

1

Fish:rec – An AI-based fish

recognizer tool

Fish:rec – Mesterséges Intelligencia alapú halfelismerő eljárás

Scientific Students’ Associations Conference 2023

(Tudományos Diákköri Konferencia 2023)

By:

Reich Márton

Supervisors:

Dr. Sándor Baranya

Associate professor, Department of Hydraulic and Water Resources Engineering

Tikász Gergely

Assistant research fellow, Department of Hydraulic and Water Resources Engineering

Budapest, 2023

2

CONTENTS

Abstract .. 4

1. Introduction ... 5

1.1. Conventional methods of fish monitoring .. 5

1.2. AI based image analysis ... 6

1.3. Image recognition in fish monitoring ... 8

1.4. Goal of this study .. 9

2. Methods ... 10

2.1. Study site .. 10

2.2. Object detection .. 12

2.2.1. Theory behind Convolutional Neural Networks.. 12

2.2.2. Accuracy measurements .. 15

2.2.3. YOLO introduction .. 15

2.3. Annotation of fishes .. 16

2.4. Pre-processing .. 19

2.4.1. Augmentation... 19

2.5. Training and testing .. 20

2.6. Postprocessing .. 21

2.7. Programming .. 22

3. Results ... 23

3.1. Developed models .. 23

3.2. Sample application ... 25

4. Discussion .. 29

4.1. Main novelty of the study ... 29

4.2 Evaluation of results .. 30

4.3. Applicability limitations ... 31

4.4. Future development directions ... 32

3

4.5. My contribution .. 33

Acknowledgements ... 34

Figures ... 34

Bibliography .. 34

Internet references ... 36

Appendix ... 37

4

Abstract

Monitoring fish population is essential, as fishes are key components of the aquatic ecosys-

tem and changes in their population size and mix are important ecological indicators. Never-

theless, it is a labour intensive and time-consuming job to monitor fish populations, as the meth-

ods used today need scientists experienced at recognizing fish species. On top of that, these

manual methods currently in use must be repeated frequently to get tangible outcomes, for a

given period, at a given location.

This research proposes an Artificial Intelligence (AI) based solution to automatize fish pop-

ulation monitoring using machine learning and computer vision. For this, I deploy a deep learn-

ing based method which uses convolutional neural networks (CNN) for image recognition, and

object detection. The fish monitoring tool is developed, trained and tested using a high number

of annotated and augmented images from video footages captured at a fish pass. The test site is

located at the River Tisza in Hungary at Kisköre, where different fishes, representative for the

Hungarian rivers, are migrating. The paper introduces the AI model selection, the training and

testing phases of the tool development, and provides a method for quantifying the fish migra-

tion.

5

1. Introduction

1.1. Conventional methods of fish monitoring

Fish monitoring is a favoured way to detect changes in the environment and determine water

quality in numerous aquatic habitats. The usage of fishes as biological indicators has been cited

in multiple studies and legislation related to aquatic ecosystems and water resources (Fausch et

al., 1990; Water Framework Directive, 2000/60/EC; Kurtz et al., 2001). Numerous investiga-

tions concentrate on enhancing and safeguarding environmental conditions, which are im-

portant for aquaculture and nature conservation.

Biological indicators are preferred over chemical indicators in the conservation of aquatic

environments because the chemical indicators often overlook environmental conditions and

changes caused by anthropogenic impacts. While chemical and physical properties of water are

excellent at detecting certain aspects of the water body, they cannot reveal changes in biotic

integrity and the effects of human pollution. This view is reinforced by Oberdorff and Hughes

(1922), who conducted a comparison between the Water Quality Index (WQI) and a modified

version of the Index of Biotic Integrity (IBI) using chemical and biological monitoring tech-

niques in the Seine River. The study found that IBI is a more sensitive and resilient measure for

evaluating water quality. It should be noted, however, that this does not imply that biological

monitoring methods are inherently preferable to chemical ones. The optimal application of both

these methods is site-specific. However, biological monitoring is generally favoured over chem-

ical monitoring.

