReportInterval ReportInterval.Sec5 Time between
callback calls

RequiredFields List<String> All available fields Filter for specific
fields

ReportToServer boolean true Disable server side
forwarding

Table 1.2: Optional Parameters

1.4.2 Optional Parameters

Optional parameters are not necessary for a connection, instead they provide and opportunity to
customize the Platform behavior to fit the Clients’ needs. The most frequently used parameter
is ReportInterval. This is the time elapsed between each measurement and callback call. For the
sake of more efficient scheduling, this parameter is an enumerated field, containing predefined
values from 500 milliseconds to 5 hours. Each value is the multiple of all lower values (except
the lowest), to ensure that at the time of a callback, all lower interval callbacks are invoked, too.

The performance of the Platform is affected the most by RequiredFields parameter. This param-
eter is used for filtering specific data fields, and consists of the list of fields which are required by
the client. All non-required fields are removed from data measurement, which lowers the sam-
pling time. The predefined name of the fields and the most common configurations are available
via a common Field class available for the Clients.

With ReportToServer, server-side data forwarding can be disabled. This is useful when the client
intends to exclude some parts of a measurement from server-side reports (e.g. disable reporting
abroad), and it also aids debugging.

1.4.3 The Structure of the Configuration

Configurations, as all inter-process objects, are stored in a string (JSON [37]) format during
communication, but they are converted into objects both in the Platform and in the Client
applications. To prevent Client developers from doing string operations, and to force them to
provide required fields, but keep optional parameters eligible, we created ConfigurationBuilder.
ConfigurationBuilder is a class that creates Configurations, and Configurations can only be
created via this object. To create this builder object, required parameters are needed and optional
parameters can be set with the proper functions. After the preferences are set, a Configuration
can be built with the build function. The Configuration cannot be modified later. The usage of
the ConfigurationBuilder is shown below:

Configuration . Builder builder = new Configuration . Builder (appID , userID , deviceAddres );
Configuration configuration = builder . setReportInterval ( ReportInterval . Sec30 )

. setRequiredFields ( Fields . getAllCommands ())

. setReportToServer ( false ). build ();
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Before inter-process communication, this Configuration gets serialized into a string based JSON
format, and later the Platform de-serializes it before usage. The Platform stores every Config-
urations and the callback methods connected to a Client as a PlatformConnection object. The
Configurations control the scheduling of the sampling.

1.5 Multi-Application Support

During the design of the Platform, one of the requirements was the capability of multi-application
support. This means that one Platform instance per device is able to serve several connected
applications on the same device. In order to meet this requirement, the Platform needs connec-
tion management. When a client connects to the Platform, it supplies two special objects. These
are the Configuration, and the callback methods. In the Configuration, every application sets its
own identifier, which the Platform uses to identify the application, and match further requests
and the callback calls to the proper client application. These two objects form a PlatformCon-
nection together. Upon every connection attempt, the Platform creates this object and stores it
in the connection store. Later on, each call from an application is matched to its corresponding
connection object with the help of the identifier.

The connection of the applications is straightforward. Depending on the address of the connected
device, a new thread is created for sampling. This thread is used during the measurement to serve
all the applications, so the connected applications do not have separate threads for sampling,
they are served by this single measurement thread. After the connection is established, the actual
frequency, required fields, and Bluetooth device address is set, according to the configuration
of the connection. Later on, no additional thread is created for the connected application. The
disconnection of applications do not affect the measurement thread, the application is only
removed from the list. If the list becomes empty, the sampling is stopped. As only one global
thread is used for measurement, additional connected Bluetooth devices are not supported.

Until an application starts the sampling, the measurement algorithm ignores its preferences.
When it starts, the settings of the sampling thread are updated. First of all, the sampling fre-
quency is set. If the freshly started connection has lower sampling frequency needs, the frequency
of the sample thread is overridden, so the lowest connected application frequency determines
the operation of the sampling thread. Then the Field filtering is set, by updating the sampling
thread with a new connection object containing the fields of the connection.

The Sampling thread follows a cyclic sequence. At the beginning of the sequence, the required
fields are determined. Depending on the elapsed time since the last cycle, the required fields
of all connections that have a valid request for that time period are placed into a field store.
During the process, the field store calculates the union of the required fields at that iteration.
Only the required fields are acquired sequentially from the proper data source. The list of fields
is recalculated in every cycle. The global callback distributor is called using the union of required
data fields.
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Figure 1.3: Flowchart of the Multi-Application Supporting Process

The global callback distributor gets a Sample object containing all the data required by the
application for that time period. Then the list of concerned applications for that period is
calculated, and before calling the specific callback, the distributor filters the union of fields, to
contain only the data the application requests. The distributor runs on the Platform service
thread, independently from the measurement. Our design decision to only allow predefined time
periods for sampling makes it easy to determine the active connections.

When an application stops the sampling, its required fields get removed from the sampling
thread, and the application with the second lowest sampling interval will determine the sampling
frequency. Figure 1.3 shows the flowchart of the sampling process with multi-application support.
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1.6 Showcase Capabilities

In order to let developers create and test applications without real vehicles, the Platform supports
showcase mode. From the point of view of a Client, the showcase mode operates as the real-data
mode. The only difference is the device address. To switch the Platform into showcase mode, a
special showcase device address must be set during the configuration. The data provided during
the showcase mode is a pre-recorded sequence of real vehicle information, recorded via the
Platform. To provide this feature, the Platform has a scheduling solution for real vehicle data,
and another for showcase data as Figure 1.4 describes. The difference between them is the source
of information. Unlike the real-data mode, showcase mode acquires data from the pre-recorded
databank. This data is stored in a JSON format data file in the Platform application as an
Android asset. Upon every showcase mode initialization, this file gets loaded as a data source.
The further scheduling and callback invocation mechanisms are the same, which is inevitable
to ensure the same behavior as in case of a real measurement. As showcase mode uses a special
device address, it is not possible to use the Platform in real-data mode, and showcase mode in
parallel.

Figure 1.4: The Transparent Sampling Solutions

1.7 Developer Libraries

As Client applications require common software components, we created Developer libraries.
Developer libraries consist of two libraries, the Platform Library and the User Interface Library.
The Platform Library contains the client-side implementation of connecting to the Platform,
client-side callback implementations, shared constants and wraps all the commonly used details
to make the connection to the Platform easier for developers. In order to connect to the Platform,
this library is required, so all the client applications must use this library. The second library is
optional, and contains vehicle-related user interface elements. These consist of Android Views
with reusable visibility and behavior.
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Chapter 2

Communicating with the
Infrastructure

The details of the communication between the mobile devices and the server were defined at the
very beginning of the design of the Framework. Both sides need to follow these rules in order
to successfully communicate, however, we designed the communication to be easily extendable.
This chapter describes the structure of the communication, including conversion and serialization
details.

2.1 The Data Model

In order to have a common structure of information, a data model has been defined. It consists
of one entity called Sample, which contains sampled data fields as properties in a typed form.
A Sample entity instance is the output of one step of the sampling sequence, and all of the data
fields show the state of the environment at a specific time. Although the measurement process
creates a sequence of Samples, all of them are forwarded to the server, and to the connected
client applications individually. The same data model is used everywhere in the entire Platform.
Table 2.1 lists the currently available data fields.

2.2 Pre-Processing and Serialization

In order to convert raw sampled data into developer-friendly, easy-to-use and easy-to-transmit
information, a pre-processing and serialization process is required after the sampling. The entire
pre-processing, serialization and communication chain can be seen on Figure 2.1.

