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Abstract

Most of the Internet traffic is transported by TCP (Transmission Control Protocol) which
applies a congestion control mechanism. This mechanism is not able to work efficiently in
today’s constantly changing network environments. In order to solve this issue, a number of
new TCP variants have been developed which are able to utilize the network resources more
efficiently by modifying the conventional congestion control algorithm. Recently, the widely
used TCP versions are able to provide more efficient solutions in given environments but
they do not give universal and optimal solutions to the challenges of today’s ever-changing,
heterogeneous network environments. Currently, it seems there is little hope that the TCP’s
closed-loop congestion control mechanism will be able to provide such a universal solution
in the future.

In order to utilize the network resources optimally and find answers to the interoper-
ability and efficiency issues of TCP, extensive research is now being conducted by which
innovative concepts have been presented. One of these promising ideas suggests omitting
congestion control completely. In this case, every entity in the network is allowed to send
data at its maximum rate, which makes it possible to fully utilize the network resources.
The emerging huge, mostly bursty packet loss is then compensated by applying effective
erasure codes by which all the data can be restored at the receiver. In the past few years,
a new transport protocol has been designed in the HSN Lab (High Speed Networks Lab-
oratory) of the Department of Telecommunications and Media Informatics. The protocol
is called DFCP (Digital Fountain based Communication Protocol) and is currently under
research and development. I have implemented DFCP in the Linux kernel and carried out
an extensive performance evaluation of the protocol. Instead of using a congestion con-
trol mechanism, DFCP applies efficient erasure codes in order to be able to cope with the
emerging packet loss. The operation and behavior of the protocol have been analyzed on
various network topologies by carrying out both testbed measurements and simulations.
The preliminary results of the experiments are presented in this paper and have confirmed
that DFCP is able to achieve better performance in several network scenarios compared
to different TCP variants.

Firstly, following the introduction, this paper provides an insight into the operation
of the most extensively used TCP versions today reviewing their congestion control algo-
rithms. Afterwards, a detailed description is given of the underlying concept of the protocol.
Subsequently, the basic operation and the features of DFCP are discussed. In the last part
of the paper, firstly, the results of the validation measurements are presented. Secondly, a
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comparative analysis is carried out during which the performance of DFCP is compared to
commonly used TCP variants. The results of the measurements are discussed in detail and
finally, the future plans and possible improvements regarding the protocol are described.
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Kivonat

Napjainkban az Internet forgalmának jelentős része a TCP (Transmission Control Pro-
tocol) segítségével kerül átvitelre, amely torlódásszabályozást alkalmaz. A folyamatosan
változó hálózati környezetek esetén azonban a TCP által használt torlódásszabályozási
mechanizmus nem képes hatékony megoldást nyújtani. Ennek kiküszöbölésére az elmúlt
évtizedekben számos TCP verziót fejlesztettek ki. A jelenleg használt TCP verziók a ha-
gyományos torlódásvezérlő algoritmus módosításával képesek kezelni a hálózati erőforrások
bizonyos esetekben fellépő alacsony kihasználtságát, és ezáltal megoldást nyújtani néhány
meghatározott hálózati környezet esetén. A TCP verziók sokféleségének ugyanakkor az az
ára, hogy nem adnak univerzális, optimális megoldást a napjainkban jellemző, folyama-
tosan változó, heterogén környezetek okozta kihívásokra. Úgy tűnik, hogy kevés remény
van arra, hogy a TCP által használt zárt hurkú torlódásszabályozás a jövőben képes lesz
univerzális megoldást nyújtani ezekben az esetekben.

Az ehhez a problémához kapcsolódóan elvégzett és jelenleg is folyó kutatások során több
javaslat született arra, hogy hogyan lehetne hatékonyabban kihasználni a hálózati erőfor-
rásokat. Egy alternatív megoldás a jövő Internetére nézve az lehet, hogy egyáltalán nem
alkalmazunk torlódásszabályozást, és a hálózatban minden entitás esetén maximális sebes-
séggel történik az adatküldés. Ilyen módon lehetségessé válik a hálózati erőforrások teljes
mértékű kihasználása. Az adatátvitel során fellépő, főleg csomós jellegű csomagvesztést
hatékony hibajavító kódolás segítségével kezelhetjük és ilyen módon történhet az elkül-
dött adatok helyreállítása. Az elmúlt években egy ezen a koncepción alapuló transzport
protokollt dolgoztunk ki a Távközlési és Médiainformatikai Tanszéken működő HSN (High
Speed Networks) Laboratóriumban. Ez a protokoll DFCP (Digital Fountain based Com-
munication Protocol) néven jelenleg is kutatás és fejlesztés alatt áll. A DFCP-t a Linux
kernelben implementáltam, továbbá a protokoll számos teljesítményelemzési vizsgálatát
is elvégeztem. A DFCP nem alkalmaz torlódásszabályozást és az átvitel közben történő
csomagvesztéseket hatékony hibajavító kódolás alkalmazásával állítja helyre. A protokoll
működését különböző hálózati topológiákon teszthálózati mérések és szimulációk segítsé-
gével elemezzük. Az eddig elvégzett mérések eredményeit ebben a dolgozatban ismertetem
és ezek azt mutatják, hogy a TCP különböző verzióival összehasonlítva a DFCP számos
hálózati beállítás mellett képes azoknál jobb teljesítményt elérni.

A dolgozatban a bevezetést követően áttekintem a jelenleg elterjedten alkalmazott TCP
verziókat és az általuk használt torlódásszabályozási algoritmusokat, kitérve azok előnyeire
és hátrányaira. Ezután ismertetem az új protokollt megalapozó koncepciót és a protokoll
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alapvető működését, tulajdonságait. Az utolsó részben pedig először az elvégzett validációs
mérések eredményeit mutatom be, majd egy összehasonlító elemzést láthatunk, amelynek
során a DFCP teljesítményét különböző, elterjedten használt TCP verziókkal vetem össze.
Az elvégzett mérések eredményeit minden esetben részletesen értékelem, végül kitérek a
protokollhoz kapcsolódó továbbfejlesztési lehetőségekre.
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Chapter 1

Introduction

1.1 Motivation and objectives

Nowadays, TCP is one of the most significant transport protocols providing reliable, ordered
and error-checked delivery of a stream of octets between application-level entities. This pro-
tocol applies a congestion control mechanism in order to utilize the network resources more
efficiently and manage traffic congestion avoiding congestion collapse on the early Internet.
When applying congestion control, the data transfer rate of the communicating entities is
determined based on factors such as packet loss and delay in the network. Considering
the fact that there are numerous different network environments, ranging from high-speed
backbone networks to high-delay satellite links and wireless environments, several TCP
versions [1], [2] have been developed. Primarily, their aim is to optimize performance in
some given network scenarios. Although these new TCP versions provide better solutions
in some situations, they are not able to work efficiently in an ever-changing, heterogeneous
network environment. In addition, this approach results in significant interoperability prob-
lems between the different TCP implementations. In order to solve these problems, it is
required to conduct research and work out new concepts and ideas. According to a promis-
ing idea, proposed by GENI [3], applying congestion control should be completely avoided.
In this case, every entity in the network is allowed to send data at its maximum rate and
the emerging huge, mostly bursty packet loss is compensated by applying effective erasure
codes. Furthermore, so as to provide fairness, a fair scheduling algorithm is assumed to be
employed in the case of the network devices. This scheme has several benefits. Firstly, it
provides an efficient solution since every network resource is fully utilized and all addi-
tional free capacity in the network will immediately be consumed. Moreover, the simplicity
of the concept must be emphasized as the suggested coding scheme makes packet loss in-
consequential, which can simplify network routers resulting in reduced buffer sizes, and
consequently this proposal is able to provide support for all-optical networks where buffer
sizing is a key issue in the case of Internet routers [4], [5], [6]. Finally, the scalability and
the stability of the new approach are important factors as well since the maximum-rate
transmission results in more predictable traffic patterns. However, apart from the previ-
ously mentioned characteristics and some related work discussed in a later chapter, no
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realization or further refinement of the idea has been published so far.
In this paper, an efficient new transport protocol is introduced that is based on the

concept described above. Accordingly, instead of applying a congestion control algorithm,
the protocol employs an effective erasure coding method in order to recover the lost packets
in the course of maximum-rate data transmission. The performance of the protocol has
been analyzed by testbed measurements and simulations performed on different network
topologies. All the results are discussed in detail and compared to the performance of
today’s commonly used TCP variants.

My work has been carried out as part of ongoing research conducted in the HSN Lab
(High Speed Networks Laboratory) of the Department of Telecommunications and Media
Informatics. More precisely, my contribution to this research was to implement a new
transport protocol, carry out its validation and comparative performance evaluation.

1.2 Outline of the work

This paper is divided into five chapters. After the introduction and the description of the
problem, Chapter 2 begins with an overview of the basic concepts in computer networking.
Afterwards, the currently available and widely used high-speed TCP versions are inves-
tigated highlighting the underlying principles, their congestion control mechanisms, the
advantages and the drawbacks of the applied algorithms. In Chapter 3, DFCP (Digital
Fountain based Communication Protocol) [7] and its underlying concept are introduced.
After outlining the concept, a basic overview of the network subsystem of the Linux kernel
is given. Subsequently, the chapter focuses on the operational phases of the protocol. In
addition, the applied coding scheme and the parameters of the protocol are also detailed.
Chapter 4 concentrates on the testbed measurements and simulations. The chapter is split
into two parts. On the one hand, a validation analysis is performed so as to examine and
validate the operation of the protocol. On the other hand, a comparative performance
evaluation is carried out in order to compare the performance and behavior of the pro-
tocol to commonly used TCP versions under various network conditions. First of all, the
network topologies and traffic scenarios are presented. Secondly, the software tools used
for the measurements are briefly described and all their settings are given. Thirdly, the
measurement results are provided, evaluated and compared to the performance of signifi-
cant TCP variants. The closing chapter, Chapter 5, details the suggested future work and
improvements.
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Chapter 2

High-Speed Transport Protocols

This chapter focuses on the different transport protocols and TCP variants [2] used in high-
speed networks, which are able to improve the performance of traditional TCP in given
network environments with special emphasis placed on their congestion control algorithms.

2.1 Related work

In order to provide effective solutions to the challenges of various network environments,
the conventional congestion control mechanism of TCP has been modified and several vari-
ants have been developed. These mechanisms might be divided into five groups. The first
group, loss-based congestion control algorithms, includes TCP versions which use packet
loss as an indication of network congestion. Since detecting packet losses gives very limited,
one-bit information of the state of the network, this approach cannot provide fine granu-
larity for congestion control. For instance, TCP Reno [8], HSTCP (High Speed TCP) [9],
Scalable TCP [10], BIC TCP (Binary Increase Congestion control) [11], which is available
in the Linux kernel, and CUBIC TCP [12], which is currently the default TCP variant
in the Linux kernel, apply loss-based congestion control mechanisms. The second group,
delay-based congestion control algorithms, consists of TCP versions which periodically
measure the RTT (round-trip time) rather than the packet loss to determine the rate at
which to send packets. RTT is the total time it takes for a segment to be sent and for an
acknowledgement of that segment to be received. TCP Vegas [13] and FAST TCP [14] are
examples of TCP variants which use delay-based algorithms. In addition, FAST TCP has
favorable interoperability and scalability properties. The algorithms in the third group, hy-
brid or mixed loss-delay-based variants, involve the features of both the loss-based and the
delay-based approaches in order to achieve fair bandwidth allocation and fairness among
flows. For example, Compound TCP [15], available in Windows 7, Windows Vista and
Windows Server 2008 operating systems, applies a hybrid mechanism. In addition to the
packet loss, it also uses a delay-based component and the two components determine the
packet transmission rate together. The fourth group consists of different estimation-based
strategies. TCP Westwood [16] is an example which performs adaptive rate estimation
based on the arrival rate of acknowledgement packets. Two rate estimation algorithms,
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the BE (Bandwidth Estimation) algorithm and the RE (Rate Estimation) algorithm, are
employed to measure the appropriate transmission rate of an end-to-end path. In the case
of the fifth group, congestion indications are replaced by explicit notifications, such as
ECN (Explicit Congestion Notification). These congestion control mechanisms require the
assistance of network routers, and therefore the modification of routers is also necessary,
which is a significant disadvantage from the aspect of deployment feasibility. One of the
main representatives of this group is the XCP (eXplicit Control Protocol) which gener-
alizes the ECN proposal [17]. Instead of the one-bit congestion indication used by ECN,
XCP-capable routers inform the senders about the degree of congestion at the bottleneck.
In addition, XCP decouples the utilization control from fairness control. However, XCP
requires the collaboration of all the routers on the data path, which is almost impossible
to achieve in an incremental deployment scenario of XCP.

2.2 TCP basics

This section provides an introduction to the basic concepts in computer networking re-
quired to understand the following chapters of this paper.

The first step of congestion control, applied by TCP variants, is the detection of conges-
tion. In the early Internet, if a timer expired due to a lost packet, the reason could have
been both noise on the transmission channel and an overwhelmed router. However, packet
losses relatively rarely take place due to transmission errors in the current networks since
most high-speed backbone links are optical today. As a result, packet losses and timeouts
are typically caused by network congestion. All the algorithms applied by TCP assume
that timeouts are caused by congestion in the network. In the later sections, it will become
apparent that in some cases, such as wireless transmission when packet losses may occur
due to the unfavorable properties of the wireless medium, this approach is highly inefficient
and suboptimal.

TCP versions use various timers for different reasons. The most important one is the
retransmission timer [18]. TCP starts the retransmission timer when each outbound seg-
ment is handed down to IP (Internet Protocol). If no acknowledgment has been received
for the data in a given segment before the timer expires, the segment is retransmitted and
the timer is reset and started again. Otherwise, the timer is stopped. Choosing the right
timeout value is crucial. If the timeout is too short, too many packets will be retransmitted,
which may increase network congestion. If it is too long, the overall throughput may be
reduced due to waiting for the acknowledgments for too long in the case of lost packets.
In order to determine how long the timer should run, the value of RTT is measured and
used. RTT refers to the round-trip time, which is the time required for a client to send a
segment and for the server to send an acknowledgement to that segment over the network.
Both the average and the variance of the arrival time of acknowledgements may fluctuate
significantly within a few seconds if network congestion occurs or disappears. So as to
provide an approximation of the RTT, a dynamic algorithm is employed. The state of the
network is continuously monitored and the value of RTT is appropriately updated. In the
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case of TCP, this algorithm was introduced by Jacobson and it works as follows. The TCP
keeps track of each connection and maintains their corresponding RTT variables where
RTT denotes the best known approximation of the round-trip time to the given destina-
tion. When sending a segment, TCP initiates a timer and measures the time it takes for
the acknowledgement to that segment to arrive. On the arrival of the acknowledgement, it
calculates the total time, M, and refreshes the value of RTT according to Equation (2.1):

RTT = α ·RTT + (1− α) ·M (2.1)

In this case, α is a weighting factor that is typically set to 7/8. In order to determine the
value of the timeout, early implementations of TCP commonly used the formula β ·RTT ,
where the value of β was always 2. As this constant value was inflexible, the algorithm was
modified based on Jacobson’s proposal in 1988. As a result, an additional variable D, the
deviation, was added to the original algorithm. Whenever an acknowledgement is received,
the difference between the expected and observed values, |RTT −M |, is computed. The
value of D is then calculated as a moving average according to Formula (2.2):

D = α ·D + (1− α) · |RTT −M | (2.2)

In this equation, α can be different from the value used in Formula (2.1). Eventually,
the value of the timeout (T ) is given by Equation (2.3):

T = RTT + 4 ·D (2.3)

Although the value of the coefficient can be set to an arbitrary constant, using the value
of 4 has two major advantages. Firstly, the multiplication by 4 can be easily implemented
by shifting. Secondly, it reduces the number of unnecessary retransmissions and timeouts.

