
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Model-Driven Development of Heterogeneous
Cyber-Physical Systems

Scientific Students’ Association Report

Author:

János Csanád Csuvarszki

Advisor:

dr. András Vörös
Bence Graics

2020



Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 3
2.1 Cyber-Physical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Model-Driven Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Platform-Based Design . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Gamma Statechart Composition Framework . . . . . . . . . . . . . . . . . . 6

2.3.1 Composition Modes of Gamma . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Formal Composition Semantics of Gamma . . . . . . . . . . . . . . . 7

2.4 Data Distribution Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 RTI Connext DDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Overview of the Approach 12
3.1 Difficulties of Developing CPS . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Design and Code Generation for Heterogeneous CPS . . . . . . . . . . . . . 13

3.2.1 Modeling of Composite CPS . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Supporting New Architectures and Platforms . . . . . . . . . . . . . 14

3.2.3 Establishing Communication . . . . . . . . . . . . . . . . . . . . . . 15

4 Modeling and Code Generation for Standalone Hardware 17
4.1 Gamma Statecharts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 High-Level Model Transformation . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Generating Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 C Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.2 SystemVerilog Code Generation . . . . . . . . . . . . . . . . . . . . . 20



5 Modeling and Code Generation for Distributed CPS 24
5.1 Data-Centric Semantic Variant . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.1 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Data-Centric Communication Implementations . . . . . . . . . . . . . . . . 26

5.3 Sharing Data With DDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4 Generating DDS Communication . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Implementation 30
6.1 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 C Language Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.3 SystemVerilog Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Case Study 34
7.1 The Crossroads Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.2 Crossroads Example on Digilent ZedBoard . . . . . . . . . . . . . . . . . . . 35

7.2.1 Implementing the Traffic Lights . . . . . . . . . . . . . . . . . . . . . 36

7.2.2 Implementing the Controller . . . . . . . . . . . . . . . . . . . . . . 37

7.3 Crossroad Example Using DDS . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 Conclusion and Future Work 40

Acknowledgements 41

Bibliography 42



Kivonat

Napjainkban egyre több iparág épít kiberfizikai rendszerekre a kritikus feladatok meg-
bízható ellátásához. Az ilyen rendszerek jellemzője, hogy nem csak egyetlen programból,
hanem több, különböző fizikai eszközön futó szoftver- és hardverkomponensből épülnek
fel, ideértve egy adott környezeten belül található különböző programozható vezérlőket
és a hozzá integrált szenzorokat és beavatkozókat, a manapság terjedő fog és edge szá-
mítási megoldásokon futó folyamatokat, vagy a felhőt. Emiatt ezen rendszerek heterogén
rendszernek tekinthetők, amelyek tervezése és ellenőrzése rendkívül komplex feladat. A
komplexitás kezelésének gyakori eszköze a modellvezérelt megközelítés, amely segítségével
magas szinten leírható mind az egyedi komponensek működése, mind ezek egymással tör-
ténő kommunikációja. Kellően részletes modell esetén lehetőség nyílik az implementáció
automatikus származtatására is, amely felgyorsítja a fejlesztést és lehetőséget ad a hibák
korai felismerésére, javítására.

A Gamma Statechart Composition Framework egy a hierarchikus, komponens-alapú
reaktív rendszerek tervezését és ellenőrzését támogató eszköz. A komponensek integráci-
óját egy formális szemantikával rendelkező kompozíciós nyelv segítségével többféle kom-
pozíciós mód (aszinkron-reaktív, szinkron-reaktív és kaszkád) szerint támogatja, viszont
ezek a kompozíciós módok jelen formájukban kevésbé alkalmasak heterogén rendszerek
és az azokban előforduló interakciók leírására. Ezen felül a keretrendszer nem támogatja
sem a rendszermodellekből a beágyazott rendszerekben jellemzően használt forráskód au-
tomatikus generálását, sem az egyes (heterogén) komponensek hálózaton keresztül történő
kommunikációját.

Munkám során a Gamma keretrendszert bővítem új funkcionalitásokkal, melyek tá-
mogatják a heterogén rendszerek tervezését és az implementáció automatikus származta-
tását. Ezen rendszerek interakcióinak pontos leírásának érdekében heterogén architektú-
rákban alkalmazható kompozíciós szemantikai variánsokkal egészítem ki a már meglévő
szemantikákat. Az egyedi szoftverkomponensek real-time vezérlőkön történő futtatására,
illetve egyedi hardverkomponensek szintézisének támogatására automatizált kódgeneráto-
rokat fejlesztek, lehetővé téve a beágyazott szoftver előállítása mellett logikai áramkörök
viselkedésének leírását is. Támogatok többbféle, kritikus és valós-idejű beágyazott rend-
szerekben használt kommunikációs megközelítést.

A megoldásom alkalmazhatóságát két esettanulmányon szemléltetem, egyik esetben
egy real-time vezértlőből és FPGA-ból álló heterogén architektúrán, másikban egy haló-
zaton kommunikáló elosztott környezetben futtatva a rendszert.

i



Abstract

Nowadays, cyber-physical systems are becoming more prevalent in the industry for the
reliable execution of critical tasks. As a frequent characteristic, these systems consist of not
only a single program but multiple software and hardware components running on different
physical devices, including programmable components in an embedded environment with
their integrated sensors and actuators, processes running on fog and edge solutions, or
the cloud. As a result, they can be considered heterogeneous systems whose design and
analysis are remarkably complex. Complexity can be handled by introducing a model-
driven approach, which aids the high-level description of both the behavior of standalone
components and their communication. The definition of sufficiently detailed models allows
for the automatic derivation of implementation, making development faster and allowing
the detection and correction of errors in the early stages.

Gamma Statechart Composition Framework is a tool for the design and analysis of hier-
archical, component-based reactive systems. The integration of components is facilitated
by a composition language with formal semantics supporting multiple composition modes
(asynchronous-reactive, synchronous-reactive and cascade). However, these semantics in
their current form are slightly suitable for describing heterogeneous systems and their
typical interactions. Furthermore, the framework does not support either the automatic
derivation of source code typically used in embedded environments from system models
or the communication of standalone components via network.

In this work, I extend the Gamma framework with new functionalities, which support the
development of heterogeneous systems and the automatic derivation of implementation.
I extend the existing composition semantics with semantic variants tailored to hetero-
geneous architectures for the precise description of interactions. To allow the execution
of standalone software components on real-time controllers and support the synthesis of
standalone hardware components, I develop automated code generators, enabling both the
derivation of embedded software as well as the description of logical circuit behavior. I
support multiple communication solutions used by critical, real-time embedded systems.

I present the applicability of my solution in the context of two case studies, one executed
on a heterogeneous architecture consisting of a real-time controller and an FPGA, and the
other realising a distributed networked communication.

ii



Chapter 1

Introduction

As digital technology advances, we become increasingly dependant on computer devices
in our everyday lives. Apart from desktop computers and smartphones, which we actively
use and carry with ourselves, numerous devices (embedded systems) surround us, usually
as parts of more complex systems, such as cyber-physical systems (CPS). Cyber-physical
systems are deeply integrated into their environment: not only do they derive data from
their surroundings, but they actively alter the physical world in order to achieve certain
goals. As a result, these systems have to be configurable and fault-tolerant. A frequent
characteristic of CPS is that they consist of many heterogeneous components, such as
embedded devices with sensors and actuators, and can connect to processes running on
fog and edge solutions, or in the cloud. This heterogeneity makes the development and
analysis of cyber-physical systems a cumbersome task.

As an example, the idea of developing medical monitoring devices in the context of cyber-
physical systems is becoming increasingly prevalent [3]. Such devices monitor the physio-
logical status of a patient using sensors. The connection of these sensors allows for easier
data collection, which can then be stored and compared to other data entries using big
data technologies [2]. Furthermore, medical CPS also has to account for intelligent decision
making based on the patients’ data, which can be solved by utilising high-performance
cloud solutions. Since medical a CPS can directly interfere with humans, it must be
safety-critical. This example demonstrates how complex these systems can be, as the
heterogeneous components of CPS have to constantly interact with each other while con-
forming to reliability and quality of service requirements.

This complexity is usually handled by introducing a model-driven development approach,
which focuses on the high-level description of the system. This allows developers to focus
on the structure, behaviour and communication of the components instead of low-level
implementation details. Model-driven approaches can support verification and validation
(V&V) techniques, and based on a sufficiently detailed model, automatic code generation
is also feasible.

However, most modeling tools do not provide support for the design of heterogeneous
systems, which would require the systematic integration of models describing the behavior
of standalone components. Furthermore, the automatic derivation of implementation for
different hardware components is also rarely supported. Therefore, approaches aiming
to support the model-driven design of cyber-physical systems have to support 1) the
integration of components with well-defined execution and interaction semantics tailored
to heterogeneous systems and 2) automatic code generators for different software and

1



hardware platforms, and communication modes. As a solution, I propose an approach in
the context of the Gamma Statechart Composition Framework.

The Gamma Statechart Composition Frameworks is a tool for the design and analysis of
hierarchical, component-based reactive systems. The integration of components is sup-
ported by multiple composition modes (asynchronous-reactive, synchronous-reactive and
cascade). However, these composition modes in their current form are slightly suitable for
the design and description of heterogeneous cyber-physical systems. There is a strong need
to describe data-driven communication commonly found in CPS, where the main form of
communication between components is data transmission. Furthermore, the framework
does not support either the automatic code generation from system models in languages
typically used in embedded systems or the communication of components via network.

The goal of this work is to extend the Gamma framework with new functionalities that
support the design and development of heterogeneous cyber-physical systems and the
automatic generation of implementation. To achieve this,

• I extend the asynchronous semantics with a data-centric semantic variant suitable
for the description of data-driven communication commonly found in heterogeneous
systems;

• I develop code generators that target embedded processors and FPGAs, allowing for
the execution of standalone software components on embedded controllers, and the
synthesis of standalone hardware components on programmable logical circuits;

• I also support the network based communication of components via DDS, as well
as other forms of data-driven communication such as shared memory and memory
mapping commonly used by safety-critical, real-time embedded systems.