2.2.1 Pre-Processing

All the data acquired from the vehicle are converted from its hexadecimal string value to a
decimal string format by the vehicle-side communication component (e.g. mobile device) and
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Name Type Unit Source

Air Intake Temperature int ◦C Vehicle

Ambient Air Temperature long ◦C Vehicle

Average Fuel Economy Count double Miles/gallon Vehicle

Barometric Pressure long kPA Vehicle

Command Equivalence Ratio double Vehicle

Coolant Temperature int ◦C Vehicle

Engine Load int % Vehicle

Engine RPM long rpm Vehicle

Engine Runtime long s Vehicle

Fuel Economy double l/100km Vehicle

Fuel Economy Cmd. MAP double l/100km Vehicle

Fuel Economy MAP double l/100km Vehicle

Fuel Pressure double kPa Vehicle

GPS Speed double m/s Smart Device

GPS Time long s Smart Device

Intake Manifold Pressure int kPa Vehicle

Latitude double ◦ Smart Device

Long Term Fuel Trim int % Vehicle

Longitude double ◦ Smart Device

Mass Air Flow double g/s Vehicle

Short Term Fuel Trim int % Vehicle

Throttle Position int % Vehicle

Timing Advance double ◦ Vehicle

Trouble Codes String Vehicle

Vehicle Speed int km/h Vehicle

Table 2.1: Fields of the Data Model
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handled as key-value pairs. In order to use these data, the string-based key-value pairs are
conformed to fit into the the data model. During the process, each key is matched with the
Sample data field, and the values are converted to the proper type.

Figure 2.1: Sample Processing Flow

The most notable part of this process is the handling of unavailable data. As most of the vehicles
support only a subset of the data fields, and as communication problems occur, it is vital to
differentiate the unavailable data from the available ones. Zero values (and of course all values
in the valid range) are not able to indicate the non-availability of the information, and primitive
types cannot be null, so other indicator values are needed. Unfortunately, NaN (Not a Number)
values are only supported in case of double values in Android (Java), but integer and long values
are also used, so we used the minimal values of every type to indicate the non-availability of
the data, as all the minimal values are out of the range of possible values in the domain. An
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example of the process is shown below:

private static double extractFromStringToDouble ( String dataStr ) {
...
if ( isFilled ( dataStr )) {

String [] splits = dataStr . split (" ");
return Double . parseDouble ( splits [0]);

} else {
return Double . MIN_VALUE ;

}
...

}

2.2.2 Serialization

In order to transmit Samples, the fields must be converted into a marshallable, string-based,
structured form. The structure of the data during transmission was chosen to be JSON [37].
JSON is a string-based data format, that resembles JavaScript objects, and besides XML [51],
it is the most widespread web-transmission format today. We used Google’s GSON library [32]
to transform Java objects into JSON and back, using the Java Reflection API [45] to match
and determine field types.

Although the Google GSON library is a general solution, not all the default implementations
of serialization fit our requirements. In order to extend the serialization function of the library,
GSON provides an ability to use custom serialization rules by extending its defaults. By default
this library serializes all the fields, but we need to exclude non-available data fields from server
side transmission, to save this unnecessary network overhead. The following lines of code show
the usage of custom serializing rules in the implementation.

public class SampleSerializer implements JsonSerializer <Sample >
{

@Override
public JsonElement serialize ( Sample obj , Type type , JsonSerializationContext jsc) {

...
if (obj. getShortTermFuelTrim () == Integer . MIN_VALUE ) {

jObj. remove (" Short Term Fuel Trim ");
}
...

}
}

2.3 Communication

In order to connect to the server, a HTTP-based REST [49] communication solution is used.
The server accepts a single Sample in a serialized (JSON) format, on an application dependent
URL, as a HTTP Post call. After serialization, the Platform assembles the proper Post call,
containing the Sample as the query body, and then sends it to the specified URL, using the
Wi-Fi or mobile internet connection of the mobile device.
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Chapter 3

Data Services

Having presented the Smart Client component of the Framework, in this chapter we concentrate
on the middle part of the architecture, the Mediator and the Reporting agents, leaving the
discussion of the Data Center to the following chapters. The Mediator Agent functions as an
intermediary between the clients and the Data Center, and also handles the administration of
the services that are built on top of the Framework, so it is a crucial part of the system, and the
main subject of this chapter. The Reporting Agent, on the other hand, is an auxiliary component
of the Framework. It connects directly to the Data Center, considering it effectively a very large
analytic database, and provides tools to create reports and summaries. Finally, we examine the
possibility of moving the Mediator Agent into the cloud for scalability reasons, building on top
of a PaaS (Platform as a Service) [52] architecture.

3.1 The Mediator Agent

Figure 3.1: Roles of the Mediator Agent

The Mediator Agent is a server component with three distinct roles. First, it provides endpoints
to the mobile clients where they can send their data, insulating them from the details of the Data
Center. This way the data aggregation on the edge of the Data Center can be changed indepen-
dently of the mobile applications and vice versa. Secondly, it makes communication possible in
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the other direction by providing a query interface to the data of the service. Furthermore, the
agent is responsible for maintaining the operational data of the supported services, like Data
Contracts, and providing administrative functions to service developers.

3.1.1 Service Administration

To create a connected car service, service developers need to figure out what data the service
needs, and how samples should be processed to gain information from the datasets. The service
developer should be able to influence how these things are done in the Data Center. Another
consideration is that although it would be possible for the Mediator Agent to just pass the data
unmodified to the Data Center, it is practical to do some pre-processing on all samples before
they enter the Data Center, so the Mediator Agent needs to be familiar with the structure of
the samples. We solved this problem by requiring the service developers to enter into a contract
with the data processing infrastructure. In its current form, the Data Contract is very simple,
containing only information about the name and type of the samples and an alias to refer to them
in the Data Center. The following Contract describes a service that collects the Fuel Economy
characteristic of the vehicle.

{
" appId " : " fuel_economy_inspector ",
" appName " : "Fuel Economy Inspector ",
" contract " : {

" items " : [{
" measurementName ": "Fuel Economy ",
" measurementAlias ": " fuel_eco ",
" measurementType ": "REAL"

}, {
" measurementName ": "GPS Time",
" measurementAlias ": " gps_time ",
" measurementType ": "LONG"

}, {
" measurementName ": " Latitude ",
" measurementAlias ": " latitude ",
" measurementType ": "REAL"

}, {
" measurementName ": " Longitude ",
" measurementAlias ": " longitude ",
" measurementType ": "REAL"

}]
}

}

The Mediator Agent maintains these Contracts, but it is the responsibility of service developers
to create them. The Mediator Agent provides API endpoints for this task, although it is very
error-prone to administer the services using these low-level endpoints. That is why a web-based
tool is under development, which hides these endpoints and provides an easy-to-use graphical
interface to service developers. The Contracts can also be extended to contain further configu-
ration options, mainly in connection with extra transformation options for the data processing.
These extra options are not clarified right now, as the project is still in an early phase, and we
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have only little experience so far about special requirements of different services. As soon as
some real services are implemented, we will be able to advance in this matter.

3.1.2 Server Architecture

The previously mentioned roles are realized in a single server instance with the help of the
Spring MVC framework [16]. Its design is highly influenced by the so-called Ports and Adapters
pattern, alias Hexagonal Architecture, which is described in [9]. The architecture solves a problem
very common in traditional layered applications, namely infiltration of business logic into the
user interface code. Traditional layered applications have no mechanisms to detect if the layers
violate the rule of separation, so it is very hard to enforce it in the long run. The main idea
is, that a well-written core of the application must exist, in which no other concerns should be
taken into account, but pure business logic. The core is protected so much, that any other parts
of the application can only access it via a service API, even including the data layer.

