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1 Introduction

The field of feedback controller design for nonlinear systems has been continuously devel-
oping in recent decades, because of its practical importance and challenging theoretical
nature. It is well-known that the utilization of the physical and/or structural special-
ties of different nonlinear system classes greatly helps in obtaining theoretically well-
grounded, powerful and practically still feasible control methods: e.g. we have sound
methods of nonlinear feedback design for smooth input-affine systems [1], flat systems [2],
Hamiltonian or port-Hamiltonian systems [3,4], or that for Euler-Lagrange systems [5].

Deterministic kinetic systems with mass action kinetics or simply chemical reaction
networks (CRNs) form a wide class of nonnegative polynomial systems. CRNs are able
to produce all the important qualitative phenomena present in nonlinear systems, so
they form a rich-enough sub-class there. A recent survey shows [6] that CRNs are
also widely used in other areas than chemical reaction kinetics or process systems that
include biological applications, such as to model the dynamics of intracellular processes
and metabolic or cell signalling pathways [7].

The theory of chemical reaction networks has significant results relating network struc-
ture and the qualitative properties of the corresponding dynamics [8, 9]. However, the
network structure corresponding to a given dynamics is generally not unique [10]. Re-
cently, optimization-based computational methods were proposed for dynamically equiv-
alent network structures with given preferred properties (see, e.g. [11–14]).

Therefore, the general purpose of our work is to construct polynomial feedback con-
trollers to polynomial systems to achieve a kinetic closed loop system with given ad-
vantageous structural properties. These properties will ensure the global asymptotic
stability of the closed loop system even for non-kinetic and unstable polynomial open
loop systems.

The known basic notions and tools of positive kinetic systems will be shortly reviewed
first, then the optimization methods that enable to construct kinetic realizations with
given preferred properties will be described. Thereafter we show how these methods can
be used for static and dynamic polynomial feedback design. The developed methods and
tools are illustrated with several examples.
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2 Underlying notions and methods

Polynomial systems form a wide and well-studied class of smooth nonlinear systems
that have important applications in diverse engineering fields, such as (bio)chemical
engineering, process systems engineering, transportation engineering, etc. Within these
fields, positive (or nonnegative) polynomial systems are often considered that is dictated
by the physical meaning (e.g. pressure, concentration or the vehicle number/density) of
the signals.

The notion of positive systems builds upon the essential nonnegativity of a function
f = [f1 . . . fn]T : [0,∞)n → Rn, that holds if, for all i = 1, . . . , n, fi(x) ≥ 0 for all
x ∈ [0,∞)n, whenever xi = 0 [15].

An autonomous nonlinear system defined on the nonnegative orthant [0,∞)n = Rn
+ ⊂

X
ẋ = f(x), x(0) = x0 (2.1)

where f : X → Rn is locally Lipschitz, X is an open subset of Rn and x0 ∈ X is
nonnegative (or positive) when the nonnegative (or positive) orthant is invariant for the
dynamics (2.1). This property holds if and only if f is essentially nonnegative.

2.1 Kinetic systems, their dynamics and structure

Deterministic kinetic systems with mass action kinetics or simply chemical reaction net-
works (CRNs) form a wide class of nonnegative polynomial systems, that are able to
produce all the important qualitative phenomena (e.g. stable/unstable equilibria, oscil-
lations, limit cycles, multiplicity of equilibrium points and even chaotic behavior) present
in the dynamics of nonlinear processes [6]. The structure of CRNs is well characterized
by a weighted directed graph, called the reaction graph, and by their complex composition
matrix.

The problem of kinetic realizability of polynomial vector fields was first examined and
solved in [16] where it was shown, that the necessary and sufficient condition for kinetic
realizability of a polynomial vector field is that all coordinates functions of f in (2.1)
must have the form

fi(x) = −xigi(x) + hi(x), i = 1, . . . , n (2.2)

where gi and hi are polynomials with nonnegative coefficients. It’s easy to prove that
kinetic systems are nonnegative.
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2 Underlying notions and methods

2.1.1 The ODE form

If the condition (2.2) is fulfilled for a polynomial dynamical system, then it can always
be written into the form

ẋ = Y ·Ak · ψ(x), (2.3)

where x ∈ Rn is the vector of state variables, Y ∈ Zn×m
≥0 with distinct columns is the so-

called complex composition matrix , Ak ∈ Rm×m contains the information corresponding
to the weighted directed graph of the reaction network (see below). As it will be visible
later, the generally non-unique factorization (2.3) is particularly useful for prescribing
structural constraints using optimization. According to the original chemical meaning of
this system class, the state variables represent the concentrations of the chemical species
denoted by Xi, i.e. xi = conc[Xi] for i = 1, . . . , n. Moreover, ψ : Rn 7→ Rm is a mapping
given by

ψj(x) =
n∏

i=1
x

[Y ]ij

i , j = 1, . . . ,m. (2.4)

Ak is a column conservation matrix (i.e. the sum of the elements in each column is zero)
defined as

[Ak]ij =
{
−

∑m
l=1,l 6=i kil, if i = j

kji, if i 6= j.
(2.5)

Note that Ak is also called as the Kirchhoff matrix of the network.
The complexes are formally defined as nonnegative linear combinations of the species

in the following way:

Ci =
n∑

j=1
[Y ]jiXj , i = 1, . . . , n (2.6)

Note, that a column (let’s say column i) of the matrix Y may be equal to the zero vector.
In such a case, node Ci is called the zero complex.

2.1.2 Reaction graph and its properties

The weighted directed graph (or reaction graph) of kinetic systems is G = (V,E), where
V = {C1, C2, . . . , Cm} and E denote the set of vertices and directed edges, respectively.
The directed edge (Ci, Cj) (also denoted by Ci → Cj) belongs to the reaction graph if
and only if [Ak]j,i > 0. In this case, the weight assigned to the directed edge Ci → Cj is
[Ak]j,i.

