
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Performance Analysis of Graph Queries

Author:

Zsolt Kővári

Advisors:

Gábor Szárnyas
Dr. István Ráth

2015

Contents

Kivonat i

Abstract ii

1 Introduction 1

Introduction 1

1.1 Context . 1

1.2 Problem Statement . 1

1.3 Contributions . 2

1.4 Structure of the Report . 2

2 Background 3

2.1 Resource Description Framework . 3

2.2 Foundations of Statistics . 3

2.2.1 Population and Sample . 3

2.2.2 Probability Distributions . 4

2.2.3 Measures of Descriptive Statistics . 4

2.2.4 Covariance and Correlation . 5

2.2.5 Regression Analysis . 6

2.3 Graph Theory . 7

2.3.1 Metrics . 7

2.3.2 Network Topologies . 9

3 Related Work 11

3.1 Berlin SPARQL Benchmark . 11

3.2 DBpedia SPARQL Benchmark . 12

3.3 SP2Bench . 12

3.4 Train Benchmark Framework . 12

3.4.1 Overview . 12

3.4.2 Model Generation . 13

3.4.3 Metric-Based Analysis . 14

3.5 Conclusion . 14

4 Design 16

4.1 Overview of the Approach . 16

4.2 Models and Metrics . 18

4.2.1 Real-Life Networks . 18

4.2.2 Network Topologies and Representative Metrics 19

4.3 Metric and Performance Comparison . 21

4.3.1 Choosing the Sample . 21

5 Contributions 22

5.1 Overall Architecture . 22

5.2 Uniform Model Generation . 23

5.2.1 Number of Nodes . 23

5.2.2 Number of Edges . 25

5.2.3 Possible Model Configuration . 27

5.3 Performance Analysis . 27

5.3.1 Workflow . 27

5.3.2 Metrics Calculation . 28

5.3.3 Queries . 29

5.3.4 Tools . 30

6 Evaluation 31

6.1 Benchmarking Environment . 31

6.2 Benchmark Configuration . 31

6.3 Samples . 32

6.3.1 Sample Size . 32

6.4 Model Analysis . 32

6.4.1 Density . 32

6.4.2 Clustering Coefficient . 33

6.4.3 Shortest Path Length . 33

6.4.4 Betweenness Centrality . 35

6.5 Performance Analysis . 35

6.5.1 Hypothesis . 35

6.5.2 Highlights of the Analysis . 36

6.6 Conclusions . 40

7 Summary 41

7.1 Scientific Contributions . 41

7.2 Practical Accomplishments . 41

7.3 Future Work . 41

Acknowledgements i

List of Figures ii

List of Tables iii

Bibliography vii

Kivonat

A gráf alapú adatmodellező, illetve adatbázis-kezelő keretrendszerek esetén kulcsfontossá-
gú a minél nagyobb teljesítmény, illetve rövidebb válaszidő biztosítása, különösen az olyan
alkalmazási területeken, ahol egyszerre több, strukturálisan összetett lekérdezést kell újra
és újra kiértékelni egy folyamatosan változó (gráf)adatstruktúra felett. A modern, relációs
adatmodellt elvető NoSQL technológiák terjedésével egyre nagyobb figyelmet kap az ilyen
rendszerek teljesítőképessége és skálázhatósága, így az utóbbi években több olyan bench-
mark is megjelent, melynek fő célja az ilyen rendszerek teljesítőképességének, különösen a
lekérdezések skálázhatóságának szisztematikus kiértékelése.

A legtöbb mérési keretrendszer számításba vesz bemenet és teljesítmény leíró metrikákat,
mint például a gráf csomópontjainak száma vagy a lekérdezések válaszideje, ugyanakkor
nagyon nehéz az eredmények összehasonlítása, mert a méréshez használt bemenetek (grá-
fok, lekérdezések komplexitása, illetve a gráfon a mérés során végrehajtott változtatások
jellege, összességében a terhelési profil) igen nagy méret- és tulajdonságbeli eltéréseket mu-
tatnak - ezekről pedig megelőző kutatási eredmények kimutatták, hogy jelentős és változó
mértékben befolyásolhatják az egyes eszközök viselkedését, teljesítménykarakterisztikáját.

A jelen dolgozat elsődleges célja, hogy - korábbi kutatásokat [31] folytatva - kidolgozzon
egy olyan mérési módszertant és hozzá kapcsolódó keretrendszert, amelynek segítségével a
gráf alapú adatbázis-kezelő rendszerek teljesítménybeli összehasonlítása szisztematikusan
és reprodukálhatóan hajtható végre. Fő eredményként a teljesítménymérés céljára külön-
böző gráf topológiákat javasolunk, amelyek jellemzésére gráfmetrikákat definiálunk. A
metrikák segítségével jellemezhető az egyes mérések nehézsége, illetve bizonyos eszközök
esetén kapcsolatot is találhatunk a gráfokat jellemző metrikák és a lekérdezések futásidői
között. A módszertan és a keretrendszer képességeinek bemutatására a dolgozat bemutat
egy komplex esettanulmányt, mely magába foglalja számos kísérlet automatizált elvégzését
és magasszintű statisztikai analízis eszközökkel támogatott kiértékelését is.

i

Abstract

Achieving high query evaluation performance represents a major practical challenge in
graph-based data management and database systems, especially in application domains
where several, structurally complex queries need to be continuously evaluated against a
steadily changing input graph. With the prevalence of modern NoSQL databases, the
scalability of such systems is getting more and more attention. This resulted in the
development of several graph-oriented database benchmarks over the past several years,
with the main focus on the systematic assessment of query evaluation performance.

While most of such measurement frameworks take common input and performance met-
rics as the basis of comparison (e.g. graph node count, query evaluation response time),
it remains very difficult to compare the relative difficulty of individual measurements to
each other. This is because the characteristics of the input (graphs, queries and their com-
plexity, and graph manipulation operations executed during the measurements, combined
the workload profile) varies greatly between individual measurement scenarios, and such
factors have been shown by previous research results to have a significant and varied effect
on tool performance characteristics.

As a continuation of previous research [31], the primary goal of this report is to establish a
measurement methodology with its associated set of frameworks and tools, which can help
in the systematic and reproducible assessment of performance and scalability of graph-
oriented database systems. As the main result, we propose to use a carefully designed
corpus of input graphs adhering to various topologies characterized by metrics. These
metrics are useful to compare the relative difficulty of measurement scenarios, and for
some tools we can use them to establish links between metric values and query evaluation
response time. In order to illustrate the capabilities of the methodology and the framework,
the report includes a complex case study that incorporates the automatic execution of
many experiments, as well as statistical result analysis supported by high level tools.

ii

Chapter 1

Introduction

1.1 Context

Queries are the foundation of data-intensive applications. Therefore, a high-performance
query engine is an essential component for a wide range of software systems, including
transactional databases, knowledge-based systems and software engineering tools. Tradi-
tionally, most of the data was stored in relational databases. However, during the last
decade a new generation of databases emerged, utilizing non-relational models. These sys-
tems, collectively known as NoSQL databases, include semantic databases (triplestores)
and graph databases. As graphs are well-suited to model domains with a rich inner
structure—e.g. social networks, public roads and library data—these databases are com-
monly used in both academic and industrial systems.

1.2 Problem Statement

While there are well-established and widely accepted benchmarks for relational
databases [16], these cannot be adapted to graph databases as they usually operate
on fundamentally different workloads. Semantic databases have been widely studied,
considering different aspects of performance, correctness and completeness [42, 21, 35].
In the model-driven engineering (MDE) community, tool contests presented transfor-
mation cases to assess the usability, conciseness and performance of model transforma-
tions [27, 41, 45, 44, 33]. The NoSQL community also proposed various benchmarks,
published on both the web [40, 43] and in research papers [22, 34].

While all these benchmarks can be used to compare the performance of query engines,
deriving general conclusions from the results or comparing the findings between different
benchmarks is difficult. The generalizability of benchmark results is mostly limited by the
lack of relevant metrics that could be used to assess an engineering problem and predict
which technology would be best suited. Existing metrics emphasize a single aspect of
the problem (most typically the size of the graph), while internal metrics (e.g. used for

1

optimizing query evaluation engines) are either not documented well or not accessible in
a reusable way.

1.3 Contributions

Our research aims to provide a framework for categorizing various benchmarks. In this
report, we present a set of common metrics to characterize the complexity of the graph
and the queries. We designed and implemented a benchmark for homogeneous graphs,
featuring a set of queries and a highly configurable framework capable of generating graphs
in different sizes and various topologies. We make use of statistical methods to determine
the relationship between the metrics and the performance of the databases.

1.4 Structure of the Report

The structure of the report is as follows. Chapter 2 introduces the theoretical concepts,
Chapter 3 discusses the design of the framework, and Chapter 4 presents the architecture
and workflow of the benchmark. Chapter 5 shows the benchmark setup and analyzes the
benchmark results. Chapter 6 concludes the report and outlines directions for future work.

2

Chapter 2

Background

2.1 Resource Description Framework

The Resource Description Framework (RDF [12]) is a family of W3C (World Wide Web
Consortium) specifications originally designed as a metadata data model.

The RDF data model is based on the idea of making statements about resources in the
form of triples. A triple is a data entity composed of a subject, a predicate and an object,
e.g. ”John instanceof Person”, ”John has-an-age-of 34”.

Triples are typically stored in triplestores, specialized databases tailored to store and
process triples efficiently. Also, some triplestores are capable of reasoning, i.e. inferring
logical consequences from a set of facts or axioms. Triplestores are mostly used in the
semantic and Linked Data domain.

2.2 Foundations of Statistics

In this section, we present the fundamental concepts of the field of statistics. The majority
of the definitions can be found in [23].

2.2.1 Population and Sample

A population is a large set of objects of a similar nature, and the sample is a subset of
objects derived from a population [9]. A population includes all of the elements from a set
of data, however, a sample consists of one or more observations from the population [10].
The sample size is the number of observations in a sample and commonly denoted by n.

3

2.2.2 Probability Distributions

The probability distribution links each possible value of a random variable [11] with its
probability of occurrence. In the following paragraphs we define various discrete proba-
bility distributions related to our work.

Uniform Distribution

A random variable 𝑋 has a discrete uniform distribution if each of the n values in its
range, namely, 𝑥1, 𝑥2, ..., 𝑥𝑛, have equal probability. Formally:

𝑓(𝑥𝑖) = 1
𝑛

(2.1)

where 𝑓(𝑥𝑖) denotes the probability distribution function.

Power-Law Distribution

The power-law distribution describes the probability of the random variable that is equal
to 𝑥 as the following

𝑓(𝑥) = 𝑐 · 𝑥−𝛾 (2.2)

where 𝑐 is a constant and 𝛾 is called the exponent or scale factor.

Poisson Distribution

The Poisson distribution is characterized by the following elementary probabilities:

𝑃 (𝑋 = 𝑘) = 𝜆𝑘

𝑘! 𝑒−𝜆 (2.3)

where 𝜆 > 0 is the shape parameter and 𝑘 ∈ N.

2.2.3 Measures of Descriptive Statistics

Descriptive statistics defines a number of values for characterizing a particular data set.
Here, we discuss the most important measures related to our work.