Figure 3.2: Hexagonal Architecture of the Mediator Agent

The service API provided by the core of the application can be viewed as ports to the internal
business logic, to which other components of the application connect via adapters. These adapters
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are also realized with their own service APIs, so components are loosely-coupled and are easily
interchangeable. From the point of view of the application core, a database service is not really
different from a REST interface, as both are just external dependencies to the application. That
is why Figure 3.2 represents the architecture in an unusual way, without dedicated layers.

Another advantageous consequence of the approach is that it is much easier to write tests for
these loosely-coupled components, making it possible to apply advanced TDD (Test Driven
Development) techniques during the development of the server [30]. Having an almost complete
coverage of unit tests, acceptance tests and even integration tests allows us to perform any
change on the code with great confidence, which is a crucial ability in our case, given that
the Framework is used by many teams, raising unpredictable demands all the time. Thanks to
the flexibility built into the design, we are able to meet these demands without destabilizing
operating services.

Components of the Architecture

To keep this paper reasonably compact, we skip all the uninteresting details that are related to
the Spring MVC framework, which can be found in its documentation [16], instead we focus on
the components specific to our Framework.

The core domain wraps concepts connected to the Mediator Agent’s roles and related logic.
Such concepts are a Contract, a User and a Dataset. The service API that encompasses these
concepts in the core is based on a traditional message-driven communication pattern, in which
messages containing the details of a request are passed to an interface, thus the implementation
is interchangeable. The core service API is the only entry point to the system, meaning for
instance that the REST domain cannot access the persistence layer directly, instead the core
service API provides endpoints, which delegate requests to the persistence layer. This way the
separation of concerns is completely enforceable.

Figure 3.3: Strict Separation of Domain Logic

Enclosing the business logic into the core domain is reached by implementing domain objects
for every domain separately. Instead of passing these domain object directly between different
domains, a system-wide format for representing the information held by these objects exists
and is used in the messages. This way domain objects strictly remain in their own domains,
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eliminating any chance of leak of logic. The concept of layers addressing each other through the
core domain is illustrated by Figure 3.3.

To store the Contracts persistently, a traditional persistence layer is connected to the core service
API, using MySQL as a database engine. Contracts, being relatively constant, are cached in
memory, because every data upload step accesses them, so it is a critical performance issue to
being able to fetch them up quickly. However, this introduces a state to the server, which is a
problem when scaling up. These concerns are discussed later in this chapter.

The Hadoop and Demo domains are both responsible for processing the Datasets and forwarding
them to the Data Center. The duplication of this data processing layer has several reasons, most
importantly that in the early phase of the development, the Data Center was mocked with
a MySQL database. Later, when we moved the Data Center to a proper Hadoop cluster, we
decided to keep this Demo layer to aid development in the future, too. We find it very fortunate,
that now we have a benchmark to compare the query performance of the framework on Hadoop
to, as datasets are stored in a conventional database as well as on Hadoop.

The REST domain is the component, which sets all the others in motion. It provides a standard
REST interface, which clients can use to access the functionality of the framework. These clients
include both the mobile devices and the administrative web-tools. We do not wish to go into
the details of the interface, but it is worth to note that it contains endpoints for handling the
Contracts and Users, and other endpoints to upload and query the DataSets.

3.1.3 The Data Upload and Query Interface

In Chapter 2, we described how client devices send the data samples to the infrastructure. Now
we take a look at how these samples are forwarded to the Data Center by the Mediator Agent.

Interpretation of the data always happens with the help of the Data Contract. After some initial
validation, data members present in the Data Contract are extracted from the sample. This
is a very permissive procedure, as missing data points are handled gracefully, and extra data
points, which are not specified in the Contract are simply thrown away. This way, client errors
are caught by the Mediator Agent, and do not propagate to the Data Center. The extracted
data points are forwarded to the Hadoop and Demo services, which arrange them to get to the
next station for further processing.

Querying the datasets is very straightforward using the REST API the Mediator Agent provides.
Queries are processed by the core services, and delegated to the Hadoop and Demo services,
which connect directly to the data source, fetching up the requested data and handing them
back to the client through the core services. Currently clients can filter on users’ ID, their
location and the creation time of the sample, which cover most use cases. We expect client
applications to query data of their own users, or of users’ close to them either in geographical
location or in time. However, there are no theoretical obstacles to implementing finer grained
filters, so additional filter conditions can easily be added on demand. The query engine backing
this function is described in detail in Chapter 5.
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3.2 The Reporting Agent

The Reporting Agent provides a managed business intelligence environment for service devel-
opers who do not wish to apply their own methods to analyze the data. It connects directly to
the Data Center via ODBC [42], bypassing the Mediator Agent entirely. With the help of the
Reporting Agent, users of the framework are able to create standard reports and summaries of
the data, which help to discover patterns and trends. Note, that data mining, machine learning
and other intelligent data processing algorithms should be implemented in the Data Center and
not in the Reporting Agent.

Figure 3.4: Concept of the Reporting Agent

As the Reporting Agent is not the direct responsibility of the authors of this paper, further
discussion of the concept is omitted.

3.3 Scaling Up

Although the Framework is currently able to serve all its users, we are already considering how
we would be able to scale up. The Data Center, being built on top of Hadoop, is inherently
scalable, the Mobile Devices are well-distributed and the Reporting Agent has only a small
number of users, so the Mediator Agent means the only bottleneck in the matter. We are not
in the position to invest in a reasonably large server park, but fortunately we do not need to,
as there are many PaaS (Platform as a Service) offerings on the cloud market today, which are
built exactly for good scalability. Our Spring MVC implementation of the Mediator Agent is
almost directly portable to most of these offerings, including Google’s [33] and Amazon’s [2],
the most popular ones, though some modifications are needed. The greatest advantage of these
offerings is that new instances of the server are automatically created and destroyed, reflecting
the actual load of the system.
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The current implementation processes requests with synchronous threads, but to fully utilize
the advantages of the cloud, asynchronous processing of requests would be desirable. That can
be easily reached by introducing a queue in which the requests arrive. Different instances of the
server take the requests from this queue for processing, distributing the load among themselves.
It is also not practical to store the Contracts and other related information (Users, etc.) in a
fully configured RDBMS, as neither the size and structure of the data nor the predictable query
patterns require it. Also, cloud offerings of RDBMSs are quite expensive. Fortunately, almost
all cloud providers have some sort of NoSQL key-value or columnar data store format, which
are ideal for this task. These data stores typically need to be indexed before being able to query
them, for instance a dataset cannot be queried by a given column until an index is put on that
column. The Contracts do not need to be searched and are always fetched using their ID, so
NoSQL is a match. Switching storage method means that the Persistence Domain needs to be
modified to work with the provider-specific NoSQL data store. Fortunately most of those are
based on JPA (Java Persistence API) [46], so reconfiguration should not be that cumbersome.

Another problem is, that statefulness and scalability do not usually go together. Caching the
Contracts in memory is not possible anymore in the cloud, because with multiple instances of
the server, inconsistencies can occur. However, almost all cloud providers offer some distributed
cache feature, like MemCache [34] for Google Cloud, which is an in-memory cache that remains
consistent even with multiple server instances present.

Figure 3.5: Scalable Cloud Architecture for the Mediator Agent

Moving the server into the cloud is an interesting task, and is definitely the direction for us.
However, being the topic of a possible future paper, this is only a preview of our plans.

25



Chapter 4

Data Processing Infrastructure

When designing a data processing infrastructure, the first thing to do is calculating the order of
magnitude of the data the system needs to store and process effectively. As the Framework needs
to serve several teams and applications, choosing the right tool for these tasks influences not only
performance, but also the whole architecture. In this chapter, we start by doing a rough estimate
of the expected data volume. We make a point, that traditional data processing methods lack
some attributes desirable for our framework, which motivated us to look for alternative solutions.
One of these alternatives is the Apache Hadoop framework with the ecosystem that has emerged
around it. Hadoop and related technologies are also described in this chapter.