The dynamic properties of a CRN depend on some of the structural properties of the
reaction graph. A CRN is called weakly reversible if whenever there exists a directed
path from Ci to Cj in its reaction graph, then there exists a directed path from Cj to
Ci. In graph theoretic terms, this means that all components of the reaction graph are
strongly connected components.
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2 Underlying notions and methods

2.1.2.1 Incidence matrix of the reaction graph

The incidence matrix of a reaction graph with r reaction is denoted by the matrix
BG ∈ {−1, 0, 1}m×r. Each reaction is represented as follows: BG has a column vector v
where vi = 1, vj = −1 and the other elements are 0 iff there exists a reaction from the
jth to the ith complex.

2.1.3 Stability of kinetic systems

The deficiency [9] is a fundamental property of a CRN. Its notion depends on the notion
of a reaction vector corresponding to Ci → Cj , and denoted by ek:

ek = [Y ]·,j − [Y ]·,i, k = 1, . . . , r, (2.7)

where [Y ]·,i denotes the ith column of Y and r is the number of reactions. The rank of a
reaction network denoted by s is the rank of the set of vectors H = {e1, e2 . . . , er}. The
stoichiometric subspace, denoted by S, is defined as S = span{e1, . . . , er}.

The deficiency d of a reaction network is defined as [9]:

d = mni − l − s, (2.8)

where mni is the number of non-isolated (i.e. reacting) vertices in the reaction graph,
l is the number of linkage classes (graph components) and s is the rank of the reaction
network. The deficiency is a very useful measure for studying the dynamical properties of
reaction networks and for establishing parameter-independent global stability conditions.

The Deficiency Zero Theorem [9] shows a very robust stability property of a certain
class of kinetic systems. It says that deficiency zero weakly reversible networks possess
well-characterizable equilibrium points, and independently of the weights of the reaction
graph (i.e. as long as the positive elements of the Ak matrix remain positive) they are at
least locally stable with a known logarithmic Lyapunov function that is also independent
of the system parameters. According to the so-called Global Attractor Conjecture (to
which no counterexample has been found), weakly reversible deficiency zero CRNs are
globally stable (within the positive orthant). This conjecture has been proved for CRNs
containing one linkage class [17]. Moreover, weakly reversible deficiency zero models are
input-to-state stable with respect to the off-diagonal elements of Ak as inputs [18], it is
straightforward to asymptotically stabilize them by additional feedback [19], and it is
possible to construct efficient state observers for them [20].

2.2 Optimization methods

In mathematics optimization is the selection of the best element from the set of the
possible solutions. We are going to deal with only the case of the finding the extremum
of a real-valued function. The general form of this problem:

min
x∈X

f(x) (2.9)
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2 Underlying notions and methods

where the function f(x) is called the cost or object function of the optimization problem.
Variables of the function f(x) is called the decision variables. X is the set of the available
decision variables.

Solving the general problem is hard, so the solution methods have compromises (e.g.
long computing time, the solution is only a local extremum, etc.). Specializations of the
optimization problem could result in more effective methods. In the following subsections
we are going to present two specialization of the original problem.

2.2.1 Linear programming

Linear programming (LP) is a special case of the optimization problems where the object
function is linear and the set of the feasible decision variables is a convex polyhedron
which is defined by linear inequalities. The form of LP problems that will be used in
this report is the following (this from is equivalent with the standard form)

min
x
cTx (2.10)

subject to

A1x ≤ b1 (2.11)

A2x = b2 (2.12)

where x ∈ Rn is the vector of decision variables, c ∈ Rn, b1 ∈ Rp1 and b2 ∈ Rp2 are
known vectors, A1 ∈ Rp1×n and A2 ∈ Rp2×n are known matrices. ’=’ and ’≤’ in (2.11)
and (2.12) means elementwise comparison. For a long time the complexity of the LP
problem has been an open problem, but nowadays number of polynomial time algorithm
exist (e.g. interior point method, ellipsoid method).

2.2.2 Mixed integer linear programming

Mixed integer linear programming (MILP) is an optimization technique which lies be-
tween the linear programming and the combinatorial optimization. It differs from the
linear programming that decision variables can also be integer ones. Due to this differ-
ence the solvable problem set is much larger than in the LP case. The form of MILP
problems that will be used in this report is the following (this from is equivalent with
the standard form)

min
x
cTx (2.13)

subject to

A1x ≤ b1 (2.14)

A2x = b2 (2.15)

xi is interger for i ∈ I, I ⊆ {1, . . . , n} (2.16)
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2 Underlying notions and methods

where x is the n dimensional vector of decision variables with real and integer elements,
c ∈ Rn, b1 ∈ Rp1 and b2 ∈ Rp2 are known vectors, A1 ∈ Rp1×n and A2 ∈ Rp2×n are
known matrices. ’=’ and ’≤’ in (2.15) and (2.14) means elementwise comparison.

Generally the mixed integer linear programming is NP-hard. In spite of this, there
exist a number of effective free (e.g. GLPK [21], lpsolve [22]) and commercial (e.g.
CPLEX [23]) solver.

2.2.2.1 Propositional expressions as mixed integer linear inequalities

This section is based on the article [24]. Let Xi be a propositional variable which can
either be true or false. One can associate variables logical variables: δi ∈ {0, 1} to the
propositional ones where δi = 0 when Xi is false and δi = 1 when Xi is true. In Boolean
algebra, propositional variables can be combined by the following operation: ∧ (and), ∨
(or), ¬ (not), ⊕ (exclusive or),→ (implies),↔ (iff). With these notations the connection
between the propositional expressions and integer linear inequalities is the following

X1 ∨X2 ⇔ δ1 + δ2 ≥ 1
X1 ∧X2 ⇔ δ1 = 1, δ2 = 1
¬X1 ⇔ δ1 = 0

X1 → X2 ⇔ δ1 − δ2 ≤ 0
X1 ↔ X2 ⇔ δ1 − δ2 = 0
X1 ⊕X2 ⇔ δ1 + δ2 = 1.