Fish play a significant part in biological monitoring due to their importance as a pivotal

species in aquatic environments. Various methods exist for assessing fish, including direct cap-

ture and examination practices, as well as non-invasive techniques.

Electric fishing, netting, and using the catch of many fishermen are the most commonly

utilised techniques for evaluating fish populations and their health. (fao.org). Electrofishing

employs a direct current between a submerged cathode and anode, taking advantage of the fact

that fish swim towards the anode and can be stunned or captured. When carried out correctly,

the fish suffers no lasting harm and can resume its normal mobility after two minutes of being

caught. Seine, trawl and gill nets are the primary netting methods employed. Though they are

commonly used and quite effective, each of them has a drawback. Seine nets are more effective

in deep waters than in rivers and freshwater areas, where they may encounter difficulties. Trawl

6

nets can be expensive, and gill nets are rather difficult to use due to their specific shape and

size. While making use of the information coming from catches of fishers sounds like an effi-

cient way to assess fish populations, since the professionals don’t have to go through the process

of catching the fishes, the efficiency depends on the ability and willingness of the third party to

help.

The implementation of fish counters and observation techniques are stress-free methods that

do not require capturing any fish. Two types of fish counters are primarily used: the resistive

counter, which takes advantage of varying fish resistance to electric current. The hydroacoustic

counter is a second type of fish survey method which utilises sound waves sent through the

water and detects them with microphones. However, these methods can only be used for a lim-

ited number of fish species at a time, which is their main drawback. Alternative, observational

methods can be employed, such as cameras or divers who quantify fish based on footage or

visual observation.

Most of the methods require human expertise and are both time consuming and labour in-

tensive. In addition, fork length (the length of the fish), and at times weight measurements, are

required post fish capture to undertake a tangible survey.

1.2. AI based image analysis

The concept of image recognition emerged during the 1950s and gained momentum in the

1960s. The invention of the first digital camera marked one of the starting points of computer

vision. Russel Kirsch and a group of researchers created a method to convert images into binary

numbers that computers could interpret. Among the first digital images produced was a picture

of Kirsch's son. Despite its small size, the image has now become iconic.

Prior to the emergence of computer technology, the analysis of images or video material was

performed manually by an individual. However, researchers aimed to automate these tasks us-

ing computers. With the goal of imitating human vision and recognition, image recognition was

developed through The Summer Vision Project (Seymour Papert, 1966) in 1966. The study

aimed to enable the computer to distinguish between the background, possible objects, and

chaos. Even though it was unsuccessful, this project is regarded as the origin of AI-based com-

puter vision.

Understanding image structures by extracting 3D objects made image recognition a cutting-

edge technology. The 1970s witnessed a surge in studies and innovative ideas based on

7

computer vision. This period saw the development of the basics of computer vision programs

that are still in use today, such as edge extraction and line labelling. Subsequent studies resulted

in additional innovations such as contour models and shape recognition based on shading. Fur-

ther development was carried out by a Japanese scientist called Kunihiko Fukushima to create

a self-organising artificial neural network that was unaffected by changes in position. This in-

vention, called Neocognitron, is recognised as the first deep neural network and the predecessor

of today's convolutional neural networks (CNNs). This led to further research into feature-based

recognition technologies. Feature-based recognition works by determining the object from fea-

tures immutable from rotation or location.

In 2006, Fei-Fei Li founded Imagenet, a project to help scientists build difficult neural net-

works and overcome overfitting and underfitting. In 2010, Imagenet consisted of more than 3

million carefully labelled images. Imagenet has been a huge boost to the modern world of image

recognition. The Imagenet Large Scale Visual Recognition Challenge (ILSVRC), a computer

vision competition held in 2010, motivated researchers to think of innovative ways to solve

image recognition problems and reduce error rates. This competition prompted a team from the

University of Toronto to develop Alexnet. Alexnet used a convolutional neural network archi-

tecture and managed to reduce the error rate by 10% compared to previous models, which had

an error rate of 15.3%. By 2017, the error rate dropped to 5% only.