The rest of the work is structured as follows. Chapter 2 introduces the concepts that
are necessary to understand the rest of the work. Chapter 3 presents the overview of the
approach used in this work to support the model-driven development of heterogeneous
cyber-physical systems. Chapter 4 introduces the existing code generation techniques of
Gamma along with the newly developed code generators. Chapter 5 presents the new,
data-centric semantic variant, its possible uses, and the new code generator developed to
support distributed communication. Chapter 6 details notable implementation techniques
and details used in the new code generators. Chapter 7 presents case studies that utilise
my novel extensions of Gamma. Finally, Chapter 8 forms a conclusion, and presents
possible future works.

2



Chapter 2

Background

This chapter presents the background information necessary to understand my work. It
starts with the definition of cyber-physical systems (Section 2.1) and the introduction of
model-driven development (Section 2.2). Then, it presents the Gamma Statechart Com-
position Framework (Section 2.3), which is a modeling tool this work builds upon. Next,
the chapter describes the Data Distribution Service (DDS) standard (Section 2.4), a com-
munication standard commonly implemented in distributed and heterogeneous systems.
Finally, Section 2.5 presents some modeling tools and approaches related to this work.

2.1 Cyber-Physical Systems

The term cyber-physical systems (CPS) [21] refers to a new generation of systems which in-
tegrates computation with physical capabilities. These systems have the ability to interact
with, and expand the capabilities of the physical world through computation, communica-
tion and control [22], while also being strongly connected to human users. CPS are usually
feedback systems that have algorithms relying on sensor data to issue commands to the
actuators controlling the physical parts of the system. Essentially, these systems have to
integrate the dynamic behaviour of physical processes with the computational abilities of
software and networking. Another common property of cyber-physical systems is hetero-
geneity. These systems can contain a wide-range of components, from embedded systems,
which fulfill task-specific computation with limited resources, to cloud-based solutions with
high performance and power. Components are often networked and distributed, and have
to interact with each other in order to carry out tasks, some of which requiring real-time,
intelligent and autonomous behaviour. As cyber-physical systems focus on the intersec-
tion of the cyber and the physical world and can interfere with human activity, they are
often designed to be reliable, fault-tolerant and safety-critical. A comprehensive model
of the properties of CPS is presented in Figure 2.1 [1]. The many parts found in such a
system also have to be secure and resistant to malicious attacks, as even a single exploit
can lead to catastrophic results. Examples of these systems can be found in medical fields,
autonomous vehicles, Industrial Internet of Things and military.

Due to the heterogeneity of its components and the performance and safety requirements,
the development of a cyber-physical system is a challenging task. Each component has to
be designed precisely to comply with the requirements and the composition and networking
of these components also have to be addressed, which brings a whole new array of possible
errors and failures. To cope with the complexity, software developers and system engineers
often rely on model-driven development approaches.

3



Figure 2.1: The concept-map of cyber-physical systems

2.2 Model-Driven Development

The basis of model-driven development (MDD) (or model-driven software engineering
[5]) is the application of models to design various aspects of the systems [24]. The major
advantage of model-driven approaches is that developers can focus on the high-level, logical
problems and behaviour of the system, making the development less dependent on the
platforms and technologies used. Models are also easier to understand and to maintain
than text-based descriptions, and can be used to derive documentation or source code,
which can reduce development costs and time [24]. This approach is often used in safety-
critical system development [9], as models can precisely describe system behaviour and
structure, while the derivation of source code and the early appliance of verification and
validation (V&V) techniques minimize human error. This work builds on the platform-
based design approach, a subset of model-driven development.

4



2.2.1 Platform-Based Design

The platform-based design approach [19] is a model-driven approach where users define
the functional and behavioural models of the system in a platform-independent way, then
connect and allocate these models to the hardware. This way, the platforms where the
models are implemented appear in the design process. This approach is especially useful
when designing complex embedded and cyber-physical systems, where there are multiple
different platforms used. This way, developers can minimize the amount of human error
by reducing complexity, while precisely defining the functionalities and interactions. A
comprehensive visualisation of the models used in platform-based design is shown in Figure
2.2. The bases of these models are the requirements that the system needs to fulfill.
These requirements usually start from a high-level, customer-based perspective, and can
be refined to a low-level version, where the source code can be implemented from them
without further information. From the high-level requirements, the functional model can
be derived. Since the creation of new hardware is expensive, companies usually rely on
generic hardware platforms when designing safety-critical systems. Therefore, platform
models are dependent on their respective hardware library as well.

Figure 2.2: Platform-based system design

Functional models describe the functions and services inside a system, along with their
interfaces and connections. Functional models also show the components of a system
in addition the the inputs and outputs they have in accordance with the requirements.
Platform models describe the structure and functions of the platforms that the system is
built on. Component behaviour models define the logical behaviours of each component.
They can model the internal behaviour of a component, for example, with statecharts, or
the communication processes of these components with sequence diagrams. A sufficiently
defined behaviour model can be used do derive implementation. From these, the hard-
ware/software allocation and architecture models can be constructed, which describe what
platforms the components run on as well as how they communicate with each other.

However, these steps vary greatly, and as such, developers usually have to resort to using
multiple tools at the different steps of development. There is a lack of a single tool that
supports all the steps depicted in Figure 2.2. In this work, our main focus is to support the
development steps on the left side of the aforementioned model, where the description of

5



the behaviour and communication of the components happens. These are the steps that the
Gamma Statechart Composition Framework supports with its functional and component
behavioural modeling, while also providing traceability between model transformations
and verification. Architectural modeling, which could aid the allocation and deployment
of components to different platforms is only slightly supported by Gamma, but is planned
to be developed as future work.

2.3 Gamma Statechart Composition Framework

The Gamma Statechart Composition Framework [20] is an Eclipse-based, integrated mod-
eling and analysis toolset for the component-based design of reactive systems. Gamma
supports the semantically well-founded composition and analysis of heterogeneous state-
chart [15] components where individual components may use different statechart seman-
tics. The framework intentionally reuses statechart models of existing tools and their
respective code generators for individual components. As a core functionality, it provides
a composition language that supports the interconnection of statechart components in a
hierarchical way on the basis of precise execution and interaction semantics [11] including
scheduling strategies and constraints. In addition to modeling, Gamma provides auto-
mated code generators for both atomic statechart and composite models and also support
system-level formal verification and validation (V&V) by mapping statechart and com-
position models into formal models of various model checkers and back-annotating the
results. The framework also provides test generation functionalities for the interactions
between the components using the integrated model checker back-ends.

This work focuses on the model-driven development of heterogeneous CPS with Gamma,
using the composite component-based modeling approach provided by the framework to
model such systems. Essential to the precise modeling of composite systems is to define
the way components interact with each other, especially when heterogeneity is present.
Gamma presents synchronous and asynchronous system compositions to describe compo-
nent behaviours.

2.3.1 Composition Modes of Gamma

Gamma supports synchronous and asynchronous systems to define how composite systems
behave, and how components inside such systems interact with each other. This subsection
details these two types of systems along with their supported composition modes as well
as some limitations I aim to address in this work.

Synchronous systems Synchronous systems operate with logical time, following the
semantics of synchronous programming languages. The components in these systems
communicate by sending signals through ports, and their execution is controlled by a
clock that emits ticks. The execution of all components within a system is called a cycle.
When executed, components first sample their input ports, then provide output on their
output ports. Input signals are only sampled in the beginning, that is, if a signal changes
mid-execution, the change is ignored, and will only take effect in the next cycle. Output
signals are sustained until the next cycle. A unique aspect of synchronous systems is
that components can react to the absence of inputs as well. Synchronous systems can be
composed using the synchronous-reactive and cascade composition modes.

6



The synchronous-reactive composition mode describes components that are executed con-
currently, in a lock-step fashion upon every tick. These components sample their input in
the beginning of the cycle and process them at the same time. For this reason, communi-
cation between components during a cycle is not possible, changes in signals will only take
effect in the next execution cycle. The cascade composition mode supports the sequential
execution of components, i.e. they are are executed in a given order (the default being the
order of declaration). Components read and process inputs not at the beginning of the
cycle, but just before they are executed. This allows for the communication of the compo-
nents during an execution cycle. Additionally, multiple execution of the same component
in a single cycle is also supported.

Asynchronous systems Asynchronous systems represent components that operate
concurrently and communicate through message queues. Writing to a message queue
succeeds instantly, while reading from an empty queue blocks the reader. Messages arrive
in the queue in the order they were sent, and the delivery of these is considered reliable,
that is the sender does not receive confirmation. Reading always retrieves a single mes-
sage from the queue. Queues can also have priority levels, (a higher number representing
a higher priority) creating an order of reading. When a full queue receives a message,
the message gets discarded. Currently, only one composition mode is supported, which
is asynchronous-reactive, where components are running continuously, while also reacting
independently to incoming events. It builds on the asynchronous adapter component type
that wraps synchronous components and adapts them to the behavior of asynchronous
systems.

Limitations of the asynchronous semantics Asynchronous behavior is common in
heterogeneous cyber-physical systems, as sensor readings, data processing and communi-
cation between components happens at a different rate, while components run indepen-
dently from each other. However, in most CPS, communication mostly happens using
shared data, i.e. data is considered to be the main form of communication between
components. This usually happens through some sort of shared memory space, where
components write and read the same memory, seeing the same entries and their changes.
Currently, the asynchronous semantics in Gamma do not fully support this behaviour, and
as a consequence, the development of cyber-physical systems. In this work, I address this
issue by introducing a data-centric semantic variant for asynchronous systems on the basis
of the data-centric component type, a variant for the asynchronous adapter component
type.

2.3.2 Formal Composition Semantics of Gamma

At its core, Gamma provides the Gamma Composition Language, which supports the for-
mal composition of components according to different execution and interaction semantics
(the synchronous-reactive and cascade composition modes in synchronous systems, and
asynchronous-reactive composition mode in asynchronous systems). In this work, I pro-
pose and formalize a new semantic variant for asynchronous systems, which builds on the
current formalization. Therefore, in this section I briefly overview the formal structures
of the current formalization that are necessary to interpret the new semantic variant, that
is, events, event vectors, synchronous components, event sequences and asynchronous com-
ponents. For a more comprehensive description of the semantics, the reader is directed
to [11].