(2.17)

Furthermore we are going to give the connection between the continuous and logical
variables. Consider the following logical expression: X = [f(x) ≤ 0], where f is a linear
function, x ∈ X and X is bounded. The following linear inequality system is equivalent
to the logical expression X:

[f(x) ≤ 0]↔ [δ = 1]⇔
{
f(x) ≤M(1− δ)
f(x) ≥ ε+ (m− ε)δ

(2.18)

where m is the lower, M is the upper bound of f and ε is a small positive constant.
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3 Different realizations of CRNs

It was shown in e.g. [11] that key properties such as the number of directed edges or
non-isolated vertices in the reaction graph, the number of linkage classes, deficiency or
(weak) reversibility are realization-dependent properties. Therefore, optimization- (LP
and MILP) based computational procedures have been proposed to decide the existence
of and compute kinetic realizations with preferred structural properties [12–14].

In this chapter we are going to shortly summarize the constraint sets to dynamically
equivalent realizations, weakly reversible realizations and weakly reversible realizations
with minimal deficiency. The integration of these constraints into an optimization frame-
work in order to compute dynamically equivalent realizations with these properties is
also presented.

We are going to give a new method to compute deficiency zero realizations. Deter-
mining the minimal complex set to compute a weakly reversible realization would be a
new result, too.

3.1 Dynamical equivalence of CRNs

It is a known result of chemical reaction network theory that a reaction graph corre-
sponding to a given set of kinetic ODEs is generally not unique. We will use the degree
of freedom given by this phenomenon for feedback design. Using the notation M = Y ·Ak,
equation (2.3) can be written in the form

ẋ = M · ψ(x), (3.1)

where M contains the coefficients of the monomials in the polynomial ODE (2.3) de-
scribing the time-evolution of the state variables. We call two reaction networks given

by the matrix pairs (Y (1), A
(1)
k ) and (Y (2), A

(2)
k ) dynamically equivalent , if

Y (1)A
(1)
k ψ(1)(x) = Y (2)A

(2)
k ψ(2)(x) = f(x), ∀x ∈ Rn

+ (3.2)

where for i = 1, 2, Y (i) ∈ Rn×mi have nonnegative integer entries, A
(i)
k are valid Kirchhoff

matrices, and

ψ
(i)
j (x) =

n∏
k=1

x
[Y (i)]kj

k , i = 1, 2, j = 1, . . . ,mi. (3.3)

In this case, (Y (i)A
(i)
k ) for i = 1, 2 are called dynamically equivalent realizations of

the corresponding kinetic vector field f . It is also appropriate to call (Y (1), A
(1)
k ) a

(dynamically equivalent) realization of (Y (2), A
(2)
k ) and vice versa.
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3 Different realizations of CRNs

Example 1. Let us consider the following differential equation system:

ẋ1 = −5x1
ẋ2 = 5x1 − x2 + x3
ẋ3 = x2 − x3 − x1x2x

2
3 + 3x1x2x3

(3.4)

You can see two different realization of this differential equation system in Fig. 3.1.
These two realizations are example for the different complex set and reaction network
structure.

(a) (b)

Figure 3.1: Two different dynamically equivalent realization of (3.4). Figures use of the
notations of the subsection 2.1.2

3.2 Computing dynamically equivalent realizations using
optimization

. In this section we are going to present how one can solve the problem of computing
dynamically equivalent realizations with optimization methods. For this we choose the
problem of computing of the sparse and dense realizations [11]. Sparse realizations have
minimal number of edges and a dense realization has maximal number of edges.

3.2.1 The constraints

In the optimization problems we will use a fixed complex composition matrix Y to
the dynamical equivalence constraint (3.2) that remains linear. We are going to use a
decision variable Ak to represents the Kirchhoff matrix of the realization. Firstly we
have to guarantee the dynamical equivalence:

M = Y ·Ak (3.5)
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3 Different realizations of CRNs

where M contains the coefficients of the monomials in the polynomial ODE (2.3). Con-
straints of the Kirchhoff property are the following:

m∑
i=1

[Ak]ij = 0, j = 1, . . . ,m

[Ak]ij ≥ 0, i, j = 1, . . . ,m, i 6= j
[Ak]ii ≤ 0, i = 1, . . . ,m.

(3.6)

We can introduce a binary matrix variable Θ ∈ {0, 1}m×m. [Θ]ij is 0 when [Ak]ij = 0
otherwise [Θ]ij is 1. We can give this property with the following linear inequalities:

ε · [Θ]ij ≤ [Ak]ij ≤ U · [Θ]ij (3.7)

where ε is a small positive constant and U is the upper bound of values [Ak]ij . To reach
the maximal (minimal) number of edges we have to maximize (minimize) the following
object function:

V (Θ) =
∑
i,j

[Θ]ij (3.8)

It is visible that constraints (3.5)-(3.7) together with the objective function in (3.8) form
a standard mixed integer linear programming (MILP) problem.

Example 2. Let us consider a CRN which is given with its reaction graph: Fig. 3.2a.
Now, by using the proposed method we are able to determine a sparse and a dense
realizations which are dynamically equivalent to (Y,Ak). The reaction graph of the
sparse realization is depicted in Fig. 3.2b and the reaction graph of the dense realization
is depicted in Fig. 3.2c.

3.3 Computing weakly reversible realizations

In this section, a method for computing weakly reversible realization based on results
of [12] will be presented.

The constraints for weak reversibility can be constructed as follows. We use the fact
known from the literature that a realization of a CRN is weakly reversible if and only if
there exists a vector with strictly positive elements in the kernel of Ak, i.e. there exists
b ∈ Rn

+ such that Ak · b = 0 [25]. Since b is unknown, too, this constraint in this form is
not linear. Therefore, we introduce a scaled matrix Ãk with entries

Ãk = Ak · diag(b). (3.9)

where diag(b) is a diagonal matrix with elements of b. It is clear from (3.9) that Ãk

is also a Kirchhoff matrix and that 1 ∈ Rm (the m-dimensional vector containing only
ones) lies in ker(Ãk). Moreover, it is easy to see that Ãk defines a weakly reversible
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3 Different realizations of CRNs

(a) Reaction graph of the
original realization.

(b) Reaction graph of
the sparse realiza-
tion.

(c) Reaction graph of the dense realiza-
tion.