Fast forward to today, models based on these algorithms are widely implemented and have

gained popularity even among non-professionals. Examples of the many implementations of

image recognition today are listed below:

Automated driving – Also known as self-driving, automated driving is a dominant research

topic in the field of computer vision. Some car manufacturers, including Tesla and Waymo,

have already integrated this technology into their vehicles. Despite many worries about the

dangers, self-driving is a future of vehicles.

Facial recognition in security systems – Facial recognition is commonly associated with se-

curity, particularly in relation to mobile phones. Modern smartphones incorporate facial and

biometric recognition algorithms to enhance security. In addition, facial recognition systems

are employed in criminal identification, surveillance, and airport security.

8

Healthcare systems and medical diagnostics – AI has diverse and important applications in

medical fields. Image recognition can help detect diseases and identify cancer cells. Many

cancer treatments employing AI to identify cancer cells, then applying laser treatment with

precise machines.

These are just a few examples. Image recognition is frequently utilized in society, often

without individuals being aware of it. Despite the popularity of computer vision, there are sev-

eral limitations. The primary issue is the insufficient amount of adequately sized datasets. In

order to achieve a model that performs well enough to be utilized in real-world situations, tens

of thousands or even hundreds of thousands of carefully labelled images are necessary. Acquir-

ing these images can be problematic in certain sectors. Labelling is also a strenuous exercise,

as it is both time-consuming and labour-intensive. In addition, image recognition can have dif-

ficulties in areas where image quality is poor, with the result that the algorithm malfunctions.

Nevertheless, the advantages of artificial intelligence outweigh the disadvantages.

1.3. Image recognition in fish monitoring

Various studies applied image recognition on underwater footage in the past years (a little

over 100 in the last 3 years according to Barbedo, 2022. In the words of Saleh et al. (2022),

underwater environments raise 5 problems:

• lighting varies frequently, objects a little farther are much less bright,

• scenes are highly dynamic, scenes change quickly,

• depth and distance perception can be incorrect due to refraction,

• images are affected by water turbidity and light scattering,

• image data are under-sampled due to low resolution.

Due to these issues, a few research have gone into trying to enhance the images, extract

shapes and make images more suitable for further analysis (Zhou et al., 2017; Islam et al.,

2020). Even though these techniques can emphasize features that may be obstructed, but they

cannot recover information that has been lost due to poor conditions. One approach to address

this issue is to use near infrared cameras and combine the information with optical images

(Zhou et al., 2018).

Most of the studies applied image recognition in controlled environments, and a few have

done in uncontrolled habitats. Among the latter ones a few have done tracking on individual

9

fishes (Abe et al., 2021), and the rest detecting several fish species ranging from 1 to 10 most

of the time. Villon et al. (2018) have detected 20 fish species in their studies.

Having recognized the importance of fish monitoring, many companies have decided to au-

tomate the process using artificial intelligence.

• Cermaq: The project aims to improve fish welfare and product quality with indi-

vidual based filtering techniques. The process involves fishes in the cage going into

a sensor, which determines their health and whether they are fit for consumption or

should be kept alive. (cermaq.com)

• Fishal.ai: The goal of the 3-phase project is to create a user-friendly environment for

fishers to upload images of caught fishes, use these images to create large datasets,

and develop an artificial intelligence model to recognize fishes. (fish.ai)

1.4. Goal of this study

This study aims to improve biological monitoring of aquatic environments through the uti-

lization of artificial intelligence. Camera footage of fish passing through the Kisköre fish pass

are continually observed by convolutional neural networks. An artificial model using the

YOLOv8 architecture has been implemented, with thousands of fish images used for training.

The model has been applied to the camera footage. After analysing the footage, the model iden-

tifies the majority of fishes and produces statistics related to their population, size, and average

swimming direction.