Mean

The mean or expected value of a discrete random variable 𝑋 denoted by 𝜇 or 𝐸(𝑋) is

𝜇 = 𝐸(𝑋) =
∑︁

𝑥

𝑥𝑓(𝑥) (2.4)

4

where 𝑥 represents the values of the random variable 𝑋, and 𝑓(𝑥) denotes the probability
distribution function. A mean is a measure of the center of the probability distribution.

Variance

The variance of 𝑋—denoted by 𝜎2 or 𝑉 (𝑋)—is equal to the following formula:

𝜎2 = 𝑉 (𝑋) = 𝐸(𝑋 − 𝜇)2 =
∑︁

𝑥

(𝑥 − 𝜇)2𝑓(𝑥) (2.5)

The variance is a measure of the dispersion or variability in the distribution, as it represents
the average of the squared differences from the mean. For example, a variance of zero
indicates that all the values are identical.

Standard Deviation

The standard deviation of the random variable 𝑋 is 𝜎 =
√

𝜎2, meaning it is the square
root of the variance.

2.2.4 Covariance and Correlation

Covariance

The covariance is a measure of the linear relationship between random variables. A co-
variance between two random variables 𝑋 and 𝑌 can be expressed as follows:

𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸
[︀
(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)

]︀
(2.6)

A positive covariance implies that 𝑌 tends to increase as 𝑋 increases as well, and if
𝑐𝑜𝑣(𝑋, 𝑌) < 0 then 𝑌 tends to decrease as 𝑋 increases [5]. A few examples of different
scenarios are illustrated in Figure 2.1. In the terms of (a) and (c), a covariance is observable
between 𝑋 and 𝑌 , and in the cases of (b) and (d), the covariance is equal to zero.

Correlation

Similarly to covariance, the correlation describes the strength of the relationship between
variables. A type of correlation, the Pearson product-moment correlation coefficient is
formulated as

𝜌𝑋𝑌 = 𝑐𝑜𝑣(𝑋, 𝑌)
𝜎𝑋𝜎𝑌

(2.7)

where −1 ≤ 𝜌𝑋𝑌 ≤ 1, and 1 indicates a positive linear relationship between 𝑋 and 𝑌 ,
and −1 means negative linearity, finally, 0 implies a correlation does not appear between
the variables.

5

Figure 2.1. Different examples for covariance [23].

2.2.5 Regression Analysis

Regression analysis is a statistical technique for exploring the relationship between two
or more variables. A regression model can be considered as an equation that relates a
random variable 𝑌 to a function of a variable 𝑥 and a constant 𝛽. Formally, a regression
model is defined as

𝑌 = 𝛽0 + 𝛽1𝑥 + 𝜖 (2.8)

where 𝑌 is the dependent or response variable, 𝑥 is referred as the independent variable or
predictor, and 𝛽0, 𝛽1 are the regression coefficients—the intercept and the slope. Finally,
𝜖 symbolizes the random error.

A multiple linear regression model considers 𝑘 independent variables, and the equation is
extended as follows:

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + · · · + 𝛽𝑘𝑥𝑘 + 𝜖 (2.9)

6

Coefficient of Determination

The coefficient of determination—or the multiple R-squared, denoted by R2—is a number
between 0 and 1 that expresses how appropriately a regression model fits to the data. An
R2 of 1 represents a perfect fit.

P-value

The 𝑝-value is a function of the observed sample results (a statistic) that is used for testing
a statistical hypothesis.

2.3 Graph Theory

In the following sections we introduce the most important graph metrics and network
topologies used in our work. We assume that the reader is already familiar with the basic
concepts of graph theory, including undirected graphs, complete graphs, adjacent nodes,
node degrees and shortest paths.

2.3.1 Metrics

Degree Distribution

The spread among the degrees of the nodes is characterized by a distribution function
𝑃 (𝑘) which shows the probability that a randomly selected node’s degree is equal to 𝑘.
𝑃 (𝑘) is called as the degree distribution.

Density

For undirected graphs the density is defined as

𝐷 = 2|𝐸|
|𝑉 |(|𝑉 | − 1) (2.10)

where |𝐸| denotes the number of edges and |𝑉 | represents the number of nodes in the
graph.

Clustering Coefficient

The 𝐶𝑛 clustering coefficient of a node 𝑛 is equal to the proportion of connections found
among the neighbors of 𝑛 divided by the maximum number of connections that can be
possibly exist between them. Formally, in undirected graphs the clustering coefficient of

7

node 𝑛 is

𝐶𝑛 = 2𝑒𝑛

𝑘𝑛(𝑘𝑛 − 1) (2.11)

where 𝑘𝑛 is the number of neighbors of 𝑛, and 𝑒𝑛 is the number of connected pairs between
all neighbors of 𝑛 [18]. The clustering coefficient always takes a value between 0 and 1.

An example is shown in Figure 2.2. In this case, the clustering coefficient of A is 𝐶𝐴 = 2
6 ,

since it has three neighbors, so 𝑘𝐴 = 3, and only one connection occurs among its adjacent
nodes—between B and C—indicating that 𝑒𝐴 = 1.

Figure 2.2. An example graph for illustrating the calculation of
the clustering coefficient metric.

Betweenness Centrality

The betweenness centrality of an node 𝑛 is quantified by the number of shortest paths
that include 𝑛 as an intermediate node, divided by the entire number of shortest paths.
Consequently, this metric is normalized between 0 and 1.

To demonstrate with an example, assume that we searched the following shortest paths
denoted by 𝑃𝑖:

∙ 𝑃1 = (𝑣1, 𝑣3, 𝑣4, 𝑣6, 𝑣5)

∙ 𝑃2 = (𝑣2, 𝑣3, 𝑣4, 𝑣5)

∙ 𝑃3 = (𝑣4, 𝑣3, 𝑣5)

The entire number of shortest paths is equal to 3, and the intermediate nodes are 𝑣3, 𝑣4

and 𝑣6. The betweenness centrality values of the nodes—denoted by 𝐵𝑖—are the following:

∙ 𝐵3 = 1, since 𝑣3 appears in all three paths.

∙ 𝐵4 = 2
3 due to 𝑣4 appears in two paths—𝑃1 and 𝑃2. Note that 𝑣4 in 𝑃3 is the initial

node and not an intermediate node.

∙ 𝐵6 = 1
3

∙ 𝐵1 = 𝐵2 = 𝐵5 = 0, since they do not appear in the paths as intermediate nodes.

8

2.3.2 Network Topologies

In the following sections, we introduce the graph topologies that are relevant to our work.
Besides their generation algorithms, we also emphasize the degree distributions they follow.

Random Graph

The main concept of the random graph is to create the connections among nodes inde-
pendently from each other, meaning that the occurrence of an edge between the nodes is
not influenced by the other edges.

Two well-known algorithms exist to create random graphs. The first is the 𝐺(𝑁, 𝑀) model
of Erdős-Rényi [24], and the second is the 𝐺(𝑁, 𝑝) model from Gilbert [26]. The former
means that precisely 𝑀 edges exist among 𝑁 vertices, and the latter implies that—in
the generation algorithm—every pair of nodes becomes adjacent with 𝑝 probability. The
degree distribution of random graphs follows a Poisson distribution.

Small-World Model of Watts-Strogatz

A graph follows a small-world property if the graph has a high average clustering coefficient
and small average length of shortest paths.

The generation algorithm of the Watts-Strogatz topology addresses the creation of net-
works with small-world properties. The algorithm is constructed as follows: initially, the
algorithm creates a ring of 𝑁 number of isolated nodes, which is equal to the entire num-
ber of nodes in the graph. In the second step, every node becomes adjacent to 𝐾 number
of their neighbors, thus creating a lattice graph [46]. This implies that every node has
a degree 𝐾, therefore, its degree distribution fits to a uniform distribution. Besides the
variables 𝑁 and 𝐾, another parameter appears in the algorithm, the 𝑝 probability vari-
able. After creating 𝑁 nodes and 𝑁 ·𝐾 connections, every edge is rewired by 𝑝 probability
and attached to a new, randomly chosen node. Note that the two extremes, 𝑝 = 0 and
𝑝 = 1 entails we obtain a mapping between a lattice and a random graph. As a result, the
degree distribution of the Watts-Strogatz model deviates between uniform and Poisson.

Scale-Free Model of Barabási and Albert

The scale-free model of Barabási and Albert addresses the generation of a network that
follows a power-law degree distribution and includes a small proportion of nodes that have
significantly higher degrees than the average. These types of vertices are often referred as
hubs.

The generation algorithm creates nodes incrementally and connects them to 𝑚 disjunct
nodes. However, instead of choosing nodes randomly, these new connections per nodes are
determined by a preferential attachment. When the algorithm creates a new vertex then

9

the probability 𝑝𝑖 that this vertex becomes adjacent to an 𝑖 node is:

𝑝𝑖 = 𝑑(𝑖)∑︀
𝑗 𝑑(𝑗) (2.12)

where 𝑑(𝑖) denotes the degree of the 𝑖 node, and 𝑗 symbolizes the other existing nodes. As
a conclusion, the probability of a node becomes adjacent to another one depends on the
degree of the latter. If a higher degree belongs to a node than the average, the probability
also increases that the node obtains more connections.

Hierarchical Network

The hierarchical network topology [39] is generated by a recursive algorithm illustrated
in Figure 2.3. Initially, the 0. iteration constructs a 𝐾5 complete graph1, called cluster.
In the first iteration, the algorithm creates four replicas of the 𝐾5 cluster. In the second
step in this iteration, the algorithm connects the peripheral nodes from the replicas to the
center node. The generation can be continued recursively, as in every 𝑖. run, the result
graph of the 𝑖 − 1 iteration is cloned and the peripheral nodes—the deepest vertices in the
replicas—are attached to the center node.
Finally, the generated hierarchical graph follows a heavy-tail power-law degree distribu-
tion, since the graph includes such nodes that have significantly larger degrees—the center
nodes—and the probability that these nodes appear is considerably small.

Figure 2.3. The first iteration in the recursive generation algo-
rithm of the hierarchical network.

1The diagonal nodes are also connected to each other

10

Chapter 3

Related Work

In the following sections, we introduce benchmark frameworks that are designed to inves-
tigate the performance of RDF databases. In Section 3.5, we summarize the frameworks
and compare them to our work which is the introduction of a new approach to existing
benchmark frameworks.

3.1 Berlin SPARQL Benchmark

Domain The Berlin SPARQL Benchmark (BSBM) [21] features an e-commerce use case
in which a set of products is offered by different vendors and consumers who posted reviews
about the products.

Workload BSBM measures the SPARQL query performance of RDF-based tools via
realistic workloads of queries based on the use cases. The benchmark defines three dif-
ferent use cases and a suite of benchmark queries—a mix of queries—in each of them [2],
simulating the search and navigation pattern of a consumer looking for a product. The
queries include read and update operations as well.

Models BSBM generates artificial models in different sizes, by using normal distribu-
tions among the elements. For example, the number of reviews and different properties
per product are distributed following a normal distribution.