Figure 3.2: Three CRNs which are dynamically equivalent with each other.

network if and only if Ak corresponds to a weakly reversible network. Therefore, the
following constraints have to be fulfilled for Ãk

m∑
i=1

[Ãk]ij = 0, j = 1, . . . ,m
m∑

i=1
[Ãk]ji = 0, j = 1, . . . ,m

[Ãk]ij ≥ 0, i, j = 1, . . . ,m, i 6= j

[Ãk]ii ≤ 0, i = 1, . . . ,m.

(3.10)

Moreover, we transform the original equivalence equation (3.2) by diag(b) (we can do
this, because diag(b) is invertable):

M · diag(b) = Y ·Ak · diag(b)︸ ︷︷ ︸
Ãk

(3.11)

Finally, by choosing an arbitrary linear objective function of the decision variables,
weakly reversible realizations of the studied kinetic system can be computed (if any
exists) in a LP framework using the linear constraints (3.11) and (3.10).

3.3.1 Determining the necessary complexes in weakly reversible realizations

In this section we are going to show that a weakly reversible realization has a dynamically
equivalent one without pseudo complexes and this realization is weakly reversible.
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3 Different realizations of CRNs

Definition 1. Consider a CRN having the complex composition matrix Y and the
Kirchhoff matrix Ak. The kth complex is called pseudo complex , if its monomial does
not appear in the differential equation system of the CRN i.e. kth column of the matrix
Y ·Ak. is zero.

Theorem 1. Consider a CRN having the complex composition matrix Y and the Kirch-
hoff matrix Ak. If the kth complex is a pseudo source complex then there exists a dy-
namically equivalent realization (Y,A′k) where the kth complex is isolated.

Proof. Consider the kth column mk of matrix M = Y ·Ak:

0 = mk = −
∑
i 6=k

[Ak]ik[Y ]·k +
∑
i 6=k

[Ak]ik[Y ]·i (3.12)

We can divide both sides of the equation with
∑

i 6=k[Ak]ik because the kth complex is a
source complex so

∑
i 6=k[Ak]ik > 0:

[Y ]·k =
∑
i 6=k

[Ak]ik∑
j 6=k[Ak]jk

[Y ]·i (3.13)

Consider the lth column ml of matrix M :

ml = −
∑
i 6=l

[Ak]il[Y ]·l +
∑
i 6=l

[Ak]il[Y ]·i (3.14)

We can substitute (3.13) into (3.14):

ml = −
∑
i 6=l

[Ak]il[Y ]·l +
∑

i 6=l 6=k

[Ak]il[Y ]·i + [Ak]kl

∑
i 6=k

[Ak]ik∑
j 6=k[Ak]jk

[Y ]·i (3.15)

Let [A′k]il ∀i, k 6= l the following:

[A′k]il = [Ak]il + [Ak]kl
[Ak]ik∑

j 6=k[Ak]jk
(3.16)

A′k remains Kirchhoff matrix, because

∑
i 6=k

([Ak]il + [Ak]kl
[Ak]ik∑

j 6=k[Ak]jk
) =

∑
i 6=k

[Ak]il︸ ︷︷ ︸
0

+
∑
i 6=k

[Ak]kl
[Ak]ik∑

j 6=k[Ak]jk︸ ︷︷ ︸
0

= 0 (3.17)

and the case of i = k:

[Ak]kl = [Ak]kl + [Ak]kl

−
∑

j 6=k[Ak]jk∑
j 6=k[Ak]jk

= 0 (3.18)

The other elements of the off-diagonal of matrix [A′k] are greater or equal than 0.
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3 Different realizations of CRNs

Theorem 2. Every weakly reversible CRN has a realization (Y,Ak) which is weakly
reversible and all of its pseudo complexes are isolated.

Proof. All of the pseudo complexes in a weakly reversible realization are either source
complexes or isolated ones. The source pseudo complexes could be be converted into
isolated ones by using of the previously presented Theorem.

Example 3. Let us consider a CRN having the complex composition matrix Y as
follows:

Y =
[

1 2 2 1 0 1 3 2 0 3
2 2 1 1 0 0 1 0 1 2

]
and a Kirchhoff-matrixAk containing the following non-zero off-diagonal elements: [Ak]2,1 =
1, [Ak]4,1 = 1, [Ak]4,3 = 4, [Ak]8,3 = 2, [Ak]6,5 = 3, [Ak]9,5 = 1, [Ak]3,7 = 6, [Ak]10,7 = 3.
The reaction graph of this system can be found in Fig. 3.3a. It is easy to see that this
realization is not weakly reversible and contain number of non-isolated pseudo complexes.

Now, by using the proposed method we are able to determine an alternative realization
(Y,A′k) which is dynamically equivalent to (Y,Ak), weakly reversible and it does not
contain any pseudo complex. The complex set remains unchanged but the number of
”active” (i.e. non-isolated) complexes decreased by 6. The non-zero off-diagonal elements
of the matrix A′k are the following: [A′k]3,1 = 0.6154, [A′k]5,1 = 0.0769, [A′k]7,1 = 0.2308,
[A′k]5,3 = 2, [A′k]7,5 = 1, [A′k]1,7 = 3. This reaction graph is depicted in Fig. 3.3b.

(a) Reaction graph of the realization (Y, Ak). (b) Reaction
graph of the
realization
(Y, A′k).

Figure 3.3: Two CRNs which are dynamically equivalent with each other. The second
one is weakly reversible. Isolated complexes are omitted from the figure.

3.4 Computing realizations with zero deficiency

In this section we are going to give a new method to compute dynamically equivalent
realizations with zero deficiency. For this we are going to show some new results in
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3 Different realizations of CRNs

the topic of deficiency of CRNs. The integration of these methods into a optimization
framework in order to compute dynamically equivalent realizations with zero deficiency
is also presented.

3.4.1 Zero deficiency as a rank constraint

We can reformulate the definition from eq. (2.8) by using the incidence matrix of the
reaction graph denoted by BG:

d = rank(BG)− rank(Y ·BG) (3.19)

Theorem 3. The deficiency definition eq. (2.8) and that of eq. (3.19) are equivalent.