4.1 Storage and Processing Needs

Most connected car services require mobile devices to send data to the infrastructure. The
appropriate frequency of these messages significantly depends on the specific application. For
instance, car manufacturers may only need some infrequent status updates about technical
parameters, so they can identify flaws in the design or manufacturing of their products. On
the other hand, for services analyzing driver behavior, a finer grain of vehicle data might be
desirable.

For the sake of simplicity, we use a sampling interval of one second for our calculations, which
covers the needs of most feasible applications.1 It is worth noting, that a fair amount of applica-
tions are able to function with a smaller sampling frequency, but we intend to do a pessimistic
estimate of necessary resources. To make calculations even simpler, we assume that a typical
dataset consists of 500 bytes, which corresponds to about 20 pieces of data sent to the infras-
tructure in each sample. In the first phase we optimistically assume that 10% of all vehicles will
be connected to the infrastructure. Again, to keep the calculations simple, we will consider only
customers from Hungary. According to the HCSO (Hungarian Central Statistical Office) [44],

1This communication pattern has negative effects on battery usage, because mobile networks are ineffective at
delivering short, periodic messages. However, we can safely assume, that mobile devices in a vehicle are connected
to some sort of energy source, so we can ignore this negative effect.
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there were about three million motor-cars in Hungary in 2013. Taking into account professional
drivers as well as commuters who use their cars only for transport, we estimate the average time
a customer would spend driving a day to be three hours.

We are now ready to calculate, how much data can be expected on a daily basis. An average
customer would generate effectively 5.4 megabytes of data, leading to a 1.62 TB/day load after
we project the amount to 300 thousands of drivers, which is 10% of three million. Furthermore,
this is only for one service. Supporting five different services would lead to a need for resources
that can handle storing and processing a data volume possibly larger than 250 TB/month,
reaching into the petabyte territory in the long run.
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Figure 4.1: Data Volume by Market Penetration and Sampling Frequency

In the previous calculation we deliberately used inaccurate data, because it was not our intention
to calculate the data volume precisely, but to grasp the order of magnitude we are dealing with.
Figure 4.1 shows, how the volume changes with the sampling frequency and the most uncertain
parameters, the number of customers and the average hours a customer drives a day, expressed
by their product. This product effectively shows the number of driving hours customers burden
the system with each day, and we call it the market penetration. We arbitrarily consider market
penetration to be 100% when all three million drivers use our service five hours a day. The
previous estimate corresponds to a market penetration of 6%. According to the numbers of the
figure, data volume can be kept relatively low in case of small market penetration and sampling
frequency, but as soon as more customers start to use the system for sophisticated services that
require large sampling frequency, the system needs to be prepared to store and process many
terabytes of data day by day. It is also clear from looking at the figure, that data volume grows
linearly with market penetration, which imposes an expectation on the system to scale linearly.

4.2 Shortcomings of Traditional Methods

We traditionally turn to relational databases to store data for applications. Relational Database
Management Systems (RDBMS) have more than four decades of history, and are excellent tools
for storing and querying structured data. In this 40 years, many efforts have been made to im-
prove the performance of these products, and SQL is widely-known and used in the industry.
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These systems are deservedly the workhorses of most modern IT infrastructures, as they can
handle data very effectively. Furthermore, most of them can be deployed on clusters, making
them capable of handling virtually any size of data, as long as they are provided the appro-
priate hardware. Therefore, we cannot make the argument, that our framework and traditional
databases would not be a good fit, but we make the point, that for other reasons, it is worth to
consider other alternatives as well.

One critical aspect is scalability, which in our interpretation means, how much money we need
to spend to store and process one additional terabyte of data. Costs of conventional parallel
databases frequently involve some licensing fees and cost of the special expertise needed to
maintain them, and although great progress has been made in the matter of fault tolerance,
they still require above the average hardware to operate reliably. [47] This means that besides
scaling out, some scaling up is also required, causing the marginal cost to grow with the data
volume, which makes it difficult to reach linear scalability.

Another restriction of conventional databases is that they were invented to handle structured
data. It could be advantageous in some scenarios to abandon the structure, making the load
process much smoother. However, as structure is what makes conventional databases very effec-
tive at querying the data, the price needs to be paid at query time. We show later, that given
the nature of our case and recent developments in other areas of the field, this price can be
acceptable.

There is another negative consequence of using conventional databases, and that is tight coupling
of the physical storage, the metadata layer and the query engine. Again, this is a good thing
when your only concern is query performance, but if you want to use the data in more than
one way, this tight coupling is very restricting. We might want to define the physical shape of
the data, letting us choose the most appropriate compression and format. Applying different
schemes to the same dataset could also be beneficial, considering that with this much data,
occasional exploratory work is inevitable, and this is impossible using fixed metadata. Also, we
definitely want to apply the appropriate tool for querying and processing the data, and although
UDFs (User Defined Functions) make SQL quite universal, it might not be the best tool for all
cases.

All these considerations lead us to search for an alternative solution. Eventually, we arrived to
Apache Hadoop, which provides almost linear scalability, handles semi- and unstructured data
well, makes it possible to separate the concerns of physical storage, metadata and processing,
and is described in the following section.

4.3 Introduction to Apache Hadoop

Apache Hadoop is a framework that enables the distributed processing of large datasets across
clusters of computers using simple programming models. [19] It is a platform that provides both
distributed storage and computational capabilities. In its core, Hadoop is based on two technolo-
gies. HDFS (Hadoop Distributed File System) is a Java-based file system that provides scalable
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and reliable data storage that is designed to span large clusters of commodity servers. [36] YARN
(Yet Another Resource Negotiator) is hard to describe in one sentence, but it can be pictured
as an operating system that spreads the whole cluster, allocating resources to applications.

4.3.1 The Hadoop Distributed File System

HDFS was originally modeled after the Google File System [31]. It is optimized for high through-
put read and write of very large files. Accordingly, it splits up all files in unusually large blocks
(64-256 MB). It is based on an architecture that resembles the classic master-slave setup. In
its simplest form, it consists of a NameNode (the master) and several DataNodes (the slaves).
DataNodes are solely responsible for storing data blocks on their local disks and reporting back
their state to the NameNode in periodic heartbeat messages, so they have absolutely no knowl-
edge of the nature of the data they hold. The NameNode, the most crucial element of the
architecture, manages the cluster metadata and all the DataNodes. It is the NameNode that
has the knowledge of where the different blocks of a file are stored in the cluster, so it needs
to maintain a registry of files and blocks, and for performance reasons that is always kept in
memory.

Figure 4.2: HDFS Architecture

HDFS is designed to operate on relatively cheap commodity hardware, so reliability and avail-
ability is achieved by replication of data blocks on different DataNodes. The NameNode is re-
sponsible for monitoring the number of replicas. In case of a node failure, when a replica is lost,
it commands another DataNode to create a replica, maintaining the replication factor at all
times. When reading a file, the NameNode can use its knowledge of cluster topology to allocate
the task to the nearest DataNodes. The nature of the architecture also makes it very scalable, as
adding another DataNode to the cluster is a straightforward task. In production clusters, HDFS
has demonstrated scalability of up to 200 PB of storage and a single cluster of 4500 servers,
supporting close to a billion files and blocks. [36]

4.3.2 Yet Another Resource Negotiator

One of the goals of Hadoop is that a developer should not be concerned that the application will
run on a cluster instead of a single machine, and should be able to concentrate on the correctness
of the data processing logic, and not the low level technical details of resource allocation. This is
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in fact the exact same desire that lead to the invention of operating systems, so YARN is often
called an operating system for the data center.