Metrics The benchmark defines certain performance metrics that relate to the query
execution times from different perspectives. The most important metrics are the following:

∙ Queries per Second: the number of queries executed within a second.

∙ Query Mixes per Hour : the number of mixed queries with different parameters that
evaluated within an hour.

∙ Overall Runtime: the overall time that a certain amount of query mix requires.

11

3.2 DBpedia SPARQL Benchmark

The DBpedia SPARQL Benchmark (DBPSB) proposes a benchmark framework for RDF
databases based on the DBpedia [6] knowledge base. It measures the performance of real
queries that were issued against existing RDF data [35]. DBPSB generates models in
various sizes trying to obtain a similar characteristic belonging to the original DBpedia
dataset.
Similarly to BSBM, DBPSB also defines metrics to investigate the performance from
different aspects, such as the Query Mixes per Hour and Queries per Second.

3.3 SP2Bench

The SPARQL Performance Benchmark (SP2Bench) [42] is based on the Digital Bibliogra-
phy and Library Project (commonly known as dblp) which provides an open bibliographic
information on major computer science publications [7]. The benchmark queries are not
explicitly evaluated over the dblp dataset, since SP2Bench uses arbitrarily large, artificially
generated models for the measurements that are created to follow the characteristics of
the original dblp dataset, such as the power-law distribution.

SP2Bench is designed to test the most common SPARQL constructs, operator constella-
tions and a broad range of RDF data access patterns. Instead of defining a sequence of
use case motivated queries, the framework proposes various systematic queries that cover
specific RDF data management approaches.

Similarly to BSBM, SP2Bench also measures additional performance related metrics be-
sides the evaluation time, such as the disk storage cost, memory consumption, data loading
time and success rates, hence, every metric captures different aspects from the evaluations.

3.4 Train Benchmark Framework

3.4.1 Overview

The Train Benchmark framework was designed and implemented by the Fault Tolerant
Systems Research Group in the Budapest University of Technology and Economics [30].
The benchmark investigates the performance of model validations via different graph
queries by measuring the evaluation times of different RDF, SQL, EMF and graph
databases.

An overview of the Train Benchmark framework is shown in Figure 3.1, illustrating the
framework how connects the model validations to the database systems. In step 1, the
framework generates a graph-based model derived from a particular domain. After defin-
ing different constraints (rules) on the domain—such as the presence of an edge between
two types of nodes—the benchmark injects erroneous elements into the model (step 2.),

12

which elements are considered as violations of the constraints. During step 3, the frame-
work loads the invalid model to the particular database system.
Every constraint has a corresponding validation pattern that is the negation of the con-
straint and it includes a pattern of elements that violates the certain constraint (4.). Every
validation pattern is defined in the query language of the particular database (5). Step 6
denotes the query evaluation that represents the model validation. The result set of the
evaluation contains the invalid elements which violated the constraint. The performance
indicator of the databases is the required time of model validation, so the query evaluation
time.
Besides the validations, the framework also performs model transformations to alter the
amount of invalid elements in the model. Every transformation is followed by another
validation.

Domain

Generator

Model

Constraint

Fault

Injector

Invalid

Model

Database

Storage

Framework
Layer

Database
Layer

Load

Validation

Pattern

Query

Evaluation

Engine

Result Set /

Invalid Elements

1. 2.

3.

4.

5.

6.

7.

Figure 3.1. An overview of Train Benchmark.

3.4.2 Model Generation

The Train Benchmark framework uses artificially generated graph-based models for the
measurements over a railway domain, illustrated in Figure 3.2. In the models, a train route
is defined by a sequence of sensors, and the sensors are associated with track elements which
are either segments or switches. A route follows certain switch positions which describe
the required state of a switch belonging to the route. Each route has a semaphore on its
entry and exit [15].

13

Segment

length : EInt

TrackElement

Switch

currentPosition : Position

Route

SwitchPosition

position : Position

Sensor

<<enumeration>>
Signal

FAILURE
STOP
GO

<<enumeration>>
Position

FAILURE
LEFT
RIGHT
STRAIGHT

Semaphore

signal : Signal

RailwayContainer

sensor0..1

positions0..*

follows0..*

definedBy

2..*

switch1

route1

elements0..*

connectsTo0..*

entry1

exit1

semaphores
0..*

routes
0..*

Figure 3.2. The Railway domain of Train Benchmark.

The generated models over the Railway domain are not related to a real-life model, which
leads to the fact that the cardinalities of the elements and their distributions do not follow
a real model’s characteristic, therefore, the measurement results of different databases
cannot be claimed to be representative in a real-life use case.

3.4.3 Metric-Based Analysis

The Train Benchmark framework was extended with metric-based analysis in [31] with the
fundamental goal of finding correlations between (i) the performance of query evaluations
and (ii) query and model metrics.

3.5 Conclusion

The represented benchmark frameworks propose different comprehensive use cases to as-
sess the performance of graph queries typically over RDF data. BSBM and DBpedia use
representative queries for the measurements that demonstrate real-life use cases, and the
SP2Bench framework concentrates on the creation of various systematic queries that inves-
tigate the specific RDF data management approaches. The Train Benchmark framework
aims a different aspect of performance by concentrating on model validations via graph
queries. As a conclusion, these frameworks guarantee a comprehensive performance eval-
uation of a workload—the model, query and tool—by emphasizing the impact of queries
to the performance.

However, in case of an arbitrary workload, the model also represents a dominating fac-
tor to the performance. DBpedia or the SP2Bench framework do not consider model

14

modifications in their workloads, so they do not investigate the impact of various model
characteristics to the performance, they only generate the same structural model in differ-
ent sizes to measure scalability. BSBM proposes update operations on the models, still, it
does not investigate model and performance correlations. Even though Train Benchmark
considers model transformations, yet, it modifies only one type of element that impacts the
result set of the query evaluation, and the generated models are still considered as static
models. As a conclusion, all of the introduced frameworks concentrate on the generation
of one static model without altering its internal structure and analyzing their influence to
the performance.

The fundamental goal of our work is to extend the metric-based analysis in the Train
Benchmark with the particular emphasis on the generation of different models and analyze
the relationship between the model-based metrics and the performance of query evaluation.

The main features of the introduced frameworks and our new approach are summarized
in Table 3.1.

Feature BSBM DBpedia SP2Bench Train Benchmark Our Approach

Based on a real-life model ∙ ∙
Realistic domain-based queries ∙ ∙
Systematic queries ∙
Model updates ∙ ∙
Various models ∙
Measurement of scalability ∙ ∙ ∙ ∙ ∙
Performance metrics ∙ ∙ ∙
Model metrics ∙ ∙
Various representation formats ∙

Table 3.1. A comparison of existing benchmark frameworks and our approach.

Basically, we concentrate on the generation of various models with different internal net-
works, and we analyze the models and their impact to performance of query evaluations.

15

Chapter 4

Design

4.1 Overview of the Approach

In this section, we introduce the main notions about our work to analyze model and
performance relationships.

Our concept includes the following systems illustrated in Figure 4.1. We rely on two ex-
isting frameworks in our work: the Train Benchmark and MONDO-SAM1 frameworks.
Furthermore, we the elaborate MONDO-MAP (MONDO-Metrics-Based Analysis of Per-
formance)2 and the Homogeneous Graphs Benchmark.

MONDO-SAM The MONDO-SAM framework was created under the project MONDO
(Scalable Modeling and Model Management on the Cloud) [8] with the motivation of pro-
viding a common benchmark framework in Model Driven Engineering (MDE) for bench-
mark developers [29]. MONDO-SAM can be considered as an abstract layer that proposes
an evaluation engine to execute arbitrary workflows independently on the current work-
load. Furthermore, MONDO-SAM also provides tools for serializing and visualizing the
benchmark results.

Train Benchmark The Train Benchmark framework is based on the evaluation engine
provided by MONDO-SAM, and it proposes a benchmark for measuring continuous model
validations and transformations. The Train Benchmark is presented in detail in Section
3.4.

MONDO-MAP The goal of the MONDO-MAP framework is to support model-based
performance analysis. To achieve this, it extends MONDO-SAM with additional features,
as it provides a framework for analyzing model and performance relationships in the light
of an arbitrary workload by characterizing the performance quantitatively with model

1The project of MONDO-SAM can be found in http://github.com/ftsrg/mondo-sam
2The project of MONDO-MAP can found in http://github.com/ftsrg/mondo-map

16

http://github.com/ftsrg/mondo-sam
http://github.com/ftsrg/mondo-map

MONDO-SAM

Train Benchmark

Homogeneous Graphs
Benchmark

«extend»

«extend»

«use»

«extend»

New Frameworks

MONDO-MAP

Figure 4.1. An overview of the frameworks in our approach.

related metrics. Similarly to MONDO-SAM, MONDO-MAP is an abstract framework
and can be extended by an arbitrary benchmark case.

Homogeneous Graphs Benchmark The Homogeneous Graphs Benchmark (HG
Benchmark) extends the MONDO-MAP framework with a benchmark case for RDF
databases. It generates homogeneous graphs—well-known network topologies—and it in-
vestigates the relationships between the model metrics and performance of query eval-
uations with respect to an arbitrary query and tool. The goal is to generate artificial
graphs with various characteristics and obtain a spread in their descriptive metrics, and
thus showing a quantitative connection between model metrics and performance. As Fig-
ure 4.1 suggests, in the HG Benchmark we use a part of the components of the Train
Benchmark that are adequate for our purpose as well.

Figure 4.2 illustrates the main concept of our work. First, the HG Benchmark generates
different 𝐾 graph topologies. Using the graph metric definitions from MONDO-MAP (2.),
we calculate the descriptive metrics for every topology in step 3. In the next two steps
(4-5.) we define a query and evaluate it on every topology in the system under benchmark.
The measurement result is the query evaluation time (𝑌) that represents another variable
belonging to the topologies besides their metrics (6.). As it was mentioned before, the
MONDO-SAM framework is responsible for publishing the benchmark results (7.). Finally,
in MONDO-MAP we analyze the results by creating regression models to estimate the
influence of metrics to the performance.

17

Homogeneous
Graphs Benchmark

MONDO-MAP MONDO-SAM

Query
Evaluations

Model Metric
Calculations

Graph
Topologies

1. Generate

Model
Metric

Definitions

2. Define

Metrics

Query

4.

Define

Query

Model Metric
Values

K N

K×N

6.

Evaluation Times
and Metrics

K×(N+1)

Regression
Analysis

7. Publish

5.

Y = β0M1+β1M2+ +βNMN

8.

3.

T1
T2

TK
...

M1
M2

MN

...

T1: {M1, M2, MN}

T2: {M1, M2, MN}

TK: {M1, M2, MN}

...

T1: {Y1, M1, M2, MN}

T2: {Y2, M1, M2, MN}

TK: {YK, M1, M2, MN}

...

Figure 4.2. The main concept of the metric-based performance
analysis.