Another important concept in the context of computer networks is BDP (Bandwidth-
Delay Product) which refers to the capacity of the network pipe from the sender to the
receiver and back in bits or in bytes. It can be calculated as shown in Equation (2.4):

BDP = B ·RTT (2.4)

Here, B denotes the bandwidth and RTT refers to the round-trip time. For instance, in
the case of a network with bandwidth of 1 Gbps and an RTT of 1 ms, the value of BDP
is calculated in Equation (2.5):

BDP = 109
b

s
· 10−3s = 106b = 125kB (2.5)

Another fundamental characteristic of any network is its MTU (Maximum Transmission
Unit) which determines the size of the largest packet or frame, specified in octets (eight-
bit bytes), that can be transmitted over the given transmission medium. The term packet
refers to the network layer PDU (Protocol Data Unit) whereas the data link layer PDU is
known as frame. Furthermore, the transport layer PDU is called segment.
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The definition of MSS (Maximum Segment Size) must be highlighted as well. The MSS
is a parameter of TCP which specifies the largest amount of data, specified in octets, that
a computer or communications device can receive in a single, unfragmented TCP segment.
It does not include the size of the TCP header or the IP header.

I also introduce the concept of the response function of a congestion control protocol.
The response function of TCP is the average throughput of a TCP connection in a function
of the packet loss probability, the packet size (MSS ) and the RTT. It can give much infor-
mation about the protocol especially about its TCP friendliness, RTT fairness, convergence
and scalability.

Finally, congestion control algorithms maintain a variable at the sender called congestion
window which determines the number of segments that can be transmitted within an RTT.

In the following sections, some of the TCP versions in the first two groups will be ana-
lyzed including their properties focusing on their congestion control mechanisms. Among
others, the advantages and the drawbacks of the applied algorithms will be detailed.

2.3 TCP Tahoe and TCP Reno

TCP Tahoe and TCP Reno were named after the operating systems, 4.3BSD-Tahoe and
4.3BSD-Reno releases [19], in which they were first introduced in 1988 and 1990, respec-
tively. The name of TCP Reno refers to the city of Reno while TCP Tahoe was named
after Lake Tahoe in Nevada, USA. TCP Reno is the improved and more efficient version of
TCP Tahoe. In this section, firstly, the common characteristics of these two TCP versions
are discussed. Afterwards, the differences are also explained.

When dealing with network congestion, two separate issues must be considered, which
are the capacity of the receiver and the capacity of the network itself. These two issues are
handled separately. Consequently, each sender uses two different windows. One of them is
maintained by the receiver whereas the other, the congestion window, is under the control
of the sender. Both variables are used in order to determine the number of bytes that can be
sent by the sender. The number of bytes that can actually be sent will be the minimum of
the two windows, and therefore the communicating endpoints make this decision together.

When a connection has been established cwnd (congestion window) is set to the max-
imum segment size allowed on that connection. Afterwards, a maximum-sized segment is
sent. If that segment is acknowledged before the timer has expired, cwnd is increased by
one segment (MSS bytes), and therefore the initial value of cwnd is doubled (cwnd =

cwnd + MSS) allowing the sender to send two maximum-sized segments. If the value of
cwnd is n segments and all the n acknowledgements are received, the value of cwnd is
increased by the size of n segments. In practice, the value of cwnd is doubled for each
acknowledged data burst. As a result, cwnd keeps growing exponentially until either a
timeout occurs or the size of the receiver’s window has been reached. This algorithm is
called Slow Start, despite the fact that it is not slow at all, and all TCP implementations
are required to support it.

In addition, the congestion control mechanism uses a third parameter, called threshold,

13



that is initially set to 64 kilobytes. When a timeout occurs, the threshold is set to the
half of the current size of cwnd and cwnd is reset to the size of a maximum-sized segment.
Afterwards, the Slow Start algorithm is again used to determine the capacity of the network
except that the exponential growth stops when the value of the cwnd reaches the size of the
threshold. Henceforth, cwnd is linearly increased by each successful transmission (by one
MSS for each burst instead of one MSS for each acknowledged segment). This phase of the
algorithm is called Congestion Avoidance. The previously described algorithm, employed
by TCP, is commonly referred to as AIMD (Additive Increase Multiplicative Decrease).

As an illustration of how the congestion control algorithm works, see Figure 2.1. The
MSS here is 1024 bytes. The value of cwnd was initially set to 64 kilobytes but a timeout
occurred. As a result, the threshold is set to 32 kilobytes and the current value of cwnd
is 1 kilobyte for transmission 0. The congestion window then grows exponentially until it
reaches the threshold that is currently 32 kilobytes. Subsequently, the growth is linear.

Figure 2.1. The congestion control algorithm of TCP Tahoe and TCP
Reno

At transmission 13, a timeout occurs. This is detected when three duplicate acknowl-
edgements arrive. At that time, the lost packet is retransmitted and the threshold is set to
the half of the current congestion window (cwnd is 40 kilobytes now), which is 20 kilobytes,
and the Slow Start algorithm is reinitiated. Restarting with a congestion window of one
packet takes one round-trip time for all of the previously transmitted data to leave the
network and be acknowledged including the retransmitted packet. The congestion window
grows exponentially as it did in the Slow Start phase previously until it reaches the new
threshold of 20 kilobytes. At that time, the growth becomes linear again. It will continue
in this fashion until either another packet loss is detected via duplicate acknowledgements,
a timeout occurs or the receiver’s window becomes the limit. If cwnd reaches the size of
the receiver’s window, it stops growing and remains constant.

In the event of a packet loss, it is very likely that duplicate acknowledgements will ar-
rive at the sender. The reason for this is that duplicate acknowledgements are generated
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by the receiver every time a segment is received out of order. So as to recover from such
situations more effectively, a technique called Fast Retransmit was added to the original
algorithm. It is an enhancement which reduces the time a sender waits before retransmit-
ting a lost segment and works as follows. If a TCP sender receives a specified number
of acknowledgements, which is usually set to three duplicate acknowledgements with the
same acknowledgement number (a total of four acknowledgements with the same acknowl-
edgement number), the sender can reasonably be confident that the segment with the next
higher sequence number was dropped and will not arrive out of order. The sender will then
retransmit the packet that was presumed dropped before waiting for its timeout.

In this case, TCP Tahoe and TCP Reno work differently. Triple duplicate acknowl-
edgements are treated in the same way as a timeout by TCP Tahoe. It will perform Fast
Retransmit, set the slow start threshold to the half of the current congestion window, re-
duce the congestion window to 1 MSS and reset to Slow Start state. However, in the case of
TCP Reno, if three duplicate acknowledgements are received, it will halve the congestion
window (instead of setting it to 1 MSS like Tahoe), set the slow start threshold equal to
the new congestion window, perform a Fast Retransmit and enter a phase called Fast Re-
covery. If an acknowledgement times out, Slow Start is used as in the case of TCP Tahoe.
The rationale behind this technique is that duplicate acknowledgements reflect that the
subsequent packets arrived at the receiver. In this case, falling back to Slow Start would
be unreasonable and inefficient. As a result of the Fast Recovery enhancement, which was
introduced in TCP Reno, TCP Reno outperforms TCP Tahoe. In the later sections, for
practical reasons, TCP Reno will be simply referred to as TCP.

2.4 TCP NewReno and TCP SACK

TCP NewReno [20] is a slight modification of TCP Reno. It is able to detect multiple
packet losses, and consequently it is much more efficient than TCP Reno in the event of
multiple packet losses. TCP NewReno also performs Fast Retransmit when it receives mul-
tiple duplicate packets, however, it differs from TCP Reno at this stage. Whenever a TCP
NewReno sender receives duplicate acknowledgements, it assumes that the packet was lost.
It enters the Fast Recovery phase and retransmits the lost packet. Upon reception of a par-
tial acknowledgement, it does not leave the Fast Recovery phase until all the outstanding
data transmitted in the same window has been successfully acknowledged. This behavior
of TCP NewReno makes it different from TCP Reno. The reason for not exiting the Fast
Recovery phase is the fact that partial acknowledgements (an acknowledgement for some
but not all of the packets that were outstanding at the start of the Fast Recovery phase)
do not acknowledge all the packets that were sent before entering the Fast Retransmission
phase. Partial acknowledgements also indicate that more packets might have been lost
within the same window and they need to be retransmitted immediately so that the expiry
of the retransmission timer can be avoided. When the TCP NewReno sender has received
all the partial acknowledgements for all the outstanding data, it receives a fresh acknowl-
edgement. When this fresh acknowledgement has been received, the sender exits the Fast
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Recovery phase and sets the value of the congestion window to the threshold performing
Congestion Avoidance. In this way, it provides a very efficient mechanism to recover from
multiple packet losses as the congestion window is not reduced multiple times, however,
TCP NewReno still suffers from the fact that it takes one RTT to detect each packet loss.

Traditional implementations of TCP use an acknowledgement number field that contains
a cumulative acknowledgement indicating that the receiver has received all the data up to
the indicated byte. Nevertheless, TCP may experience poor performance when multiple
packets are lost from one window of data. With the limited information available from
cumulative acknowledgments, a TCP sender can only learn about a single lost packet per
round-trip time. A SACK (Selective Acknowledgement) [21] mechanism, combined with a
selective repeat retransmission policy, may help to overcome these limitations. The receiver
sends back SACK packets to the sender informing the sender of the data that has been
received. The sender can then retransmit only the missing data segments. In short, the
SACK option allows the receivers to report non-sequential data they have received.

Adding SACK extension to TCP does not change the basic underlying congestion control
algorithm. The TCP SACK implementation preserves the properties of TCP Tahoe and
TCP Reno of being robust in the presence of out-of-order packets and uses retransmission
timeouts as the recovery method of last resort. The main difference between the TCP
SACK implementation and the TCP Reno is in the behavior when multiple packets are
dropped from one window of data. TCP SACK requires segments to be acknowledged
selectively instead of being acknowledged cumulatively. Each acknowledgement has a block
which describes which segments are being acknowledged. Consequently, the sender has a
picture of which segments have already been acknowledged and which are still outstanding.
Whenever the sender enters Fast Recovery, it initializes a variable called pipe, which is an
estimation of how much data is outstanding in the network, and halves the congestion
window. Every time an acknowledgement is received, the value of pipe is reduced by one
and every time a segment is retransmitted, pipe is incremented by one. Whenever the value
of pipe becomes smaller than the congestion window, TCP SACK checks which segments
are unreceived and resends them. If there are no such segments outstanding, then it sends a
new packet. As a result, more than one lost segment can be resent in one RTT. The sender
exits Fast Recovery and enters Congestion Avoidance when all the outstanding packets
have been acknowledged. This approach is very useful in Satellite Internet access [22].
However, the drawbacks of TCP SACK include a limitation on the number of SACK
blocks that one acknowledgement can carry (due to the encoding of SACK information
within the option field of the TCP header) and its reactive nature in responding to packet
losses. The latter prevents TCP SACK from being able to proactively avoid congestion or
infer the underlying cause of packet losses (For instance, is it a random radio noise or a
traffic-based congestion event?). For this reason, network researchers and engineers have
looked beyond TCP SACK for a more comprehensive solution to the problems of TCP
over wireless networks.
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2.5 CUBIC TCP

In this section, a widely used high-speed TCP variant, called TCP CUBIC [12], will be
presented that is used by default in Linux kernels since version 2.6.19. TCP CUBIC is an
enhanced version of BIC TCP (Binary Increase Congestion control) [11] which is the default
congestion control algorithm in Linux kernels 2.6.8 through 2.6.18. TCP CUBIC simplifies
the window control mechanism of BIC TCP and improves its TCP-friendliness and RTT-
fairness. The window growth function of TCP CUBIC is a cubic function in terms of the
elapsed time since the last loss event. Firstly, this cubic function provides good stability
and scalability. Secondly, the real-time nature of the protocol keeps the window growth rate
independent of RTT, and consequently its algorithm is TCP friendly on both short and
long-RTT paths. Furthermore, its unique window growth function improves the stability
and scalability of the protocol in both high-speed and long-distance networks.

A number of TCP variants have been developed in order to address the underutiliza-
tion problem present in large bandwidth-delay product networks mostly due to the slow
growth of the congestion window. Most of these protocols attempted to modify the window
growth function of TCP, which led to fairness issues between the different TCP variants.
These fairness issues include friendliness to existing TCP traffic (TCP-friendliness) and
fair bandwidth sharing with other competing high-speed flows running with same or dif-
ferent round-trip delays (Inter/intra protocol fairness and RTT-fairness). TCP-friendliness
defines whether a protocol is fair to TCP and it is critical to the safety of the protocol.
When a new protocol is used, we need to make sure that its use does not affect the most
common network flows (namely TCP) unfairly. The definition of TCP-friendliness is com-
monly interpreted as described in [9]. In brief, under high loss rate regions where TCP is
well-behaved, the protocol must behave like TCP and, under low loss rate regions where
TCP has a low-utilization problem, it can use more bandwidth than TCP. The main feature
of TCP CUBIC is that its window growth function is defined in real-time, and therefore its
growth rate will be independent of RTT. In the following part of this section, the window
growth function of TCP CUBIC and its properties will be discussed.

The window growth function of BIC TCP can be too aggressive especially in the case
of short RTT paths or low-speed networks. Furthermore, the several different phases of
the window control mechanism add a lot of complexity in analyzing the behavior and
performance of the protocol. The aim was to find a new window growth function while
retaining most of strengths of BIC TCP, especially its stability and scalability, simplify
the window control mechanism and enhance its TCP-friendliness. The congestion window
of TCP CUBIC is determined by the cubic function in Equation (2.6):

Wcubic = C · (t−K)3 +Wmax (2.6)

Here, C is a scaling factor, t denotes the elapsed time since the last window reduction
event and Wmax is the window size just before the last window reduction. The parameter
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K can be calculated as shown in Formula (2.7):

K =
3

√
Wmax ·

β

C
(2.7)

In this formula, β is a constant multiplicative decrease factor applied for window reduc-
tion at the time of a loss event. More precisely, the window was reduced to Wmax · β at
the time of the last reduction.