7



Events The event definition below models a specific event of a specific port on a specific
component instance.
Definition 1. An event is an observable phenomenon that can occur, such as the recep-
tion of a message, the change of situation (state) or the value assignment of a variable.
Given a set of events E, the finite domains of event parameters are defined by the domain
function D : E → 2{d1,...,dn}. The domain of an event e ∈ E is D(e), a set of possible
parameter values for event e. We say that an event e ∈ E is parameterized if |D(e)| > 1.
An instance of an event is (e, p), i.e. the event with a specific parameter value p ∈ D(e).
The set of all event instances for a given event e is denoted by inst(e) = {(e, p) | p ∈ D(e)}.
In case the absence of an event is of interest, inst⊥(e) is defined as inst(e)∪{(e,⊥)}, where
(e,⊥) is the “null” instance that denotes the absence of the event. Finally, the set of event
instances for events in a set E is inst(E) =

⋃
e∈E inst(e) (and inst⊥(E) similarly). �

Event Vectors In the synchronous domain, components communicate via signals. The
formal structure describing signals is the event vector. An event vector can be regarded
as a set of cells that can be filled with event instances, at most one instance in every cell.
Event vectors are the inputs and outputs of synchronous components.
Definition 2. Given a set of events E, an event vector vE is a function that assigns a
(possibly “null”) event instance to every event e ∈ E such that vE(e) ∈ inst⊥(e). The set
of all possible event vectors is denoted by VE . �

Synchronous Component The following definition specifies the formal syntactic con-
tract of synchronous components. A synchronous component should have a set of states, a
well-defined initial state, a set of input and output events (collected from ports of the com-
ponent) along with their parameter domains (i.e. data type), and a deterministic transition
function that describes the behavior of the component, which can be specified arbitrarily.
Definition 3. A synchronous component is a tuple −© = (S, s0, I, O,D, T ):

• S is the set of potential states, with s0 ∈ S being the initial state.

• I is the set of input events and O is the set of output events such that I ∩ O = ∅.
The set of all events is denoted by E = I ∪O.

• D : E → {d1, . . . , dn} is the domain function of the events.

• T : S × VI → S × VO is the transition function, which determines the next state and
the output event vector of the component when executing it in a given state with a
given input event vector. Note that this definition requires the component to have
a deterministic behavior.1 �

Event Sequences In asynchronous systems, event vectors are substituted by event
sequences.
Definition 4. An event sequence q = 〈(e1, p1), . . . , (en, pn)〉 is a finite, possibly empty
(denoted by ε) sequence of event instances. The set of all possible event sequences for a
set of events E is denoted by inst(E)∗, while |q| denotes the length of the sequence. The
ith event instance in the sequence is denoted by q[i] = (ei, pi). Finally, a permutation of
a set of event instances A is a sequence denoted by σ(A) and all possible permutations of
A is denoted by Sσ(A). �

1Again, the definitions could be extended to nondeterministic models.

8



Asynchronous Component Asynchronous components are syntactically very similar
to synchronous components. The only difference is the definition of transitions: it is now
not a function but a relation, and instead of taking and producing an event vector, it takes
a single event instance and produces an event sequence chosen from the potential output
sequences nondeterministically.

Definition 5. An asynchronous component is a tuple =© = (S, s0, I, O,D, T ):

• S is the set of potential states, with s0 ∈ S being the initial state.

• I is the set of input events and O is the set of output events such that I ∩ O = ∅.
The set of all events is denoted by E = I ∪O.

• D : E → {d1, . . . , dn} is the domain of the events.

• T ⊆ S × inst(I) × S × inst(O)∗ is the transition relation, which determines the
possible next states and the possible sequences of output events of the component
(inst(O)∗) when executing it in a given state with a given input event. Note that
this definition does not require deterministic behavior. �

2.4 Data Distribution Service

The Data Distribution Service (DDS) [12] is a communication middleware standard de-
veloped by the Object Management Group (OMG) that is widely used in critical and
Internet of Things systems to distribute and share data. It utilises a global data space,
creating a shared-memory like distributed database among participants. It is based on
a publish-subscribe model, where components can publish data to subscribers without
actually knowing who will receive the data. DDS provides dependable, high-performance,
scaleable data exchanges between real-time components. There are multiple open-source
and commercial DDS implementations and vendors, which can differ in target platforms
and Quality of Service metrics.

Figure 2.3: The core functional concept of DDS 2

9



A typical structure of a DDS-based communication network is depicted in Figure 2.3. The
outermost layer is the domain. Domains define which applications can see each other.
An entity that is present inside a domain is called a participant. Participants can only
interact with each other if they are within the same domain, as domains are independent
from each other (although applications can have multiple participants that can be in
different domains, allowing communication in more than one domain). Applications send
data to and receive data from specific topics, which are sets of global variables with the
same types. Applications can publish and subscribe to different topics, where publishers
send data to all subscribers. Publishers write data to topics via data writers, which create
samples of a single data type. Subscribers use data readers to access data, which receive
samples of a single data type. Both publishers and subscribers can have multiple data
writers or data readers, writing to and reading from different topics. Topics can also have
many data readers and data writers assigned to them, so multiple applications can read
or write to the same topic. Data readers and writers can also filter topics, specifying data
that is interesting to them. So as an example, a temperature sensor application can send
its data in a specific domain using a publisher (which is considered a participant) that can
have one or more data writers that write the data to different topics.

Most elements found in a DDS domain can have Quality of Service (QoS) properties
assigned to them. QoS properties are a set of configurable parameters that control the
behaviour of the DDS system, such as reliability, resource consumption and fault-tolerance.
Domain participants, topics, publishers, subscribers, data writers and data readers all have
QoS policies. There are DDS entity specific policies, and also general ones, which have
the same effect on all entities. For example, the History QoS manages how sent/received
data is stored within a data writer or data reader, taking the applied resource limits
into consideration (which is another QoS property). Only entities with compatible QoS
properties can cooperate (otherwise interaction between them is impossible). For example,
a data writer with a BEST_EFFORT Reliability QoS cannot send data to a data reader
with RELIABLE Reliability.

2.4.1 RTI Connext DDS

In this work, RTI Connext DDS [18] is used, which is a popular choice when it comes
to Industrial Internet of Things (IIoT), medical devices and autonomous vehicles. RTI
Connext DDS provides a wide range of QoS parameters and distributes data on the DDS
Databus [23], as special data distribution implementation by RTI. With the Databus, ap-
plications can communicate by simply reading and writing data object within the global
data space (the DDS domain). The DDS middleware maintains the data space, which
captures a system’s state. Essentially, applications do not message to each other, instead,
they write data to the share data objects found in the bus. This data-centric publish/-
subscribe approach also has an in-memory data management layer. Applications operate
with their local caches, and DDS synchronises these caches by publishing updates and
subscribing to data of interest.

RTI DDS also features code generators that can provide the necessary implementations
from an Interface Description Language (IDL) [14] file, which defines the data structures
and types that can be sent or received.

2https://www.dds-foundation.org/what-is-dds-3/

10



2.5 Related Work

ThingML In [8], a tool supporting a Model-Driven Software Engineering approach is pre-
sented, focusing on the heterogeneity and distribution challenges of cyber-physical systems.
The ThingML language uses composite state machines to model the behaviour of com-
ponents. It supports asynchronous communication (by sending messages through ports)
and event-based reactive programming. The tool uses an action language to describe
the actions within event processing rules and state machines. The paper demonstrates
the wide range of platforms and areas of cyber-physical systems, while also showing the
most popular languages used in each area. It supports the generation of implementation
and communication, based on the aforementioned platforms and languages. However,
ThingML does not support the automatic generation of hardware description languages,
and also lacks the verification capabilities of Gamma. In addition, ThingML does not aim
to support the development of critical systems.

xMAS In [6] a set of microarchitectural primitives is defined, which allows for the de-
scription of complete systems by composition alone. It focuses on the efficient system-level
connection of different IP blocks, which is an integral part of SoC design. However, if not
designed carefully, the interconnection of these IP blocks can lead to live- and deadlocks,
which can be hard to debug, especially in a distributed system. The article proposes an
approach based on creating executable and analyzable high-level models, called xMAS
(eXecutable Microarchitectural Specification) models. These models utilise an extended
set of microarchitectural primitives to describe complete systems, without using interme-
diate glue logic. For verification purposes, it generates Verilog out of the models and
uses inhouse and academic tools for formal verification. This approach focuses on defining
models on a microarchitectural level, rather than defining a high-level behaviour models,
like Gamma.

In [28], a novel prototyping technique for concurrent control systems in FPGAs is pre-
sented. The method focuses on the dynamic reconfiguration of the system, which means
that the functionality of part of the controller can be changed, while the rest of the system
is running. The approach uses UML statecharts [13] to model the system, and it has been
experimentally verified using a Xilinx FPGA. The UML statecharts are converted into
concurrent finite state machines, basically flattening the statechart, removing the hierar-
chy elements. To describe the controller in an HDL, Verilog code is generated. This work
demonstrates its approach on a home area network (HAN) controller, which is in charge of
controlling smart home devices. This article shows how the model-driven approach is used
when targeting embedded systems, and the capabilities and flexibility of FPGAs. This
serves as an example for the possible usages of this work, showing that there is a need for
modeling tools capable of designing complex embedded systems.

11



Chapter 3

Overview of the Approach

This chapter overviews my proposed approach for the design of heterogeneous CPS. My
approach relies on the platform-based design and modeling approach, detailed in Section
2.2. The chapter demonstrates the general difficulties when using this design approach in
heterogeneous cyber-physical systems, while also presenting the capabilities of the Gamma
framework when targeting these platforms (Section 3.1). Moreover, this chapter presents
my approach that introduces additional functionalities in Gamma, which allow the frame-
work to better support the model-driven development of these systems (Section 3.2).

Figure 3.1: Platform-based design steps supported by Gamma

3.1 Difficulties of Developing CPS

Heterogeneous CPS are built from a wide variety of hardware and software components.
System engineers need high-level languages to capture the behaviour and various functions
of such systems. In addition, the communication has to be established reliably, so model-
ing and operating the communication between the distributed components need support.
Engineers might need to resort to a wide variety of tools to comply with the different needs
of the multiple used platforms. As an example, the Zynq-7000 System-on-Chip integrated

12



on the Digilent ZedBoard consists of dual-core ARM processors and a Xilinx FPGA (vi-
sualised in Figure 3.2). This board can connect to a network via Ethernet, receiving and
sending data from/to a different computer. The platform-based modeling of a system
where the components run on different parts of a heterogeneous system is challenging, as
the programming languages and communication modes can be entirely different, yet these
parts have to interact with each other.