4.2 Models and Metrics

4.2.1 Real-Life Networks

In the field of graph theory, the internal structures of real-life networks are comprehensively
investigated. The main approach in the analysis of these networks is to explore the degree
distributions and study the specific metrics—typically the clustering coefficients, average
degrees, average shortest paths—that are suited to characterize the graphs appropriately.
Based on the degree distributions and metrics, one can draw a conclusion how a particular
real-life network shows a similar characteristic to the well-known topologies such as the
random graph, scale-free model, small-world model of Watts-Strogatz or the hierarchical
network.
For example, the network of World-Wide-Web is studied in [38] and [28] as well, and the
authors observe that the degree distribution of the www follows a power-law distribution
with a heavy tail, which indicates the presence of web pages with significantly higher
degrees than the average degree. Since the probability of occurrences of these web pages

18

is considerably low, the connectivity of the world-wide-web can be represented by the
scale-free model of Barabási and Albert.

More examples can be found in the study of Barabási and Albert [19], as they review the
advances of different publications and investigate the characteristics of different real-life
networks. Empirical results prove that the movie actor collaboration network, cellular
networks, phone call and citation networks also follow power-law distributions. Many
of the studied networks can be considered as scale-free models, however, a part of these
graphs—for example the network of movie actors—also show small-world properties and
a high clustering coefficient in their connectivity similarly to the Watts-Strogatz or hier-
archical topology.

As far as the Watts-Strogatz model—and the random graph—are concerned, their specific
degree distribution—Poisson—rarely appears in the real-life networks, as it is emphasized
in [37]. However, the small-world property of the WS models frequently appears in the
real-life networks. In practice, none of the artificial topologies can be identified perfectly
to real-life models, however, the representative metrics of these artificial networks can be
observed in real-life networks as well.

We assume that those metrics that show high deviations among the different topologies
are suited to characterize and identify them individually, furthermore, they may able
to characterize an arbitrary graph as well. If these metrics are capable to characterize
entirely different networks, then we assume that these metrics are the key to characterize
the performance of query evaluations.

4.2.2 Network Topologies and Representative Metrics

Barabási and Albert inspect the natures of the well-known graph topologies in [19], such
as the random graph, scale-free and the Watts-Strogatz model. As a main result, they
observe that there are significant differences among the topologies regarding specific graph
metrics. Based on their study and the research of hierarchical graphs [39], the following
metric deviations are assumed between the four topologies, illustrated in Table 4.13. The
random graph is considered as a reference point, and every value is compared to its metrics
by assuming that the networks are in the same size. As Table 4.1 demonstrates, each

Metric Random Hierarchical Scale-free Watts-Strogatz

Max Degree ∙ ∙∙∙ ∙∙∙ ∙
Clustering Coefficient ∙ ∙∙∙ ∙ ∙∙
Avg Shortest Path Length ∙ ∙∙ ∙ ∙∙

Table 4.1. Graph topologies and their descriptive metrics

topology can be characterized by different metric values, which leads to the assumption
that if the diversity between the topologies may cause high variance in the performance of

3The metric values are compared to each other, as one ∙ indicates the lowest metric value, and ∙∙∙ de-
notes the largest value among the topologies.

19

a particular query evaluation, then these metrics are adequate to characterize the model
and performance relationships quantitatively.

However, the values of metrics in Table 4.1 are misleading due to the reason that the
metrics of the Watt-Strogatz model highly depend on the initialization of the network,
namely, the value of 𝑝 probability that is used in the generation.

Figure 4.3. Characteristic path length 𝐿(𝑝) and clustering coeffi-
cient 𝐶(𝑝) of Watts-Strogatz model [47]

By modifying 𝑝, the Watts-Strogatz model represents a bridge between a lattice and a
random graph. As Figure 4.3 illustrates, the clustering coefficient 𝐶(𝑝) and the average
shortest path (𝐿(𝑝)) metrics are changed with respect to 𝑝 scaling. The values are normal-
ized by 𝐿(0) and 𝐶(0) that represent the clustering coefficient and average shortest path
metrics for a lattice graph. As a conclusion, the Watts-Strogatz model shows significant
deviations in these two metrics in the light of the 𝑝 probability value.

Besides the models in Table 4.1, the metrics also require modifications. The problem
is that the maximum degree metric alone does not include a comprehensive information
about the internal structure of the network, since it does not emphasize the role of a
node with maximum degree in the connectivity of the graph. Hence, we use another
metric—the betweenness centrality—which characterizes adequately the importance of a
higher degree, since the higher value of betweenness centrality belongs to a vertex, the
more shortest paths include that node, symbolizing that node represents the center in the
graph.

After these modifications, the topologies and the related metrics are shown in Table 4.2.
WS-𝑝 indicates the Watts-Strogatz model with a probability value of 𝑝. The values of
the betweenness centrality are determined by our initial assumption considering that the
center node in a hierarchical network and the hubs in a scale-free model may occur more
times in the shortest paths due to the fact that they have higher degrees. The main

20

conclusion is that we can achieve a higher deviation among the metric values by using
these topologies, and thus, in the following we concentrate on these networks.

Metric Random Hierarchical Scale-free WS-0.1 WS-0.01 WS-0.001

Max Degree ∙ ∙∙∙ ∙∙∙ ∙ ∙ ∙
Clustering Coefficient ∙ ∙∙∙ ∙ ∙∙ ∙∙∙ ∙∙∙
Avg Shortest Path Length ∙ ∙∙ ∙ ∙ ∙∙ ∙∙∙
Betweenness Centrality ∙ ∙∙∙ ∙∙ ∙ ∙ ∙

Table 4.2. Graph topologies and their descriptive metrics with extensions

4.3 Metric and Performance Comparison

Showing performance and metric relationship is an essential goal of our approach. The
first notion is the search of correlations between the metrics and performance.

A similar problem is studied in [32] and [20], where the authors generate well-known
topologies and inspect the connectivity and robustness of the networks. In their case, a
network is said to be robust if its performance is not sensitive to the changes in topology.
In [32], the algebraic connectivity (not discussed in detail in this report) metric is stud-
ied to search robustness and metric relationships, however, they show that the algebraic
connectivity is not trivially correlated to the robustness of the network.

The authors in [20] investigate the impact of betweenness centrality, algebraic connectivity
and average degree to robustness, and they also draw the conclusion that there is no
unique graph metric to satisfy both connectivity and robustness objectives while keeping
a reasonable complexity, since each metric captures some attributes of the graph.

Partly based on the advances of these two publications and our initial assumption of
the topologies and their metrics (Table 4.2), we expect that we cannot find a correlation
between one metric and the performance, hence, we suspect that only the ensemble of
more metrics is suited to find relationship.

In order to find quantitative connections, we use regression analysis to show how the
various metrics impact the performance.

4.3.1 Choosing the Sample

By using regression analysis on a sample, it is important to regard the sample to be
unbiased. In our case, a bias in a sample of graph topologies means a variation in the size
of the models. Obviously, one topology in the sample with larger amount of nodes can
bias the connection between the models and the performance, therefore, our framework
must support the generation of uniform models4 with respect to the amount of nodes and
edges, even in the case of different topologies.

4From now on, under the concept of uniform models we mean models with approximately equal number
of nodes and edges, despite the diversity of their internal structures.

21

Chapter 5

Contributions

In the following sections, we present the main contributions related to the
MONDO-MAP framework and the Homogeneous Graphs Benchmark.

5.1 Overall Architecture

Figure 5.1 depicts the frameworks and the main components belonging to them, addi-
tionally, it also denotes which components are reused from Train Benchmark. All of the
frameworks and their components were elaborated in Java programming language.

MONDO-
MAP

HG
Benchmark

Benchmark Engine

Phases

Model
Analyzer

Analyzer

Query
Analyzer

MONDO-
SAM

Model
Metrics

Query
Builder

RDF Driver
Query

Executor

RDF Model
Analyzer

RDF Query
AnalyzerGenerator

Topology
Generator

Existing Components New Components

Figure 5.1. The architecture of our approach.

In the following, we introduce the components.

Benchmark Engine The Benchmark Engine in MONDO-SAM is responsible for evalu-
ating an arbitrary sequence of phases consecutively. A phase is considered as the atomic

22

execution unit in a benchmark. The engine also measures the evaluation times of phases,
hence, it is the component that measures the performance of query evaluations in our
work.

Analyzer Components The Model and Query Analyzer units belong to the
MONDO-MAP framework and define an interface for the metrics calculation. The Model
Analyzer investigates the model related metrics, and the Query Analyzer relates to the query
definitions. As it can be observed, the concrete metric calculations—RDF Model Analyzer
and RDF Query Analyzer—appear in the HG Benchmark.

Metrics The definitions of Model Metrics can be found in MONDO-MAP. The model
metrics symbolize graph metrics with applying the commonly used naming conventions
from graph theory. Note that the HG Benchmark does not contain further RDF-based
metrics implying that we use the graph-based naming conventions in our work.

Generators The generator components belong to the HG Benchmark. The abstract
Generator unit is utilized from Train Benchmark. Last, the Topology Generators construct
different homogeneous graphs fitting to well-known topologies and transform them to RDF
format.

RDF Driver The RDF Driver manages the connections between the measured RDF
databases and the benchmark framework, furthermore, it also accomplishes the loading of
the models.

Query Executor and Query Builder The query evaluations are initiated by the
Query Executor component. The Query Builder is responsible for creating and altering the
query definitions in runtime.

5.2 Uniform Model Generation

It is an essential requirement of the HG Benchmark to guarantee uniform model generation
among the topologies indicating the same size of the generated models. We propose a
model generation technique to generate topologies with the same amount of nodes and
edges.

5.2.1 Number of Nodes

The random graph and the Watts-Strogatz model are constructed by initializing |𝑉 | = 𝑁

number of vertices, and then the algorithms determine which one of them become adjacent.

23

In the scale-free model generator, the nodes are created incrementally until |𝑉 | = 𝑁 , and
a precise number of nodes can be obtained regarding these topologies.

The only problem about generating topologies with a certain number of nodes is the
recursive algorithm of the hierarchical graph, which algorithm has to be terminated.

Termination of the Hierarchical Network Generation Algorithm

Since the generation of hierarchical network is recursive instead of being incremental—
as in the case of the three other topologies—it is necessary to determine a termination
from the recursive algorithm. The termination point is evident, as soon as the number
of created nodes reaches the limit, the algorithm has to be stopped. However, it cannot
be predicted in which phase the algorithm stops exactly. As a consequence, the possible
problems have to be managed.

Figure 5.2. Possible termination problems in the hierarchical
graph generation.

The possible problematic cases are demonstrated in Figure 5.2. In Case A, B, and C, the
expected numbers of nodes are 20, 19, and 16, respectively. As it can be observed in these
cases, this limit is always reached before the fourth cloning occurs, since 5 clusters should
be created with 25 vertices at the end of this step in the recursion.

In the solution in Case A, the generator stops the cloning procedure and connects the
diagonals to the center. Regarding B, the termination happens during the generation of

24

a cluster. As a solution, the last cluster becomes partial, and similarly, every diagonal is
attached to the center. Case C represents that scenario when the last cluster only consists
of one node. To prevent isolation, the last vertex is considered as a diagonal, and be
connected to the center.

5.2.2 Number of Edges

In terms of the random graph, scale-free, and WS model, their generation algorithms
can be adjusted arbitrarily, meaning that an optional number of nodes or edges can be
achieved. As a matter of fact, reaching a certain amount of nodes or edges in these
networks are handled separately.