Proof. The rank of the incidence matrix of a directed graph is m − l where m is the
number of vertices and l is the number of connected components in the graph [26].
As Y · BG spans the stoichiometric subspace, the rank of Y · BG is the rank of the
stoichiometric subspace.

Now it can be seen that zero deficiency holds if the following rank constraint is fulfilled:

rank(BG) = rank(Y ·BG) (3.20)

3.4.2 Reformulation of the rank constraint as linear constraint

Theorem 4. Let m be the number of complexes in a CRN having the complex composi-
tion matrix Y and the Kirchhoff matrix Ak. Then zero deficiency is fulfilled if and only
if there exist vectors η1 ∈ Rm, η2 ∈ Rm, . . . , ηm−rank(Y ) ∈ Rm so that m = rank(Y T , η1,
η2, . . . , ηm−rank(Y )) and [Ak]ij > 0 =⇒ ηl

i = ηl
j.

Proof. We can rewrite the rank of a matrix product as [27]:

rank(BT
G · Y T ) = rank(BT

G) + rank(Y T , η1, η2, . . . , ηm−rank(BG))−m (3.21)

where ηl is the solution of the following homogeneous linear equation system:

BT
G · x = 0 (3.22)

If we apply eq. (3.20) to eq. (3.21) we obtain the following criteria to zero deficiency:

m = r(Y T , η1, η2, . . . , ηm−r(Y )). (3.23)

The reaction graph has an edge from the jth complex to the ith iff [Ak]ij > 0, so the
relationship between BG and Ak can be formulated as

[Ak]ij > 0 ⇐⇒ v ∈ BG (3.24)

where v is a column vector in the incidence matrix BG. By using the structure of v eq.
(3.22) can be converted into the following logical expression:

[Ak]ij > 0 =⇒ xi = xj (3.25)

15



3 Different realizations of CRNs

Theorem 5. m = r(Y T , η1, η2, . . . , ηm−r(Y )) is fulfilled if and only if there exists a
[Y ⊥]i ∀i = 1 . . .m− r(Y ) constructed the following way: [Y ⊥]i = βi

1 · η1 + . . .+βi
m−r(Y ) ·

ηm−r(Y ) + αi
1 · [Y T ]1 + . . .+ αi

n · [Y T ]n where Y ⊥ is the orthogonal complement of Y , βi
j

and αi
j are real coefficients and [Y ]i is the ith column of matrix Y .

Proof. First direction: If m = r(Y T , η1, η2, . . . , ηm−r(Y )), then [Y ⊥]i = βi
1 · η1 + . . .+

βi
m−r(Y ) · η

m−r(Y ) + αi
1 · [Y T ]1 + . . .+ αi

n · [Y T ]n.

[Y T ]1, . . . , [Y T ]n, η1, η2, . . . , ηm−r(Y ) is a generator system in Rm because it has a rank
m. Hence, an arbitrary vector in Rm can be described by the linear combinations of the
elements of this generator system.
Second direction: If [Y ⊥]i = βi

1 ·η1+. . .+βi
m−r(Y ) ·η

m−r(Y )+αi
1 ·[Y T ]1+. . .+αi

n ·[Y T ]n,

then m = r(Y T , η1, η2, . . . , ηm−r(Y )).

[Y T ]1, . . . , [Y T ]n, [Y ⊥]1, . . . , [Y ⊥]m−r(Y ) has a rank m. Let us consider the vector space
generated by these vectors. If it can be given by the linear combinations of the vectors
[Y T ]1, . . . , [Y T ]n, η1, η2, . . . , ηm−r(Y ), then this vector set also have to have rank m.
We chose the following set of vectors as generator system: [Y T ]1, . . . , [Y T ]n, [Y ⊥]1, . . . ,
[Y ⊥]m−r(Y ), because by using this only m − r(Y ) conditions will be obtained in the
optimization problem.

In order to use these results in a MILP framework we have to reformulate them to
linear ones. Firstly we are going to give a linear inequality system which is equivalent
with the kernel constraint eq. (3.22). For this we are going to apply the result of the
section 2.2.2.1. We can introduce a binary matrix Θ ∈ {0, 1}m×m. [Θ]ij is 0 when
[Ak]ij = 0 otherwise [Θ]ij is 1. We can give this property of Θ with the following
inequalities:

ε · [Θ]ij ≤ [Ak]ij ≤ U · [Θ]ij (3.26)

where ε is a small positive constant and U is the upper bound of [Ak]ij . By using of
variable Θ the logical version of the kernel constraint (3.25) can be written as follows:

−(1− [Θ]ij) · 2 · U ≤ xi − xj ≤ (1− [Θ]ij) · 2 · U (3.27)

where ε is a small positive constant and U is the upper bound of |xi|.
The presented bilinear constraint in Theorem 5 can be simplified to a linear one:

[Y ⊥]i = η̄i + αi
1 · [Y T ]1 + . . .+ αi

n · [Y T ]n (3.28)

considering that the linear combination βi
1 · η1 + . . .+ βi

m−r(Y ) · η
m−r(Y ) is a solution of

eq. (3.22):
BT

G(βi
1 · η1 + . . .+ βi

m−r(Y ) · η
m−r(Y )) = 0 (3.29)

since any ηl is a solution of eq. (3.22):

BT
G · βi

l · ηl = βi
l ·BT

G · ηl = 0. (3.30)
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3 Different realizations of CRNs

Finally, by choosing an arbitrary linear objective function of the decision variables,
realizations with zero deficiency of the studied kinetic system can be computed (if any
exists) in a MILP framework using the linear constraints (3.5) and (3.26)-(3.28).

Example 4. Let us consider a CRN having the complex composition matrix Y as
follows:

Y =

 1 0 1 0 0 0 1 1
0 0 1 1 0 1 1 1
0 0 0 0 1 1 2 1


and a non-reversible Kirchhoff-matrix Ak containing the following non-zero off-diagonal
elements: [Ak]2,1 = 5, [Ak]3,1 = 5, [Ak]2,4 = 1, [Ak]6,4 = 1, [Ak]2,5 = 1, [Ak]6,5 = 1,
[Ak]8,7 = 1, [Ak]7,8 = 3. The deficiency of this realization: d = 3. The reaction graph of
this system can be found in Fig. 3.4a where the complex described by the ith column
of Y is denoted as Ci.