Implementing computer vision in fish monitoring offers numerous benefits. Automation

makes the process much more efficient, reducing the need for biologists to evaluate fish popu-

lations. A system such as the one outlined in this study has the capacity for monitoring fish

while reducing the workload on scientists. Additionally, this system can run continuously, pro-

ducing ongoing data and statistics on fish. However, image recognition also has disadvantages

and limitations. A camera must be set up in a way that the video quality and the visibility of the

fishes are qualified for the use of the model. Additionally, addressing the challenge of small

datasets is necessary.

10

2. Methods

2.1. Study site

Tisza is the longest river in Hungary, surpassing Danube by more than 150 km solely within

the Hungarian section. It measures 962 km overall, of which 597 km flows through Hungary.

Tisza is culturally and geographically important part of Hungary. Along with Danube, it splits

Hungary into three parts, while its catchment area covers a significant area of Eastern Hungary

(47,000 km2). Tisza originates in the Eastern Carpathians in Ukraine, near a town called Rahó.

Tisza river flows through Romania, Hungary, Slovakia, and Serbia before eventually flowing

into the Danube in the middle of Vojvodina, near Titel. The river enters Hungary at the village

of Tiszabecs and leaves near Gyálarét. In some sections in the north and south Tisza serves as

a border between Ukraine and Hungary, and Serbia and Hungary. The Hungarian section of

Tisza can be divided into three branches: Upper Tisza (northern border of Hungary – Tokaj),

Middle Tisza (Tokaj – Tiszaug) and Lower Tisza (Tiszaug – southern border).

The Kisköre hydropower plant, located in the middle section of the Tisza in Hungary, is the

highest preforming and largest hydropower plant of Hungary, generating 28 MW of electricity.

Its construction began in 1967 and lasted until 1974, and it was inaugurated on the 16th of May

1973. The structure was built at the 403rd river mile with the purposes of providing irrigation

water, producing electricity, provision of inland navigation and recreational uses. With the hy-

dropower plant being in use, a forebay has been raised and the elevated section formed a man-

made lake called Lake Tisza. Harnessing it for power was only additional benefit, it was not the

main goal.

Figure 1: Kisköre hydropower plant and fish pass

11

Seeing that the flood gates blocked fishes from naturally traversing through the entirety of

the Tisza a fish pass was integrated in the ship lock, however it was ineffective. Therefore in

2014 the Kisköre fish ladder was built, with the aim to help the fishes cross the dam. The new

fish ladder consists of 37 stairs with a height difference of 20 cm, three small and one large

resting lake, natural swimming pools, and a slotted fish passage. More than 40 fish species were

documented to swim through the fish ladder regularly. The Kisköre fish ladder is also open for

visitors, featuring multiple viewing places and a window to view the fishes passing by (Figure

2). One of the major Hungarian meteorology website has set up a webcam to record continuous

footage of the fishes and to broadcast it on the internet (www.idokep.hu). (kotiweb.vizugy.hu)

Figure 2: Kisköre fish ladder window

The fishes are sent through a canal, where a wall separates them for a while (Figure 3). On

one side of the wall is a window seen in Figure 2. Because this site can be visited, many children

place their hands on the window and leave hand marks, making the video feed somewhat

blurred. The camera is also setup here and it records the water through the glass pane. Image

recognition is aimed to be applied to the footage from the implemented camera. However, prob-

lems arise due to the several factors. Water turbidity and varying luminosity reduce the accuracy

of the image recognition model. Because of the wall separating the canal, many fishes aren’t

http://www.idokep.hu/

12

taken into account, losing information. Further problems include the dirt on the window and

significantly lower visibility at night. These problems cannot be solved within the limits of this

study, so they must be worked around.

2.2. Object detection

2.2.1. Theory behind Convolutional Neural Networks

A popular technique for image recognition is employing convolutional neural network

(CNN). As the name implies, CNNs are a distinct type of neural networks (NN). NNs are in-

spired by the biological nervous system. While their underlying theory is relatively straightfor-

ward, the mathematical concept is rather complex.