Figure 2.2 shows the window growth function of TCP CUBIC. While most alternative
algorithms of TCP employ convex growth functions, where after a loss event the window
increment is always growing, TCP CUBIC uses both the concave and convex profiles of
the cubic function to increase the window.

Figure 2.2. The window growth function of TCP CUBIC

After a window reduction following a loss event, it sets the window size to the value of
Wmax at the time of the loss event and decreases the congestion window multiplicatively
as described above. In addition, it enters the regular Fast Recovery and Fast Retransmit
phases of TCP. After having left Fast Recovery, it enters Congestion Avoidance and starts
to increase the window using the concave profile of the cubic function as depicted in
Figure 2.2. The cubic function is set to have its plateau atWmax, and therefore the concave
growth continues until the window size reaches the value of Wmax. It can be seen that the
window grows very fast after a window reduction event, but as it gets closer to Wmax,
its growth slows down. Afterwards, the convex profile of the cubic function is used to
increase the window. Around Wmax, the window increment becomes almost zero. After
this point, TCP CUBIC starts probing for more bandwidth. At this stage, initially, the
window grows slowly accelerating its growth as it is moving away from Wmax. This kind
of window adjustment (concave and then convex) improves the behavior of the protocol
and the stability of the network while maintaining high network utilization. Furthermore,
the rapid growth after having reached the value of Wmax ensures the scalability of the
protocol. This is due to the fact that the window size remains almost constant forming a
plateau around Wmax where the network utilization is deemed to be the highest and, in
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steady-state, most window size samples of TCP CUBIC are close to Wmax promoting high
network utilization and protocol stability.

In order to further improve the fairness and stability of the protocol, the window incre-
ment is limited so as not to be more than Smax per second. This feature allows the window
to grow linearly when it is far away from Wmax making the growth function similar to
the function used by BIC TCP which increases the window additively when the window
increment per RTT becomes larger than a constant value.

The real-time increase of the window significantly enhances the TCP-friendliness of the
protocol. In general, the window growth function of other RTT-dependent protocols (for
example, TCP) grows proportionally faster (in real time) in shorter RTT networks whereas,
in the case of TCP CUBIC, the growth is independent of RTT. Since TCP behaves more
aggressively while the behavior of TCP CUBIC remains unchanged, in networks with short
RTT, TCP CUBIC is more friendly than TCP. In short RTT networks, TCP CUBIC in-
creases the window more slowly than TCP. In order to keep the growth rate at the same
level as TCP, the window adjustment algorithm of TCP is emulated after a packet loss
event. This phase of the algorithm is called TCP Mode. When receiving an acknowledge-
ment in Congestion Avoidance phase, TCP CUBIC calculates the window growth rate
during the next RTT period applying Equation (2.6). Afterwards, it sets W (t+ RTT ) as
the candidate target value of the congestion window. Assume that the current window size
is cwnd. Depending on the value of cwnd, TCP CUBIC can run in three different modes.
Firstly, if cwnd is less than the window size that Standard TCP would reach at time t after
the last loss event, then TCP CUBIC is in the TCP friendly region. Otherwise, if cwnd is
less than Wmax, then TCP CUBIC is in the concave region. Finally, if cwnd is larger than
Wmax, TCP CUBIC is in the convex region.

If TCP mode is entered after a packet loss event, the window adjustment algorithm of
TCP is emulated. Since TCP CUBIC reduces its window by a multiplicative factor of β
after a loss event, the TCP-fair additive increment would be 3 · β/(2 − β) per RTT. The
reason for this is that the average sending rate of a protocol that uses an AIMD algorithm
can be calculated as shown in Formula (2.8):

1

RTT
·

√
α

2
· 2− β

β
· 1

p
(2.8)

In the above formula, α is the additive window increment and p is the packet loss rate.
In the case of TCP, α = 1 and β = 1/2, and consequently the average sending rate of TCP
can be computed according to Formula (2.9):

1

RTT
·
√

3

2
· 1

p
(2.9)

In order to achieve the same average sending rate as TCP for an arbitrary β, based
on the two formulas shown above, α has to be set to 3 · β/(2 − β). If the growth rate
is α per RTT, the window size of the emulated algorithm of TCP at time t is given by
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Equation (2.10):

Wtcp(t) = Wmax · (1− β) + 3 · β

2− β
· t

RTT
(2.10)

If the current value of cwnd is less thanWtcp(t), then the protocol is in the TCP friendly
region and cwnd is set to Wtcp(t) for each received acknowledgement.

To sum up, in the case of TCP CUBIC, it was important to improve the interoperability
and fairness to the traditional TCP flows. Besides, the algorithm of TCP CUBIC pro-
vides stability and scalability while achieving high network utilization even in high BDP
networks. Finally, this solution simplifies the algorithm employed by BIC TCP.
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Chapter 3

Future Internet without Congestion
Control

The evolution of transport protocols suggests that finding an optimal solution which meets
all the challenges of the ever-changing Internet is almost hopeless. In this chapter, firstly,
a promising concept is introduced and a new architecture for the future Internet without
congestion control is proposed. Afterwards, a brief overview of the network subsystem of
the Linux kernel is provided. Subsequently, the focus is on the basic principles of DFCP [7]
including its operational phases, data encoding and decoding algorithms and parameters.

3.1 Basic concept and related work

In the early Internet, the paradigm of congestion control was introduced as a solution to
avoid congestion collapse and performance degradation due to the overload of the network
resources. Congestion control is mostly performed by TCP that is commonly used to trans-
port data on the Internet these days. As the Internet is constantly and rapidly evolving,
numerous more and more effective TCP variants have been developed [1], [2] in order to
fit the requirements of the ever-changing network environments today, such as wireless
local area networks, long-range satellite links, ad-hoc networks, high-speed backbone links,
high-loss and high-latency networks. Although the currently used TCP variants work more
efficiently in some given network environments, they all fail to provide an optimal and
universal mechanism in today’s heterogeneous environments and under rapidly-changing
network conditions. It seems there is little hope that the alternative versions of the closed-
loop congestion control mechanism, employed by TCP, could result in such an optimal
solution in the future. Another important drawback of TCP is its buffer space require-
ment that is still a significant challenge in all-optical networks where only small buffers
can be realized in the case of Internet routers due to both economic and technological
constraints [4], [5], [6].

Considering the limitations of TCP, in the course of research, the original concept of
congestion control has been rethought and redesigned, and consequently a number of new
ideas have been suggested. According to an inventive idea, advocated by GENI [3], employ-
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ing congestion control should be completely omitted. In order to recover the lost packets,
efficient erasure codes are applied. However, no further refinement or realization of this idea
was published. Regarding previous related research, a few other ideas have already been in-
vestigated before where congestion control was not applied at all. A decongestion controller
was proposed by Raghavan and Snoeren [23] who studied its benefits. In addition, Bonald
et al. [24] investigated the behavior of the network in the absence of congestion control.
Their impressive results confuted the widely believed assumption according to which op-
erating a network without congestion control leads to congestion collapse. López et al. [25]
analyzed a fountain-based protocol through game theory. Their work showed that a Nash
equilibrium can be obtained and, at this equilibrium, the performance of the network is
similar to the performance obtained when all hosts comply with TCP. Furthermore, [26]
introduced a new approach that employs rateless codes in a live unicast video streaming
system including the experimental results. Botos et al. [27] presented a transport protocol
based on rateless codes as an alternative to TCP for channels which experience high packet
loss rates applying rateless codes. Kumar et al. [28] developed a transport protocol based
on fountain codes, called FCT (Fountain Codes based Transport), that is able to achieve
promising performance in an IEEE 802.11 WLAN cell. In their work, a detailed perfor-
mance analysis study is carried out in order to provide an insight into the choice of various
system parameters that can lead to optimal throughput performance. Additionally, they
present a brief comparison between the performance of FCT and TCP by simulations.

3.2 Future Internet network architecture

In this paper, I introduce a new future Internet network architecture and a related novel
transport protocol called Digital Fountain based Communication Protocol (DFCP) [7].
Henceforth, it is assumed that congestion control is not employed in the future Internet
at all [3]. In this case, every entity in the network is allowed to send data at its maximum
rate and the emerging huge, mostly bursty packet loss is compensated by applying effective
erasure codes. Furthermore, so as to provide fairness among the competing flows, a fair
scheduling algorithm is required to be employed in the case of all the network devices.
This scheme has several benefits. Firstly, this network architecture provides an efficient
solution since every network resource is fully utilized and all additional free capacity in the
network will immediately be consumed. Moreover, the simplicity of the concept must be
emphasized as the suggested coding scheme makes packet loss inconsequential, which can
simplify network routers resulting in reduced buffer sizes, and consequently this proposal
is able to provide support for all-optical networks where buffer sizing is a key question
in the case of Internet routers [4], [5], [6]. Finally, the scalability and the stability of the
new approach are important factors as well since the maximum-rate transmission results in
more predictable traffic patterns. In addition, this would make traffic engineering a much
easier task.

Omitting congestion control completely and applying maximum-rate data sending to-
gether might easily lead to enormous packet loss owing to the constant overload of the
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network devices. It must be highlighted that if no congestion is experienced during the
maximum-rate sending, this concept would be the optimal solution as no other approaches
could utilize the network resources better. In order to deal with packet loss due to the
potentially heavy network congestion, the use of efficient rateless codes is proposed. In
contrast to the traditional way of erasure coding, which transforms a message of k symbols
into a longer message consisting of n symbols, rateless codes do not have a fixed code rate,
which is defined as k/n. More precisely, rateless codes, which are also known as Fountain
codes, are able to generate a potentially limitless sequence of encoded symbols from a given
set of source symbols. As a result, the code rate of a fountain code tends to zero as n tends
to infinity. The receiver is able to recover the sent data from any subset of the encoded
stream which is only slightly longer than the original message. Consequently, the loss expe-
rienced in the network is inconsequential since the receivers only have to collect fragments
of the encoded stream until they are able to decode the encoded data successfully. The
LT (Luby Transform) codes [29] are the first practical realization of universal rateless
codes which are near-optimal erasure correcting codes. However, LT codes cannot provide
low-complexity encoding and decoding. Raptor codes [30] are a significant theoretical and
practical improvement of LT codes, which are the first known class of fountain codes with
linear time encoding and decoding. More precisely, Raptor codes require O

(
1
)
time to

generate an encoded symbol while decoding a message of length k applying a belief prop-
agation decoding algorithm requires O

(
k
)
time for the appropriate choice of inner/outer

codes. As a result, in the case of the applied concept, the use of Raptor codes is proposed
as a FEC (Forward Error Correction) scheme. For a message of k symbols and any real
ε > 0 overhead parameter, a Raptor code is able to generate a potentially infinite-length
encoded stream from which any subset of size d(1 + ε) · ke is sufficient so that the receiver
could restore the original message with high probability. The probability that a message
can be restored increases with the number of symbols received. When the number of the
received symbols is only slightly larger than k, the decoding probability is very close to 1.
For instance, in the case of the latest generation of Raptor codes, the RaptorQ codes [31],
the probability of decoding failure when k symbols have already been received is less than
1%. Furthermore, the chance of decoding failure when k + 2 symbols have been received
is less than one in a million. A symbol can be any size, from a single byte to hundreds
or thousands of bytes. An additional advantage of applying Raptor codes is that, both in
the course of encoding and decoding, only simple operations are required, such as copying
symbols and performing XOR (exclusive OR) operation on a few symbols.

Figure 3.1 depicts a network architecture based on fountain codes. In this scenario,
congestion control is omitted and every entity in the network encodes its data applying
Raptor codes and then sends the encoded data out at its maximum rate. The data transfer
rate can only be limited by either the sending application or the capacity of the link.
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Figure 3.1. Network architecture with N sender-receiver pairs

However, the maximum-rate sending may result in huge packet loss that can be ef-
fectively compensated by employing Raptor codes since the receiver is able to restore the
original message of k symbols with high probability as soon as any subset of size d(1+ε)·ke
of the encoded stream has been received. If the decoding fails, the receiver has to wait to
receive more encoded symbols and make another attempt to decode the encoded data.
The additional encoded symbols increase the probability of the successful decoding. These
properties make the Raptor coding scheme a very efficient solution even under dynamically
changing or bursty loss conditions.

Applying maximum-rate sending raises the question of fairness. The competing flows
may have different access rates to a shared bottleneck link. In this case, the more aggres-
sive senders might easily starve the less active ones. In order to solve this share allocation
problem among flows sending at maximum rates, the use of quasi-ideal fair queueing sched-
ulers is suggested in the network routers. Although implementing an ideal fair scheduler
can be a difficult task in a normal environment, it is much simpler in a fountain code-based
network transmission scheme where the packet loss is inconsequential.

In the next section, the basics of the network subsystem of the Linux kernel will be
discussed which serve as a foundation for understanding the subsequent sections of this
chapter.

3.3 The network subsystem of the Linux kernel

DFCP has been implemented in the Debian Linux kernel version 2.6.26-2. For testing
purposes and to carry out the measurements, the Debian Linux version 5.0 (Lenny) was
used with the modified kernel. The network subsystem of the Linux kernel follows a layered
structure [32]. These layers are demonstrated in Figure 3.2.

First of all, the drivers of the various devices can be found at the lowest layer which
provide low-level access to the hardware directly. The next layer consists of the network
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layer protocols, such as IP (Internet Protocol), ICMP (Internet Control Message Protocol),
IGMP (Internet Group Management Protocol) and RIP (Routing Information Protocol).
The next upper layer contains the transport layer protocols, for example TCP and UDP
(User Datagram Protocol). Furthermore, the new protocol (DFCP) can also be found at
this layer. The next layer, also known as the socket layer, consists of the different kinds of
network sockets which provide a protocol-independent interface to the user applications.
All the applications use the interface offered by the socket layer. A socket represents one
endpoint of a two-way communication link between two programs running on the Internet
network.

Figure 3.2. The structure of the network subsystem

A socket pair (a pair of connected sockets) represents the two ends of a communication
channel. In the case of two communicating processes, both processes have their own sockets
which are used to identify the connection on both sides. A number of different types of
sockets are supported by Linux. These sockets are classified into address families, such as
AF_UNIX, AF_INET, AF_AX25 and AF_IPX. The connection-oriented protocols, such
as TCP and DFCP, are supported by the AF_INET address family.

The memory, used by an operating system, is separated into two parts which are called
kernel space and user space [33]. The kernel space memory is reserved for the kernel and
it contains the Linux kernel itself and its internal data structures. The kernel code is
always executed in the privileged mode of the processor. The user space is used by the user
applications. In the figure above, it can be seen that the user applications communicate with
the kernel by using system calls. In the kernel, each system call is associated with a unique
number and a function that is called when the system call is invoked. A list of all registered
system calls is maintained in the system call table. The system call numbers are also listed
in the file /usr/include/asm/unistd.h for the user applications. Knowing the number of
the system calls, the applications are able to identify the operation to be performed. For
instance, in order to connect to a remote server, the connect() function is invoked by
the user application. The connect() library function invokes a system call to request the
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kernel to perform the operation. The kernel then looks up the system call number in the
system call table and invokes the appropriate system call handler, sys_connect(), with
the parameters specified by the user application. This process is similar in the case of
data sending (write() function), data receiving (read() function), connection termination
(close() function) and other operations.