Now, by using the proposed method we are able to determine an alternative realization
(Y,A′k) which is dynamically equivalent to (Y,Ak) and has zero deficiency. The complex
set remains unchanged and the non-zero off-diagonal elements of the matrix A′k are the
following: [A′k]4,1 = 5, [A′k]5,4 = 1, [A′k]4,5 = 1, [A′k]8,7 = 1, [A′k]7,8 = 3. This reaction
graph is depicted in Fig. 3.4b.

(a) Reaction graph of the realization (Y, Ak). (b) Reaction graph of the realiza-
tion (Y, A′k).

Figure 3.4: Two CRNs which are dynamically equivalent with each other and have dif-
ferent deficiency values. This system has no weakly reversible realization.
Isolated complexes are omitted from the figure.

3.5 Computing weakly reversible realizations with minimal
deficiency

In this section, the results of [14] are briefly summarized. The basis of the method
is the recognition that for weakly reversible networks, it is enough to maximize the
number of linkage classes (i.e. graph components) to minimize deficiency. An additional
applied known result is that a reaction graph is weakly reversible if and only if there
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3 Different realizations of CRNs

is a strictly positive vector in the kernel of the Kirchhoff matrix Ak. Then, the goal of
the optimization task is to allocate complexes between the possible maximal number of
linkage classes while maintaining dynamical equivalence.

The constraints for dynamical equivalence are easy to write as follows:

Ỹ · Ãk = M̃∑m
i=1[Ãk]ij = 0, j = 1, . . . ,m

0 ≤ [Ãk]ij ≤ 1/ε, i, j = 1, . . . ,m, i 6= j

(3.31)

where Ỹ and M̃ are the known complex composition matrix and coefficient matrix of the
right hand side of the polynomial differential equations, respectively. The off-diagonal
elements of the Kirchhoff matrix Ãk are unknowns, and ε is a sufficiently small number
used for bounding the elements of Ak. This bounding is technically needed because
the final optimization problem will contain integer variables as well. It can be easily
shown that the maximal possible number of linkage classes in any computed realization
is m− s [14]. To track the graph nodes among the graph components (linkage classes),
binary variables γik, for i = 1, . . .m, k = 1, . . .m − s are introduced: γik = 1 if and
only if Ci belongs to the k-th linkage class. We also introduce other auxiliary variables
θk ∈ [0, 1], for k = 1, . . . ,m − s, where θk = 0 indicates that the k-th linkage class is
empty. The complete partitioning of the complexes between linkage classes is expressed
by the constraints:

m−s∑
k=1

γik = 1, i = 1, . . . ,m
m∑

i=1
γik − εθk ≥ 0, k = 1, . . . ,m− s

−
m∑

k=1
γik + 1

ε
θk ≥ 0, k = 1, . . . ,m− s

γik ∈ {0, 1} , i = 1, . . . ,m, k = 1, . . . ,m− s
θk ∈ [0, 1] , k = 1, . . . ,m− s.

(3.32)

To ensure weak reversibility, we use an m×m Kirchhoff matrix Φ that is a column-scaled
version of Ak, i.e. Φ = Ãk · diag(b), where b ∈ Rm is a strictly positive vector in the
kernel of Ãk. It is clear that the positions of zero and non-zero elements in Ãk and Φ are
the same, and therefore reaction graph encoded by Ãk is weakly reversible if and only
if the m-dimensional vector containing only ones, i.e. [1 1 . . . 1]T ∈ Rm belongs to the
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3 Different realizations of CRNs

kernel of Φ. Let us add the following constraint set to the problem:

m∑
l=1
l 6=i

Φil =
m∑

l=1
l 6=i

Φli

Φij ≤
1
ε

(γik − γjk + 1)

Φij ≥ ε[Ãk]ij

Φij ≤
1
ε

[Ãk]ij

i, j = 1, . . . ,m, i 6= j, k = 1, . . . ,m− s.

(3.33)

The constraints in (3.33) ensure the following key properties: 1) identical structure of
Φ and Ak, 2) weak reversibility of the reaction graph corresponding to Φ and Ak, 3)
there cannot be directed edges between different linkage classes. Finally, the uniqueness
of solution can be enforced by the following constraint:

i−1∑
j=1

γjk ≥
m−s∑

l=k+1
γil,

i = 1, . . . ,m, k = 1, . . . ,m− s, k ≤ i.
(3.34)

By minimizing the following objective function, the deficiency is also minimized (through
maximizing the number of linkage classes):

V (θ) =
m−s∑
k=1

θk (3.35)

It is visible that constraints (3.31)-(3.34) together with the objective function in (3.35)
form a standard mixed integer linear programming (MILP) problem.

Example 5. Let us consider a CRN which is given with its reaction graph: Fig. 3.5a.
It is easy to see that this realization is not weakly reversible and its deficiency is 3.

Now, by using the proposed method we are able to determine an alternative realization
(Y,A′k) which is dynamically equivalent to (Y,Ak), weakly reversible and it has minimal
deficiency: 2. This reaction graph is depicted in Fig. 3.5b.
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3 Different realizations of CRNs

(a) Reaction graph of the realization (Y,
Ak).

(b) Reaction graph of the
realization (Y, A′k).

Figure 3.5: Two CRNs which are dynamically equivalent with each other. The second
one is weakly reversible with minimal deficiency.
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4 Feedback computation

In this section, the optimization problems for the design of static and dynamic kinetic
feedback are described. First, the autonomous system model (3.1) will be extended with
a simple linear input structure.

4.1 Open loop model form

We assume that the equations of the open loop polynomial system with linear input
structure are given as

ẋ = M · ψ1(x) +Bu, (4.1)

where x ∈ Rn, is the state vector, u ∈ Rp is the input, ψ1 ∈ Rn → Rm1 contains the
monomials of the open-loop system, B ∈ Rn×p and M ∈ Rn×m1 .