Figure 3.2: A high-level model [16] of the Zynq-7000 SoC

The Gamma Statechart Composition Framework supports the platform-independent mod-
eling of components in a homogeneous environment (its supported modeling steps are pre-
sented in Figure 3.1). However, currently Gamma does not fully support the development
of CPS, as it lacks the support of multiple platforms and architectures. The main goal of
this work is to extend the capabilities of the Gamma Statechart Composition Framework
to support the development of such systems, by

• being able to model composite CPS,

• supporting various architectures used in CPS,

• being able to establish communication between components running on different
targets.

3.2 Design and Code Generation for Heterogeneous CPS

My first goal is to extend the Gamma framework to support automatic implementation of
heterogeneous CPS. In this section I overview the modeling and automatic code generation
techniques for embedded microcomputers, FPGAs and networks of these components. My
choice of target systems was motivated by the fact that these languages are widely used
in critical cyber-physical systems.

The modeling steps of the platform-based design approach (depicted in Figure 2.2) sup-
ported by this work are shown in Figure 3.3. First, code generators are developed that
support the definition of component behaviour in multiple languages, creating the op-
portunity to support multiple architectures and hardware platforms. Considering the
functional model, a new communication method is introduced with a corresponding se-
mantics to correctly describe component interactions within the composite system. The
hardware/software allocation and architecture model steps are only indirectly affected, as
the extensions introduced in this work affect the capabilities of Gamma when it comes to
supporting new platforms.

13



Figure 3.3: The modeling steps improved in my work

3.2.1 Modeling of Composite CPS

One of the most crucial parts of designing a composite system is to precisely define the
interaction of components. This includes not only the connections but also the manner
and timing of the communication. These attributes of the system can be linked to its
functional model. When it comes to the description of the functional model, Gamma uses
its composition language, named Gamma Composition Language (GCL) to describe how
components are connected and how they communicate. This is achieved by supporting
multiple composition semantics and composition modes that allow for the description of
synchronous, cascade, and asynchronous composite components.

In synchronous systems the flow of information is controlled. On the other side, asyn-
chronous composition lets the components run independently with little guaranties re-
garding the reception and processing of data. In critical CPS, we have to rely on the
communication, which can be achieved by using reliable communication middleware such
as DDS. DDS implements a shared-memory like communication with various assurance
mechanisms. This type of communication is a common type of cooperation in critical
CPS (especially running on a heterogeneous platform), where components utilise a shared-
memory to communicate an share data. This form of composition needs modeling support.
My approach presents this data-centric semantic variant for asynchronous systems, where:

• components interact with each other through shared variables,

• shared variables have well defined writers and readers,

• components run independently of each other.

With the introduction of this variant, the behaviour of components inside a heterogeneous
CPS can be described accurately. Using DDS, it is possible to realise a composition where
components can run independently, but can communicate with customisable reliability
(utilising the QoS options of DDS) through a shared-memory.

3.2.2 Supporting New Architectures and Platforms

Modeling tools use component description languages to define the behaviour and inter-
faces of components. In Gamma, the Gamma Statechart Language (GSL) is used to define
atomic components using statecharts. This model description can be used to derive imple-
mentation, currently in Java. When it comes to cyber-physical systems, Java is commonly

14



used in non safety-critical components, such as cloud. However, in embedded systems,
Java is rarely used, mainly because of its memory requirements.

As a typical CPS consists of many embedded platforms, it is necessary to support the de-
velopment on top of these devices. To solve this, I introduce new code generators, which
allow for the derivation of source code from the component statechart definitions in C
and SystemVerilog languages. C is one of the most prevalent languages when it comes
to embedded devices, and is widely supported. SystemVerilog is a hardware description
language, supporting the development on FPGAs. Both of these languages are commonly
used when developing on embedded platforms, allowing Gamma to generate implemen-
tation to a wider variety of architectures. Currently, these code generators support the
derivation of source code from synchronous and cascade composite components.

3.2.3 Establishing Communication

With the introduction of vastly different platforms and devices, the problem of reliable
and easy communication emerges. CPS often rely on communication middlewares to solve
this issue. Middlewares in distributed systems are software layers in between the operat-
ing system and the applications. They essentially allow developers to focus on the actual
purpose of applications, as middlewares handle the passing of data and communication
between different components. A commonly used standard for this purpose is the Data
Distribution Service (DDS). In this work, RTI Connext DDS is used to extend the com-
munication capabilities of Gamma, which allows the usage of a shared-memory to convey
data between components in a reliable manner.

The extensions introduced in this work (comprehensively shown in Figure 3.4) allow the
Gamma framework to

• target a wider variety of platforms,

• establish networked communication between components running on different tar-
gets,

• precisely define the interactions between these components when data-centric com-
munication is used.

These new features facilitate the model-driven development of heterogeneous cyber-
physical systems using Gamma.

15



Figure 3.4: CPS development areas targeted by this work

16



Chapter 4

Modeling and Code Generation
for Standalone Hardware

This chapter presents the modeling and code generation processes with the introduced
generators when targeting standalone hardware. First, it briefly describes the elements
of Gamma statecharts (Section 4.1). Second, it presents the way Gamma transforms
high-level models to low-level ones (Section 4.2). Finally, the chapter presents how these
low-level component descriptions are used to derive implementation both in C (Section
4.3.1) and SystemVerilog (Section 4.3.2), and how these implementations function.

4.1 Gamma Statecharts

In Gamma, components are defined using statecharts (an example is presented in Fig-
ure 4.1), which are based on the Unified Modeling Language (UML) [13] standard. Stat-
echarts contain states, which define the stable situations of the component as well as how
it reacts to incoming events. Events are happenings in the component that states can pro-
cess and react to, possibly resulting in state changes in the component. Events can have
parameters, which contain additional information, and can have altered values in different
event instances. Events can come from outside the component, or can be produced by
internal timers. States and transitions can have timeout events associated to them, which
fire after the passing of a set amount of time while the component is in the given state.
States can also have entry and exit actions, which are executed upon entering or leaving a
state, and can possibly fire events. Hierarchy is supported as well, that is, states can have
other states embedded inside them, refining state behaviour. Orthogonal regions are also
present in Gamma statechart, allowing the definition of concurrent behaviour. Gamma
also supports shallow and deep history states, which store the last active state contained
in a higher-level state upon leaving, i.e. upon reentering the high level-state, the active
inner state will be the one stored by the history state.

Statecharts are high-level behavioural models, as they define the logic of the system, and
the way it executes the necessary steps in order to function. Even though, manual im-
plementation of logical behaviour is possible, it is a tedious task, which can be mitigated
by automatic code generation. However, when considering automatic source code gener-
ation, the problem of transformation between languages emerges. Code generators need
to work on the high-level model, but the high-level elements introduced in statecharts
to make the model more readable to humans can pose a challenge during the generation

17



Figure 4.1: A traffic light with police interruption, modeled as a Gamma statechart

process. Gamma solves this issue by transforming its high-level models to low-level model
descriptions, bridging the abstraction gap that would make code generation difficult.

4.2 High-Level Model Transformation

The model transformation functionalities of Gamma is presented in Figure 4.2. Gamma
uses two lower-level modeling languages, each with a different abstraction level, to fa-
cilitate the transformation from a high-level model. The first, the Low-Level Statechart
Modeling Language which the high-level statechart gets transformed to, essentially serves
as an intermediate step. This work does not utilise the Low-Level Statechart Modeling
Language, so further information about it is not provided. This Low-Level Statechart
Modeling Language then gets transformed into an Extended Symbolic Transition System
(XSTS) modeling language, which is then used to create code generators.

The XSTS modeling language describes a statechart with transitions and variables, fo-
cusing on the behaviour of the model without the high-level parts. It essentially flattens
out hierarchies from statechart. Events are transformed into variables, that are modified
based upon the handling of their corresponding event. Timeout events are represented
with numerical variables, that get incremented as the time passes (based on clock ticks),

18



Figure 4.2: An overview of the model transformation and code generation functionalities
in Gamma

while non-timeout events are mapped into boolean type variables. States are represented
by enumeration variables. For every region, an enum variable is created, with its literals
being the states contained inside (which can also be composite, having their own enum
variable). There is also an enum variable for the top layer of statechart, where the literals
are the topmost states of the model. An _Inactive_ literal is also generated in every enum
type, indicating that the corresponding region is not active.

The code generators introduced in this work take an XSTS model as input and exploit the
low-level structures of the XSTS language to generate the core behaviors (the execution
of a single step) of components. For the description of these low-level structures, only
conditions (if-else structures) and variable assignments have to be supported, facilitating
the integration of almost any programming languages. Thus, in different languages and
platforms, developers can focus on the infrastructure (such as input and output event
handling and timings according to the semantics) of the generated implementation.

A model described with XSTS can be processed in two different ways, resulting in two
code generation techniques. These techniques optimize different parts of the XSTS model.
The VariableCommonizer keeps the structure of decision branches, resulting in a smaller
source code. The other, the ChoinceInliner implements a switch-case structure, which
is faster if there are a lot of branches that can be optimized. However, the resulting
source code is substantially larger compared to the VariableCommonizer when used on
large models. Essentially, the two techniques create different implementations. When
translating an XSTS model to the desired language, these differences usually appear in
the functions that control the statechart. The different implementations, however, will
produce the same results when considering the behaviour of the model.

19



4.3 Generating Implementation

Both code generators introduced in this work currently support the automatic code gener-
ation from synchronous-reactive and cascade composition modes. It is possible to generate
implementation from a single statechart, or a composition of statecharts (an overview of
the process is illustrated in Figure 4.3 for C, and in Figure 4.5 for SystemVerilog). Gamma
supports the automatic transformation of synchronous-reactive and cascade composite
components into XSTS models when generating source code, that is, the resulting imple-
mentation is a combination of all statecharts found within the composition. Therefore, the
implementation generated from synchronous and cascade composite components is similar
to that of single statecharts. The key difference is that composite component implemen-
tations contain all the statecharts within them, i.e. all event variables are generated from
all components, and the implementation executes operations on the whole composition,
not just a single statechart (demonstrated in Figure 4.4 for C, and in Figure 4.6 for Sys-
temVerilog). Considering the two supported composition modes, the differences between
synchronous-reactive and cascade are handled in the XSTS model, so the introduced code
generators do not have to take their different characteristics into account.