Unfortunately, the creation of nodes and edges in the hierarchical graph occur together.
Since the amount of edges depends on the number of nodes and iterations in the recursive
algorithm, it cannot be configured arbitrarily. A solution is that we adjust the other
topologies to have the same number of edges as the hierarchical model. This solution
requires to calculate the exact number of edges in a hierarchical network with respect to
the iteration.

Estimating the Number of Edges in Hierarchical Graphs

The literature relating to hierarchical graphs does not mention the exact number of edges
or its correlation to the amount of nodes, hence, we propose a solution to estimate |𝐸| in
the recursive algorithm for every iteration.

At first, let us define the necessary variables hereunder:

∙ 𝑖: represents the current iteration in the original hierarchical algorithm.

∙ 𝑐: indicates the number of clones in every iteration.

∙ 𝑛: the cluster size is denoted by 𝑛, which is a 𝐾𝑛 complete graph.

∙ 𝐹𝑖: indicates the constructed graph after the 𝑖. iteration.

∙ |𝐸𝐹𝑖 |: the number of edges of 𝐹𝑖.

The algorithm works as follows. In the 0. iteration, the hierarchical graph consists of one
𝐾𝑛 cluster. Formally, 𝐹0 = 𝐾𝑛, and |𝐸𝐹0 | = |𝐸𝐾𝑛 | = 𝑛·(𝑛−1)

2 . In the 1. iteration, the
algorithm clones 𝐹0 𝑐 times, and connects the peripheral nodes from each 𝐹0 to the center
node. It entails that

|𝐸𝐹1 | = (𝑐 + 1) · |𝐸𝐾𝑛 | + 𝑐 · (𝑛 − 1) (5.1)

since 𝑐 + 1 number of 𝐾𝑛 can be found in 𝐹1, and 𝑐 · (𝑛 − 1) edges can be drawn from the
𝑐 number of replicas to the center.

25

Note that in the first iteration 𝐾𝑛 can be substituted with 𝐹0, and the algorithm in the
first part of the 𝑖. iteration creates 𝑐 replicas of the result of the 𝑖 − 1. iteration, namely,
𝐹𝑖−1. In the second part of the 𝑖 iteration, the algorithm connects the clusters from the
cloned replicas to the center node. These connections are made between the peripheral
nodes in each replica and the center, which indicates that in the 𝑖. iteration the algorithm
connects 𝑛 − 1 peripheral nodes from 𝑐 number of replicas of 𝐹𝑖−1. Due to 𝐹𝑖−1 includes
𝑐𝑖−1 number of clusters, we obtain

|𝐸𝐹𝑖 | = (𝑐 + 1) · |𝐸𝐹𝑖−1 | + 𝑐 · 𝑐𝑖−1 · (𝑛 − 1) = (𝑐 + 1) · |𝐸𝐹𝑖−1 | + 𝑐𝑖 · (𝑛 − 1) (5.2)

Equation 5.2 is equal to the number of edges of a completely finished hierarchical network,
however, the generation algorithm in the HG Benchmark is possibly terminated to reach
a certain number of nodes which leads to the fact that |𝐸𝐹𝑖 | must be scaled down by the
proportion of the maximum (|𝑉𝐹𝑖 |) and the required number (|𝑉𝐻 |) of vertices. If the
hierarchical graph we intend to generate is denoted by 𝐻, then

|𝐸𝐻 | = |𝐸𝐹𝑖 | · |𝑉𝐻 |
|𝑉𝐹𝑖 |

(5.3)

where |𝑉𝐻 |
|𝑉𝐹𝑖

| ≤ 1.

By using Equation 5.3, we can calculate the number of edges of a hierarchical graph and
configure the other topologies to reach the same quantity.

Configuring the Random Graph Model

From the two most well-known algorithms, Gilbert’s 𝐺(𝑛, 𝑝) model is adapted to the
framework, which implies that the exact value of 𝑝 has to be determined from the number
of edges in the hierarchical graph, |𝐸𝐻 |. Based on [25], the 𝑝 probability can be calculated
from the number of nodes and edges as follows:

𝑝 = |𝐸𝐻 |(︀|𝑉 |
2

)︀ (5.4)

where |𝑉 | denotes the number of nodes.

Configuring the Watts-Strogatz Model

Regarding the Watts-Strogatz model, in the beginning of the generation algorithm, 𝐾

number of consecutive nodes are connected to each other. During the algorithm, by
rewiring the edges the amount of |𝐸| is not changed. As a conclusion, in order to achieve
a uniform size similarly to the hierarchical graph, 𝐾 has to be adjusted as 𝐾 = |𝐸𝐻 |

|𝑉 | .

26

Generally, the 𝐾 value in the algorithm is a constant integer. In order to configure the
WS model properly, we extend the algorithm by defining an inclusive lower bound (𝐾1)
and upper bound (𝐾2) for 𝐾, as 𝐾 ∈ [𝐾1, 𝐾2]. We also assign a 𝑝 probability to 𝐾

that determines the likelihood that 𝐾 is equal to 𝐾2 and 1 − 𝑝 to 𝐾1. Derived from
the equation 𝐾 = |𝐸𝐻 |

|𝑉 | , it results in 𝐾1 =
⌊︁

|𝐸𝐻 |
|𝑉 |

⌋︁
and 𝐾2 =

⌈︁
|𝐸𝐻 |
|𝑉 |

⌉︁
, additionally, the 𝑝

probability equals to the fractional part, as 𝑝 =
{︁

|𝐸𝐻 |
|𝑉 |

}︁
. Hence, by turning 𝐾 to a random

variable, we can generate WS models with the same number of edges as |𝐸𝐻 |.

Configuring the Scale-Free Model

The scale-free topology is generated incrementally, since every step a new node is inserted
to the graph with 𝑚 new connections. To obtain |𝐸𝐻 | edges, the 𝑚 variable has to be
configured. This leads to 𝑚 = |𝐸𝐻 |

|𝑉 | .

In the original generation algorithm, every new vertex connects to a constant number of
disjunct nodes, which indicates that 𝑚 is a constant integer. Similarly to the notion in
the Watts-Strogatz model generation (5.2.2), this constant value is converted to a random
variable based on a particular probability, derived from |𝐸𝐻 |.

5.2.3 Possible Model Configuration

In the artificially generated models the size, topology and density is optionally config-
urable.

The size of the model—the number of nodes—is calculated by a formula as |𝑉 | = 𝑠 · 2𝑖,
where 𝑠 is the step size constant and 𝑖 is a positive integer. It implies that an arbitrary
model size can be obtained among the topologies.

Besides the size, the density of the graphs is also configurable, so the number of edges in
the topologies. Since the hierarchical network is considered as the reference model due to
the uniform model generation, the density parameter calibrates the generation algorithm
of the hierarchical graph, namely, the size of the 𝐾𝑛 clusters with altering 𝑛.

5.3 Performance Analysis

5.3.1 Workflow

A workflow in the HG Benchmark is divided into phases that are considered as the atomic
execution units. An arbitrary sequence can be created among the phases, which—during
the benchmark—are executed consecutively by the workflow engine in MONDO-SAM.

The workflow of the HG Benchmark is represented in Figure 5.3. After loading the model,
the framework calculates the model related metrics. Due to the fact that in the current
phase of our research we do not consider model transformations, therefore, a particular

27

Analyze

Model
Load

Model

Initialize

Query

Build

Query
Evaluate

Cache Hit?

Calculate

Metrics

Load

Metrics
Yes

No

Query

template

Figure 5.3. The workflow of the HG Benchmark.

model’s metrics must be calculated only once in the beginning of the workflow. More
importantly, different runs of the benchmark can utilize the previously calculated metrics
that belong to the same model. As it can be observed in the model analysis phase, the
solution is achieved by using a cache for the calculated metrics and reusing its content if
possible.

The features in the Initialize and Build Query phases are strongly correlated. These two
phases entail the creation of dynamic queries. The first one provides a default query
definition that can be parameterized, and the second phase assembles a complete query
for the evaluation, as it injects parameters or alters the entire syntax. The latter operation
implies that entirely different queries can be executed in a sequence.

Last, the evaluation phase is responsible for executing the query. The build and evaluate
phases can be repeated implying that more then one query can be evaluated in a sequence,
even with different definitions.

5.3.2 Metrics Calculation

As we already emphasized, the MONDO-MAP framework proposes two types of metrics.
The first is the set of model descriptive metrics and the second relates to the query defini-
tions. In the following, we introduce them and their calculations in the HG Benchmark.

Model Metrics

The model-based metrics are connected to graph metrics which appear in their naming
conventions as well. Since we are concentrating on RDF tools in our work, we also define
the corresponding interpretations. The metrics are listed hereunder.

1. Nodes: the number of nodes in the graph. In RDF, this equals to the number of
unique subject and object values.

28

2. Edges: the number of edges in the graph. Regarding RDF, this is equal to the
number of predicates1 in the data.

3. Maximum Degree: the maximum number of predicates per subjects.

4. Average Degree: it is determined by calculating the degree of every existing node.

5. Average Degree Distribution: denotes the probability that a randomly selected
node’s degree is equal to the average degree.

6. Higher Degree Distribution: the cumulative distribution of those nodes that
have higher degrees than the average.

7. Average Clustering Coefficient: this metric implies the calculation of clustering
coefficient per every node.

8. Average Shortest Path Length: the calculation of this metric is most expensive,
hence, the framework searches a limited number (100) of shortest paths between
randomly selected vertices and calculates their average length.

9. Maximum Betweenness Centrality: the value of this metric is determined by
the shortest paths. We count the occurrences of every intermediate node in the
paths—by determining the betweenness centrality of the vertices—and normalize
the values to the [0, 1] interval by dividing them with the number of visited nodes.
Since the value of betweenness centrality is assigned to each node separately, we use
the maximum of them.

5.3.3 Queries

We investigate the performance of two queries in our HG Benchmark. The first one relates
to the concept of shortest path, and the second connects to the notion to investigating the
spread of information in the graphs.

Shortest Path Query

The SPARQL definition of the query is shown below2:

PREFIX base: <http://www.semanticweb.org/ontologies/2015/hgbenchmark#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT (count(*) AS ?count)
WHERE

{ ?sourceStation rdf:type base:Station .
?sourceStation (base:neighbor)* ?targetStation
FILTER (?sourceStation = base:_ID1)

1With the consideration of rdf:type predicates, the number of edges metric represents the number of
triples.

2The domain of the homogeneous graphs is based on Stations.

29

FILTER (?targetStation = base:_ID2)
}

The query uses the * operator from SPARQL Property Paths [14] in the (base:neighbor)*
predicate which means an arbitrary length of path with the neighbor predicates. The
query is a parameterized query in which we inject two random identifiers instead the ID
parameters. Finally, the query searches a path between those two nodes.