The problem that we will study is to design a static or dynamic monomial feedback
such that the closed loop system is kinetic, and there exists a realization that fulfills a
required property (in this particular case, weak reversibility with minimal deficiency).

4.2 Static feedback design: structure and parameters

We assume a polynomial feedback of the form

u = K · ψ(x), (4.2)

where ψ(x) = [ψT
1 (x) ψT

2 (x)]T with ψ2 ∈ Rn → Rm2 containing possible additional
monomials for the feedback, B ∈ Rn×p, and K ∈ Rp×(m1+m2). The closed-loop system
can be written as

ẋ = M · ψ1(x) +BK

[
ψ1(x)
ψ2(x)

]
. (4.3)

We can partitionK into two blocks asK = [K1 K2], whereK1 ∈ Rp×m1 andK2 ∈ Rp×m2 .
Using this notation, the closed loop dynamics is given by

ẋ =
[
M +BK1 BK2

]
︸ ︷︷ ︸

M

[
ψ1(x)
ψ2(x)

]
= M · ψ(x). (4.4)

The aim is to set the closed loop coefficient matrix M such that it defines a kinetic
system with ψ. It is clear from subsection 2.1 that this is possible if and only if M can
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4 Feedback computation

be factorized as M = Y · Ak where Y ∈ Zn×(m1+m2)
≥0 , and Ak ∈ R(m1+m2)×(m1+m2) is a

valid Kirchhoff matrix.
Based on constructing the so-called canonical realization of a kinetic system [16], we

can give a simple method to generate matrix Y (and thus ψ2 given by such monomials
that do not appear in (4.1)) using the monomials of the open loop system as as de-
scribed in [28]. After constructing Y , the kinetic property, minimal deficiency and weak
reversibility of the controlled system can be achieved if the MILP problem defined by
(3.31)-(3.34) and (3.35) can be solved for Ãk = Ak substituting Ỹ = Y and M̃ = M .

Thus, the feedback gain computation and the search for realizations of the closed loop
system which is accordance with the requirements has been integrated into one LP or
MILP optimization problem. It has to be noted that while M̃ is assumed to be known
in (3.31), M contains unknowns, namely the feedback parameters K1 and K2, but this
does not change the linear nature of the constraints and the LP or MILP computation
framework is still applicable.

4.3 Dynamic feedback design: structure and parameters

To increase the degrees of freedom in transforming a polynomial system to kinetic form
via feedback, it is a straightforward idea to apply a dynamic extension. In this case, let
us write the equations of the open-loop system as

ẋ(1) = M11ψ1(x(1)) +Bu, (4.5)

where x(1) ∈ Rn, M11∈Rn×m1 , ψ1 : Rn → Rm1 , B ∈ Rn×p, and u ∈ Rp. Let us give the
equations of the dynamic extension as

ẋ(2) = M21ψ1(x(1)) +M22ψ2(x), (4.6)

where x(2) ∈ Rk, M21 ∈ Rk×m1 , M22 ∈ Rk×m2 . Moreover,

x =
[
x(1)

x(2)

]
∈ Rn+k, ψ(x) =

[
ψ1(x(1))
ψ2(x)

]
, (4.7)

where ψ2 : Rn+k → Rm2 . Let us again use a monomial feedback in the form u =
Kψ(x) = K1ψ1 + K2ψ2, where K1 ∈ Rp×m1 , K2 ∈ Rp×m2 , and K = [K1 K2]. The
equations of the closed loop system are given by

ẋ =
[
M11 +BK1 BK2
M21 M22

]
· ψ(x) = M · ψ(x) (4.8)

The feedback gain computation, constraints of the closed loop are completely analogous
to the static feedback case described in subsection 4.2 with the only exception that we
have more unknowns (i.e. decision variables) in matrices M21 and M22 giving generally
more degrees of freedom to solve the feedback design problem.
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4 Feedback computation

4.4 Examples with different requirements for the closed loop

In this section we are going to prescribe different requirements for the closed loop sys-
tem. For computing these closed loops we can use of the results of the section 3.1.
The examples with ensuring different structural properties illustrate that useful dynam-
ical properties can be guaranteed to the closed loop system (e.g. bounded trajectories,
positive equilibrium points, global stability) using the proposed feedback design method.

4.4.1 Example for weakly reversible closed loop

It was shown in section 3.3 that complexity of computing of a weakly reversible realization
is polynomial time in the number of complexes. Hence, when you have a large system
with many complexes, the design of the feedback which guarantees bounded trajectory
instead of global stability remains computability tractable. With the following example
we are going to demostrate this type of feedback.

Example 6. Let us consider the following polynomial system

ẋ = 0.5y − 16x− x3 + x2y + 2 + u (4.9)

ẏ = −0.5y + 16x+ x3 − x2y (4.10)

(4.11)

You can see in the Fig. 4.2a that for u = 0, the system has no equilibrium points in the
nonnegative orthant. Using the notations of section 4.1, we have:

ψ1(x, y) = [y x 1 x3 x2y]T , (4.12)

M11 =
[

0.5 −16 2 −1 1
−0.5 16 0 1 −1

]
, B =

[
1
0

]
(4.13)

Performing the procedure presented in section 4.2, we find that the LP optimization
problem is feasible, and

K =
[

0 −2 0 0 0
]
. (4.14)

This means that the feedback: u = −2x, results in a closed loop system that has a
weakly reversible realization. Therefore, the controlled system has bounded trajectories
in the positive orthant but it is not asymptotically stable. The resulting weakly reversible
reaction graph of the closed loop system is depicted in Fig. 4.1, while Fig. 4.2b illustrates
the bounded trajectories of the controlled system.