A NN model comprises an input layer, hidden layers, and an output layer. The input layer

receives inputs, the hidden layers perform computations, and the output layer produces the out-

put. Each of these layers contains several neurons that connect with every neuron in the subse-

quent layer. These neuron connections, known as weights, associate a value with each neuron,

and this value is multiplied by the neuron's input. A neuron has a bias that is added to the weight

multiplied by the input (Kinsley, 2020).

𝑦 = 𝑥 ∗ 𝑤 + 𝑏

𝑦: 𝑜𝑢𝑡𝑝𝑢𝑡

𝑥: 𝑖𝑛𝑝𝑢𝑡

𝑤: 𝑤𝑒𝑖𝑔ℎ𝑡

𝑏: 𝑏𝑖𝑎𝑠

Wall separating the canal Window

Figure 3: Kisköre fish ladder window structure

13

This forms the output of the neuron, which becomes the input of the next layer. Prior to

sending its output to the next layer, each neuron activates. The activation is usually a function

that limits the value of the output and enables the NN to be transformed to resemble any func-

tion. Once all the necessary calculations have been completed and the output layer has gener-

ated the results, the forward pass is concluded.

If we want to use the model in production only, we only need to go through the forward pass,

however, during training the weights and biases, the parameters of the model are changed to

make the model better. The training is a process, when the model goes through the forward pass,

then based on the results the parameters are changed several times. The number of iterations is

called the epoch. The epoch can be a small number, but it usually is a number in the hundreds

or thousands, and training can last for weeks. Although we can change the parameters of the

model randomly through each epoch, a faster way is to do backpropagation. Backpropagation

is when we change the parameters consciously with respect to the inputs. After the forward pass

we count loss based on the ground truth, (which we define with image annotation) which is a

number that shows how bad was the performance of the model, with a loss function. Then all

the parameters are derived with respect to the inputs.

After the derivation, the optimizer changes the parameters based on the derived values it got

from the backpropagation multiplied by the learning rate. The learning rate is a hyperparameter

(a parameter that the training person gives) that makes the learning process safer by making the

learning steps smaller, so the loss doesn’t fluctuate or diverge. There exist a variety of optimiz-

ers, each with different requirements for hyperparameters. Consequently, the training person

must conduct hyperparameter tuning through trial-and-error.

14

Figure 4: Epoch flow chart

One epoch consists of a forward pass, backpropagation and the optimizer changing the val-

ues. With large models even one epoch can take several minutes, because of the tons of calcu-

lations that must be done.

To make training faster and more efficient, the pictures are given to the model in batches.

This means that during one epoch not one, but many (usually 16 or 32) images are given to the

model.

The variation of neural network, convolutional neural networks fundamentally work the

same way, however, there are some calculations before feeding the data into the network. CNNs

contain one or more convolutional layers, an activation function, and a pooling layer. Also,

CNNs usually take images as matrixes as inputs to preserve information of features that may

span over multiple pixels. These matrixes are huge, as even a 640x640 colored image equals to

1,288,800 inputs for the AI. That’s why NNs aren’t used in image recognition, instead CNN

and their feature-based predictions are preferred.

As the image is fed into the model, the convolutional layer amplifies specific features. Dif-

ferent kinds of filter layers extract different kind of features, these results called feature maps.

Then the filtered image goes through an activation layer, in order to make the image less noisy

and make the features stand out even more. The operational speed and efficiency of the model,

Good

15

even at the cost of information loss, is further elevated by the pooling layer. Thereafter, the

processed images are fed to the fully connected neural network for recognition.

2.2.2. Accuracy measurements

Mean average precision (mAP) and intersection over union (IoU) are commonly used met-

rics to measure the accuracy of a model. mAP50 and mAP50-95 are even more widely used in

CNN architectures (deci.ai).

Precision measures the ability of the model to make accurate predictions of the classes, while

recall measures the proportion of the actual positive cases that the model correctly identifies

(Figure 6). mAP averages the precisions over all the classes. IoU measures the accuracy of the

bounding boxes by comparing them to the ground truth. Intersection is the overlap between the

ground truth and the prediction, while union is the overall square both boxes can fit in (Figure

5).