4.3.1 C Code Generation

C is one of the most popular and widely used programming languages when it comes to
embedded systems [8]. Therefore, in order to support the development of cyber-physical
systems, I chose to extend the Gamma framework with a C generator.

Currently, synchronous-reactive and cascade composition modes are supported when gen-
erating implementation in C. When generating code from a single statechart, two pairs of
source code and header files are generated, which contain the functions that realise the
functionalities of the model. At its core, the derived implementation contains a structure,
that encompasses all the variables associated with the model: states, non-timeout and
timeout events. Multiple functions are generated as well, which perform operations on the
model, like switching states or resetting the implementation to its initial state. All these
functions perform operations on the structure that contains the model variables. Generat-
ing implementation for composite components produces files the same way as generating
for standalone components does, and functions identically to them. The difference is that
structures contain variables from all the component statecharts, and functions execute
operations on the whole system.

Since the generated implementation operates with functions to control the statecharts,
the different implementations introduced in Section 4.2 can cause alterations in the way
the implemented model is controlled. To hide these differences, a wrapper structure is
introduced. This contains the statechart or composition structures, and variables that
implement the timing mechanisms. Functions are also generated to execute operations on
the wrapper structure, and as such, on the implementation as well.

The resulting implementation of the model can be utilised by creating an instance of this
wrapper structure, and using the functions generated to execute steps on the statechart.

4.3.2 SystemVerilog Code Generation

SystemVerilog is a hardware description and verification language commonly used to
model, design, simulate, test and implement electronic systems. Its predecessor, Ver-

20



Figure 4.3: The process of generating C source code

Figure 4.4: Communication between components in a composite component implemen-
tation in C

ilog, is one of the most popular languages when it comes to ASIC or FPGA development
and prototyping [4]. It uses register-transfer level (RTL) design to describe the behaviour
of registers and to perform logical operations on them. SystemVerilog extends these capa-
bilities with elements resembling programming languages, like object-oriented design and

21



high-level language elements. These additions make the precise description of Gamma
components easier.

Figure 4.5: The process of generating FPGA HDL

In SystemVerilog, Gamma components are described as modules. Modules have input and
output signals that can be connected to external sources such as GPIOs or other modules
when instantiated; the input and output events of components are realised using such
input and output signals. The input signals are processed inside the module, where the
behaviour is described, and output signals are produced when the corresponding events are
raised. Inside the module, the enumerations representing the states are generated as well.
Unlike the C source code, the SystemVerilog implementation does not utilise functions to
operate the model. Instead, it does every action in a clock-driven loop, changing the state
of the model, and incrementing timeout variables.

22



Figure 4.6: The realisation of a composite component in SystemVerilog

23



Chapter 5

Modeling and Code Generation
for Distributed CPS

This chapter presents the modeling and code generation techniques introduced in this
work when targeting distributed components in cyber-physical systems. First, it presents
the data-centric semantic variant, the main theoretical novelty introduced in this work
(Section 5.1). Second, the chapter gives examples of the possible implementation of the
data-centric semantic variant (Section 5.2). Finally the chapter presents the data sharing
process of DDS, and how this process can be used with the new semantics (Section 5.3).

5.1 Data-Centric Semantic Variant

To precisely describe communication within cyber-physical systems, I introduce a new
semantic variant for asynchronous systems, the data-centric semantic variant. Note that
these definition build on and complement the formal structures introduced in Section 2.3.2.

5.1.1 Formal Definition

The data-centric semantic variant restricts events to having only one parameter, as data-
centric components define value assignments to variables by sending events with the cor-
responding value as a parameter.

Definition 6. Given a set of events E, the finite domains of event parameters are defined
by the domain function D : E → {d1, . . . , dn}. The domain of an event e ∈ E is D(e), a
set of possible parameter values for event e. �

A data-centric component wraps a single synchronous component and converts it into the
asynchronous domain. It can be considered as the variant of the asynchronous adapter in
which the trigger predicate is a trivial function: in data-centric components all incoming
events serve as trigger specifications.

Definition 7. A data-centric component for a synchronous component is defined as a
tuple D© = (−©):

• −© = (Ss, s0
s, Is, Os,Ds, Ts) is the wrapped synchronous component.

24



Semantics. The semantics of data-centric components is defined in terms of an asyn-
chronous component. From an external point of view (observed from the environment), a
data-centric component processes input events one-by-one (just like asynchronous compo-
nents in general), but may not always produce an output. The role of the data-centric com-
ponent is to “collect” messages, feed the collected messages to the wrapped synchronous
component and emit messages created from the resulting output event vector.

Definition 8. A data-centric component D© for a synchronous component is itself an
asynchronous component D©〉=© = (S, s0, I, O,D, T ):

• S = Ss × vI is the set of potential states, each state consisting of a state of the
wrapped synchronous component and a buffer input event vector collecting the in-
coming event instances.

• s0 = (s0
s,⊥I), where ⊥I is the empty input vector.

• I = Is is the set of input events, i.e., the input events of the wrapped synchronous
component. From an input vector vI we can derive vIs as vIs(e) = vI(e) for every
e ∈ Is.

• O = Os is the set of output events defined in the wrapped synchronous component.

• D = Ds is the domain function of the wrapped synchronous component.

• The transition relation is defined as a (nondeterministic) transition function
T
(
(ss, vI), (e, p)

)
= {(s′s, v′I)} × Ω, where e is a, such that:

– The buffer input event vector is updated such that v′′I (e) = (e, p) and v′′I (e′) =
vI(e′) for every e′ ∈ I (e 6= e′), and s′s should be such that Ts(ss, v′′I ) = (s′s, vO),
and v′I = ⊥I . Ω = Sσ({(e, p) | vO(e) = p, p 6= ⊥}) (as the set of possible
output sequences) is every possible permutation of the “non-null” elements of
the output vector. �

Discussion. The data-centric semantic variant introduced in this work is a variant of
the asynchronous semantics. Specifically, it proposes an altered behavior for asynchronous
adapters. Data-centric components use data as a means of communication. Components
share data using shared variables, each having one well-defined reader and zero or more
writers. Shared variables are realised by events having only one parameter: the writing of
a variable is realised by sending an event with a parameter value, whereas reading one is
realised by reading the parameter of a received event. If there are multiple writes to the
same variable (instances of the same event are sent multiple times to the same component),
always the latest will prevail.

The data-centric semantic variant, as it extends asynchronous behavior, does not restrict
the running frequency and runtime of components, that is, they can run independently
from each other. The execution of components without reading or writing data is not
supported. In order to make data-centric components fault tolerant, readers are notified
when their corresponding writer goes absent from the communication. In case of losing a
writer, a new one can be instantiated, if supported by the implementation.

25



5.2 Data-Centric Communication Implementations

This section gives examples of possible implementations of the newly introduced data-
centric semantic variant. The type of communication where two applications or pro-
cesses communicate with each other by sharing data is called Inter-Process Communica-
tion (IPC). Inter-process communication (IPC) can be found both in Linux [10] and in
Windows [7] operating systems. Typically, applications can use IPC as clients or servers.
A client is an application or process that requests data or service from the server, which
is another application or process. Client and server roles are not strict, as an application
can act as a client or a server, depending on the situation. The rest of the section presents
different forms of IPC.

Named pipes: Pipes are forms of communication between one or more related or in-
terrelated processes, e.g. between a child and a parent process [26]. Communication is
achieved by one process writing to a pipe, and another reading from it. Pipes are uni-
directional, meaning the reading process cannot write to the pipe. This approach does not
work with unrelated processes, for example, between two processes running in different
terminals. Named pipes (also known as FIFOs) solve this issue, by allowing bi-directional
communication between unrelated processes.

File mapping: File mapping is the process of mapping files to the virtual memory address
of an application [25]. This enables a process to treat the contents of a file as if they were
a block of memory in the process’s address space [7] . Processes can use simple pointer
operations to examine and modify the contents of the file. There is also a special case of
file mapping that allows the creation of a named shared memory, which is used between
processes.

Shared memory: As implied by the name, a shared memory is basically a memory
accessed by multiple processes at the same time [27]. Applications can work with the
same data without redundancy, as they see and utilise the same memory. A similar
approach is demonstrated in Section 7.2, where components communicate through shared
memory spaces, which can be described with the newly introduced data-centric semantic
variant.

DDS: Since DDS uses data as the means of communication between applications, it can
be used to realise the data-centric semantic variant. DDS can function similarly to a
shared memory (this is further elaborated in Section 5.3). My approach builds on RTI
Connext DDS to implement the newly introduced data-centric semantic variant.

Although application in cloud is not discussed in this work, the data-centric semantic
variant could be applied to cloud-based data exchanges as well.

5.3 Sharing Data With DDS

At its core, DDS operates with a global data space [12], which from the applications
point of view, looks like a local memory accessed via an API. Applications read from and
write to these local memories, but in reality, when it comes to writing data, DDS sends
messages to update the memories of remote nodes. These local stores give the illusion
of having access to a global data space to the applications. Essentially, the global data
base is a virtual concept in DDS, and is realised as a collection of local data stores. Each
node operates with its own local memory, storing only what it needs, as long as necessary.

26



This mode of communication can be considered a shared-memory communication, where
applications have access to and operate with the same data entries.

In safety-critical CPS, reliable communication is essential. RTI DDS provides various
QoS options that enhance the reliability of interactions. In Table 5.1, some of the more
interesting QoS options are presented, along with their description and applicability in
Gamma. Introducing DDS to Gamma allows the framework to implement asynchronous
composite components in distributed networking, with QoS options aiding the enforcement
of semantics. For example, the combination of History and ResourceLimits QoS options
supports the DDS implementation of message queues used by asynchronous components.

The Liveliness QoS also allows users to design models with fault tolerance in mind, since
this QoS option notifies data readers when one of their data writers ceases to communicate.
This notification can be mapped to the raising of an event, and thus, it can processed
by components at their discretion. As a result, QoS options not only allow Gamma to
implement semantic rules, but give designers means to create fault-tolerant models that
can react to events raised by DDS, facilitating the design of safety-critical systems.