Figure 4.3: Generations of Core Hadoop

Like HDFS, YARN has a single ResourceManager and several NodeManagers, which correspond
to the NameNode and the DataNodes. However, for YARN, a third type of role exists, the
ApplicationMaster, which, as its name suggests, manages a single application, so basically it
is an interface between YARN and the different application frameworks. Thanks to this inter-
face, YARN is capable of integrating any application framework that exists for Hadoop (see
Figure 4.3). This is a big step forward as opposed to the very recent times, when Hadoop sup-
ported only the MapReduce paradigm [11], which proved to be inadequate for several scenarios.
With the help of YARN, applications are now able to use the framework that suits their needs
the best. The ResourceManager is responsible for scheduling and distributing the applications
among the available nodes and tracking and monitoring the scheduled tasks. NodeManagers, in
turn, launch the application containers on the nodes and report back their status to the Re-
sourceManager. One fundamental feature of YARN, which is inherited from MapReduce, is that
if a failure occurs on a node, the ResourceManager becomes aware of the failure, and gives the
task to another NodeManager, so eventually the job will succeed.

4.3.3 The Hadoop Ecosystem

Hadoop, with its foundation on HDFS and YARN, proved to be an excellent open-source frame-
work for handling large amounts of data effectively. No wonder, that a plethora of integrated
tools and frameworks emerged, leading towards what we might call a Hadoop Ecosystem. It is
out of our scope to fully describe the whole Ecosystem, but we try to give a quick insight into
the technologies we think the most influencing.

Apache Flume and Apache Sqoop [18][28] are integration tools which can be used to load
data into HDFS from various sources. Flume is traditionally used for collecting logs, but it is
capable of many more. Sqoop is used for the same task, but it is specialized in loading data
into Hadoop from an RDBM and vice versa. We used Flume in our Framework to aggregate
individual datasets in the Data Center received from the Mediator Agent.

Apache Spark [27] seems to be the data processing framework replacing MapReduce. [8] In-
deed, it can handle all problems that MapReduce can, and many more, that it cannot. Spark is
capable of running data mining, machine learning and graph analytic algorithms as well as pro-
cessing streaming data. Apache Tez and Apache Storm are similar application frameworks. Spark
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is also the first tool we suggest to users of our Framework who wish to do custom processing in
the Data Center.

Apache Hive and Cloudera Impala [21][7] are both tools for querying data stored in HDFS
with the use of well-known SQL queries. Hive, developed by Facebook, is a data warehouse
framework that is based on the MapReduce paradigm, a legacy of earlier Hadoop versions.
MapReduce is a fundamentally batch-oriented framework, excelling at some types of problems,
but very lacking as a base for an interactive query engine. Since the introduction of YARN, it is
possible to use other processing frameworks with Hadoop, and indeed, Hive is being rewritten
right now as a community effort to be able to run on other engines, like Spark. [8] In the
meantime, alternative solutions have come to life, most notably the Impala framework, which
operates its own node-managers to bypass the batch-oriented processing framework, enabling
interactive querying of data. Both Hive and Impala are heavily used by our Framework, as
Chapter 5 describes.

Figure 4.4: The Hadoop Ecosystem

Apache Pig [26] is a high level scripting language, that is traditionally used to express MapReduce-
based data pipelines, and has a very short learning curve. Although it was specifically created
to be compiled into MapReduce primitives, it is also being rewritten to use Spark instead [8],
opening up new areas to express high-performance data transformations in a high level scripting
language. Pig is the data processing tool we suggest to users of our Framework who are not
familiar with Java, Scala or Python, because one of these languages is required for using Spark.

Apache HBase [20] is a NoSQL columnar storage, modeled after Google’s BigTable [6]. It has
been a part of Hadoop since the beginning, and was a great tool if short response time querying
of data was needed, leaving batch-oriented jobs to MapReduce. We recommend HBase for users
of our Framework who need an operational data store besides the analytic one the Framework
provides by default.

Apache Oozie and Apache Hue [24][22] is a distributed workflow management system that
is used to schedule jobs on a Hadoop cluster, as well as in our Framework. Hue is an aesthetic
all-in-one GUI for Hadoop. It provides a surface on which it is possible to browse HDFS like a
traditional file system, to query tables in Hive, Impala or HBase, to define and edit jobs and
workflows and to schedule and monitor these jobs. We provide restricted access to Hue for the
users of our Framework, being their development interface to the Data Center.
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Chapter 5

The Data Center

In the previous chapters we described components of the Framework, which are responsible
for collecting the data, but we said little so far about the way datasets are stored and made
available for services. In this chapter, we finally discuss the architecture of the Data Center.
During our discussion, we build on concepts presented in Chapter 4. We introduce the topic by
demonstrating how a functioning Hadoop environment can be built with limited resources, then
we discuss the Data Store, which is the backbone of the Framework. We also take a quick glance
at other data processing capabilities of Hadoop, which really differentiate the Framework from
traditional RDBMS-based data processing systems. The chapter ends with a measurement on
the query processing performance of the Framework, which is one of the most important aspects
from the service developers’ point of view.

5.1 Prototyping a Hadoop Cluster in the Cloud

Hadoop was designed to work well on relatively inexpensive commodity hardware, applying
replication on blocks of files, which provides both reliability and scalability. Traditional methods
that improve reliability and performance, like RAID, which is common in server rooms, or
swapping, which is present in most operating systems, are therefore unnecessary overhead to the
system as a whole, so Hadoop works best when installed on plain machines without any serious
improvements. Consequently, in the long run, it might be economical to own the machines of our
Hadoop Cluster, even so because otherwise decommissioned servers can be readily integrated into
a Hadoop cluster, since the fault tolerance of the system does not come from reliable hardware.
However, if we do not already own such a server park, this can be a serious barrier to entry.
Fortunately, Cloud technology made it possible to acquire a large amount of processing power
for a short time, paying only for the actual usage, then break down the machines, eliminating all
future costs. This way the otherwise fixed cost of necessary hardware for development becomes
a variable cost, which is very advantageous for an early entry into a field. For the sole reason to
make it affordable for ourselves, we chose to prototype the Hadoop cluster with the help of an
IaaS (Infrastructure as a Service) offering [52], which helped to keep costs low.
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5.1.1 Performance Considerations

Using an IaaS platform means, that we can request virtual machines and configure them, how-
ever we need to. Unfortunately, this freedom only lasts as long as we keep ourselves above the
operating system level, because IaaS by definition hides lower level layers behind its abstrac-
tion. Those layers involve virtualization, hardware, storage and network architecture. Figure 5.1
illustrates the stack. We can tune the operating system to meet our needs better, but not the
four bottom layers. To determine if we should expect any performance loss due to building on
an IaaS, we now examine these hidden layers.

Figure 5.1: Infrastructure as a Service with Hadoop on Top

Virtualization imposes an overhead on the overall system, but nowadays that is hardly a big
deal, and we can safely assume that Cloud providers do it better than we would ourselves. Of
course this overhead would be eliminated if we used our own physical machines, but the costs
would probably outweigh the gains. Anyhow, virtualization does not have any additional effects
on the performance of the Framework.

Hardware matters very little in our case, because it does not really matter where the CPU
cores or the memory come from, as long as the Cloud provider provides a reliable service for a
price affordable to us. Hiding hardware details might have significant effects on our budget, but
not on the performance of the Framework.

Storage architecture details, as we might expect, is a much more relevant issue, since one of the
most important pillars of Hadoop is its distributed storage system. Performance of HDFS has
a large effect on the performance of the whole Hadoop system. Unfortunately, having no say in
storage methods means that we cannot eliminate features which are useful for other application
areas (like RAID), but with HDFS deployed on top of them, are made redundant. Of course
we can always configure our system to take these circumstances into account, for instance by
decreasing the replication factor. Unfortunately, the lack of control over the storage layer may
impose a significant performance loss on our Framework.