Figure 5: Intersection over

Union

Figure 6: Precision and Recall

Precision for a prediction is usually only used for the mAP, if the IoU is more than a specified

threshold. In mAP50, the prediction is considered successful, if the IoU is larger than 50%.

When using mAP50-95, the precision is averaged for every 5% IoU from 50% to 95% (50%,

55%, 60%, …, 90%, 95%).

2.2.3. YOLO introduction

You Only Look Once (YOLO) is a vastly popular object detection architecture, that is uti-

lized by many companies, projects, and individuals. YOLO is developed by Ultralitycs since

the release of YOLOv5 in June 2020 (deci.ai).

The first version, YOLO was introduced to the artificial intelligence community in June 2016

by Joseph Redmon. YOLO’s groundbreaking feature was the fact that only one network-pass

16

was required instead of two or more. It also achieved an astonishing mAP of 63.4% on the

PASCAL VOC2007 (a large dataset and a measuring base for image recognition models). Nev-

ertheless, YOLO had still many limitations (i.e., not being able to predict more than two objects

close to each other). YOLOv2 and YOLOv3 had improvements that led them to vastly outper-

form previous models. YOLO models were built to achieve real time speed with great accuracy.

After YOLOv3, Redmon stopped working on YOLO, because he couldn’t ignore the military

applications and privacy concerns.

In 2020 others took up the project and created YOLOv4 and two months later Ultralytics

published YOLOv5, which is still popular today. Fast forward to January 2023, Ultralytics re-

leased YOLOv8, a state-of-the-art object detection architecture, with astounding speed and

great accuracy. YOLOv8 has 5 different scaled versions: YOLOv8n (nano), YOLOv8s (small),

YOLOv8m (medium), YOLOv8l (large), YOLOv8x (extra-large). The smaller versions are

faster, but less accurate, while the larger versions are more accurate, but slower. Overall

YOLOv8x, tested on the MS COCO dataset (a more recent larger dataset with millions of im-

ages and 9000 classes, used as a measurement base for image recognition models) achieved an

mAP of 53.9% with an image size of 640 pixels with a speed of 280 FPS on a NVIDIA A100

GPU.

Because of its speed and high accuracy, in this project YOLOv8 was chosen to train and

apply to automated fish monitoring. YOLOv8 has been trained on a large dataset of fishes and

then tested on a day long sample of the footage of the camera at the Kisköre fish pass.

2.3. Annotation of fishes

Every neural network is trained on a dataset of carefully labelled images. The number of

images is in correlation with the accuracy of the model most of the times, as deep learning

models trained on vast datasets are superior in accuracy to the same models trained on fewer

images (not accounting for overfitting). Annotating images is one of the most time consuming

and tedious aspects of creating an artificial intelligence model. Annotating images is a manual

process of labelling objects with classes and bounding boxes. Annotating can be an exasperat-

ingly time-consuming exercise for one person in light of the considerable quantity of images

involved. Therefore, it is common practice for annotation to be carried out by multiple individ-

uals.

17

A sufficient dataset has the following traits not regarding the content of the images:

• a substantial amount of images,

• correct class and bounding box are applied,

• every instance of the objects is labelled,

• the instances of the classes are nearly equal.

This project required vast amounts of images of fish carefully labelled in the format of the

input of YOLOv8. For every image a .txt file with the same name as the image file is needed,

in which the data of the class and the bounding boxes are represented. The format of the label

data is the following:

2 0.5 0.5 0.5 0.5

Class Centre x Centre y Width Height

The class is a number referencing to the class name in the classes file. The coordinate and

size numbers are referring to the centre point and the size of the bounding box. It is important

to note that all the coordinates are scaled to the width and height of the images, ensure that it

stays relevant after resizing the image.

Calculating and writing down every number manually is a tedious task, hence there are many

websites and applications giving a helping hand in annotating. Roboflow (https://ro-

boflow.com/) is one of the most popular tools for image labelling. It is a user-friendly tool to

not only annotate images fast but also train a model and deploy it right away. In this project

Roboflow was used to annotate images and organize the files to fit the requirements of

YOLOv8.