3.4 The basic operation of the Digital Fountain based Communication
Protocol

The DFCP applies the previously described concept, and therefore it does not employ
any congestion control mechanism. In the first step, a connection needs to be established
between the sender and the receiver. The connection establishment is very similar to the
three-way handshake mechanism of TCP. When the connection has been established, the
sender is allowed to begin sending its data. In the kernel, during the connection establish-
ment, queues of the appropriate size, which is specified by a given parameter, are allocated
that are used in the course of the data sending and receiving. Afterwards, the data sent
by the application is stored in a free queue by the kernel. The stored data is then encoded
and sent out. The encoding is always applied on a given amount of data which is referred
to as a block. A queue stores all the data that belongs to a certain block. The DFCP uses
a specific header format which is used to forward coding-specific information between the
two interacting endpoints. In the course of the data sending, data retransmission is not
employed at all. However, acknowledgements are used to indicate the successful decoding
of a given block. The receiver waits until the sufficient amount of data, set by a certain
parameter, has been received in order to successfully decode the encoded data and restore
the original message with high probability. The given data block is then decoded and an
acknowledgement is sent back to the sender. When the acknowledgement has been received
by the sender, it is able to determine the next block to send. In this case, the memory used
by the acknowledged block is freed on the sending side so that the receiver can store a new
block in the queue. On the receiving side, the decoded data is passed to the appropriate
application. Finally, if there is no more data to send, the connection has to be terminated,
which also happens in a similar fashion to how TCP terminates a connection.

In the next section, the header structure of DFCP is discussed. Afterwards, the opera-
tional phases and the parameters of the protocol will be introduced.

3.5 DFCP header structure

The structure of the DFCP header is shown in Figure 3.3. The numbers in parentheses
indicate the number of bits in each header field. The first two fields are the port numbers
which identify the sending and the receiving applications (or processes), respectively. The
port numbers are used to distinguish between the different network applications running
on the same computer. The Block ID field is used to identify the block a given segment
belongs to. The S1, S2 and S3 header fields contain 32-bit unsigned integer values and
their exact meaning will be discussed in a later section about the encoding and decoding
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mechanisms. The data offset field specifies the length of the DFCP header in 32-bit words.
Equivalently, it is also the offset from the start of the DFCP segment to the actual data.

Figure 3.3. DFCP header format

In addition, the DFCP header contains several one-bit boolean fields, known as flags,
which are used to control the flow of data across a connection. There are six DFCP control
flags. Most of these, similarly to TCP, are used to control the establishment, maintenance
and tear-down of a connection. For example, the SYN flag is used to establish a connection
whereas the FIN flag is used to close a connection. The exact meaning of these flags will
be explained in a later section about the operational phases of the protocol. Hereafter,
when referring to a segment, the flags set will be indicated by putting their names before
the word “segment”. For instance, the phrase SYNACK segment refers to a segment with
both the SYN and ACK flags set whereas all the other flags are unset. Finally, the 16-bit
checksum field is used to check the integrity of the segment including both the header and
the data.

3.6 DFCP connection establishment

In this section, the connection establishment process of DFCP will be presented which is
very similar to the three-way handshake mechanism applied by TCP.

The connection establishment of DFCP can be divided into three steps. The first step
is represented in Figure 3.4. During the connection establishment, the connection initiator
sends a SYN segment. The header of this segment contains coding-related information that
is required for the receiver to successfully decode the encoded data. The further details are
given in a later section about the encoding and decoding processes of DFCP. In the course
of the connection establishment, the appropriate state of the connection is maintained on
both sides. After having sent the SYN segment, the initiator sets its state to SYN_SENT.
If the SYN segment is lost, it will be retransmitted by using a timer. The initial value of
the timeout is set to one second. If there is no answer received from the other side until
the timer expires, the SYN segment will be resent. In Figure 3.4, it is assumed that if the
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timer is not expired, the SYN segment has successfully been received by the other side,
and consequently the second phase of the process can be entered. In this case, s refers to
the sender. The value of the timeout is doubled every time a segment is resent. After five
unsuccessful retransmission attempts, the connection establishment process is aborted and
the resources are released at the sender.

Figure 3.4. The first step of the connection establishment
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In the course of the second step, depicted in Figure 3.5, the receiver processes the SYN
segment, sets its state to SYN_RECV and sends a SYNACK segment in response to the
SYN segment.

Figure 3.5. The second step of the connection establishment
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The header of the SYNACK segment also contains coding-related information which
can later be used by the other side in order to decode the encoded data. In the figure,
r refers to the receiver. In the case of the SYNACK segment, similarly to the first step,
timers are used to retransmit the lost segments. After five unsuccessful retransmissions,
the connection establishment process is aborted and the resources are released.

Finally, the third step is demonstrated in Figure 3.6. The flowchart on the left side
shows the actions taken by the connection initiator while on the right side, we can see
the operations performed by the connection acceptor. In the course of this step, firstly,
the initiator processes the SYNACK segment. Secondly, its state is set to ESTABLISHED.
Finally, it sends an ACK segment to the other side. The other endpoint processes the ACK
segment and sets its state to ESTABLISHED as well. In the case of the ACK segment,
it is not necessary to use timers so as to retransmit the lost segments because if the
segment is lost, the other side will resend the SYNACK segment due to the expiry of the
SYNACK timer. If the number of the allowed retransmission attempts, usually set to five,
has been reached, the endpoint that sent the SYNACK segment terminates the connection
on its side. In this case, the other endpoint can be notified of the unsuccessful connection
establishment by an RST segment, and consequently its resources can also be released.

Figure 3.6. The third step of the connection establishment
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3.7 The data encoding process of DFCP

In this part, the efficient erasure coding scheme employed by the protocol will be intro-
duced. In general, Raptor coding is the concatenation of applying an outer code, also known
as pre-code, and an LT code. In the case of DFCP, the applied Raptor coding can be di-
vided into two separate stages. Firstly, an LDPC code (Low-Density Parity-Check) [34]
is employed as the outer code and secondly, an LT code is used as the inner code. This
section is split into three subsections. In the first subsection, a brief overview of the data
encoding process is provided. In the next two subsections, the LDPC and the LT coding
applied by the protocol will be discussed in detail, respectively.

3.7.1 An overview of the data encoding process

When a user application invokes the write() system call the data sent by the application
is passed to the kernel. The kernel stores all the user data in a data structure called
send_queue. In the kernel, a list of send_queues is pre-allocated during the connection
establishment process. When the kernel has processed the user data, the data will be
stored in an empty send_queue. The applied coding scheme is illustrated in Figure 3.7.

Figure 3.7. The applied Raptor coding scheme

In order to be able to guarantee the successful decoding of the encoded data with high
probability after having received only slightly more encoded symbols than the original
(uncoded) message, firstly, a traditional linear block coding is applied as pre-coding, called
LDPC coding. In the course of both the encoding and the decoding, each symbol represents
a byte (8 bits). As a result, henceforth, a symbol is equivalent to a byte. If the user
application has sent k bytes of (uncoded) data, the kernel applies the LDPC coding and
generates n bytes of LDPC encoded data since redundant bytes are appended to the original
message of k bytes. The number of the redundant bytes can be calculated as n− k. In the
case of the current implementation, the constant value of 2000 redundant bytes is used
which, according to the experience gained so far, is sufficient to guarantee the successful
decoding with relatively high probability. The generated n bytes constitute the output of
the LDPC coding which, in turn, will be the input of the LT coding that, in theory, is able
to produce an infinite-length stream of LT encoded bytes.
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3.7.2 The LDPC encoding process

According to the definition of LDPC codes, they are linear codes obtained from sparse
bipartite graphs. Suppose G is a bipartite graph with n left nodes and r right nodes. The
left nodes are often referred to as message or variable nodes while the right nodes are
referred to as check nodes. An example graph can be seen in Figure 3.8.

Figure 3.8. An LDPC code

It can be seen that, for each check node, the sum (calculated by performing XOR op-
erations) of its neighbors among the message nodes is zero. In the case of the current
implementation, LDPC codes are generated based on a given probability distribution and
the initial value of every check node is zero. The encoding process is illustrated in Fig-
ure 3.9. Firstly, for each message node, according to the given probability distribution, a
random value, d, is generated that constitutes the degree (alternatively, the number of the
neighbors) of the given message node. Afterwards, d check nodes are chosen according to
the uniform distribution. These check nodes are chosen to be the neighbors of the given
message node, and therefore (represented in the figure as “Set check node”) their values are
XORed with the value of the current message node as shown in Equation (3.1).

cknode[rand] = cknode[rand]⊕msg[i] (3.1)

Here, cknode[rand] denotes the selected check node while msg[i] refers to the current
message node. In the course of the LDPC encoding, the message nodes are associated
with the bytes of the user data. As a result, each byte of the user data corresponds to a
message node. In the case of the current implementation, r is set to the constant value of
2000, and therefore 2000 check nodes are produced during the LDPC encoding. Each data
block contains k = 63536 (uncoded) message bytes. Since the generated check nodes are
appended to the original message the value of n is 65536. These 65536 bytes constitute the
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input of the LT encoding.

Figure 3.9. The applied LDPC encoding

33



3.7.3 The LT encoding process

Henceforth, n denotes the number of bytes which represent the input of the LT encoding.
The LT encoded output stream is generated using the n input bytes. In order to generate
the output stream of LT encoded bytes, an Ω0,Ω1,Ω2, . . . ,Ωn probability distribution is
defined on {0, 1, 2, . . . , n}. In addition, associations are specified between the input bytes
by performing XOR operations. For each output byte, its degree, denoted by D, determines
how many input bytes have been XORed to generate the given output byte. This procedure
is demonstrated in Figure 3.10. It can be seen in the figure that the first output symbol is
associated with two source symbols, and therefore its degree is 2 whereas the last output
symbol is associated with one source symbol, and consequently its degree is 1.

Figure 3.10. Associations are defined between the source symbols

In this case, for each i, Ωi = P (D = i). These Ωi values, which are used in the case of
the current implementation of the protocol, are shown in the second column (k = 65536)
of Table 3.1. In the table, n refers to the number of input symbols, which is currently
n = 65536. All the additional Ωi values, which are not given in the table, are assumed to
be zero.

The LT encoding process itself is divided into three phases. In order to implement
the first phase of the algorithm, the generation of random numbers in the interval [0,1]
would have been required according to the uniform distribution. However, for performance-
critical reasons, floating-point operations are not supported in the Linux kernel. So as to
solve this issue, the 0 ≤ Ωi ≤ 1 values were converted into integer numbers performing a
simple transformation and the converted numbers were later used in the kernel in order
to generate the required random numbers. The sum of all the Ωi values is approximately
1. In the kernel, the use of 32-bit unsigned integer values was necessary, which are in the
interval [0, . . . , 232 − 1]. The first step of the transformation was a multiplication by a
constant factor c, which can be calculated as shown in Formula (3.2).

c =
232 − 1∑n

i=0 Ωi
(3.2)

Each Ωi was multiplied by the above constant c and, in the second step of the transfor-
mation, the result was rounded to the nearest integer. In the case of Ω2, this integer was
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decreased by one so as to exactly fit the interval [0, . . . , 232−1] with the minimal distortion
of the original intervals. The exact Ωi values before performing the described conversion
can be seen in the second column of Table 3.1 while the third column shows the new values
after executing the conversion.

Table 3.1. The integer conversion of the Ωi values

Ωi values for n = 65536 Before the conversion After the conversion
Ω1 0.007969 34226663
Ω2 0.493570 2119871247
Ω3 0.166220 713910892
Ω4 0.072646 312012818
Ω5 0.082558 354584619
Ω8 0.056058 240767758
Ω9 0.037229 159897657

Ω19 0.055590 238757710
Ω65 0.025023 107473182
Ω66 0.003135 13464749

In order to generate the required 32-bit unsigned integer random numbers, a maximally
equidistributed combined Tausworthe generator [35] is used, which is a fast multiplicative
recursive generator and has good statistical properties. In addition, it is part of the Linux
kernel. The state of the generator is stored in a data structure which contains three integer
variables named s1, s2 and s3.

In the first step of the LT encoding process, a random number is generated using the
Tausworthe generator described above. All the random numbers are currently generated
according to the uniform distribution, however, the performance of the coding might later
be improved by changing the probability distribution. The generated random number is
a 32-bit unsigned integer. After the generation, it is determined to which Ωi interval the
number belongs. In the end, the result of the first step is a d integer number indicating
the degree of the output symbol according to the determined interval.

The second step of the LT encoding is represented in Figure 3.11. First of all, d bytes are
chosen from the n input bytes according to the uniform distribution. So as to accomplish
this task, it is necessary to generate d different random numbers. All of these numbers
must be from the interval [0, . . . , n − 1]. The reason for this is that the sequence number
of the first input byte is 0 while the sequence number of the last byte is n− 1. In order to
guarantee that all the random numbers are different, a modulo division by n is performed
in the case of each random number. The resulting d numbers, which are all different, will
indicate the indices of the bytes which are associated with each other so as to produce an
LT encoded output byte. The difference of all the random numbers is ensured by storing
all the previously generated values and comparing the currently generated number to the
previous ones. If the currently generated value is not different from the others, it is dropped
and a new random value is generated.
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Figure 3.11. The second step of the LT encoding process

In the third step, we use the d random numbers generated during the previous step. The
d chosen input bytes are XORed with each other. As a result, a Y output byte is produced.
More precisely, we compute Y = Xs1 ⊕Xs2 ⊕ . . .⊕Xsd where Xsi refers to the ith chosen
byte. In this case, bitwise XOR operations are performed on the bits of each input byte.
Therefore, {u1, u2, . . . , un}⊕ {v1, v2, . . . , vn} = {u1⊕ v1, u2⊕ v2, . . . , un⊕ vn}. The output
of the third step is a Y encoded byte. To sum up, the input of the LT encoding process
consists of n symbols while its output is one encoded byte. By repeating these three steps,
in theory, it is possible to generate an infinite-length (or an arbitrary-length) stream of
LT encoded bytes. After having finished encoding the user message, the resulting encoded
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stream will be sent out, which is discussed in the next section.

3.8 The data sending process of DFCP

After having described the data encoding process, in this section, the data sending process
will be introduced. Firstly, the structure of a send_queue is explained, which is used to store
the data temporarily before it is sent. Afterwards, the data sending process is presented.
Finally, the use of some specific DFCP header fields is discussed.