Network topology aids Hadoop in reaching its maximum potential. For obvious reasons, when
machines are placed into different racks, the intra-rack1 communication has a higher bandwidth

1Between nodes in the same rack.
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than inter-rack2 communication. HDFS itself was designed with rack-awareness, which means for
example that when replicating a file block, it makes sure that one replica ends up on a different
rack than the others for reliability reasons, and when reading or writing a file, the request is
processed by the nearest DataNode, which is the one in the same rack, for availability reasons. If
we have no control over, or worse, no knowledge of network topology, we are not able to utilize
the rack-awareness feature of Hadoop, and that clearly means performance loss.

Deploying our Hadoop cluster on an IaaS platform has its downside from the viewpoint of Frame-
work performance, and we need to take account of that when calculating the costs and benefits
of utilizing an IaaS solution instead of operating our own servers. Until Cloud offerings which
include full Hadoop functionality mature [1], it might be rational to keep our own infrastructure
in the long run. However, Cloud is a great asset during development and for early operations.

5.1.2 Flexibility versus Stability

Cloud technologies are inherently flexible, and large Hadoop clusters benefit from stability, so
this might be another point of conflict between the two approaches. Although flexibility does
not necessarily mean instability, and likewise, need of stability does not always lead to refrain
from change, it requires special care to make these two worlds work together.

For developing applications and trying out concepts, it is not worth it to burden ourselves with
cluster maintenance problems, because we can run Hadoop on a laptop in pseudo-distributed
mode with small datasets, or use some free Cloud offerings of Hadoop, which are designed exactly
for that purpose. In this phase, we simply disregard stability. However, to build a Hadoop system,
one cannot avoid testing on an actual functioning cluster of his or her own, so a somewhat stable
development environment needs to be set up at some point during the project. Of course we
would like to avoid paying for such a cluster when we do not use it. The problem is, that it is
not a straightforward task to keep the state of the cluster between two development cycles, and
we would like to avoid having to reconfigure it every time we restart the cluster.

Currently all Cloud providers fee for persistent storage capacity, even if not used, so if we need
to have the cluster in the same state at start-up as at the last shutdown, we either need to create
snapshot images of the disks and store them locally, a very cumbersome approach, or accept to
pay a reduced fee even during downtime. Another difficulty is that at the time of writing, most
Cloud providers disallow any manipulation of internal (network) IP addresses, so we cannot just
attach the disk to a newly created virtual machine with the internal IP address it had before.
There are several viable solutions to this problem. One is to use external IP addresses, which
are allowed to be fixed. However, it is very undesirable for a cluster to operate based on external
addresses, or even for the internal nodes to have one, because it makes it harder to maintain
proper firewall rules. On top of this, communication to an external IP address counts as egress
communication, even if the machine is in the same data center, and that involves extra fees. We
found it more efficient to simply accept that every start-up involves configuring the nodes to

2Between nodes in different racks.

34



know about their new internal addresses, which is easily scriptable. We have written quite a few
scripts to support our development method, but it is worth to note, that there are tools [23] for
automatic cluster maintenance, that can work with Cloud providers, and are more suitable for
production use.

5.1.3 Evaluation of the Concept

We have identified three phases of a Hadoop project, which are experimentation, development
and production deployment. We conclude, that for production use, cloud technologies may or
may not be the most fitting solution, as both technical and business parameters highly depend on
the current cloud offerings. However, for the first two phases, experimentation and development,
utilizing a Cloud environment to create a development and test cluster has clear benefits over
operating our own machines and can be safely recommended to small teams. Our Framework
would not have come to life without this concept.

5.2 A Hadoop Data Store

All the theoretical and technical discussions of the previous few pages were meant to provide
a basis for this section, where we present how we joined the many loosely-coupled components
together to form a cohesive, stable environment to store the data of the services. To be able to
strongly concentrate on the Framework, we omit most details that are specific to the different
services, like special transformations on the data or the exact data model, focusing instead on
the aspects strictly related to the dataflow. The section is a demonstration of how components
of an ecosystem, like Flume, Oozie, Hive, Impala and Spark, all designed for different purposes,
can work together as a Framework.

5.2.1 Data Ingestion

The Mediator Agent does not perform any aggregation on the data, neither does it separate
datasets for different services, so the Data Center receives all data samples for all services
individually on the same entry point. However, it is not efficient to write these small samples
of few kilobytes directly to HDFS, because they would eventually overload the MasterNode. We
need to aggregate and separate these samples into service-specific collections, and Apache Flume
is a tool perfect for this purpose. A Flume pipeline consists of a source, a channel and a sink.
The source, which in our case receives HTTP POST messages, collects the data from external
system components and places them on the channel. The channel can either be an in-memory or
a file-based queue, depending on the reliability requirements. We used a memory-based channel,
because the Framework needs performance more than reliability, as some missing samples are
not as harmful as a delay for all samples. The sink collects the datasets from the channel and
after a given time, ideally under a minute, it writes them to HDFS for every service.
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Figure 5.2: Data Ingestion and Aggregation

From the moment these aggregate files are written to HDFS, they are put into temporary queues,
and are instantly available for processing. We experimented with an aggregation interval of
30 seconds, so taking network delays into account, there is a maximum of 33-35 seconds delay
between the measurement and applying the processing logic. If a service needs lower delays, like
streaming algorithms, with special care, data undergoing aggregation can be processed, as well.

5.2.2 Transformation

JSON is ideal for network communication, but it is far from an effective storage format for large
amounts of data that is frequently queried. Datasets need to be transformed into a format which
is compact enough, and at the same time enables low latency querying of the underlying data.
Parquet [25], which seems to be the only wide-spread Hadoop storage format that accomplishes
both expectations well, is a columnar storage format. This means it stores data points from the
same column together, and not from the same row. This way it is able to apply effective com-
pression algorithms to the data, and provide excellent analytic query performance, as analytic
queries usually aggregate values from the same column. However, there is a twist: to fit standard
query patterns, Parquet always stores the columnar values of a row in the same file, making it
easy to fetch a single row, too.

As Parquet compresses the files significantly and provides high-throughput, low-latency query
performance, we transform raw JSON data into Parquet files. This happens in scheduled time
intervals with the help of the Oozie workflow scheduler tool, because it is not practical for previ-
ously discussed reasons to transform incoming datasets one by one. The transformation occurs
every five minutes, and is performed by Hive, which is an excellent tool for the task. Although
it lacks low latency querying capabilities, it is a very robust and fault-tolerant batch processing
framework, ideal for ETL (Extract, Transform, Load) workloads. We also experimented with Pig
and Impala for this purpose, but Pig has its own script language that is different from SQL, and
Impala processing is very memory-intensive, furthermore it is quite unstable for long running
transformations, especially compared to Hive. Nevertheless, Impala beats Hive when it comes
to low-latency query performance, as our measurements show at the end of this chapter.

Converting the data into Parquet format already improves query performance a great deal, but
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we go further and also partition the data store. Strong candidates for partitioning columns
include users’ ID, time of the measurements and the geographical location of the measurements,
reflecting the most common filters used on queries. Currently partitioning by time dimension
is implemented. This way services do not need to search the whole data store when looking for
answers that only require recent datasets.