QoS name Description Additional information Applicability in Gamma

History

Controls how much data to store and
how stored data is managed for a
DataWriter or DataReader.

Options: KEEP_ALL, KEEP_LAST
(with corresponding depth value)

KEEP_ALL depends
on the resource limitations
defined in the ResourceLimits
QoS.

Allows Gamma to implement
message queues using DDS.

Liveliness

Configures the mechanism that
allows DataReaders
to detect when matching DataWriters
become disconnected or dead.

The checking of liveliness can
happen automatically or manually.

Events generated:
on_liveliness_lost for
DataWritersListeners

on_liveliness_changed for
DataReaderListeners

Allows for fault-tolerant
model design, e.g., the
specification of error events.

Reliability Enables reliability protocol for a
DataWriter/DataReader connection.

Options are BEST_EFFORT and
RELIABLE.

It is usually used in conjunction
with History and Reliability,
to determine which data is
remains relevant and restorable.

Enforces reliable communication
between distributed components.

ResourceLimits Controlling the amount of physical
memory allocated for entities.

Usually used in conjunction with
History and Reliability to determine
the size limits.

Specifies the resource limits
of message queues.

Table 5.1: RTI Connext DDS QoS and Gamma supportability. [17]

With some of the QoS options presented in Table 5.1, it is possible to implement the
data-driven semantics using RTI Connext DDS.

• History: setting it to KEEP_LAST with depth of 1 ensures that only the most
recent data entries are kept.

• Reliability: when set to RELIABLE, Connext DDS monitors sent data to make
sure it is received, and resends data that was missed.

• Liveliness: with the DDS_AUTOMATIC_LIVELINESS_QOS setting, Connext
DDS will automatically assert liveliness. This will notify DataReaders if their no
longer alive.

27



5.4 Generating DDS Communication

Generating the implementation of DDS communication is currently supported for asyn-
chronous composite components (depicted in Figure 5.1), in C language.

Figure 5.1: Generation of DDS communication for asynchronous components

In addition to the asynchronous composite component, RTI Connext DDS is also required
to successfully implement DDS-based communication. The steps of generating communi-
cation are the following:

1. An IDL is generated from the composite system, which contains a data type for each
channel (port-port connection), system input, and system output in the composition.

2. Publishers and subscribers are generated for each component in the composite sys-
tem.

3. Using the code generator of RTI Connext DDS, the stubs are generated from the
IDL. This creates the necessary files to implement the generated publishers and
subscribers.

For each channel, a data type is generated, that is used by the corresponding readers
and writers. Components have one publisher and one subscriber. Publishers serve as the
output of the component, publishing to topics associated with output channels, while sub-
scribers handle inputs, reading data from topics corresponding to input channels (demon-
strated in Figure 5.2). Note that topics associated with system inputs and outputs have
no data readers attached to them, or have no data writers writing to them. However,
external applications can publish or subscribe to these topics.

The flow of data starts at the subscriber, which upon receiving an update of the data,
passes it to the component. The component executes a step with the passed data, then
publishes outputs accordingly. Note that although the communication is generated from
the composite system, the DDS frame of publishers and subscribers operate with the

28



Figure 5.2: Realisation of the DDS implementation (P stands for port, T stands for
topic)

individual component statecharts, not with the composite system statechart (discussed in
Section 4.3.1).

29



Chapter 6

Implementation

This section presents the code generation tools introduced to Gamma in this work. First,
the chapter briefly discusses the necessary capabilities of component implementations in
Section 6.1. Then, it presents the notable techniques used when developing the code
generators both in C (Section 6.2) and in SystemVerilog (Section 6.3).

6.1 Code Generation

Both C and SystemVerilog code generators reuse architectural and desing patterns from
the Java code generator of Gamma. Though the two languages of the new code generators
are substantially different, they both have to provide the same functionalities to correctly
implement a component.

Each described component has to be able to

• execute a step on the component statechart,

• reset the statechart to the initial state,

• clear input and output events between steps.

The following sections present how the abovementioned points are realised, in addition to
clarifying some implementation techniques.

6.2 C Language Implementation

Since the C programming language shares similarities with Java, and the code generator
is reuses patterns from the Java generator found in Gamma, I draw comparisons between
the two to illustrate the differences and challenges of the C implementation generation.

• In Java, components are described with classes and interfaces. This approach cannot
be followed in C, as it does not support object-oriented programming concepts.

• In Java, components have setter and getter functions to manipulate the variables.
These are omitted in C, because they present a large overhead.

30



• In Java, functions that manipulate the state of a component are class member func-
tions, having direct access to class variables. In C, component statecharts structures
are passed as a parameter to functions.

Gamma components are described using structs. Upon the generation of the implementa-
tion, a struct is created that represents the component, containing all the necessary data
elements within. The regions within the component are represented by enum variables.
Each literal within an enum represents a state contained in the region. Since C does not
operate with namespaces, it is necessary to avoid giving the same name to literals, as the
code would not build otherwise. To solve this, each literal has its name extended with the
name of the containing region, with a “_” symbol separating the two. For example, the
state Interrupted within the Main region has Interrupted_main as a name for its corre-
sponding literal. The generation process ensures that every region has a unique name by
prepending the name of each ancestor region (the parent, grandparent, . . . , etc. region
of the containing state) to the original name of the region (if there is any). Other data
elements of the component are represented by basic data types. Inputs and output events
are represented with boolean variables, while timeout variables appear as long integers.� �
enum In t e r rupted {__Inactive___interrupted , Black_interrupted ,

Bl ink ingYel low_interrupted } in t e r rup t ed ;
enum Normal {__Inactive___normal , Green_normal , Red_normal , Yellow_normal}

normal ;
enum Main_region {__Inactive___main_region , Normal_main_region ,

Interrupted_main_region } main_region ;� �
Listing 6.1: Example of enum literal namings

The generation of necessary functions is carried out similarly to the generation of enum
literals. Functions that reset or execute steps must be generated for each component, but
naming them the same would cause errors. Therefore, these functions have the name of
the respective component appended at the end of their name. So the reset function of
the TrafficLight component is called resetTrafficLight. In order to use these methods to
control the component statecharts, a pointer to an instance of the component needs to be
passed as a parameter.� �
void r e s e tT r a f f i c L i g h tC t r l ( Tra f f i cL ightCt r lS ta t emach ine ∗ s t a t e cha r t ) ;
void changeS ta t eTra f f i cL i gh tCt r l ( Tra f f i cL ightCt r lS ta t emach ine ∗ s t a t e cha r t ) ;

void r e s e tCon t r o l l e r ( Contro l l e rStatemach ine ∗ s t a t e cha r t ) ;
void changeSta teCont ro l l e r ( Contro l l e rStatemach ine ∗ s t a t e cha r t ) ;� �

Listing 6.2: Example of statechart function namings

Since Gamma uses different code generation techniques (described in Section 4.2) that can
affect the flow and operation of the generated code, a statechart wrapper is introduced.
The wrapper hides the differences between these techniques, while also implementing the
timing mechanism used to increment the timeout variables. Generating functions for these
wrapper structures is done in the same way as described in the previous paragraph.

The timing of components is currently supported in two ways, since measuring elapsed time
is not trivial in C. One approach uses the gettimeofday function found in <sys/time.h>.
This can measure elapsed time in sufficient granularity (milliseconds). However, this
cannot be utilised in bare metal scenarios. To solve this, the other method uses clock
frequency to measure elapsed time in situations where there is no operating system.

31



6.3 SystemVerilog Implementation

While the technique used in this code generator reuses patterns from the Java generator
as well, the structure of the implementation is vastly different (compared to the previously
presented C code generator).

Outputs can be assigned to one or multiple signal values, forming a condition similar to
the ones found in if statements. If the condition is true, output is observable. Apart
from the inputs and outputs of the component, a module also has clock and reset as input
signals. The first is the clock signal produced by the FPGA, and the latter is a trigger to
the reset functionality.� �
module Tra f f i cL ightCt r lS ta t emach ine (

c lock ,
r e s e t ,
Po l i c e Inte r rupt_po l i ce_InInput ,
Control_toggle_InInput ,
Lights_displayGreen_Output ,
Lights_displayYellow_Output ,
Lights_displayRed_Output ,
Lights_displayNone_Output ,

) ;

input c l o ck ;
input r e s e t ;
input Pol i c e In te r rupt_po l i c e_InInput ;
input Control_toggle_InInput ;

output Lights_displayGreen_Output ;
output Lights_displayYellow_Output ;
output Lights_displayRed_Output ;
output Lights_displayNone_Output ;

assign Lights_displayGreen_Output = ( Lights_displayGreen_Out == 1 ’ b1 ) ;
assign Lights_displayYellow_Output = ( Lights_displayYellow_Out == 1 ’ b1 ) ;
assign Lights_displayRed_Output = ( Lights_displayRed_Out == 1 ’ b1 ) ;
assign Lights_displayNone_Output = ( Lights_displayNone_Out == 1 ’ b1 ) ;� �
Listing 6.3: Example of statechart module and input/output generation (The right hand

side of the output assignments consists of the corresponding registers, whose
declaration is omitted from the example.)

Resetting and the changing of states is realised in an always @ (posedge clock) block. This
block is always executed at the rising edges of the clock signal. This serves as a loop where
the state of the component is constantly observed, and if necessary, altered. However, this
approach posed some difficulties.

Firstly, while the inputs and outputs of the component are present in the module declara-
tion, they cannot be manipulated inside an always block. Verilog (and in turn, SystemVer-
ilog) considers these as wire types, and only reg (which is short for register) and other
basic variables, such as integer variables can be used inside these blocks. As a solution,
each input and output of the component has a register generated for them. When an input
is raised, its value is stored in the register until the next evaluation of the statechart. This
way, inputs can be used in if statements in order to change states. Note that the reset
and clock input signals do not have registers generated for them, as it is not necessary.
Considering outputs, module outputs are assigned to their respective output registers.

32



This way, when an output register is set to 1, the corresponding output is observable. The
value of an output register is preserved until the next evaluation.