4.4.2 Weakly reversible closed loop with minimal and zero deficiency

Previously we showed that a polynomial system which has a weakly reversible realization
with zero deficiency can guarantee the global stability of the system. This result is our
motivation to design weakly reversible closed loop with zero deficiency. We gave two
different methods to compute zero deficiency realization in sections 3.4 and 3.5. With
the following examples we are going to demonstrate this type of feedback.
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4 Feedback computation

Figure 4.1: Weakly reversible kinetic structure of the closed loop system

(a) Time domain behavior of the open-loop
system

(b) Two different trajectories demonstrate
the time domain behavior of the closed
loop system

Figure 4.2: Time domain behaviour of the open and the closed loop system

Example 7. Let us consider the following polynomial system

ẋ1 = −x1x2 + 2x2
2x3 (4.15)

ẋ2 = x1x2 − 4x2
2x3 − x2x

2
3 + u1 (4.16)

ẋ3 = 6 + x1x2 − 3x2
2x3 + u2 (4.17)

It is easy to see from (4.17) that for u1 = 0, u2 = 0, the system has no equilibrium points
in the nonnegative orthant. Using the notations of section 4.1, we have:

ψ1(x(1)) = [1 x1x2 x
2
2x3 x2x

2
3]T , (4.18)

M11 =

 0 −1 2 0
0 1 −4 −1
6 1 −3 0

 , B =

 0 0
1 0
0 1

 (4.19)

For a dynamical feedback, let us introduce one new variable x(2) = x4, and an additional
monomial as follows: ψ2(x) = [x2

3x4]. Then, after performing the procedure presented
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4 Feedback computation

in section 4.3, we find that the MILP optimization problem is feasible, and

K =
[

1 0 2 0 0
2 0 1 0 −10

]
, M21 = [3 0 0 1], M22 = [−5]. (4.20)

This means that the feedback: u1 = 2x2
2x3, u2 = x2

2x3 − 10x2
3x4, and the dynamic

extension: ẋ4 = 3 + x2x
2
3 − 5x2

3x4 results in a closed loop system that has a weakly
reversible realization with zero deficiency. Therefore, the controlled system has bounded
trajectories in the positive orthant and moreover, it is globally stable with a known
logarithmic Lyapunov function. The resulting weakly reversible reaction graph of the
closed loop system is depicted in Fig. 4.3, while Fig. 4.4b illustrates the asymptotically
stable trajectories of the controlled system.

Figure 4.3: Weakly reversible kinetic structure of the closed loop system

(a) Unstable behavior of the open-loop sys-
tem

(b) Time-domain behaviour of the controlled
system

Figure 4.4: Time domain behaviour of the open and the closed loop system

Example 8. Let us consider the extended version of the well-known 3-dimensional
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Lorenz system by linear input terms as an open loop polynomial system

ẋ = σ(y − x) + u1 (4.21)

ẏ = x(ρ− z)− y + u2 (4.22)

ż = xy − βz + u3 (4.23)

Let the parameter values be σ = 10, ρ = 28, β = 8/3 that are known to lead to chaotic
behavior for u = 0. It is important to note that the above model is not kinetic that is
also clearly visible from Fig. 4.6a.

Using the notations of section 4.1, we have:

ψ1(x, y, z) = [x y z xz xy]T , (4.24)

M11 =

 −10 10 0 0 0
28 −1 0 −1 0
0 0 −2.6667 0 1

 , B =

 1 0 0
0 1 0
0 0 1

 (4.25)

In designing the feedback we are going to use the original monomials only and we are not
using dynamical extension. Then, after solving the MILP problem described in section
4.2, we find that the problem is feasible, and

K =

 9.9 −9.8 0.1 −0.1 −0.1
−27.9 0.8 0.1 1.1 −0.1

0 0.2 2.5667 −0.2 −0.9

 . (4.26)

The obtained feedback structure results in a closed loop system that has a weakly re-
versible realization with zero deficiency. The resulting weakly reversible reaction graph
of the closed loop system is depicted in Fig. 4.5, while Fig. 4.6b illustrates the stable
behavior of the controlled system. Note that the above feedback completely changes the

Figure 4.5: Weakly reversible kinetic structure of the closed loop system

coefficients of the nonlinear terms in the model by leaving its monomial terms unchanged.
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4 Feedback computation

(a) Chaotic behavior of the open-loop Lorenz
system

(b) Time-domain behaviour of the controlled
Lorenz system

Figure 4.6: Time domain behaviour of the open and the closed loop Lorenz system
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5 Conclusions and future work

Firstly we presented the number of methods to compute different realizations of a CRN.
Weakly reversible realizations with zero deficiency guarantee global stability. Hence we
gave a new method to computing realizations with zero deficiency. In order to reduce
the computational time of computing weakly reversible realizations we determined the
minimal set of complexes. This result is useful in choosing of monomials in the feedback
computing, too.

Based on our earlier works [28, 29] a novel optimization based state feedback design
method was proposed for polynomial systems that transforms the closed loops system
into kinetic form with minimal deficiency and weak reversibility. Weak reversibility
ensures the boundedness of the trajectories in the positive orthant, while global stability
can be achieved in the zero deficiency case. Both static and dynamic feedback designs
are considered. The computational method uses optimization for jointly determining
the feedback parameters and the preferred dynamically equivalent realization of the
closed loop system as a kinetic system. The different requirements request different
computational complexity. We gave LP method to compute closed loop with bounded
trajectories and MILP methods to reach global stability.

The controller structure assumes a linear input structure of the open loop system,
and uses a polynomial feedback constructed from the monomials of the original system
possibly extended by new ones.

The proposed methods are illustrated by examples, including a Lorenz system with
chaotic behavior in the open-loop case.

Since this report only just presented the first step in the feedback design based on
the CRN theory, so a number of open questions remained. Hence we give some possible
directions for the future work:

� Choosing of the monomials in the the feedback polynomial.

� Dealing with the robustness of the closed loop.

� Specifying performance requirements in the optimization problems.
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[28] G. Szederkényi, G. Lipták, J. Rudan, and K. M. Hangos, “Optimization-based de-
sign of kinetic feedbacks for nonnegative polynomial systems,” in Proceedings of the
9th IEEE Conference on Computational Cybernetics Tihany Hungary , 2013, pp.
67–72.

[29] G. Lipták, G. Szederkényi, and K. M. Hangos, “Kinetic feedback computation for
polynomial systems to achieve weak reversibility and minimal deficiency,” 2014,
submitted.

31