As a high school student, the author is not a fish biologist and cannot recognize fishes on a

professional level. The annotation of the images, i.e., the manual recognition of fishes from

video footages were performed with the help of a fish biologist of the Middle Tisza District

Water Directorate (KÖTIVÍZIG), which is the responsible operator of the fish pass. The dataset

had close to 800 images labelled in text files with 19 fish species such as carp and bream.

Nevertheless, the dataset had three major flaws:

• poor balance between the instances of fish species,

• plenty of fishes were not visible and only appeared as a blur,

• numerous images were inadequately annotated, and various fish were left unlabeled.

https://roboflow.com/
https://roboflow.com/

18

Seeing these flaws further work had to be done with the dataset. The fact that there were

more smaller fish than larger fish caused the first issue. The first version of the dataset was

imbalanced (Figure 7). Four classes were dominant, and the others didn’t stand out much. This

dataset caused the model to have great accuracy on the species that had more instances and low

accuracy on the rest. This issue was solved by going over the dataset and removing the images

that had many fishes of the classes with the most instances, especially common bleak (Szélhajtó

Küsz). It was done this way and not by adding pictures, because the images from the Kisköre

fish ladder could not be filtered to be taken of fishes with low instances.

Due to water turbidity and fluctuating brightness under water, many fishes only appeared as

a blur and weren’t annotated (Figure 8). In some cases, not even the shape could be seen very

well. The aim of the project requires this issue to be dealt with, since these fishes must be

accounted for as well. A new classification, the “no class” class was created to solve the prob-

lem. Every fish that could not be seen were classified as “no class”.

As stated in the third issue, many fishes weren’t annotated either because they were a blur

or because there were too many of them in one picture. This was solved by using the previously

made “no class” class and by the deletion of images, where the fishes were perfectly visible,

but they were unrecognisable for the author. These fishes weren’t put in the “no class” class,

since the “no class” is for blurs and not fishes that could be recognized but weren’t annotated.

Figure 7: Instances of species Figure 8: Image of Kisköre fish ladder

19

 Although the final dataset after the annotation process

was not ideal, it was more balanced than before (see Fig-

ure 9 – please disregard the discrepancy in numbers

between Figure 7 and Figure 9, as it is due to the

augmentation process explained in the subsequent

chapter). The significant prevalence of common bleak

does not impact the model's accuracy, as this species

differs vastly from the other species.

2.4. Pre-processing

2.4.1. Augmentation

Augmentation is a helpful process when making a dataset for a deep learning model. It is the

process of adding changed images (Figure 10) to a dataset to multiply the number of pictures

and avoid overfitting.

Figure 10: Augmentation

There are various augmentation steps, such as rotation, adding noise, adjusting brightness,

blurring, cutout, etc. In the final dataset the following augmentation steps were used: horizontal

and vertical flipping, grayscale – 25% of the images, brightness change – between -20% and

+20%, crop – 15% maximum zoom, blur – up to 2 px, noise – up to 1% of pixels.

Figure 9: Instances of species

enhanced

20

With the augmentation done, the number of images in the final dataset grew from around

800 to 2500. Although this is far from the astoundingly big datasets like MS COCO (with mil-

lions of pictures), it is sufficient enough to be used to train a model.

Additionally, the images were separated into training, validation, and testing sets. This sep-

aration is to test the model mid- and after training on untrained data. The separation ratio was

82% training, 12% validation, and 6% testing.

2.5. Training and testing

Training is the next step in creating an artificial intelligence model. The CNN model learns

and adapts to the dataset by fine tuning itself based on the given dataset. As mentioned in 1.2.,

the training consists of many epochs, and an epoch consists of a forward pass, a backward pass

and optimization. The image gets processed in the forward pass, and the CNN gives an output.

This output is then compared to the ground truth (annotations given to the model in the dataset)

to calculate how much information has the model lost with respect to the ground truth. This is

loss, the lower its value, the better the model.