3.8.1 The structure of a send_queue

In the case of each connection, during the connection establishment, a certain number of
queues are allocated, specified by a parameter, which are later used to temporarily store
the data sent and received. A queue that is used to store the data sent by the user is
referred to as a send_queue whereas a queue that stores the data the kernel received is
called a recv_queue. In short, the kernel stores the content of a block sent by the user in a
send_queue temporarily. The data is stored until the kernel receives an acknowledgement
for the given block. Apart from the data itself, a send_queue contains numerous other
variables which are used in the course of the data sending process. The structure of a
send_queue is depicted in Figure 3.12.

Figure 3.12. The structure of a send_queue

Firstly, it stores the data sent by the user in the field srcdata. More precisely, this field
contains a block of data which consists of 63536 bytes. If the user message is shorter than
63536 bytes, it will be padded with zero bytes. Secondly, the 2000 check nodes, which are
generated in the course of the LDPC encoding, are stored in the field cknodes. In addition,
each block has a unique identifier stored in the field block_id. The block identifier is a non-
negative integer. The first block always has the block identifier 0. For each of the following
blocks, the identifier is increased by one. Furthermore, the field acked signifies whether the
current block has already been acknowledged or not. Finally, the field used indicates if the
given send_queue is empty or not.
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3.8.2 The data sending process

As described in the previous subsection, the data sent by the user application is temporarily
stored in an empty send_queue by the kernel. If there is no empty send_queue available,
the user process has to wait (sleep) until a send_queue is released. After having stored
the user data, the LDPC encoding process will be performed. The data sending process
employs a sliding window mechanism, and therefore the sender is allowed to send a specified
number of blocks, set by a certain parameter, without waiting for acknowledgements. The
maximum size of the window determines how many send_queues are allocated during the
connection establishment. The window consists of the used (not empty) send_queues. The
data sending happens in a round-robin fashion. In the case of each used send_queue, the
user data is LT encoded and a DFCP segment containing 1420 bytes of LT encoded data
is generated and sent out. When a segment has been sent out, the same process continues
for the other used send_queues. In theory, for each used send_queue, an infinite number
of segments are produced. In practice, a send_queue is freed when an acknowledgement
has been received for the given block allowing the user application to send additional data.
This sending procedure guarantees that even if a large number of segments are lost, the
receiver is able to restore the original message. As soon as the receiver has collected a given
number of LT encoded bytes, it sends an acknowledgement for the block to the sender. If
the acknowledgement has been lost, the receiver regenerates and resends it when additional
segments are received for the same block.

The steps of the data sending process are presented in Figure 3.13. Firstly, it is deter-
mined which send_queue will be used to store the data sent by the user and the block-
related information. If all the queues are currently used, the user application has to wait.
The waiting ends when the kernel has received an acknowledgement for a block that is
currently stored in a send_queue, and therefore the given send_queue can be freed. The
user data is then copied to the send_queue and the LDPC encoding is performed. In the
next step, a block is chosen to be sent according to the round-robin algorithm. The selected
block can be different from the block currently sent by the user. Subsequently, a DFCP
segment is allocated which is able to contain 1420 LT encoded bytes. In order to under-
stand the size of the DFCP segments, we need to recall the definition of MTU. The MTU
is the maximum amount of data that can be transmitted in a frame or in a packet by a
given protocol. For example, the MTU of Ethernet is the largest number of bytes that can
be carried by an Ethernet frame not including the header and the trailer. As a result, the
MTU of Ethernet is 1500 bytes by default. By generating a DFCP segment which contains
1420 bytes of encoded data, the size of the IP packet that carries the segment will be very
close to the MTU, and therefore the network resources will be used efficiently avoiding
fragmentation. After allocating a segment, the DFCP header fields are set appropriately.
This step is discussed in detail in the next subsection. Afterwards, the LT encoding pro-
cess is executed. The three steps of the LT encoding are repeated until 1420 encoded bytes
are produced. Finally, the DFCP segment is passed to the IP layer for further processing.
The additional segments are generated in the same way until the kernel receives an ac-
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knowledgement for a given block. When an acknowledgement has been received, the kernel
determines the Block ID of the acknowledged block and frees the associated send_queue.
Furthermore, the sending application will be notified of the successful transmission of the
block by the kernel setting the return value of the write() function correctly.

Figure 3.13. The data sending process
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3.8.3 The use of the DFCP header fields

The random numbers produced by the sender so as to encode the original user message
have to be regenerated at the receiver in order to be able to decode the encoded message
successfully. Two different approaches are carried out to regenerate the random numbers
used during the LDPC and LT encoding.

In the case of the LDPC encoding, in the course of the connection establishment, the
header fields of the SYN segment contain three 32-bit unsigned integers (s1, s2 and s3 )
which represent the initial state of the random number generator at the connection initiator.
This state can be queried and set by invoking the appropriate kernel functions. When
the other endpoint has received the SYN segment, it stores these three numbers and, in
response to the SYN segment, it allocates a SYNACK segment and sets up the header fields
querying the state of its own random number generator. Similarly, after having received
the SYNACK segment, the initiator also stores the three 32-bit values which represent
the initial state of the random number generator at the connection acceptor. During the
LDPC encoding process, all blocks are encoded performing a transformation based on
the three variables that describe the initial state of the generator. Since both sides have
exchanged the initial state of their own random number generators, they will both be able
to regenerate the random numbers used by the other endpoint in the course of the LDPC
encoding process, and therefore they will be able to decode the encoded data.

More precisely, when performing the LDPC encoding process, a particular kernel func-
tion is invoked which sets the state of the generator based on the initial state and the
Block ID of the block that is currently being encoded. After having set the new state, the
check nodes are generated as described in the section about the LDPC encoding procedure.
The other endpoint also knows the initial state of the generator, which is stored in kernel
variables, the function, which implements the transformation, and is able to determine the
Block ID. Knowing this information, the data receiver is able to set its generator to the
same state as the sender, and consequently it is able to generate the same random numbers
in the course of the LDPC decoding.

In the case of the LT encoding, we set up the header of the DFCP segment after having
allocated it as depicted in Figure 3.13. According to the current implementation, for each
DFCP segment, the state of the generator (s1, s2 and s3 ) is queried before the actual
LT encoding is performed. These three variables will later be copied to the appropriate
header fields of the given DFCP segment and the segment will be sent out. Based on the
information in the header fields, the receiver is able to set its random number generator
to the same state as the sender and produce the same random numbers. Additionally,
the Block ID is forwarded in the Block ID header field of the segment, and therefore the
receiver is able to determine to which block the encoded bytes in the received segment
belong.
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3.9 The data receiving process of DFCP

In this section, the data receiving process is discussed in detail. Receiving the data and
decoding the encoded data are two entirely separate functions in the kernel. The reason for
this is that the data receiving procedure has to be incredibly fast, and therefore only very
few operations can be performed for each received segment. The data decoding process
and the related structures in the kernel are introduced in the next section.

When the user application invokes the read() system call, the kernel attempts to decode
the current block. The Block ID of this block is stored in a kernel variable that is always
incremented by one after having decoded a block. Consequently, the Block ID of the first
block that will be decoded is 0. Afterwards, the variable is always incremented by one and
the kernel will attempt to decode the next consecutive blocks (1, 2, . . . ). This mechanism
ensures the correct order of the blocks in the course of the data receiving process. If the
kernel has not received the required amount of data for the current block yet, set by a
certain parameter, the application has to wait until the kernel has received the necessary
amount of data to perform the decoding process in the case of the given block.

The data receiving process is represented in Figure 3.14. Similarly to the data sending
process, the block management information, which is used by the kernel in the course of the
data decoding procedure, and the encoded data in the segments received by the kernel will
be stored in a recv_queue during the data receiving process. For instance, a recv_queue
contains the number of the encoded bytes which have been received by the kernel in the
case of the given block. The structure of a recv_queue will be discussed in the next section
about the data decoding process.

When a segment has been received, firstly, it is determined to which block it belongs.
This is performed by reading the value stored in the Block ID field of the DFCP header.
In the next step, the kernel performs certain sanity checks on the Block ID. If the ID is
found to be invalid, the segment is dropped. Afterwards, if a recv_queue has already been
associated with this block, the kernel will use the associated recv_queue in the case of all
the additional segments received for this block. Otherwise, two separate cases are possible.
The kernel is either able to find a new empty recv_queue for this block or there is no
empty recv_queue available at the moment. In the second case, the segment is dropped
while in the first case, one of the empty recv_queues will be associated with the new
block. In the case of the associated recv_queue, the variable that counts the number of
the encoded bytes received for this block will be increased by 1420 as one DFCP segment
consists of 1420 encoded bytes. The encoded bytes will be stored in a linked list and they
will be processed in the course of the data decoding process. Afterwards, the kernel checks
whether the required number of encoded bytes has been received or not. If the kernel has
already received the necessary number of encoded bytes and the user process is currently
sleeping (waiting for data), the kernel wakes up the process. Subsequently, the encoded
bytes are decoded and finally, the user application will receive the decoded message.
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Figure 3.14. The data receiving process

3.10 The data decoding process of DFCP

In this section, firstly, the structure of a recv_queue will be explained. Afterwards, the LT
decoding and the LDPC decoding processes will be discussed in detail.
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3.10.1 The structure of a recv_queue

In the course of the connection establishment, the number of the recv_queues allocated for
the connection is specified by a certain parameter. In the case of the current implementa-
tion, the number of the recv_queues cannot be changed later. When a segment has been
received by the kernel, the block for which the segment was received is associated with
an empty recv_queue. This association is made when a segment is received with which
there has not yet been a recv_queue associated and there is at least one empty recv_queue
available so as to accumulate the content of the segment. A recv_queue consists of several
variables which are used in the course of the data decoding process. Moreover, the decoded
data itself is also stored in the recv_queue until it has been read by the user application.

The structure of a recv_queue is depicted in Figure 3.15. The first three fields (tnodes,
failed, needed) are used in the course of the LDPC decoding while the next three fields (lists,
udata, idx ) are used during the LT decoding. The purpose of these six fields is discussed in
a later section about the LDPC and the LT decoding processes. The count field indicates
the number of the encoded bytes which are currently stored in the given recv_queue. Fur-
thermore, the num field stores the number of bytes which have been successfully decoded.
This field has an important role since more than one iteration might be required in the case
of the decoding procedure until the entire user message has been restored. The recv_queue,
which was allocated for the given connection in the course of the connection establishment,
is deallocated during the connection termination.

Figure 3.15. The structure of a recv_queue

3.10.2 The LT decoding process

In the earlier section about the data receiving process, it was explained that the content of
a received segment is stored in a linked list. Before the LT decoding procedure is performed,
the linked list, which consists of encoded blocks of data, is processed. More precisely, the
linked list is processed and the LT decoding is performed while the read() system call,
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invoked by the user application, is being executed.
During processing the linked list, for each stored segment, the encoded bytes are exam-

ined and every encoded byte is copied to another data structure (lists) which also consists
of linked lists, however, it is organized to facilitate the data decoding procedure. A pointer
to this data structure is stored in the recv_queue which is associated with the given block.
When the kernel has received the required number of bytes to decode the encoded data
with high probability, the decoding process is performed. A certain kernel variable is used
to specify the number of encoded bytes which are necessary to decode a given block with
high probability. This parameter was determined in a heuristic manner and can be set in
the course of the connection establishment. During the decoding process, firstly, the LT de-
coding is performed and afterwards, the LDPC decoding is executed. Consequently, during
the LDPC decoding, both the restored bytes of the user message and the decoded check
nodes can be used in order to recover the additional bytes of the user message. The LT
and the LDPC decoding processes are executed in this order until neither of them is able
to recover additional bytes of the user message. At this stage, two scenarios are possible.
Firstly, all the bytes of the user message have been successfully restored. In this case, the
decoding process ends with success. Secondly, there has been at least one encoded byte
which cannot be decoded, in which case the decoding process ends with failure. In both
cases, an acknowledgement is sent for the given block by the kernel so as to inform the
other endpoint that the send_queue associated with the block can be freed. The Block ID
field of the acknowledgement contains the sequence number of the decoded block. After
having sent the acknowledgement, the decoded user message is passed to the application
that invoked the read() system call. Finally, the recv_queue associated with the given
block can be freed at the receiver as well. As a result, the empty recv_queue can be used
to receive additional blocks of data. If the decoding process has ended with failure, an
acknowledgement is also sent for the block so that the associated send_queue can be freed
at the sender, however, the kernel returns a value that indicates a decoding failure to the
receiving user application.

As depicted in Figure 3.15, the second three fields (lists, udata, idx ) of the recv_queue
are used in the course of the LT decoding. The lists field contains a pointer to a complex
data structure which consists of various lists. In the case of the current implementation,
the value of j is set to 10, and consequently 10 lists are allocated. This allocation is done
based on the number of bytes associated with each other so as to generate an LT encoded
byte. In the case of n = 65536, the 10 possible values, which are 1, 2, 3, 4, 5, 8, 9, 19, 65
and 66, are represented in Table 3.1. To be more precise, for instance, the encoded bytes
on the first list are associated with one message byte whereas the encoded bytes on the
last list are associated with 66 message bytes.
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In Figure 3.16, the structure of a list is presented. Each list consists of two pointers. The
head pointer points to the first element on the list while the tail pointer points to the last
element on the list. As a result, appending a new element to the list can be done without
iterating through each item on the list since the new element will simply be appended after
the element the tail pointer currently points to.

Figure 3.16. The structure of a list

Finally, at the lowest level of the hierarchy are the individual list elements. The structure
of a list element is depicted in Figure 3.17.

Figure 3.17. The structure of a list element

Each list element contains a pointer (next) which points to the next element on the list.
The value field stores the value of one encoded byte out of the encoded bytes received
in a segment. The neigh field contains the indices of the message bytes which have been
associated with each other so as to generate the encoded byte denoted by value. The length
of this array is different in the case of the certain lists, however, it is always the same in
the case of the elements on a given list. As a result, for each element on the first list, there
was only one message byte in the association in the course of the LT encoding. In the case
of the second list, two message bytes were associated with each other in order to generate
an encoded byte. Finally, in the case of the last list, 66 message bytes were associated with
each other assuming that n = 65536. The list elements are generated in the following way.
For each received segment, the header is processed and the random number generator at
the receiver is set to the appropriate state based on the values in the previously mentioned
header fields (s1, s2 and s3 ). The sender queries the state of its generator before performing
the LT encoding process, and consequently the receiver is able to generate exactly the same
random numbers as the sender. Although certain segments can be received out of order,
based on the values in the header fields of each segment, the original user message can be
restored, and therefore the order of the segments at the receiver is inconsequential. To sum
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up, the number and the indices of the bytes which have been associated with each other in
the course of the LT encoding procedure are determined based on the information in the
header fields of the DFCP segments.

The udata field of the recv_queue contains the successfully decoded bytes of the user
message. Furthermore, the values of the restored check nodes are also stored in this field.
Therefore, the value of n, as depicted in Figure 3.15, is 65536 since 2000 check nodes are
generated in the course of the LDPC encoding process.