Figure 5.3: Transformation Steps

The process is essentially controlled by three script files, two of which are provided by the
Framework and one is developed by the service developers. Right after raw data is taken from
the service queue, the first Hive script parses the JSON samples and loads them into a staging
area. The staging area is a reasonably compact representation of the recent datasets, and can be
accessed either with SQL, or with other custom transformation scripts. Users of the Framework
can provide their own logic at this point, which is plugged into the Framework, and is able to do
custom transformations on the staged data. Finally, the second Hive script, which is provided by
the Framework, transforms the dataset into Parquet format and moves it to its final partitioned
location.

5.2.3 Custom Data Processing

The Framework provides a ready solution to services for collecting, transforming, storing and
querying their data, although this might not be enough for some service developers. If a service
requires special methods, one needs to build a plugin, which is also supported by our Framework.

Figure 5.4: Custom Processing Capabilities of the Framework

To write custom processing logic, a service developer needs to be familiar with at least one
of the many processing frameworks Hadoop has. Our preferences are for Spark, but we can
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support other engines as well. However, being a special use-case and only concerning specific
services, the Framework gives a free hand to service developers to implement their own plugins,
although our team can advise on these matters. An example would be a service that constantly
monitors the technical parameters of the vehicle and notifies the driver if he or she drives in an
uneconomical way. A service like this can easily be implemented with the help of Spark Streaming
[29] by continuously running an algorithm on raw incoming streaming data and sending a PUSH
notification [53] to the Smart Device. We are planning to implement such a mechanism in the
Mediator Agent, as it might be needed by many services. Another example for custom processing
could be a service that predicts where to go if the driver wants to park the vehicle. A possible
implementation of this service would periodically run a batch-job on the Data Store written in
Spark or Pig and load a special table either in MySQL or in HBase for maintaining predictions
for different parts of the city, which Smart Clients can query. The possibilities are virtually
endless.

5.3 Performance of the Query Engine

As we already mentioned, Hive is not the best tool for interactive querying of the data. It might
be used to create regularly generated reports, but we wanted to enable users of the data to
explore the data store, drilling down and issuing ad-hoc queries. On the other hand, it is also
important to make the data store accessible to the Smart Clients through the Mediator Agent,
which requires low-latency query processing. That is why we decided to replace Hive at the end
of the transformation flow with Impala, which working together with the Parquet file format
proves to be a very effective low latency query engine. To prove that our concept really works,
we designed some tests to check the actual performance of the query engine deployed on our
cluster.

An algorithm was created by one of our team members, which generates data that resembles the
patterns of a real car. This might have been the single most important step to move forward the
evolution of our Framework, as we were able to test our concepts without having to go through
with the cumbersome process of collecting data from a real vehicle. We ran a simulation of a
service that sends samples to the Data Center every five seconds from each client applications.
The test data runs through 20 days, although it was accumulated in a short time, corresponding
to about 90-100 clients generating data all at once. It was also a test of the Framework as a
whole. We tried to figure out if the Framework was capable of serving the first set of users,
which consists mainly of service developers. According to the test results, we are confident that
our Framework can serve several hundred users in its preliminary version already, which is quite
sufficient for the initial phase of service development, although it is obvious that the Mediator
Agent needs to scale out later, as we already mentioned in Chapter 3.

To demonstrate that Impala was a good choice, we ran the test queries on the same growing
dataset both on a MySQL server and on the cluster with Hive. We tried to make the comparison
as fair as possible, so four CPU cores were dedicated to all three engines. We also limited the
memory for Hive and Impala processes to 8 GB, the same size that the MySQL server had
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to operate on. Furthermore, we deliberately used tests that scan the full dataset, so Hive and
Impala could not benefit from partitioning the data.

The first test we ran was to check how Impala scales compared to the other two. We used an
incrementally growing dataset for our tests and did six measurements. The first measurement was
executed on 2 million raw samples and the rest consecutively on 4.5, 6.7, 9, 11.1 and 13.2 million
samples. The final dataset had a size of 10.5 GB, which the MySQL server compressed into
3.5 GB. It is impressive, that the Parquet representation of the data was only 1 GB. The test
query was to calculate the average speed for every user.

Figure 5.5 shows that Impala scales remarkably well with large datasets. Although the MySQL
server performed considerably well for a few million samples, processing time quickly rose as size
of the data rose, while queries issued to Impala were answered in a few seconds even with 13 mil-
lion samples. Hive showed similar scaling properties as MySQL, though Hive query performance
suffers from a large overhead caused by the fact, that Hive translates queries into MapReduce
jobs. This overhead is present even in case of small datasets.
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Figure 5.5: Comparison of the Scaling Properties of the Engines

We also examined how Impala performs in case of different query patterns, compared to MySQL
and Hive. We used four different queries, which try different aspects of the engines.

Full scan counts the number of samples in the whole dataset.

1 condition applies a single condition on a single column.

2 conditions applies two conditions on two different columns.

Aggregation calculates the average speed of different users.

We ran the queries on the full dataset, that contains 13.2 million samples. As Figure 5.6 shows,
results are very promising.
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Figure 5.6: Performance of Different Query Patterns

As expected, Hive performs poorly compared to the other two, mainly because of the overhead
MapReduce imposes on it. When datasets need to be aggregated, the overhead is even larger,
because Hive needs to start multiple jobs to answer the queries. However, looking at the numbers
of Impala, we are confident that we succeeded to choose the right architecture for our Framework.
Furthermore, partitioning the data means that to answer queries of the Smart Clients, the engine
will never need to scan significantly more samples than in our test. It is also very comforting,
that aggregations can be done just as quick on the data as simple filtered queries, which we
cannot say about the MySQL engine.
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Chapter 6

Case Study

In order to observe the Framework from the Application developers’ point of view, the idea
of creating an application using the Framework, as a client application developer, struck us
in the early stages of design. This was the best way to test the Framework capabilities, to
provide a showcase application for application developers and to come up with new requirements
towards the Framework. The following chapter covers the description of BoardComputer client
application, capable of acquiring all available data using the Framework, and displaying it in an
aesthetic form.

6.1 Initialization

To start using the Framework, the Data contract must be set. In this case the data contract
contains all available data, and the appID is the name of the application. The data contract is
defined in the following way:

{
" appId " : " board_computer ",
" appName " : " Board Computer ",
" contract " : {

" items " : [{
" measurementName ": "Air Intake Temperature ",
" measurementAlias ": " air_intake_temp ",
" measurementType ": "REAL"

},
{

" measurementName ": "GPS Time",
" measurementAlias ": " gps_time ",
" measurementType ": "LONG"

},
...
]

}
}

After this, the development of the mobile client application started. Before deploying any client
application to a device, the Platform Application must be installed on it.
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In order to use the client side part of the Framework, the Platform library was included in the
following way in the build properties of the application, after copied into the library folder:

repositories {
flatDir {

dirs ’libs ’
}

}
dependencies {

compile (name: ’vehicleict -platform -lib ’, ext: ’aar ’)
}

The application library was created and built with Gradle [35] build system, so in order to use
the Platform this build system is required.

6.2 Connecting to the Platform

In order to connect to the Platform, we created a proper Configuration. The required parameters,
except of the application name, are acquired by the client application itself. For userID, a login
screen is created, and for deviceName, a settings screen lists the available devices. As the aim
is to display all the available data, all the fields are set to be required (with the help of Fields
class static method), and report interval is set 5 seconds, to give enough time for the Platform
to read the data, but also display it frequently. As we planned to send measurement data to the
server, reporting to the server is set to true.

Configuration configuration =
new Configuration . Builder ( BoardComputerConstants . APPLICATION_NAME , userID ,

deviceName )
. setRequiredFields ( Fields . getAllCommands ())
. setReportInterval ( ReportInterval .Sec5)
. setReportToServer (true)
. build ();

After the configuration, the Platform is created, and a callback interface is declared as an
anonymous class. Then, the connection starts after the initialization.