Secondly, the frequency of the clock in an FPGA is usually much faster than the required
operational speed of a component, considering that Gamma supports time values in sec-
onds and milliseconds. This problem bears significance when it comes to timeout events,
which fire after the passing of a set amount of time. These events are generated as long
integer variables, and should be incremented in the specified time intervals, i.e. every sec-
ond or millisecond. The timing is solved by having a register named pps, which is set to
one when the required amount of time passes, based on the clock frequency of the FPGA.
This frequency is given as a parameter when the user generates implementation, so the
necessary variables are set to the right amount when the code is generated. When the
pps is set to one, all timeout variables are incremented, and the state of the component is
evaluated.� �
always @ ( posedge ( c l o ck ) )

begin
i f ( r e s e t ) begin

// The r e s e t t i n g o f the s t a t e cha r t happens here .
end
i f ( pps == 1 ’ b1 ) begin

//The incrementat ion o f t imeout v a r i a b l e s and the eva lua t i on o f
// the next s t a t e happens here .

end
end� �

Listing 6.4: The main statechart evaluation loop

The regions within the components are represented by enum variables. Note that this
type is not supported by Verilog, only SystemVerilog, making the latter a better choice
for code generation in Gamma. Each enum variable is given a namespace, so that literals
can have the same name.� �
package Main_regionPackage ;

typedef enum {__Inactive__ , Normal , In t e r rupted } Main_regionEnum ;
endpackage
package InterruptedPackage ;

typedef enum {__Inactive__ , Black , Bl ink ingYel low } InterruptedEnum ;
endpackage
package NormalPackage ;

typedef enum {__Inactive__ , Green , Red , Yellow} NormalEnum ;
endpackage� �

Listing 6.5: Example of the namespaces generated for the enums.

33



Chapter 7

Case Study

This chapter presents case studies that demonstrate the code generation and communi-
cation functionalities introduced in this work for the model driven-development of het-
erogeneous CPS. Section 7.1 introduces the crossroads example, a tutorial example of
Gamma in the context of which the case studies are carried out. Section 7.2 presents a
case study involving the memory-based communication between an FPGA and a CPU.
Then, Section 7.3 presents a case study that uses DDS to establish communication between
components.

7.1 The Crossroads Example

Figure 7.1: The graphical representation of the synchronous composite controller in the
crossroads example of the Gamma tutorial

The newly introduced functionalities are presented using the crossroads example of the
Gamma tutorial1. This example introduces a synchronous composite system that has two
traffic lights called priority and secondary controlling the traffic of the intersecting roads,
and a central controller (called controller) that controls the traffic lights (the system is
demonstrated in Figure 7.1). In the main cycle of the system, the controller (modeled in

1https://inf.mit.bme.hu/en/gamma

34



Figure 7.2) sends toggle signals in defined intervals to the traffic lights via the Control
ports, causing them to switch between the lights. The active lights of the traffic lights,
which can be red, green, yellow or none (denoting the absence of lights), are indicated by
signals sent via the Lights ports (the behaviour of the traffic lights is modeled in Figure
4.1). The system can also receive a police signal as input, which is passed to the controller
via the Police port. Then, the controller forwards this to the traffic lights via the inner
Police ports, causing them to switch to a blinking yellow state. Another police signal
returns the system to the main cycle.

Figure 7.2: The crossroad example

7.2 Crossroads Example on Digilent ZedBoard

This section presents a case study executed on a Digilent ZedBoard2 (presented in Fig-
ure 7.3), a development kit shipped with a Zynq-7000 SoC (a high-level model of the
architecture is presented in Figure 3.2).

The system is implemented on a Zynq-7000 SoC (visualised in Figure 7.4). The two traffic
lights are synthesized on the Xilinx FPGA, and the controller is executed as software on
the CPU.

2http://zedboard.org/product/zedboard

35



Figure 7.3: A Digilent ZedBoard

7.2.1 Implementing the Traffic Lights

The implementation steps of the traffic lights are the following:

1. SystemVerilog implementation is generated from the Gamma statechart model using
the SystemVerilog code generator presented in Section 4.3.2.

2. Using Vivado Design Suite3, the implementation is packaged as an AXI4 slave pe-
ripheral IP.

3. The traffic light AXI IPs are connected to the Zynq-7000 SoC, with outputs con-
nected to the LED GPIOs of the ZedBoard.

4. The design is exported as hardware, serving as target platform for the next step of
the case study.

The AXI4 is a high-performance, memory-mapping based interface [29] that handles the
sharing of data between the programmable logic and the processing system on the Zynq-
7000 SoC. AXI4 operates in accordance with a master-slave protocol, where the master
gives the memory address and control to the slave, after which the slave can read data
from the master, or the master can write data to the slave.

To utilise the AXI4 interface, the generated traffic light implementation is packaged as an
AXI4 slave peripheral IP. During packaging, the traffic light implementation is instantiated
inside the AXI wrapper. This is where the user logic gets defined. Since AXI uses memory
mapping, and the implementation reads different data values, each input of the traffic
light module gets a specific value assigned to them (except for the clock signal). For
example, writing 0x000001 to the memory address of any traffic light instance will reset
the statechart. Thereafter, the outputs are connected to the LEDs.

3https://www.xilinx.com/products/design-tools/vivado.html

36



By instantiating two traffic light AXI4 IPs, each traffic light gets a memory address,
where data sharing can happen with the master. The AXI4 inputs of the traffic lights are
connected to the AXI Interconnect, which is connected to the Zynq-7000 system. Each
traffic light has 4 LEDs to serve as output indicators, with red, yellow, green and none
(used in the blinking yellow state to indicate when there are no lights turned on) being
the possible outputs.

7.2.2 Implementing the Controller

The controller is implemented on the processing system as software. The implementation
steps are the following:

1. The previously designed hardware is imported as target platform in Xilinx Vitis4.

2. Implementation in C is generated from the Gamma statechart model of the controller
using the C code generator presented in Section 4.3.1.

3. The controller is instantiated, gets reset, and is placed in a loop, where it is executed.

4. The system is loaded on the Zynq-7000 SoC.

Figure 7.4: The crossroad composite system setup on the Zynq-7000 SoC

The traffic lights are also reset before the loop begins. Inside the loop, a button GPIO
is read as well, serving as the police signal. If pressed, the police signal variable of the
controller is set. When the controller produces output for any of the traffic lights, the
corresponding values are written to the respective memory addresses through the AXI4
peripheral.

4https://www.xilinx.com/products/design-tools/vitis.html

37



The FPGA is programmed with the two traffic lights, while the controller runs on the
CPU, that is, on a bare metal environment with no operating system. As a result, the
controller produces toggle signals in specific time intervals to the traffic lights, which then
light up the LEDs in the right order. If the button gets pressed, the controller signals to
the traffic lights, which enter a blinking state. The blinking interval is controlled by the
clock of the FPGA.

7.3 Crossroad Example Using DDS

This section presents a case study where the crossroads example (detailed in Section 7.2,
visualised in Figure 7.1) is executed in a distributed setting, where individual components
are running in different processes and communicate through RTI DDS.

Adhering to the steps described in Section 5.4, the IDL is generated from the crossroad
composite component. This contains

• a priority and secondary police type, for the controller-police −→ priority-police and
controller-police −→ secondary-police channels,

• a priority and secondary control type, for the controller-control −→ priority-control
and controller-control −→ secondary-control channels,

• a priority and secondary lights type, for the system outputs of the priority and
secondary traffic lights,

• a controller police type, for the system input of the controller.

Then, the publishers and subscribers are generated from the composite component for
each standalone component, which publish and subscribe to topics in the same manner
as visualised in Figure 5.2. This is followed by the generation of individual statechart
implementations from the Gamma models in C language. Finally, using the code generator
of RTI Connext DDS, the stubs are generated from the previously derived IDL.

The standalone statechart implementations are placed in a loop, and utilising the corre-
sponding subscribers and publishers, are executed in the following way:

1. when a subscriber receives data, it passes the data values to the statechart imple-
mentation,

2. the corresponding variables of the statechart are set, and a step is executed,

3. the outputs are passed to the publisher, which sends them to the subscribers.

This implementation is built and an executable is generated for each component. Upon
running these executables, RTI Connext DDS automatically handles the connection of
components. The end result is that the controller writes data to the priority and secondary
toggle topics in set time intervals, which is then received by the subscribers of the priority
and secondary components. The two traffic light components, after processing the input,
write output data on the system output topic.

38



7.4 Summary

The case studies presented in this chapter showcase the capabilities of the novel SystemVer-
ilog, C and DDS code generators. In both case studies, the generated implementations
require no further modification in order to be executed. Section 7.2 presents the realisa-
tion of the composite component on a heterogeneous target, where one part of the system
(the traffic lights) is realised as hardware, and the other (the controller) as software. Sec-
tion 7.3 presents the same composite system in a distributed setting, where components
run as individual processes. Both of these communication implementations are supported
by the new data-centric semantic variant, showing the diversity of possible application
fields. In Section 7.2, data is conveyed through memory-mapping, between the FPGA and
the CPU, while both components run independently, while in Section 7.3, DDS is used to
distribute data entries. In both case studies, the C code generated was the same, except
for the generated timing mechanism, demonstrating how the new code generators can be
used in multiple scenarios. As for the timing in the case study presented in Section 7.3,
DDS supports accurate timing mechanisms in C, so utilising this timing for timed events
is considered for future works.

39



Chapter 8

Conclusion and Future Work

In this work I focused on the model-driven development of heterogeneous CPS. CPS of-
ten have critical tasks, so exploiting the advantages of model-driven techniques will lead
to more reliable systems with less errors. I presented extensions to the Gamma State-
chart Composition Framework, supporting the development, verification and testing of
heterogeneous cyber-physical systems.

The novel extensions of the Gamma framework are summarized as follows:

• I introduced a new semantic variant for the asynchronous semantics, the so-called
data-centric semantic variant, which fits well to the concept of heterogeneous CPS.
This novel composition semantics can be used to describe composite systems where
data-driven asynchronous communication is used,

• I developed and integrated new code generator techniques to support the automatic
derivation of implementation in languages commonly used in embedded systems and
real-time systems, and

• I designed an approach to support the networked real-time communication of com-
ponents and integrated automatic code generators to utilise the efficiency and high
performance of DDS.