The idx field indicates whether the related bytes in the udata field have already been
successfully decoded or not. The value of idx[i] is set to 0 if udata[i] has not yet been
restored. Otherwise, its value is set to 1 and udata[i] contains the value of the restored
message byte.

Finally, the current implementation of the LT decoding procedure is discussed. Firstly,
it is obvious that the elements on the first list can be decoded. The reason for this is
that, in the case of these elements, there is only one message byte in the association, and
consequently the value of the message byte is trivially known since it was calculated as
Y = Xs1 during the LT encoding process. In the case of the second list, two message
bytes were associated with each other. The previously decoded bytes on the first and the
second list can be used so as to facilitate the decoding process. Due to the properties of
the XOR operation, the decoding process can be successfully performed if the Y encoded
byte is known and there is only one byte in the association whose value is unknown. The
reason for this is that, in the case of the second list, the encoded byte was calculated as
Y = Xs1⊕Xs2 during the LT encoding process. The Y encoded byte is known. If the first
byte in the association is not known, however, the second byte is known, the first byte can
be decoded as Xs1 = Y ⊕Xs2. The second byte can be decoded similarly if the first byte is
known. The decoding process happens in a similar fashion in the case of the third and the
additional lists. In order to facilitate the decoding procedure, the previously decoded bytes
on the current and the previous lists can be used. The LT decoding process is represented
in Figure 3.18. Firstly, the lists are iterated in the order previously described. Finally, it
is checked whether at least one new message byte has been successfully decoded or not.
If there was no new message byte recovered successfully, the decoding process ends since
it is certain that no new message bytes can be restored. Otherwise, the entire process is
restarted and the lists are iterated once again. This step is required as such a message byte
might be decoded on a given list which could be used so as to decode previous encoded
bytes on the same list or additional encoded bytes on the previous lists. In the case of the
low-level lists, there are more and more message bytes in the association, and consequently
the basic principle is to attempt to decode as many encoded bytes on the high-level lists as
possible so as to minimalize the number of undecoded bytes on the low-level lists. In the
course of the LT decoding procedure, it is calculated how many message bytes have been
successfully restored and finally, this value is returned by the LT decoding function.
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Figure 3.18. The LT decoding process
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3.10.3 The LDPC decoding process

As illustrated in Figure 3.15, the first three fields (tnodes, failed, needed) of the recv_queue
are used in the course of the LDPC decoding. The function that implements the LDPC
decoding always initializes these three fields whose values have local significance and are
only used during the current iteration. The tnodes[i] field indicates the best known value
of the ith check node at the time. The value of failed[i] is set to 1 if the ith check node
cannot be restored. Otherwise, it is set to 0. The needed[i] field contains the index of the
message byte which is required so that the given check node can be recovered. The LDPC
decoding process can be divided into three steps.

The first step is the initialization. During this step, the value of each tnodes[i] and
failed[i] is set to 0. Moreover, the initial value of each needed[i] is set to 65536 as this
value cannot be interpreted as a valid index, and therefore it can be applied to indicate
that the field is currently not used. Afterwards, the state of the random number generator
is set to the state that was previously used by the sender in the case of the given block
during the LDPC encoding process. The appropriate state is known since the two endpoints
have exchanged the initial state of their random number generators in the course of the
connection establishment and the initial state can be used to generate the particular state.

During the second step, the fields, which were initialized in the previous step, are set
to their currently best known values. This step is exactly the same as it was depicted in
Figure 3.9 in the case of the LDPC encoding procedure except the step “Set check node”.
The reason for this is that, during the LDPC encoding, the value that is necessary to
produce the value of the check node is known as it is a certain byte of the message sent by
the user. However, in the case of the LDPC decoding process, it is possible that the given
byte of the user message is unknown since it might not have been restored during the LT
decoding procedure. The altered “Set check node” step is presented in Figure 3.19. If the
value of the given byte of the user message has been successfully restored, and consequently
its value is known, the particular message byte is XORed to the value of tnodes[i] as this
message byte was one of the bytes in the association when the given check node was being
generated. However, if the given byte of the user message has not been recovered, and
therefore its value is unknown, two separate cases are possible. On the one hand, if all the
message bytes in the association have been known so far in the case of the given check node
(this check is denoted by “Failure” in the figure), the particular check node might be able
to be used during the decoding process since the given check node itself may have been
restored by the LT decoding process, and consequently its value might be known. As a
result, needed[i] is set to the index of the only unknown message byte. On the other hand,
if at least one message byte in the association is unknown, it is certain that the given check
node cannot be used during the decoding process as there is more than one unknown byte
in the association. In this case, failed[i] is set to 1 in order to indicate that the given check
node cannot be used in the course of the third step.
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Figure 3.19. The modified “Set check node” step

During the third step, the actual decoding process is performed based on the values set
in the course of the second step. The process is shown in Figure 3.20. The decoding steps
are discussed for a given check node. The particular check node can only be decoded if
failed[i] is not set for the given check node. Otherwise, it cannot be used during the LDPC
decoding process. In the case of a given check node, if it can be restored, two cases are
possible depending on whether the value of the check node is known or not. In the first case,
the value of the check node is known, however, one of the message bytes in the association
is not known. In this case, the given check node and tnodes[i] are XORed with each other
in order to calculate the value of the unknown message byte. In the second case, the check
node itself is not known, however, all the message bytes in the association are known. In
this case, the value of the check node can be restored and its exact value is stored in the
tnodes[i] variable.
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Figure 3.20. The third step in the case of a given check node

In the course of the third step of the LDPC decoding process, for each check node,
the previously described steps are performed. Similarly to the LT decoding process, in
the course of the LDPC decoding, it is calculated how many message bytes are restored
successfully and finally, this value is returned by the LDPC decoding function.

3.11 DFCP connection termination

In this section, the connection termination procedure of DFCP will be discussed, which is
very similar to the technique applied by TCP and its reliability is guaranteed by employing
timers. The connection termination process of DFCP can be split into three phases.

The first phase of the connection termination is presented in Figure 3.21. During this
phase, the connection termination initiator sends a FIN segment to the other endpoint.
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Figure 3.21. The first step of the connection termination

In the course of the first phase, the state of the initiator is set to FIN_WAIT1. If the FIN
segment is lost, it will be retransmitted by using a timer. By default, the maximum number
of retransmissions is set to five. In Figure 3.21, it is assumed that if the timer is not expired,
the FIN segment has successfully been received by the other side, and consequently the
second phase of the process can be entered. After five unsuccessful retransmission attempts,
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the connection termination process is aborted and the resources are released at the initiator.
The second phase of the connection termination is depicted in Figure 3.22. During this

phase, the endpoint that received the FIN segment processes the segment and sends an
ACK segment in response to the FIN segment. In the case of the ACK segment, it is not
necessary to use timers in order to retransmit the lost segments because if the segment
is lost, the other side will resend the FIN segment due to the expiry of the FIN timer.
Before having sent the ACK segment, the endpoint sets its state to CLOSE_WAIT. The
other side, which received the ACK segment, processes the segment and sets its state to
FIN_WAIT2. If the connection is not immediately closed by the other endpoint, it does not
send a FIN(ACK) segment, however, it still acknowledges the FIN segment as presented
in Figure 3.22.

Figure 3.22. The step 2.a. of the connection termination
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When the connection has also been closed by the other endpoint, it sends a FINACK
segment to the other side and sets its state to LAST_ACK. Similarly to the FIN segment,
if the FINACK segment is lost, it will be retransmitted by using a timer. The procedure
is illustrated in Figure 3.23.

Figure 3.23. The step 2.b. of the connection termination
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The third phase of the connection termination is represented in Figure 3.24. During this
phase, the endpoint that received the FINACK segment sends an ACK segment in response
to the FINACK segment without using timers and sets its state to TIME_WAIT. This
step is required in order to close the connection properly since the ACK segment might be
lost. In this case, the other side gets stuck in LAST_ACK state. However, as it resends
the FINACK segment, it can be detected that the ACK segment was lost, and therefore it
can be retransmitted.

Figure 3.24. The third step of the connection termination

After waiting for a given amount of time in TIME_WAIT state, the resources are
released. The other endpoint that received the ACK segment processes the segment and
sets its state to CLOSE. Finally, its resources are also released.

3.12 DFCP parameters

In this section, the parameters of DFCP are introduced. The value of these parameters
can be set by the user application, and consequently it is able to alter the behavior of the
protocol. If a particular parameter has been set to a given value, the kernel sets the related
kernel variable to that value, and thereafter the protocol will operate according to the new
value of the parameter. The scope of most parameters is limited to the connection for which
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the application has set the given parameters. As a result, the behavior of the protocol in
the case of the new and already existing connections will be unaffected. In the case of the
current implementation, there are a total of 13 parameters. Some of these parameters can
be set whereas others can be queried by the user application. In addition, there are certain
parameters on which both operations can be performed. The meaning and significance of
the DFCP parameters are briefly presented in Table 3.2. The parameters can be divided
into two separate categories. The first category consists of the parameters which can be
set by the application. These parameters are used to alter the behavior of the protocol in
the case of the given connection. The second category contains the parameters that can
be queried by the user application. These parameters are used for testing and diagnostic
purposes. Moreover, the significance of the parameters on which both operations can be
performed is discussed in detail in a later subsection about the rate-limiting capability of
the protocol.

Table 3.2. DFCP parameters

Name Function Type
Window size It specifies the maximum size of the sliding window. Set
Redundancy It indicates the threshold used during the decoding procedure. Set
Coding It is used to enable (or disable) the offline encoding feature. Set
Decoding It is used to turn off (or on) the decoding procedure. Set
Maxtokens It sets the total number of tokens the kernel can be accumulate. Both
Numtokens It specifies the number of tokens available at the moment. Both
Inctokens It specifies the token increment per clock tick. Both
Inttokens It specifies the granularity of the rate limiter. Both
Outgoing segments It contains the total number of segments sent by the kernel. Get
Incoming segments It contains the total number of segments received by the kernel. Get
Dropped segments It contains the total number of segments dropped by the kernel. Get
ACKs sent It contains the total number of acknowledgements sent. Get
ACKs received It contains the total number of acknowledgements received. Get

3.12.1 The primary parameters of DFCP

In this subsection, the first four parameters, shown in Table 3.2, are discussed. The window
size parameter is used to set the maximum allowed size of the sliding window. This pa-
rameter also determines the number of send_queues and recv_queues and the amount of
memory allocated for the given connection. The redundancy parameter is used to control
the behavior of the receiver. After having received a certain number of encoded bytes, indi-
cated by the redundancy parameter, for a given block, the receiver performs the decoding
process on the block. The coding parameter is used to turn on or to turn off the encoding
process in the case of the given connection. When the encoding procedure is turned off,
the protocol applies the offline encoding capability, which is a slight modification of the
original data sending procedure. In this case, the kernel only applies the actual data encod-
ing process on the first data block. After having finished encoding the user message, the
encoded bytes and the related variables (the states of the random number generator) used
to build the headers of the DFCP segments are stored in a data structure (tmp_queue)
allocated for this particular purpose. When sending the additional data blocks, the kernel
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uses up the pre-encoded bytes and variables, and consequently it is not required to perform
the actual encoding process again, which saves the time spent on encoding each data block.
Henceforth, this data encoding method will be referred to as offline encoding. The steps of
the process are presented in Figure 3.25.

Figure 3.25. The offline encoding process
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When data is sent by the user application, firstly, the kernel checks whether it is the first
data block sent by the application or not. If it is the first block, the user message is copied to
the tmp_queue, which is a specific data structure in order to store the uncoded user message
itself, the generated check nodes, the variables used to build the headers of the DFCP
segments and the LT encoded bytes. Afterwards, the kernel performs the regular LDPC
and LT encoding processes on the first block. In the course of the encoding processes, the
states of the random number generator, the generated check nodes and the encoded bytes
are stored in the appropriate fields of the tmp_queue. Subsequently, similarly to the original
data sending procedure, an empty send_queue is chosen. If there is no empty send_queue
available at the time, the user application has to wait. The waiting ends when the kernel
has received an acknowledgement for a block which is currently stored in a send_queue,
and consequently the given send_queue can be freed. At this point, however, unlike the
original data sending procedure, the user message is not copied to the chosen send_queue.
The send_queue is solely used to store the block-related information so as to facilitate
the operation of the sliding window mechanism. After storing the information in the given
send_queue, a block is chosen to be sent according to the round-robin algorithm without
performing the regular LDPC encoding process. Afterwards, a DFCP segment is allocated.
The DFCP header and data fields are built by the kernel based on the stored encoded bytes
and additional information without executing the actual LT encoding procedure. Finally,
the DFCP segment is passed to the IP layer for further processing. The additional segments
are generated in the same way until the kernel receives an acknowledgement for a given
block. When an acknowledgement has been received, the kernel determines the Block ID
of the acknowledged block and frees the associated send_queue. Furthermore, the sending
application will be notified of the successful transmission of the block by the kernel setting
the return value of the write() function correctly. When additional data blocks are sent
by the application, the kernel does not copy the user message to the tmp_queue again
but it reuses the stored variables and the encoded bytes. Since the time-consuming data
encoding processes are not performed, the altered data sending process is very fast. As a
result, in the course of the network measurements, which are discussed in a later section,
the significant characteristics of the new future Internet architecture can be focused on
independently of the actual implementation of the applied coding scheme.

Finally, the decoding parameter is used to turn on or to turn off the decoding process
entirely. When the decoding procedure is turned off, the receiver does not perform the
decoding process on the received blocks but assumes that the blocks can be decoded after
having received redundancy number of encoded bytes for each block. To be more precise, the
data receiving process, depicted in Figure 3.14, is modified so that after having determined
the Block ID and performed the sanity checks, the segment would immediately be dropped
instead of storing its contents. The recv_queue associated with the block is only used to
count the number of encoded bytes received for the given block. When the required number
of encoded bytes has been received, the receiving application is notified by the kernel.
Afterwards, the kernel sends an acknowledgement for the given block and the recv_queue
is freed.
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3.12.2 The rate-limiting capability of DFCP

In this subsection, the second four parameters, shown in Table 3.2, and the rate-limiting
feature of the protocol are introduced. The second four parameters are used in order to
control the data sending rate at the sender. As presented in Table 3.2, the value of these
parameters can be both set and queried and their scope is limited to a certain connection.
The rate-limiting enhancement enables the protocol to send data at a specified rate instead
of sending at maximum rate.

In the case of the current implementation, a token bucket mechanism is applied in order
to control the data sending rate. The basic operation of the mechanism is depicted in
Figure 3.26.