Information Spread Query

The query investigates the spread of information in the graph—by starting from a ran-
domly chosen node—and it traverses the graph via the neighbor predicates to a three-hop
distance. The concept of information spreading means how fast the information can be
forwarded among the nodes in the graph, or in other words, how many vertices can be
reached from a certain node.
The SPARQL definition of the query is shown below. As it can observed, in every new
navigation we filter the previously found nodes to prevent the traversal of the same nodes
again.
PREFIX base: <http://www.semanticweb.org/ontologies/2015/hgbenchmark#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT (COUNT(*) AS ?count)
WHERE

{ ?station1 rdf:type base:Station
FILTER (?station1 = base:_ID) .
?station1 base:neighbor ?station2 .
?station2 base:neighbor ?station3
FILTER (?station1 != ?station3) .
?station3 base:neighbor ?station4
FILTER (?station1 != ?station4 && ?station2 != ?station4) .

}

5.3.4 Tools

The tools used in this report are listed in Table 5.1. The last two columns illustrate
whether the execution of our defined queries is feasible in the particular tool or not. As
the table suggests, the first query cannot be evaluated in 4store, since it does not support
the usage of property paths.

Name Implementation Language Version Query 1 Query 2

Blazegraph [3] Java 1.5.2 ∙ ∙
4store [1] C 1.1.5 ∙
Sesame [13] Java 2.7.9 ∙ ∙

Table 5.1. The implemented tools in HG Benchmark

30

Chapter 6

Evaluation

6.1 Benchmarking Environment

The benchmarking environment involves a single machine that contains a quad-core Intel
Xeon Processor L5420 (2.5 GHz) and 16 GBs of RAM. In order to alleviate the effect
of transient on the measurements and minimize the noise in the results, a 64-bit Ubuntu
14.04.2 LTS was installed. Additionally, Oracle JDK version 1.8.0 was used as the Java
environment.

6.2 Benchmark Configuration

Topologies We generate five topologies for the measurements such as the scale-free
model, hierarchical network and Watts-Strogatz models with different probability 𝑝 values
as 0.1, 0.01 and 0.001. Due to these configurations of 𝑝, we reach a deviation between
Watts-Strogatz models and random graphs.
The topologies are generated via our uniform model generation approach (Section 5.2).
Every topology is generated five times with different densities that are adjusted to five
different values based on the size of 𝐾𝑛 complete graphs found in the hierarchical network.
These 𝐾𝑛 complete graphs are configured to 𝐾3, 𝐾4, 𝐾5 𝐾6 and 𝐾7.

Queries The queries are parameterized with random values 20 times and executed on
every graph. Each measurements is performed 4 times.

Model Size The configuration of the model sizes are shown in Table 6.1 representing
number of nodes and edges. The latter is given by an interval since we generate the graph
with different densities.

31

Nodes Min Edges Max Edges
5 000 23 531 42 633
10 000 49 140 89772
20 000 100656 185420
40 000 209439 381435
80 000 421110 800314

Table 6.1. The number of nodes and edges in generated graphs.

6.3 Samples

In order to analyze the relationships between model metrics and the performance of query
evaluations, we create different samples of the measurements and investigate them respec-
tively. The triple of a specific tool, query and model size (number of nodes) defines a
sample. A sample contains the measurement results for a particular query evaluated by a
tool on a model of a certain size. As a result, the number of different samples is equal to
the product of unique tools, queries and model sizes.

6.3.1 Sample Size

A sample includes the measurements executed on 5 different topologies, each of them ap-
pears 5 times in the sample with different densities that are configured between the various
topologies equally. One sample contains 20 evaluations of a parameterized query. Every
measurement is repeated 4 times in a sequence, however, we discard the first evaluation
times and use the median of the remaining measurements.
The dimensions in a sample and their occurrences are illustrated in Table 6.2. Since the
triple of a tool, query and model size defines a different sample, these values represent one
value in a sample. As it can be observed, the sample size is equal to 500.

Tool Query Model Size Query Evaluation Topology Density
∏︀

Occurrence 1 1 1 20 5 5 500

Table 6.2. The dimensions and their occurrence in a sample.

6.4 Model Analysis

6.4.1 Density

One essential expectation was in our work to generate different graphs with the same
number of nodes and edges. Figure 6.1 depicts the density of the topologies. The 𝑥-
axis represents the sizes of the models, the 𝑦-axis shows the values belonging to density.
Every column contains the information of one specific topology, furthermore, the different
densities are separated by colours in the legend.

32

Hierarchical Scale−Free WS−0.001 WS−0.01 WS−0.1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0000

0.0005

0.0010

0.0015

5k 10k 20k 40k 80k 5k 10k 20k 40k 80k 5k 10k 20k 40k 80k 5k 10k 20k 40k 80k 5k 10k 20k 40k 80k

Number of nodes

D
en

si
ty

ModelDensity
● K3

K4
K5
K6
K7

Figure 6.1. The density of the graph topologies.

As it can be observed, the topologies with different networks have approximately the same
density with the respect to the number of nodes, which implies the number of edges is
almost equal. A small deviation is shown between the hierarchical graph and the other
topologies. This is explained by the fact that the recursive generation algorithm of the
hierarchical network must be terminated before its end in order to obtain an arbitrary
number of nodes. Hence, we can only estimate the amount of edges in the graph with
a dispersion. The standard deviation of the densities is 1.11 · 10−5, and divided by the
maximum number of density we obtain 0.028, which means a 2.8% difference between the
topologies with respect to their density.

6.4.2 Clustering Coefficient

Our goal is to achieve a deviation in metric values per topologies such as the clustering
coefficient metric. Figure 6.2 depicts the average clustering coefficients in the topologies.
The 𝑥-axis represents the number of nodes in the graphs, the 𝑦-axis denotes the values of
the metric, furthermore, every value is separated by the topology in legend.
The plot shows how the values spread in the [0, 1] interval according to our early expec-
tation (Section 4.2.2). One topology has more corresponding metric value in the same
size—e.g. hierarchical—due to the fact that we generated 5 instances of every topology
with different densities, which implies a different clustering coefficient metric per instance
as well.

6.4.3 Shortest Path Length

The average lengths of shortest paths in the topologies are demonstrated in Figure 6.4.
It can be observed that as we decrease the 𝑝 probability in the Watts-Strogatz models
(from 0.1 to 0.001), the lengths of the shortest paths increase. This negative correlation

33

● ● ● ● ●

● ● ●
● ●

●
● ●

● ●

● ● ●
● ●

●
● ● ● ●

0.0

0.2

0.4

0.6

0.8

5k 10k 20k 40k 80k

Number of nodes

A
ve

ra
ge

 C
lu

st
er

in
g

C
oe

ffi
ci

en
ts

Model
● Hierarchical

Scale−Free
WS−0.001
WS−0.01
WS−0.1

The average clustering coefficients in the topologies

Figure 6.2. The average clustering coefficient in the graph topolo-
gies.

shows the same results that we expected and can be explained by the operation of the
generation algorithm belonging to the Watts-Strogatz model. As we increase the 𝑝 value,
the algorithm rewires every edge with 𝑝 probability—i.e. it deletes an edge and connects
it to a new random node—and this entails a bigger interconnectivity in the graph showing
a small-world property. On the contrary, a low 𝑝 value (e.g. 0.001) modifies a subtle set
of the edges, therefore, the graph still shows similar characteristics than a lattice graph
with high average shortest path length.

● ● ● ● ●
● ●

● ● ●● ● ● ● ●
● ●

● ● ●● ● ● ● ●

10

20

30

40

5k 10k 20k 40k 80k

Number of nodes

A
ve

ra
ge

 S
ho

rt
es

t P
at

h

Model
● Hierarchical

Scale−Free
WS−0.001
WS−0.01
WS−0.1

The average shortest path in the topologies

Figure 6.3. The average shortest path in the graph topologies.

34

6.4.4 Betweenness Centrality

Figure 6.4 illustrates the betweenness centrality metric per topologies. Regarding this
metric, we assumed a more significant deviation among the topologies, as we expected
that the hubs—the nodes with higher degrees—in scale-free models appear more times
in the shortest paths implying a higher betweenness centrality. Instead, the WS-0.001
model shows higher values in this metric than the scale-free model except in the case of
the largest graph.
A gap is observed between the hierarchical network and the other topologies due to the
fact the center node in the hierarchical graph dominates the calculation of the betweenness
centrality metric.

●

●

●

● ●

● ●

●

●
●

●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

0.00

0.25

0.50

0.75

5k 10k 20k 40k 80k

Number of nodes

M
ax

im
um

 B
et

w
ee

nn
es

s
C

en
tr

al
ity

Model
● Hierarchical

Scale−Free
WS−0.001
WS−0.01
WS−0.1

The maximum betweenness centrality in the topologies

Figure 6.4. The maximum betweenness centrality in the graph
topologies.

6.5 Performance Analysis

6.5.1 Hypothesis

Our hypotheses about the results of query evaluations are the following.

Reachability Query Regarding the first query—Reachability—we assume that the
larger clustering coefficients and higher degrees may cause a performance loss of the tools.
If the graph has a higher clustering coefficient then there is a possibility that the execution
of the query revisits a certain node more times via its neighbors. This implies that the
evaluation contains more—unnecessary—navigations.
A node with higher degree also can affect the performance, since if the graph traversal
visits this certain node with higher degree than there is a possibility that it also investi-

35

gates its neighbors. Nodes with high degree typically appear in the scale-free models—the
hubs—and the hierarchical networks—the center nodes.

The assumption comes naturally that the average shortest path length also can dominate
the execution time. Among the different Watts-Strogatz models, the ones with lower 𝑝

values include a higher average shortest path metric, suggesting a growing in the evaluation
time. However, considering the other topologies as well, it cannot be determined forward
which specific characteristic dominates better.

Navigations Query The Navigations query searches nodes in three-hop distances start-
ing from a random vertex. We believe that the nodes with higher degrees impact the
performance mostly, namely, the center nodes in the hierarchical graph and the hubs in
the scale-free models. We fundamental question is that whether our defined metrics are
suitable to characterize the performance appropriately or not.

6.5.2 Highlights of the Analysis

For the performance analysis we created and measured 50 different samples, each of them
contains 500 observations—i.e. measurement results. In the following sections we do not
intend to show the results in details of every sample, hence, we only concentrate on the
samples that contain interesting or unexpected results.

Blazegraph is highly sensitive to the average shortest path of the graph

The measurement results of Blazegraph is illustrated in Figure 6.5. The box plot [4] shows
the results in following dimensions. On the 𝑥-axis denotes the graph topologies and the
𝑦-axis represents the evaluation time in milliseconds on a logarithmic scale. Every column
includes different results belonging to a specific model size.

The most important observation is the deviation in evaluation time among the topologies.
Besides the execution times increases with respect to the number of nodes, the performance
also varies among the networks being in the same size. A significant difference is shown
between the Watts-Strogatz models (WS-0.001, WS-0.01) and the other networks.

The created regression models are listed in Table 6.3. Every measurement result and
metric were normalized for the calculations, and the table includes the best fitted regression
models on the measurements. In every case, the average shortest path metric seemed to
be the best predictor. Regarding different model sizes, the value of adjusted R2—i.e.
coefficient of determination—varies between 0.68 and 0.9 that show well-fitted regression
models.

36

5k 10k 20k 40k 80k

●

●

●

●●●●
●●●
●●

●

●●
●●●●
●●●

240.28

946.03

3724.66

14664.51

57736.26

227315.86

H
ie

ra
rc

hi
ca

l

S
ca

le
−

F
re

e

W
S

−
0.