The applicability of the approaches and functionalities presented in this work is demon-
strated in two case studies, each implementing different ways of data-driven interaction.

This is only the beginning of a long road. In the future, I plan to further expand the
capabilities of Gamma to support more architectures. To achieve this, the development of
new code generators is planned to generate implementation in different languages, such as
C++. In addition, I plan to extend the language family of Gamma to support the precise
description of the underlying platforms and I plan to integrate optimization techniques
to choose the best deployment of the functions to platform elements. As mentioned in
Section 2.2, the support of architectural modeling using Gamma is also planned. Further-
more, I also plan to provide a fault-tolerant design pattern library, so the users can choose
the level of reliability and availability based on which automatic techniques can synthesize
the architectures that satisfy both the functional and extra-functional requirements.

40



Acknowledgements

I would like to thank my advisors, Bence Graics and dr. András Vörös, who continu-
ously supported me through my work, introducing me to fascinating part of computer
engineering, and aiding me professionally.

The results presented in this work were established in the framework of the professional
community of Balatonfüred Student Research Group of BME-VIK to promote the eco-
nomic development of the region. During the development of the achievements, we took
into consideration the goals set by the Balatonfüred System Science Innovation Cluster
and the plans of the ”BME Balatonfüred Knowledge Center”, supported by EFOP 4.2.1-
16-2017-00021.

41



Bibliography

[1] Cyber-physical systems - a concept map, 2012. https://ptolemy.berkeley.edu/
projects/cps/, Accessed: 2020-10-23.

[2] Health-cps: Healthcare cyber-physical system assisted by cloud and big data. IEEE
Systems Journal, 2015.

[3] Medical cyber-physical systems: A survey. Journal of Medical Systems, 42, 2017.

[4] David F. Bacon, Rodric Rabbah, Sunil Shukla, and T.J. Watson Research Center.
FPGA programming for the masses. 2013.

[5] Marco Brambilla, Jordi Cabot, and Manual Wimmer. Model-Driven Software Engi-
neering in Practice. Morgan & Claypool, 2012.

[6] Satrajit Chatterjee, Michael Kishinevsky, and Umit Y. Ogras. xMAS: Quick formal
modeling of communication fabrics to enable verification. pages 80–88, 2012.

[7] David Coulter, Mike Jacobs, and Michael Satran. Interprocess com-
munications, 2018. https://docs.microsoft.com/hu-hu/windows/win32/ipc/
interprocess-communications?redirectedfrom=MSDN, Accessed: 2020-10-25.

[8] Morin Fleurey. ThingML: A generative approach to engineer heterogeneous and dis-
tributed systems. IEEE, 2017.

[9] Thomas Gaska, Marilyn Gaska, Doug Summerville, and Yu Chen. Model based
engineering for advanced integrated modular avionics - focus and challenges. 2017.

[10] Leonardo Giordani. Concurrent programming - communication between pro-
cesses. LinuxFocus, 2003. https://tldp.org/pub/Linux/docs/ldp-archived/
linuxfocus/English/Archives/lf-2003_01-0281.pdf, Accessed: 2020-10-25.

[11] Bence Graics, Vince Molnár, András Vörös, István Majzik, and Dániel Varró.
Mixed-semantics composition of statecharts for the component-based design of re-
active systems. Software and Systems Modeling, 19:1483 – 1517, 2020. DOI:
10.1007/s10270-020-00806-5.

[12] Object Management Group. What is DDS? https://www.dds-foundation.org/
what-is-dds-3/, Accessed: 2020-10-21.

[13] Object Management Group. OMG Unified Modeling Language (OMG UML), super-
structure, 2009. https://www.omg.org/spec/UML/2.2/Superstructure/PDF, Ac-
cessed: 2020-10-23.

[14] Object Management Group. Interface Definition Language. 2018. https://www.omg.
org/spec/IDL/4.2/PDF.

42

https://ptolemy.berkeley.edu/projects/cps/
https://ptolemy.berkeley.edu/projects/cps/
https://docs.microsoft.com/hu-hu/windows/win32/ipc/interprocess-communications?redirectedfrom=MSDN
https://docs.microsoft.com/hu-hu/windows/win32/ipc/interprocess-communications?redirectedfrom=MSDN
https://tldp.org/pub/Linux/docs/ldp-archived/linuxfocus/English/Archives/lf-2003_01-0281.pdf
https://tldp.org/pub/Linux/docs/ldp-archived/linuxfocus/English/Archives/lf-2003_01-0281.pdf
http://dx.doi.org/10.1007/s10270-020-00806-5
https://www.dds-foundation.org/what-is-dds-3/
https://www.dds-foundation.org/what-is-dds-3/
https://www.omg.org/spec/UML/2.2/Superstructure/PDF
https://www.omg.org/spec/IDL/4.2/PDF
https://www.omg.org/spec/IDL/4.2/PDF


[15] David Harel. Statecharts: a visual formalism for complex systems. Science of Com-
puter Programming, 8:231–274, 1987.

[16] Zoltan Horvat, Velibor Ilic, and Milos Nikolic. Web server and QR decoder applica-
tions for Xilinx FPGA boards. 2018.

[17] Real-Time Innovations Inc. RTI Connext DDS—comprehensive summary of QoS
policies, 2013. https://community.rti.com/rti-doc/500/ndds.5.0.0/doc/pdf/
RTI_CoreLibrariesAndUtilities_QoS_Reference_Guide.pdf, Accessed: 2020-10-
21.

[18] Real-Time Innovations Inc. RTI Connext DDS core libraries get-
ting started guide version 6.0.0, 2019. https://community.rti.com/
static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/RTI_
ConnextDDS_CoreLibraries_GettingStarted.pdf, Accessed: 2020-10-21.

[19] Vincent Perrier Jean-Paul Calvez. System modeling and architecting with CoFluent
Studio, 2005.

[20] Vince Molnár, Bence Graics, András Vörös, István Majzik, and Dániel Varró. The
Gamma Statechart Composition Framework: Design, verification and code genera-
tion for component-based reactive systems. In 2018 IEEE/ACM 40th International
Conference on Software Engineering.

[21] National Institute of Standards and Technology. Framework for cyber-physical
systems: Volume 1, overview. 2017. https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.1500-201.pdf.

[22] Helen Gill Radhakisan Baheti. Cyber-physical systems. 2011.

[23] Lacey Rae (RTI). DDS databus, 2013. https://community.rti.com/
glossary-term/databus, Accessed: 2020-10-25.

[24] B. Selic. The pragmatics of model-driven development. IEEE Software, 2003.

[25] Tutorialspoint. Memory mapping, . https://www.tutorialspoint.com/inter_
process_communication/inter_process_communication_memory_mapping.htm,
Accessed: 2020-10-27.

[26] Tutorialspoint. Inter process communication - pipes, . https://www.
tutorialspoint.com/inter_process_communication/inter_process_
communication_pipes.htm, Accessed: 2020-10-27.

[27] Tutorialspoint. Shared memory, . https://www.tutorialspoint.com/inter_
process_communication/inter_process_communication_shared_memory.htm,
Accessed: 2020-10-27.

[28] Remigiusz Wisniewski, Grzegorz Bazydło, Luís Gomes, and Aniko Costa. Dynamic
partial reconfiguration of concurrent control systems implemented in FPGA devices.
2017.

[29] Xilinx. AXI reference guide, 2017. https://www.xilinx.com/
support/documentation/ip_documentation/axi_ref_guide/latest/
ug1037-vivado-axi-reference-guide.pdf, Accessed: 2020-10-26.

43

https://community.rti.com/rti-doc/500/ndds.5.0.0/doc/pdf/RTI_CoreLibrariesAndUtilities_QoS_Reference_Guide.pdf
https://community.rti.com/rti-doc/500/ndds.5.0.0/doc/pdf/RTI_CoreLibrariesAndUtilities_QoS_Reference_Guide.pdf
https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/RTI_ConnextDDS_CoreLibraries_GettingStarted.pdf
https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/RTI_ConnextDDS_CoreLibraries_GettingStarted.pdf
https://community.rti.com/static/documentation/connext-dds/6.0.0/doc/manuals/connext_dds/RTI_ConnextDDS_CoreLibraries_GettingStarted.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-201.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-201.pdf
https://community.rti.com/glossary-term/databus
https://community.rti.com/glossary-term/databus
https://www.tutorialspoint.com/inter_process_communication/inter_process_communication_memory_mapping.htm
https://www.tutorialspoint.com/inter_process_communication/inter_process_communication_memory_mapping.htm
https://www.tutorialspoint.com/inter_process_communication/inter_process_communication_pipes.htm
https://www.tutorialspoint.com/inter_process_communication/inter_process_communication_pipes.htm
https://www.tutorialspoint.com/inter_process_communication/inter_process_communication_pipes.htm
https://www.tutorialspoint.com/inter_process_communication/inter_process_communication_shared_memory.htm
https://www.tutorialspoint.com/inter_process_communication/inter_process_communication_shared_memory.htm
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf

	Kivonat
	Abstract
	Introduction
	Background
	Cyber-Physical Systems
	Model-Driven Development
	Platform-Based Design

	Gamma Statechart Composition Framework
	Composition Modes of Gamma
	Formal Composition Semantics of Gamma

	Data Distribution Service
	RTI Connext DDS

	Related Work

	Overview of the Approach
	Difficulties of Developing CPS
	Design and Code Generation for Heterogeneous CPS
	Modeling of Composite CPS
	Supporting New Architectures and Platforms
	Establishing Communication


	Modeling and Code Generation for Standalone Hardware
	Gamma Statecharts
	High-Level Model Transformation
	Generating Implementation
	C Code Generation
	SystemVerilog Code Generation


	Modeling and Code Generation for Distributed CPS
	Data-Centric Semantic Variant
	Formal Definition

	Data-Centric Communication Implementations
	Sharing Data With DDS
	Generating DDS Communication

	Implementation
	Code Generation
	C Language Implementation
	SystemVerilog Implementation

	Case Study
	The Crossroads Example
	Crossroads Example on Digilent ZedBoard
	Implementing the Traffic Lights
	Implementing the Controller

	Crossroad Example Using DDS
	Summary

	Conclusion and Future Work
	Acknowledgements
	Bibliography