Figure 3.26. The operation of the token bucket algorithm

The algorithm maintains a fixed-capacity bucket into which tokens are added at a fixed
rate, where each token represents an encoded byte. Before sending a segment, it is checked
whether the bucket contains the sufficient number of tokens at the time. If at least 1420 to-
kens, which is equivalent to the number of encoded bytes in a DFCP segment, are available,
the appropriate number of tokens is removed from the bucket. Afterwards, the segment is
passed to the IP layer for further processing. However, if there are insufficient tokens in the
bucket, the contents of the bucket remain unchanged. In this case, the kernel waits until
the necessary number of tokens is available. More precisely, the user application is able to
specify the data sending rate by invoking the appropriate system call. In other words, it
is determined how many tokens need to be generated in a unit of time in order to achieve
the requested data sending rate. The kernel uses timers so as to implement this task. The
maximum size of the bucket can also be specified by the application, which determines the
degree of burstiness.

The user application is responsible for setting the four parameters of the rate limiter
properly. After having set the necessary parameters, the tokens are generated at the given
rate by the kernel, and therefore the segments are sent at the specified rate. As regards the
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meaning of the required parameters, the variable maxtokens refers to the maximum size
of the bucket. If the number of tokens in the bucket has reached the value of maxtokens,
no additional tokens are generated. A segment can only be sent if there are at least 1420
tokens in the bucket. The segments are sent at maximum rate until there are enough to-
kens available. If there are less than 1420 tokens in the bucket, the kernel waits until the
necessary number of tokens is available. The parameter inctokens determines the number
of tokens generated in a unit of time. In the kernel, a unit of time refers to the frequency
at which a certain timer interrupt is invoked. In the case of the current implementation,
this interrupt is called 250 times in a second, and therefore the number of tokens is in-
creased once in 4 milliseconds. The parameter inctokens can be calculated as shown in
Formula (3.3):

inctokens =

⌊
bandwidth · 1024 · 1024

8 · 250

⌋
(3.3)

Here, bandwidth refers to the requested data sending rate specified by the application in
Mbps. The resulting integer number is used by the Linux kernel in order to increase the
number of tokens periodically. The parameter inttokens determines the frequency at which
the timer interrupt is invoked. By default, the value of this parameter is set to 1, which
provides the best granularity and the most accurate operation. In this case, the number
of tokens is increased once in 4 milliseconds. However, for instance, if the value of this
parameter were set to 10, the number of tokens would be increased once in 40 milliseconds.
Finally, the parameter numtokens is used by the user application so as to manually set the
number of tokens in the bucket.

3.12.3 The testing and diagnostic parameters of DFCP

In this subsection, the last five parameters, shown in Table 3.2, are presented, which are
used for testing and diagnostic purposes. These parameters are global to each connection.
The parameter outgoing segments counts and stores the total number of DFCP segments
sent while the parameter incoming segments counts and contains the total number of DFCP
segments received by the kernel. The variable dropped segments counts the total number
of DFCP segments dropped by the kernel. Finally, the parameter ACKs sent counts and
stores the total number of acknowledgements sent whereas the parameter ACKs received
counts and contains the total number of acknowledgements received by the kernel.

To sum up, the behavior and operation of the protocol can be investigated and the func-
tions of the protocol (such as the encoding, decoding and rate-limiting capability) can be
temporarily (or permanently) disabled (or enabled) by setting the values of certain param-
eters. Consequently, applying parameters facilitates testing of the protocol. Furthermore,
the behavior of the protocol on complex network topologies can be more easily analyzed.
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Chapter 4

Performance Evaluation of DFCP

This part focuses on the measurements carried out in order to validate the proper operation
of DFCP, analyze the behavior of the protocol and compare the performance of DFCP to
widely applied TCP variants. The chapter is organized in the following way. It consists
of three sections. In the first section, the network topologies and the traffic scenarios
are presented. In addition, the software tools used for the measurements and the related
hardware equipment are introduced and their configurations are discussed. In the second
section, the operation of DFCP is investigated and validated. Finally, in the third section,
a comprehensive performance analysis is conducted on multiple platforms so as to analyze
the performance of DFCP. The measurement results are provided, evaluated and compared
to the performance of significant TCP variants. In addition, the necessary conclusions are
drawn.

In order to examine and validate the operation of DFCP, simulations and testbed mea-
surements have been carried out [36]. The main risk of solely relying on simulation results is
the fact that simulation measurements might be unrealistic in several cases. As a result, sig-
nificant real-network factors can be easily neglected [37]. However, only performing testbed
measurements can lead to the loss of generality since the special hardware components of
the host computers on which the measurements are conducted can hugely affect the results.
In addition, building a network testbed is a time-consuming process. Since DFCP is based
on a new approach, it is crucial to ensure that the measurement results are reliable and
all the conclusions drawn are valid. In order to fit these requirements, a validation anal-
ysis has been carried out on various platforms including a laboratory testbed built in the
department, the Emulab network environment [38] and the ns-2 network simulator [39].

4.1 Network topologies and traffic scenarios

In this section, the network topologies and the traffic scenarios are presented. Furthermore,
the software tools used for the measurements are introduced and their configurations are
briefly described.

The behavior and performance of DFCP have been evaluated on different network
topologies including a simple dumbbell topology and a more complex parking lot topol-
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ogy. The dumbbell topology consisted of N sender-receiver pairs as depicted in Figure 4.1.

Figure 4.1. Dumbbell topology with N sender-receiver pairs

Firstly, experiments have been conducted with a single flow (one sender-receiver pair)
to demonstrate the ability of DFCP to resist variable delay and packet loss characteristics
in the network. In this case, the capacity of the bottleneck link (CB) was set to 1 Gbps.
Furthermore, the fairness properties of DFCP have been examined using two source and
destination nodes (two sender-receiver pairs). The basic purpose of these measurements was
to analyze the behavior of DFCP under the condition when two concurrent flows compete
for the available bandwidth of the bottleneck link. In this scenario, the capacities of both
access links (denoted by a1 and a2) and the bottleneck link (denoted by B) were set to
1 Gbps. As regards scalability, the performance and fairness properties of DFCP have been
investigated when increasing the number of flows (N = 10, 20, ..., 100) and in the case of
specifying various bottleneck link capacities (CB = 0.1, 1, 10 Gbps).

The scenarios described above have made it possible to explore the fundamental features
of DFCP and examine its scalability. In addition, the performance and behavior of DFCP
have been analyzed in a more realistic environment. The parking lot topology, which was
built for this series of experiments, is depicted in Figure 4.2.

Figure 4.2. Parking lot topology with three sender-receiver pairs

As it can be seen, the topology included three sender-receiver pairs and two bottleneck
links. In a real network, multiple bottlenecks are common, and therefore it is essential to
evaluate how a transport protocol would perform under such conditions. In the case of
these experiments, the capacity of each access link (a1, a2 and a3) was set to 1 Gbps and
the capacities of the bottleneck links (CB1 and CB2 ) were set to various values as discussed
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in the following section. Except if otherwise stated, the measurements lasted 60 seconds
and the results were obtained by excluding the first 15 seconds from the length of each
measurement in order to ignore the impact of the transient behavior of the investigated
transport protocols.

In the case of the measurements with multiple flows, the individual flows were started at
the same time and the WFQ (Weighted Fair Queueing) scheduling algorithm was applied
with equal weights by default. However, additional experiments have also been carried out
with other fair schedulers, such as the SFQ (Stochastic Fair Queueing) and DRR (Deficit
Round Robin) algorithms. In addition, some measurements have been conducted using
the DropTail queue management scheme as well, which is the simplest queue management
mechanism available in today’s network routers.

In order to evaluate the performance of DFCP and validate its operation, the test sce-
narios were executed on three different platforms independently, which were a laboratory
testbed built in the department, the Emulab network environment and the ns-2 network
simulator. The laboratory testbed consisted of senders, receivers and the Dummynet network
emulator [40], which was used to simulate various network parameters, such as buffer size,
bandwidth, delay and packet loss rate. Each host computer was equipped with the same
hardware components [36]. The second platform, Emulab, is a network testbed providing
researchers with a wide range of environments in which to develop, debug and evaluate
their systems [38]. For each test scenario, the measurement setup was identical to the one
used in the laboratory testbed. According to the notational system of Emulab, the type
of the sender and receiver nodes was pc3000 while d710 nodes were applied as network
emulators. Similarly to the testbed measurements, the modified Linux kernel including the
current implementation of DFCP has been booted on all the test computers. The third
tool, the ns-2 network simulator, was used to validate the operation of DFCP. Since the
first prototype of DFCP has been implemented in the Linux kernel, it was required to find
a solution to integrate the new protocol into the ns-2 simulation environment. In fact, there
are several tools available for this purpose, but very few of them are able to provide rea-
sonable accuracy, efficiency and support for a wide range of operating systems and kernel
versions. In order to meet all the necessary requirements, the NSC (Network Simulation
Cradle) [41] has been chosen, which executes the code of real-world operating systems’
network stacks in a wrapper that allows the protocols to be used in the ns-2 network sim-
ulator. This provides real-world code in a simulation context allowing accurate simulation
at little extra cost. NSC supports the simulation of a number of network stacks, such as
FreeBSD, OpenBSD, lwIP and Linux. NSC has been validated by comparing situations
using a test network with the same situations in the simulator and it has been shown that
NSC is able to produce extremely accurate results. Moreover, NSC has been ported to
several network simulators including both ns-2 and ns-3. Although NSC is an excellent
tool to simulate different TCP implementations and new TCP-like transport protocols,
it was a challenging job to integrate the current implementation of DFCP into the NSC
environment since DFCP is based on a completely different paradigm than the principles
of TCP.
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4.2 Validation measurements

In this section, the validation analysis is documented which has been carried out to exam-
ine the behavior of the protocol and validate its operation. The results of the validation
measurements, which were performed on the three previously described platforms, are
discussed in detail.

The performance of DFCP was measured in terms of goodput which is a well-known and
widely-accepted performance metric in networking and it refers to the number of useful
information bytes delivered per second to the application layer protocol. Henceforth, in the
figures, the average goodput is calculated for the entire length of the measurements with
the exception of the transient phase of the investigated protocols which is excluded from
the calculations. In the next two figures, the basic characteristics of DFCP are illustrated
showing its adaptability to changing network conditions, such as variable packet loss rate
and round-trip time. These measurements have been carried out on the dumbbell topology
with one sender-receiver pair as depicted in Figure 4.1. The impact of packet loss on the
performance of DFCP is presented in Figure 4.3.

Figure 4.3. The impact of packet loss on the performance of DFCP

It is important to analyze this scenario since TCP is very sensitive to packet loss resulting
in significant performance degradation in the case of increasing packet loss rate. The figure
clearly shows that DFCP is even able to operate efficiently in environments with high
packet loss rates by using optimal redundancy. More precisely, for a given packet loss rate,
optimal redundancy refers to the minimum coding overhead that is required for the receiver
to be able to decode the encoded data successfully. The impact of round-trip time on the
performance of DFCP is illustrated in Figure 4.4.
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Figure 4.4. The impact of round-trip time on the performance of DFCP

It can be seen that DFCP achieves outstanding performance in high-delay networks since
its goodput decreases slowly as the round-trip time increases. As shown in the previous two
figures, the curves have very similar characteristics in the case of all the three platforms. As
a result, it can be stated that these advantageous features of DFCP have been validated.

In Figure 4.5, the behavior of DFCP is illustrated when two competing flows with
different round-trip times share the available bandwidth. This is a common situation in
real networks often referred to as RTT-fairness problem [42].

Figure 4.5. Bandwidth sharing between two competing DFCP flows with
different RTTs

RTT-fairness is a critical issue since traditional TCP is unfair. More precisely, in the
case of competing flows with different RTTs, the flow having smaller RTT is able to gain
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more bandwidth than the others since the flows having smaller RTTs grow their windows
faster, which leads to unfair bandwidth allocation. In this particular scenario, the first flow
had a fixed RTT of 10 ms whereas the RTT of the second flow was increased from 10 ms
to 100 ms. As presented in the figure, DFCP is able to share the available bandwidth fairly
on the different platforms since both flows gain an equal share of the bandwidth of the
bottleneck link independently of their actual RTTs.

The following measurement, see Figure 4.6, was conducted on the parking lot topology
illustrated in Figure 4.2.

Figure 4.6. The performance of DFCP in a network with multiple bot-
tleneck links

This particular scenario was designed in order to study the behavior of DFCP in a multi-
bottleneck environment. The capacity of the first bottleneck link (B1) was set to 1 Gbps
whereas the second bottleneck link (B2) had a capacity of 500 Mbps. The goodput values
of the three DFCP flows are depicted in the figure as a function of the RTT of B2 while
B1 had a fixed RTT of 10 ms. It can be observed that the first flow and the third flow gain
an equal share of the bandwidth available on B2. Since the rate of the first flow is limited
by the capacity of B2, the second flow gains more bandwidth than the first one utilizing
the available bandwidth of B1. As a result, each bottleneck link becomes fully utilized and
is fairly shared by the DFCP flows.

4.3 Comparative analysis

In this section, a comprehensive performance analysis is presented, which was carried out
on the three testing platforms by comparing the performance of DFCP to widely used TCP
versions, which, in this particular case, are TCP CUBIC and TCP NewReno with SACK
option enabled.
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4.3.1 Loss and delay performance

One of the major beneficial properties of DFCP is illustrated in Figure 4.7 and Figure 4.8
which demonstrate that DFCP is much more resistant to packet loss than TCP CUBIC
and TCP NewReno if the optimal redundancy is used.

Figure 4.7. The performance of DFCP and the investigated TCP vari-
ants in a lossy environment (Testbed)

Figure 4.8. The performance of DFCP and the investigated TCP vari-
ants in a lossy environment (Emulab)

The goodput difference has already been noticeable at 0.1% packet loss rate, however,
if the packet loss rate increases, DFCP highly outperforms both TCP variants. For in-
stance, at 1% packet loss rate, the ratio of the goodput values achieved by DFCP and
TCP NewReno is approximately 3. In addition, this ratio is 6 in the case of TCP CUBIC.

66



When the packet loss rate reaches the value of 10%, DFCP becomes more than 250 times
faster than the investigated TCP versions and it still operates efficiently in the case of ex-
tremely high packet loss rates (50%). However, it can be observed that both TCP variants
suffer from significant performance degradation even in the case of low packet loss rates.
Furthermore, it is also noticeable that the performance characteristics of the investigated
transport protocols seem to be very similar in the laboratory testbed and in the Emulab
environment, which can be considered a validation of the results.

The results of the performance comparison of DFCP and the two TCP variants in the
case of variable round-trip time are presented in Figure 4.9 and Figure 4.10.

Figure 4.9. The performance of DFCP and the investigated TCP vari-
ants in a variable RTT environment (Testbed)

Figure 4.10. The performance of DFCP and the investigated TCP vari-
ants in a variable RTT environment (Emulab)
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As illustrated in the figures, in the RTT interval 0 ms - 10 ms, the two TCP variants
perform better than DFCP in terms of goodput, however, the difference is negligible and
is caused by the coding overhead. Furthermore, for the RTT values greater than 10 ms,
DFCP achieves significantly higher transfer rates than TCP CUBIC and TCP NewReno.
Since the typical value of the round-trip time exceeds 10 ms in real networks [43], DFCP
operates more efficiently under such conditions than TCP.