00
1

W
S

−
0.

01

W
S

−
0.

1

H
ie

ra
rc

hi
ca

l

S
ca

le
−

F
re

e

W
S

−
0.

00
1

W
S

−
0.

01

W
S

−
0.

1

H
ie

ra
rc

hi
ca

l

S
ca

le
−

F
re

e

W
S

−
0.

00
1

W
S

−
0.

01

W
S

−
0.

1

H
ie

ra
rc

hi
ca

l

S
ca

le
−

F
re

e

W
S

−
0.

00
1

W
S

−
0.

01

W
S

−
0.

1

H
ie

ra
rc

hi
ca

l

S
ca

le
−

F
re

e

W
S

−
0.

00
1

W
S

−
0.

01

W
S

−
0.

1

Topologies

E
va

lu
at

io
n

T
im

e
(m

s)

Model Hierarchical Scale−Free WS−0.001 WS−0.01 WS−0.1

The evaluation times of the Reachability query in Blazegraph

Figure 6.5. The measurement results of the Reachability query in
Blazegraph.

Model Size Metric Adjusted R2 Regression Coefficient P-value
5 000 Avg Shortest Path 0.9 0.949 2.2 · 10−16

10 000 Avg Shortest Path 0.8586 0.9268 2 · 10−16

20 000 Avg Shortest Path 0.6807 0.8254 2.377 · 10−16

40 000 Avg Shortest Path 0.7647 0.8745 3.3 · 10−16

80 000 Avg Shortest Path 0.7642 0.8745 3.3 · 10−16

Table 6.3. The best fitted regression models of Blazegraph.

Sesame is mostly unaffected by the topology of the model

The evaluation results of Sesame are illustrated in Figure 6.6. As it can be observed, the
optimization in Sesame is not sensitive to the different topologies, as the various character-
istics of the networks still cause nearly the same evaluation time. A higher difference only
occurs between the different model sizes. Interestingly, a small difference is also observable
between the Watts-Strogatz models, as the 𝑝 values increases—implying the decrease of
the average shortest path metric—the evaluation times still grow.
Due to the approximately equal results, we cannot create an appropriate well-fitted re-
gression model for Sesame.

37

5k 10k 20k 40k 80k

● ●
●

●

●

● ●

●

● ●
●

●

●

●

●

●

●
●
●●

●

●●●

●●

●
●●

●

●●

●●●●●
●

●
●

●
●
●

●

●
●● ●

●
●

29.22

67.93

157.93

367.17

853.64

1984.64

H
ie

ra
rc

hi
ca

l

S
ca

le
−

F
re

e

W
S

−
0.

00
1

W
S

−
0.

01

W
S

−
0.

1

H
ie

ra
rc

hi
ca

l

S
ca

le
−

F
re

e

W
S

−
0.

00
1

W
S

−
0.

01

W
S

−
0.

1

H
ie

ra
rc

hi
ca

l

S
ca

le
−

F
re

e

W
S

−
0.

00
1

W
S

−
0.

01

W
S

−
0.

1

H
ie

ra
rc

hi
ca

l

S
ca

le
−

F
re

e

W
S

−
0.

00
1

W
S

−
0.

01

W
S

−
0.

1

H
ie

ra
rc

hi
ca

l

S
ca

le
−

F
re

e

W
S

−
0.

00
1

W
S

−
0.

01

W
S

−
0.

1

Topologies

E
va

lu
at

io
n

T
im

e
(m

s)

Model Hierarchical Scale−Free WS−0.001 WS−0.01 WS−0.1

The evaluation times of the Reachability query in Sesame

Figure 6.6. The measurement results of the Reachability query in
Sesame.

The clustering coefficient does not influence the performance for the Reacha-
bility test

Interesting to show that our assumption about the clustering coefficient metric is proved
to be false. The adjusted R2 values of the regression models containing the clustering
coefficient are considerably small. In the case of Sesame, the adjusted R2 is approximately
0.06 per different model sizes, and regarding Blazegraph, this value is equal to 0.13. Both
of them indicate that the clustering coefficient has a minimal impact to the performance,
in the light of these workloads.

Negligible relationship between the hubs and the performance of the Reacha-
bility test

The results of the Reachability query shows that the nodes which have significantly larger
degrees do not affect the performance of the evaluations. At first sight, we would as-
sume that the occurrence of hubs implies that the execution of the query must visits a
significantly larger amount of nodes. Since, if the evaluation reaches a hub during the
graph traversal than it possibly must visit its neighbors as well, causing a performance
loss. However, in the case of Blazegraph, the Watts-Strogatz models with higher average

38

shortest path lengths seem to be dominating, despite the fact that the same Reachability
test in a hierarchical or scale-free network may visit more vertices than in the case of the
WS models.

Navigations on graphs are dominated by hubs

The measurement results of the Navigation query is illustrated in Figure 6.7. As we as-
sumed, the hubs—i.e. the significantly higher degree nodes—affect the performance of this
query evaluation. A more interesting question is that whether our metrics can characterize
this relationship appropriately or not.

5k 10k 20k 40k 80k

●

●

●
●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

56.04

153.32

419.5

1147.76

3140.31

8592.01

H
ie

ra
rc

hi
ca

l

S
ca

le
−

F
re

e

W
S

−
0.

00
1

W
S

−
0.

01

W
S

−
0.

1

H
ie

ra
rc

hi
ca

l

S
ca

le
−

F
re

e

W
S

−
0.

00
1

W
S

−
0.

01

W
S

−
0.

1

H
ie

ra
rc

hi
ca

l

S
ca

le
−

F
re

e

W
S

−
0.

00
1

W
S

−
0.

01

W
S

−
0.

1

H
ie

ra
rc

hi
ca

l

S
ca

le
−

F
re

e

W
S

−
0.

00
1

W
S

−
0.

01

W
S

−
0.

1

H
ie

ra
rc

hi
ca

l

S
ca

le
−

F
re

e

W
S

−
0.

00
1

W
S

−
0.

01

W
S

−
0.

1
Topologies

E
va

lu
at

io
n

T
im

e
(m

s)

Model Hierarchical Scale−Free WS−0.001 WS−0.01 WS−0.1

The evaluation times of the Navigations query in FourStore

Figure 6.7. The measurement results of the Navigations query in
FourStore.

Our created regression models are shown in Table 6.4. These are the ones that provided
the best fit to the data including the betweenness centrality and maximum degree metric.
The main conclusion is that our metrics partly can characterize the relationship, since the
adjusted R2 values vary between the 0.4396 and 0.5228 interval.

As far as the other tools are concerned, such as Sesame and Blazegraph, the same metrics
can be used to obtain the best fitted regression, and the adjusted R2 values vary between
the 0.4018 and 0.5173 interval. These results also show that only these two metrics were

39

Model Size Metrics Adjusted R2 P-value
5 000 Betweenness + Maximum Degree 0.5228 2.2 · 10−16

10 000 Betweenness + Maximum Degree 0.5204 2.2 · 10−16

20 000 Betweenness + Maximum Degree 0.5125 2.2 · 10−16

40 000 Betweenness + Maximum Degree 0.4815 2.2 · 10−16

80 000 Betweenness + Maximum Degree 0.4396 2.2 · 10−16

Table 6.4. The best fitted regression models of Fourstore.

not adequate to characterize the performance properly regarding these workloads and
samples.

6.6 Conclusions

Model Generation We showed that our model generation approach was able to con-
struct different topologies with the same density with respect to the same number of nodes.
As it was illustrated, the clustering coefficient and average shortest path length metrics
were deviated appropriately among the topologies. Unfortunately, the betweenness cen-
trality metric seemed to be dominated by the hierarchical network, and it also showed a
significantly lower value in the scale-free models, than we originally expected.

Performance The measurement results illustrated that the different internal structure
of the graphs are able to cause a deviation in evaluation time, regarding the Reachability
and Navigations query as well. In the first query, Blazegraph seems to be sensitive to the
average shortest path length metric, on the contrary, the performance of Sesame is not
affected by the topologies regarding these workloads.

Hierarchical Graph The analysis of the topologies show that the hierarchical graph
has significantly different descriptive metrics than the other topologies, furthermore, our
measurement results of the Navigation query also imply that the hierarchical network
is overly dominating to the performance by comparing with the other networks. Our
generation technique also showed that—by relying on the hierarchical graph—we cannot
achieve an arbitrary density in the graph which is possible with the generation algorithms
of the other topologies. We had to adapt the other networks to the limitations of the
hierarchical graph. As a conclusion, the hierarchical graph is not capable to be used in
our framework in the future due to its limitations.

40

Chapter 7

Summary

7.1 Scientific Contributions

We achieved the following scientific contributions:

∙ We proposed a concept to investigate the relationships between graph-based metrics
and performance of query evaluations.

∙ We provided an approach of uniform graph generation among different topologies.

∙ We proposed a solution to estimate the number of edges in the hierarchical network
topology.

7.2 Practical Accomplishments

We achieved the following practical accomplishments:

∙ We designed a framework for metric-based performance analysis.

∙ We elaborated a benchmark framework to assess the performance of query evalua-
tions on homogeneous graph topologies.

7.3 Future Work

The following tasks are addressed as future works:

∙ Along the query and model metrics, we would like to investigate the effect of query
on model metrics [31]. The query on model metrics could be used to characterize
specific cardinalities of the model (e.g. the number of vertex types, the number of
hubs, etc.)

41

∙ The evaluation in this report focused on semantic databases. In the future, we
also plan to evaluate the performance of graph databases, e.g. Neo4j [36] and Ori-
entDB [17].

∙ To achieve better prediction, we would like to experiment with non-linear regression
models.

42

Acknowledgements

I would like to thank my supervisors Gábor Szárnyas and Dr. István Ráth for their generous
advice. I wish to express my gratitude to Ágnes Salánki and Imre Kocsis for their help in
statistics. Also, I would like to thank Dávid Cseh for supporting my work in the cloud.

i

List of Figures

2.1 Different examples for covariance [23]. 6

2.2 An example graph for illustrating the calculation of the clustering coefficient
metric. 8

2.3 The first iteration in the recursive generation algorithm of the hierarchical
network. 10

3.1 An overview of Train Benchmark. 13

3.2 The Railway domain of Train Benchmark. 14

4.1 An overview of the frameworks in our approach. 17

4.2 The main concept of the metric-based performance analysis. 18

4.3 Characteristic path length 𝐿(𝑝) and clustering coefficient 𝐶(𝑝) of Watts-
Strogatz model [47] . 20

5.1 The architecture of our approach. 22

5.2 Possible termination problems in the hierarchical graph generation. 24

5.3 The workflow of the HG Benchmark. 28

6.1 The density of the graph topologies. 33

6.2 The average clustering coefficient in the graph topologies. 34

6.3 The average shortest path in the graph topologies. 34

6.4 The maximum betweenness centrality in the graph topologies. 35

6.5 The measurement results of the Reachability query in Blazegraph. 37

6.6 The measurement results of the Reachability query in Sesame. 38

6.7 The measurement results of the Navigations query in FourStore. 39

ii

List of Tables

3.1 A comparison of existing benchmark frameworks and our approach. 15

4.1 Graph topologies and their descriptive metrics 19

4.2 Graph topologies and their descriptive metrics with extensions 21

5.1 The implemented tools in HG Benchmark 30

6.1 The number of nodes and edges in generated graphs. 32

6.2 The dimensions and their occurrence in a sample. 32

6.3 The best fitted regression models of Blazegraph. 37

6.4 The best fitted regression models of Fourstore. 40

iii

Bibliography

[1] 4store. http://4store.org/.