Platform platform = new Platform ( getApplicationContext () , configuration ,
new SampleListener () {

@Override
public void receiverSample ( Sample sample ) {

...
}

});
platform . connect ();

The initialization process happens when the measurement screen is created, and when this screen
is destroyed, the platform disconnects. As connection process needs time on the Platform side,
startSampling() cannot be called right away in the Client application. In order to avoid this,
a start/stop measurement button is placed on the action bar of the application. This button
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is only visible when the screen (Activity [13]) is created, and the creation of the screen needs
more time than connecting, so the user is not able to start the sampling before the application
is connected to the Platform.

In the event handler of this button, the sampling is started/stopped in the following way:

if (! isODBRunning ) {
platform . startSampling ();
isODBRunning = true;

} else {
platform . stopSampling ();
isODBRunning = false ;

}

6.3 Displaying the Gathered Data

When the sampling is running, the display process of the data fields is started in the defined
callback method, called by the Platform with the actual Sample object. The data fields are
displayed by using the setter functions defined by the application. For every field, its function
is invoked the following way:

public void receiverSample ( Sample sample ) {
boardComputerFragment . setEngineRPM ( sample . getEngineRPM ());
engineDetailsFragment . setAirIntakeTemperature ( sample . getAirIntakeTemp ());

}

In all setter functions, the existence of the values are checked like in the server side forwarding
(minimum value of type mean not existing data), and displayed if exists (or Not supported text
appears). This filtering is done in the proper setter functions, in the following way:

if ( position == Double . MIN_VALUE || position == Integer . MIN_VALUE ||
position == Long. MIN_VALUE ) {
return false ;

}
if ( isAnimated ) {

this. startAnimating ( position );
this. position = position ;

} else {
this. position = position ;
this. invalidate ();

}

On the next page, four applications are shown, which we have already created.
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Figure 6.1: Board Computer, Engine Details, Social Driving and Eco Driving
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Chapter 7

Related Works

As connected car services have a huge potential, it is no wonder, that there are other solutions all
over the globe, that show similarities with our project. In this chapter, we investigate other con-
nected car solutions both in the industry and in academic research, and highlight the attributes
in our Framework that differentiate it from the others.

7.1 Industry Efforts

CarCare [43], a Hungarian solution, is a cooperation between Ericsson Hungary and Hungar-
ian Telekom. This project also uses On-Board Diagnostics as the vehicle-side data source, with a
special connected hardware. The device is capable of not just reading OBD data, but to acquire
GPS positions as well. This special piece of hardware has a mobile internet connection capability,
and uses it to send data to the backing infrastructure. The client device has only the role of
data source, so no immediate client features are available.

Connected Vehicle [17] was made by two leading Swedish companies: Volvo car company
in cooperation with Ericsson. This is a unique solution, as it uses a custom Client device,
built into the cars as an on-board user interface. This device has its own operating system
(based on a previous Android version) that hides all the details of the vehicle- and server-side
communication. This solution also uses the Cloud as the base of its backing infrastructure,
and currently supports applications like Road usage charges, Traffic safety and Infotainment.
Although the Cloud service offers user features, their user interface is only the custom board
device, so the usage of these services is locally bounded to the car. This solution only supports
cars manufactured by Volvo. However, they are planning to expand the ecosystem, in cooperation
with other vehicle companies.

Delphi Connect [12] is an already existing vehicle-management service, provided by Verizon,
one of the largest telecommunication companies in the United States. This solution uses a unique
LTE-capable [39] device, connected to the car through OBD II. This device has similar OBD II
related functions, like the previously described hardware, but it has interesting extended features,
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too. Unlike the previous solutions, this one is capable of not just vehicle-to-device/infrastructure
communication but in the other direction, too. Although users are not capable of driving the car
remotely, but security features like locking/unlocking the car and using the horn are supported,
users are even able to start the engine. As this solution only provides vehicle-management
features, it is not intended to be extendible, and cannot be used as a Framework or a base of
other services.

Besides the previously mentioned solutions, there are several projects working on connected car
services. However, most of the technical details of these solutions are not public. Snapshot [48] a
smart car insurance service by Progressive (USA) is using OBD II to calculate fees. Dialexa Labs
offers Vinli [41], a vehicle-management service supporting not just smartphones, but smartglasses
(like Google Glass), too. SmartDrive [50], a Hungarian startup has developed its own hardware
to access internal vehicle data, and it is currently building a social game based on connected cars.

7.2 Academic Research

There is also strong academic research in the connected car domain, for example [10] describes
the Cloud-related aspects of connected car applications, and [38] also depicts a Cloud-based
solution using OBD II.

The solution described in [10] focuses directly on the infrastructure, and all vehicle-related as-
pects are the responsibility of application developers. Instead, this solution dives into a design of
a PaaS (Platform-as-a-service) system, and investigates wide variety of features for connected car
applications, such as collision avoidance, theft control, lane change support and pedestrian safety.

Paper [38] also focuses on the client side, and unlike previous solutions, it uses an Android mobile
device as a client-side unit, like our Framework, and uses OBD II for sampling. This project
applies Cloud computing as the backing infrastructure, but no additional service support details
are public.

7.3 Assessment

We have not yet found a solution on the market or in the academy, that focuses strongly both
on consumer-side applications and background services. It is also hard to find efforts, which
create universal frameworks, that are capable of hosting a diverse set of services, and are easily
extendible. We think, that this is the real value of our Framework, compared to other solutions.
However, a limit of our Framework in its current state is, that it depends on smartphones and
tablets the driver owns, and not capable of communicating with the vehicle without those. As
we placed a strong emphasis on Client applications, we consider this an opportunity, and not
a deficiency. We are also proud, that unlike many other solutions, ours is capable of collecting
data both from OBD II and the CAN bus of the vehicle.
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Conclusion

In our paper, we have described the VehicleICT Framework that has been created to allow a
number of teams to develop connected car services with infrastructure-side support for data
processing.

We have developed a Platform, on which Android applications can be built that are able to use
the Infrastructure. We have worked out a solution, which allows multiple applications to run on
the same device and benefit from the features of the Platform. We have also tested the Platform
by implementing actual applications, which can also be used as examples to service developers.

To make the large amount of data collected from the vehicles available for querying and analyses,
we have introduced a standard dataflow that is applied to the data of all services individually. To
implement this dataflow efficiently, we have built a Hadoop cluster, which holds the datasets and
enables their high-performance processing. We have included extension points in the dataflow,
to make it possible for service developers to customize it with their own transformation logic or
create their own data structures specific to their service. We have also created a Mediator Agent,
which sits in the center of the architecture and aids the communication between the Smart Clients
and the Data Center. We have shown, that the Framework is able to provide high-performance,
low-latency querying of the datasets, which is crucial to client applications and is also beneficial
to reporting applications. We have designed the Infrastructure with attention to the possibility
that later we might need to scale up, so the Framework is portable to the Cloud.

Our Framework is already used by four different teams, who are building connected car services.
We take this as a confirmation, that our approach has a reason for existence, and our Framework
is capable of providing the support that service developers need, which was our intention.

This work summarizes our experiences that led us to the working Framework, that was released
in parallel of this research. Our proposed solution has two major components: a server-side
component applying Big Data techniques, and a universal platform solution for mobile devices.
These two modules are the base of the Framework. This research report can be considered as a
pioneering work in the field of universal frameworks for smart car solutions.

We believe, that VehicleICT Framework makes it possible to create services, which transform the
way people drive their cars. We are also confident, that our research, the concept we have come
up with and the experience we have gained in the process are not restricted to the connected car
domain, and we shall be able to extend the Framework in the future to accommodate services
in other domains, too, such as the emerging Internet of Things.
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