4.3.2 Buffer size requirement

It is a well-known fact that the buffer size requirement of TCP is at least of square-root
order in the number of competing flows [5]. This requirement imposes a significant challenge
on all-optical networks where only small buffers can be realized due to both economic and
technological constraints [4], [6]. In Figure 4.11, it is demonstrated how the performance
of DFCP and the two TCP variants is affected by the buffer size.

Figure 4.11. The impact of buffer size on the performance of DFCP and
the two TCP variants

In this scenario, the round-trip time was set to 10 ms and no packet loss was simulated.
The buffer size is given in packets and the vertical axis represents the performance uti-
lization of the investigated transport protocols. The performance utilization is the ratio
(specified in percentage) of the goodput that can be obtained with a particular buffer size
and the maximum goodput that can be achieved when the buffer size is set to a sufficiently
high value at which all the limiting factors can be neglected. It can be seen that, if the
buffer size is set to 1000 packets, each protocol is able to achieve maximum performance
utilization. However, if the buffer size decreases, the performance of the TCP variants
drops significantly. For instance, if the buffer size is set to 50 packets, TCP CUBIC and
TCP NewReno can only operate at reduced transfer rates which are 92% and 79% of the
ideal cases, respectively. At the same time, DFCP is able to reach the maximum perfor-
mance independently of the buffer size. This property of the transport mechanism of DFCP
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favors all-optical networking.

4.3.3 Bandwidth sharing using various buffer management disciplines

Another important aspect that need to be focused on and investigated is how a transport
protocol shares the available bandwidth of a bottleneck link among the competing flows,
which is often called the fairness property. In the experiments conducted, Jain’s fairness
index was used as the fairness metric, which is one of the most popular and widely accepted
fairness indices in the literature [44]. Jain’s index is computed as shown in Formula (4.1):

JI =

(
n∑

i=1
xi)

2

n ·
n∑

i=1
x2i

(4.1)

Here, xi denotes the normalized throughput (or goodput) of flow i while n refers to the
number of flows. The value of JI is between 0 and 1 and the higher the value, the better
the fairness. It is widely known that the standard TCP flows cannot share the bandwidth
of a bottleneck link equally in the case of competing flows with different round-trip times
due to the properties of the AIMD mechanism [42].

The achieved goodput in the case of two competing DFCP and TCP CUBIC flows is
presented in Figure 4.12 and Figure 4.13. The first flow had a fixed delay of 10 ms whereas
the delay of the second flow was increased from 10 ms to 100 ms. Since the results of
TCP NewReno were almost the same as in the case of TCP CUBIC, only the latter is
shown in the figures.

Figure 4.12. The performance of DFCP and TCP CUBIC in the case of
two competing flows (Testbed)
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Figure 4.13. The performance of DFCP and TCP CUBIC in the case of
two competing flows (Emulab)

It can be seen that, according to the testbed measurements (see Figure 4.12), the bottle-
neck link capacity is equally shared by the two TCP CUBIC flows for the RTT values less
than 20 ms. However, for the RTT values greater than 20 ms, the goodput of the second
flow starts to decrease, and consequently the flow with the smaller RTT can gain a greater
portion of the available bandwidth of the bottleneck link indicating the unfair behavior
of TCP. In contrast, the DFCP flows achieve perfect fairness as they share the available
bandwidth equally and they are much less sensitive to the round-trip time compared to
TCP. It is emphasized that the goodput difference between the DFCP and TCP flows for
the RTT values less than 20 ms is due to the coding overhead.

Comparing the results obtained on the different platforms, it can be observed that the
behavior of DFCP in the Emulab environment is the same as in the laboratory testbed
whereas TCP CUBIC achieves slightly better fairness in the Emulab environment.

In our proposed future network architecture, the best solution to achieve fairness is
to use fair schedulers as it was mentioned in Chapter 3. In fact, the data transmission
mechanism of DFCP is not able to guarantee fairness on the host side. Therefore, the only
solution is if this task is performed by the network routers. However, in this context, there
are some open questions to be answered. On the one hand, a number of fair scheduling
algorithms have been developed in the last two decades but few of them are available in
today’s routers. Consequently, it is a difficult issue to choose between them. On the other
hand, in the case of most routers, the DropTail queue management policy is applied by
default since it is the simplest algorithm, however, it is not eligible to provide fairness. It
has to be analyzed how DFCP operates under such conditions. In order to find answers
to these issues, the fairness analysis was extended to also investigate additional queueing
mechanisms available in ns-2. The fairness index for different schedulers is illustrated in
Figure 4.14.
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Figure 4.14. Intra-protocol fairness with WFQ, DRR and DropTail
queueing

The results clearly show that, if fair schedulers are used, DFCP is able to guarantee
perfect fairness in the case of two competing flows independently of their actual RTTs.
Moreover, DFCP achieves better fairness than TCP even with the much simpler DropTail
algorithm. To sum up, it can be observed that, in a more realistic environment with typical
network parameters, DFCP is able to provide a higher degree of fairness compared to TCP
for each queueing discipline.

4.3.4 Performance in a multi-bottleneck environment

The results of the performance comparison of DFCP and TCP CUBIC are presented in
Figure 4.15 and Figure 4.16. These experiments were conducted on the parking lot topology
(see Figure 4.2) with three concurrent flows started at the same time. In this measurement,
the capacities of the bottleneck links, denoted by B1 and B2, were set to 1 Gbps. The
bottleneck link B1 had a fixed RTT of 10 ms while the RTT of B2 was increased from
0 ms to 100 ms. Based on the figures, the following conclusions can be drawn. Until the
round-trip time of B2 reaches the value of 10 ms, both the DFCP and TCP CUBIC flows
share the bandwidth of B1 and B2 in a fair way. However, for the higher RTT values,
TCP CUBIC becomes unfair gradually due to the fact that TCP is sensitive to the round-
trip time. As the goodput achieved by the first and the third flow decreases for increasing
RTT (since they go through B2 ), the second flow with lower RTT gains more and more
bandwidth. Consequently, TCP CUBIC does not provide fairness between the first and the
second flow that have different RTTs. In addition, in this case, the available bandwidth
of B2 is also shared unequally, and therefore the first and the third flow achieve different
goodput performance. As it was mentioned earlier, this behavior is highly undesirable and
the results show that DFCP is able to solve this issue by providing perfect fairness for
each flow independently of their actual RTTs owing to its robustness to changing network

71



conditions.

Figure 4.15. The behavior of DFCP and TCP CUBIC in a multi-
bottleneck environment with variable delay (Testbed)

Figure 4.16. The behavior of DFCP and TCP CUBIC in a multi-
bottleneck environment with variable delay (Emulab)

The results of a similar measurement performed on the parking lot topology for variable
packet loss rate are depicted in Figure 4.17. In this case, the capacities of the bottleneck
links were set to 1 Gbps and 500 Mbps, respectively. The bottleneck link B1 had a fixed
packet loss rate of 0.01% whereas it was increased from 0.01% to 5% on B2. The round-trip
time was set to 10 ms on both links. It can be seen that DFCP provides fairness for the
flows competing for the available bandwidth of B2 and their goodput values decrease very
slowly as the packet loss rate increases resulting in excellent utilization of both bottleneck
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links. In contrast, in the case of the first and the third flow, TCP CUBIC only ensures
fairness if the packet loss rate is greater than 1% at which value both flows are almost
unable to transfer data. The goodput of the first flow starts at a lower value than the
goodput of third flow because the first flow goes through both B1 and B2, and therefore
it is affected by a higher packet loss rate. The link utilization achieved by the two TCP
variants is relatively low, since TCP is highly sensitive to packet loss.

Figure 4.17. The behavior of DFCP and TCP CUBIC in a multi-
bottleneck environment with variable packet loss

4.3.5 Scalability

Typically, on a bottleneck link, hundreds of flows compete for the available bandwidth and
the capacities of these links are continuously increasing due to the development of com-
munication technologies. Scalability is an important requirement for transport protocols,
which means that they have to provide similar performance and fairness if the number of
flows and the link capacities increase. The following simulations compare the scalability of
two fundamentally different data transfer paradigms, TCP CUBIC with DropTail queue
management, which is currently used on the Internet, and DFCP with DRR scheduling,
which is the new concept. In this case, the measurements were carried out on the topology
depicted in Figure 4.1 and they lasted 200 seconds. The buffer size was set to 0.1 BDP and
each flow had an RTT of 100 ms.
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The performance scalability of the investigated transport protocols for various number
of flows and link capacities is shown in Table 4.1.

Table 4.1. Performance scalability

Bandwidth
Normalized aggregate goodput [%]
10 flows 50 flows 100 flows

0.1 Gbps 98 / 100 100 / 100 100 / 100
1 Gbps 96 / 100 98 / 100 99 / 100
10 Gbps 22 / 100 95 / 100 96 / 100

The normalized aggregate goodput was computed as the ratio of the aggregate goodput
of the concurrent flows to the maximum goodput that can be achieved by a single flow. The
normalized values are specified in percentage and are given for TCP CUBIC and DFCP,
respectively, separated by a slash mark. It can be observed that DFCP is able to achieve
the maximum performance independently of the number of flows and the bottleneck band-
width. In contrast, in the case of TCP CUBIC, the normalized aggregate goodput increases
with the number of flows but decreases with the link capacity. For instance, in the case
of a 100 Mbps link, the maximum performance can be achieved by 50 competing flows,
however, an increase in the link capacity by two orders of magnitude leads to 5% per-
formance degradation. Moreover, high capacity links cannot be fully utilized by a small
number of flows since the round-trip time limits the transmission rate of the individual
flows. In this particular case, an RTT of 100 ms results in a goodput reduced to approxi-
mately 200 Mbps for each flow (see Figure 4.9 and Figure 4.10), and consequently it leads
to the underutilization of the 10 Gbps link in the case of 10 flows.

The fairness scalability of DFCP and TCP CUBIC as a function of time for an increasing
number of flows is demonstrated in Figure 4.18 and Figure 4.19.

Figure 4.18. Fairness stability in the course of time
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The fairness stability of the investigated transport mechanisms for different number
of flows is depicted in Figure 4.18. It is clearly shown that the Jain’s fairness index of
TCP CUBIC fluctuates significantly in the course of time. In addition, an increase in the
number of competing flows results in a higher degree of instability and lower mean fairness.
The fairness index for an increasing number of flows is illustrated in Figure 4.19.

Figure 4.19. The fairness index for an increasing number of competing
flows

It has to be emphasized that, in this scenario, each flow had the same delay in order
to avoid the phenomenon of RTT unfairness. In the case of TCP CUBIC, the tendency
is obvious, the larger the number of the concurrent flows, the smaller the fairness index.
However, in contrast to all of these results, DFCP is able to achieve fair bandwidth sharing
on various time scales without suffering from stability issues and independently of the
number of the competing flows.

In this chapter, two alternative data transport mechanisms for future networks were
investigated, the digital fountain code based DFCP and the congestion control based TCP.
In order to draw solid conclusions, the operation of DFCP was analyzed on various network
topologies (dumbbell and parking lot topologies) and on multiple platforms including the
laboratory testbed, the Emulab network environment and the ns-2 network simulator. A
comparative performance analysis of DFCP and TCP was also carried out on the previ-
ously mentioned platforms. It has been shown that the goodput performance of DFCP
is significantly better than the investigated TCP variants for a wide range of packet loss
rates and round-trip times. It has also been observed that DFCP is able to achieve max-
imum performance even in the case of small buffers, which could make it attractive for
all-optical networks. Furthermore, DFCP provides fair bandwidth sharing among compet-
ing flows independently of their RTTs. Although perfect fairness can only be achieved when
fair schedulers (for instance, DRR) are employed, DFCP can ensure better fairness than
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TCP even without fair schedulers or if the simple DropTail algorithm is applied. Finally,
the digital fountain code based transport also guarantees good scalability and stability in
terms of both performance and fairness for an increasing number of flows and for increasing
link capacities. The measurement results justify that the promising approach, proposed by
GENI, has several advantageous properties and a broad spectrum of possible applications.
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Chapter 5

Conclusion and Future Work

TCP, which is the most widely used transport protocol today, is not able to work efficiently
and fully utilize the network resources. In order to solve these issues, a number of new TCP
variants have been developed by modifying the conventional congestion control algorithm
of TCP. However, applying different congestion control mechanisms led to interoperability,
efficiency and complexity issues between the TCP variants. Therefore, the commonly used
TCP versions do not give universal and optimal solutions to the challenges of today’s
ever-changing, heterogeneous network environments.

In order to find answers to the performance and interoperability problems of TCP,
innovative concepts and ideas have been worked out in the course of research. In this
work, a new transport protocol, which is called DFCP, was presented that is based on a
promising idea, suggested by GENI, according to which applying congestion control should
be completely avoided. In this case, every entity in the network is allowed to send data
at its maximum rate and the emerging huge, mostly bursty packet loss is compensated by
applying efficient erasure codes.

I have implemented DFCP in the Linux kernel and the protocol is currently under re-
search and development. I have also analyzed the operation and behavior of the protocol
on various network topologies and on multiple platforms under a wide range of network
conditions by carrying out both testbed measurements and simulations. The results have
confirmed that the protocol has several favorable properties and is able to achieve signifi-
cantly better performance in several network scenarios compared to different TCP variants.
It has also been shown that DFCP has a broad spectrum of possible applications high-
lighting its reduced buffer space requirements which could make it a promising solution for
all-optical networks.

After the introduction, Chapter 2 provided an overview of the basic concepts in computer
networking. Afterwards, the most widely used high-speed TCP versions were investigated
highlighting their congestion control algorithms, as well as the advantages and drawbacks
of the applied algorithms. In Chapter 3, the DFCP and its underlying concept were in-
troduced concentrating on the operational phases and basic functions of the protocol.
Furthermore, the employed coding scheme and the parameters of the protocol were also
detailed. In Chapter 4, the focus was on the testbed measurements and simulations. In
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this chapter, on the one hand, a validation analysis was performed in order to examine
and validate the operation of the protocol. On the other hand, a comparative performance
evaluation of DFCP was carried out in order to compare the performance of the protocol
to widely applied TCP variants in various network scenarios. Finally, this chapter, Chapter
5, concludes the paper and details the suggested future work and improvements.

Regarding the future work, DFCP is currently under active research and development. In
the future, it is crucial to test and analyze the properties of the current implementation of
DFCP in order to find its possible drawbacks. Afterwards, all the possible weaknesses need
to be understood and eliminated. Furthermore, it is also important to conduct additional
testbed measurements and simulations on various, more complex network topologies. In
addition, the effects of the parameters of the protocol on its behavior and performance
need to be thoroughly investigated. Finally, it is also essential to carry out a more detailed
analysis when small buffers are used in the network in order to provide an efficient solution
which meets the requirements of future networks.
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