[2] Berlin SPARQL Benchmark (BSBM) Specification V3.1. http://wifo5-03.

informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/.

[3] Blazegraph. https://www.blazegraph.com/product/.

[4] Box Plot. http://www.physics.csbsju.edu/stats/box2.html.

[5] Covariance. http://mathworld.wolfram.com/Covariance.html.

[6] DBpedia. http://wiki.dbpedia.org/.

[7] Digital Bibliography and Library Project. http://dblp.uni-trier.de/db/.

[8] MONDO. http://www.mondo-project.org/.

[9] Population and Sample Definition. http://www.statistics.com/glossary&term_

id=812.

[10] Populations and Samples. http://stattrek.com/sampling/

populations-and-samples.aspx?Tutorial=AP.

[11] Random Variable. http://www.stat.yale.edu/Courses/1997-98/101/ranvar.

htm.

[12] Resource Description Framework. http://www.w3.org/RDF/.

[13] Sesame. http://rdf4j.org/.

[14] SPARQL Property Paths. http://www.w3.org/TR/sparql11-property-paths/.

[15] The TTC 2015 Train Benchmark Case for Incremental Model Validation. https:

//www.sharelatex.com/github/repos/FTSRG/trainbenchmark-ttc-paper/.

[16] Transaction Processing Performance Council. http://www.tpc.org/tpch/.

[17] OrientDB Graph-Document NoSQL DBMS. http://www.orientdb.org/, October
2015.

iv

http://4store.org/
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/
https://www.blazegraph.com/product/
http://www.physics.csbsju.edu/stats/box2.html
http://mathworld.wolfram.com/Covariance.html
http://wiki.dbpedia.org/
http://dblp.uni-trier.de/db/
http://www.mondo-project.org/
http://www.statistics.com/glossary&term_id=812
http://www.statistics.com/glossary&term_id=812
http://stattrek.com/sampling/populations-and-samples.aspx?Tutorial=AP
http://stattrek.com/sampling/populations-and-samples.aspx?Tutorial=AP
http://www.stat.yale.edu/Courses/1997-98/101/ranvar.htm
http://www.stat.yale.edu/Courses/1997-98/101/ranvar.htm
http://www.w3.org/RDF/
http://rdf4j.org/
http://www.w3.org/TR/sparql11-property-paths/
https://www.sharelatex.com/github/repos/FTSRG/trainbenchmark-ttc-paper/
https://www.sharelatex.com/github/repos/FTSRG/trainbenchmark-ttc-paper/
http://www.tpc.org/tpch/
http://www.orientdb.org/

[18] A. L. Barabási, Z. N. Oltvai. Understanding the cell’s functional organization nature
genetics. Network Biology, 5:101–114, 2004.

[19] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks.
Rev. Mod. Phys., 74:47–97, Jan 2002.

[20] Alireza Bigdeli, Ali Tizghadam, and Alberto Leon-Garcia. Comparison of network
criticality, algebraic connectivity, and other graph metrics. In Proceedings of the 1st
Annual Workshop on Simplifying Complex Network for Practitioners, SIMPLEX ’09,
pages 4:1–4:6, New York, NY, USA, 2009. ACM.

[21] Christian Bizer and Andreas Schultz. The berlin sparql benchmark. International
Journal On Semantic Web and Information Systems, 2009.

[22] Miyuru Dayarathna and Toyotaro Suzumura. Graph database benchmarking on cloud
environments with xgdbench. Autom. Softw. Eng., 21(4):509–533, 2014.

[23] George C. Runger Douglas C. Montgomery. Applied Statistics and Probability for
Engineers.

[24] Erdös, P. and Rényi, A. On random graphs, I. Publicationes Mathematicae (Debre-
cen), 6:290–297, 1959.

[25] P. Erdős and A Rényi. On the evolution of random graphs. In Publication of the
Mathematical Institute of the Hungarian Academy of Sciences, page 20, 1960.

[26] E. N. Gilbert. Random graphs. Ann. Math. Statist., 30(4):1141–1144, 12 1959.

[27] Tassilo Horn, Filip Krikava, and Louis M. Rose, editors. Proceedings of the 8th
Transformation Tool Contest part of the Software Technologies: Applications and
Foundations (STAF 2015) federation of conferences, L’Aquila, Italy, July 24, 2015,
CEUR Workshop Proceedings. CEUR-WS.org, 2014.

[28] L. A. Huberman, B. A. ; Adamic. Growth dynamics of the world-wide web. In Nature,
volume 401, page 131, 1999.

[29] Benedek Izsó, Gábor Szárnyas, István Ráth, and Dániel Varró. MONDO-SAM: A
Framework to Systematically Assess MDE Scalability. In BigMDE 2014 2nd Work-
shop on Scalable Model Driven Engineering, page 40. ACM, ACM, 2014.

[30] Benedek Izsó, Gábor Szárnyas, István Ráth, and Dániel Varró. Train bench-
mark technical report. https://www.sharelatex.com/github/repos/FTSRG/

trainbenchmark-docs/builds/latest/output.pdf, 2014.

[31] Benedek Izsó, Zoltán Szatmári, Gábor Bergmann, Ákos Horváth, and István
Ráth. Towards Precise Metrics for Predicting Graph Query Performance. In
2013 IEEE/ACM 28th International Conference on Automated Software Engineer-
ing (ASE), pages 412–431, Silicon Valley, CA, USA, 11/2013 2013. IEEE, IEEE.
Acceptance Rate: 23%.

v

https://www.sharelatex.com/github/repos/FTSRG/trainbenchmark-docs/builds/latest/output.pdf
https://www.sharelatex.com/github/repos/FTSRG/trainbenchmark-docs/builds/latest/output.pdf

[32] A. Jamakovic and S. Uhlig. On the relationship between the algebraic connectiv-
ity and graph’s robustness to node and link failures. In Next Generation Internet
Networks, 3rd EuroNGI Conference on, pages 96–102, May 2007.

[33] Steffen Mazanek, Arend Rensink, and Pieter Van Gorp. Transformation Tool Contest
2010. Malaga, Spain, 41, 2010.

[34] Robert Campbell McColl, David Ediger, Jason Poovey, Dan Campbell, and David A.
Bader. A performance evaluation of open source graph databases. In Proceedings of
the First Workshop on Parallel Programming for Analytics Applications, PPAA ’14,
pages 11–18, New York, NY, USA, 2014. ACM.

[35] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga Ngomo.
Dbpedia sparql benchmark: Performance assessment with real queries on real data.
In Proceedings of the 10th International Conference on The Semantic Web - Volume
Part I, ISWC’11, pages 454–469, Berlin, Heidelberg, 2011. Springer-Verlag.

[36] Neo Technology. Neo4j. http://neo4j.org/, October 2015.

[37] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary
degree distributions and their applications. Phys. Rev. E, 64:026118, Jul 2001.

[38] A. L. Barabási R. Albert, H. Jeong. The diameter of the world wide web. In Nature,
volume 401, pages 130–131, 1999.

[39] Erzsébet Ravasz and Albert-László Barabási. Hierarchical organization in complex
networks. Phys. Rev. E, 67:026112, Feb 2003.

[40] Marko A. Rodriguez. Titan Provides Real-Time Big Graph Data. http://

thinkaurelius.com/2012/08/06/titan-provides-real-time-big-graph-data/,
2012.

[41] Louis M. Rose, Christian Krause, and Tassilo Horn, editors. Proceedings of the 7th
Transformation Tool Contest part of the Software Technologies: Applications and
Foundations (STAF 2014) federation of conferences, York, United Kingdom, July 25,
2014, volume 1305 of CEUR Workshop Proceedings. CEUR-WS.org, 2014.

[42] Michael Schmidt, Thomas Hornung, Michael Meier, Christoph Pinkel, and Georg
Lausen. Sp2bench: A sparql performance benchmark. In Roberto de Virgilio, Fausto
Giunchiglia, and Letizia Tanca, editors, Semantic Web Information Management,
pages 371–393. Springer Berlin Heidelberg, 2010.

[43] Sparsity Technologies. DEX scalability with high-performance. http://

sparsity-technologies.com/blog/dex-scalability-with-high-performance/,
2011.

[44] Pieter Van Gorp, Steffen Mazanek, and Louis Rose. Fifth Transformation Tool Con-
test. arXiv preprint arXiv:1111.4407, 2011.

vi

http://neo4j.org/
http://thinkaurelius.com/2012/08/06/titan-provides-real-time-big-graph-data/
http://thinkaurelius.com/2012/08/06/titan-provides-real-time-big-graph-data/
http://sparsity-technologies.com/blog/dex-scalability-with-high-performance/
http://sparsity-technologies.com/blog/dex-scalability-with-high-performance/

[45] Pieter Van Gorp, Louis M. Rose, and Christian Krause. Sixth Transformation Tool
Contest. arXiv preprint arXiv:1311.7536v1, 2013.

[46] Wagon, Stan and Weisstein, Eric W. Lattice graph. http://mathworld.wolfram.

com/LatticeGraph.html.

[47] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of small-world net-
works. Nature, 393:440–442, June 1998.

vii

http://mathworld.wolfram.com/LatticeGraph.html
http://mathworld.wolfram.com/LatticeGraph.html

	Kivonat
	Abstract
	Introduction
	Introduction
	Context
	Problem Statement
	Contributions
	Structure of the Report

	Background
	Resource Description Framework
	Foundations of Statistics
	Population and Sample
	Probability Distributions
	Measures of Descriptive Statistics
	Covariance and Correlation
	Regression Analysis

	Graph Theory
	Metrics
	Network Topologies

	Related Work
	Berlin SPARQL Benchmark
	DBpedia SPARQL Benchmark
	SP2Bench
	Train Benchmark Framework
	Overview
	Model Generation
	Metric-Based Analysis

	Conclusion

	Design
	Overview of the Approach
	Models and Metrics
	Real-Life Networks
	Network Topologies and Representative Metrics

	Metric and Performance Comparison
	Choosing the Sample

	Contributions
	Overall Architecture
	Uniform Model Generation
	Number of Nodes
	Number of Edges
	Possible Model Configuration

	Performance Analysis
	Workflow
	Metrics Calculation
	Queries
	Tools

	Evaluation
	Benchmarking Environment
	Benchmark Configuration
	Samples
	Sample Size

	Model Analysis
	Density
	Clustering Coefficient
	Shortest Path Length
	Betweenness Centrality

	Performance Analysis
	Hypothesis
	Highlights of the Analysis

	Conclusions

	Summary
	Scientific Contributions
	Practical Accomplishments
	Future Work

	Acknowledgements
	List of Figures
	List of Tables
	Bibliography