After calculating loss, the model performs a backward pass and calculates how much to

change every weight and bias in the model to make the loss lower, thus its predictions similar

to the ground truth. The optimizer uses these derived values to change the weights and biases

of the layers. SGD (Stochastic Gradient Descent) is one of the if not the most basic optimizer.

It changes the weights and biases by their derivatives multiplied by a learning rate. The learning

rate is a hyperparameter and must be experimented upon by the training person to help the

model learn. If the learning rate is too high, the loss will fluctuate through epochs, and if it’s

too low, the training will take a long time and the model might not reach the best performance

in the give epochs. To make the optimizer more effective, methods can be used like momentum

or learning rate decay. The most widespread optimizer is the Adam optimizer. The Adam opti-

mizer calculates learning rate for every parameter (weight and bias) based on the changes done

to them in the past epochs.

If done correctly, the model should pick up the features of the images and make a sufficient

prediction. If, however, the model learns way too well, it might learn the features of the dataset

and only the dataset. This is called overfitting, which is when the model can predict near per-

fectly on the images in the training dataset, but it cannot predict anything outside of the dataset.

Several solutions exist to prevent overfitting, such as a dropout layer, which “turns off” and

21

updating a percentage of the neurons in the hidden layers, thus making the learning even

throughout the model.

Feeding images in batches makes training faster and more efficient. When a batch is given

to the model, more images are given to the model at the same time as input to train on. Batch

size is a hyperparameter and it means how many images are given to the model in one pass.

Batch size can range from 1 to 128 or more. A common batch size is 16, 32 or 64. Nevertheless,

batch size, being a hyperparameter is model specific and must be experimented with.

Fortunately, YOLOv8 makes training easier by being a premade model and having approxi-

mately good hyperparameters as default. Hyperparameters that might have big effect when

changed is the optimizer, batch size, number of epochs and image size. Choosing the premade

scaled YOLOv8 model is also a trial-and-error process. This research involved many attempts

to train a fish recognizer model with the best accuracy.

Without testing and validation, measuring the accuracy of the model solely from the training

data will provide unrealistic information, as the model is trying to make its predictions like the

ground truth of the training data. Testing on unseen data will result in more realistic measure-

ments, since when used in production it will only get unseen data. Measuring accuracy and loss

on testing data (also called validation data in some literature) is used at the end of the training

to see how the final model preforms on unseen data. Throughout training the validation data is

fitted to the model to see how much it improved in every epoch.

After augmentation, the dataset is split into training, testing and validation datasets. Usually,

the split ratio is 70% : 20% : 10% (train : validation : test). However, it is also up to the training

personnel to choose the ratio, for example if the dataset were to be too small. (en.wikipedia.org)

2.6. Postprocessing

After training the model and it is ready to be used, displaying and gaining statistical data

might be challenging. The goal of this project is to count fishes, obtain their trajectories and

their sizes. To achieve these goals, detecting and classifying fishes would not be enough, they

must be tracked and given an id. Fortunately, YOLOv8 has a built-in tracking system. On the

contrary, it only accepts video as an input. The results of the tracking system consist of the

following:

ID Class
Bounding Box

(top left, bottom right coordinates)
Confidence

22

These results are processed and used to draw the bounding boxes on the video with the id,

class, and confidence usually above it. Classifying a fish into one class proved difficult, because

of the fluctuating brightness and blurriness of the fish. Some appeared as a blur but became

perfectly visible as they came closer, resulting in a change in the classification of the fish. It is

important to decide what method to use for choosing the classification of the fish. The following

method was used to choose:

𝑀𝑎𝑥𝑖𝑚𝑢𝑚(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑝𝑒𝑟 𝑐𝑙𝑎𝑠𝑠 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠)

After the classification, the direction of the fish is calculated. Next the trajectory and the size

of the fishes are saved for statistics. At the end of the postprocessing, three major statistics are

obtained: sizes of species, fish trajectories and the number of fishes per class.

Except for displaying the statistics this process will be performed on every frame of the

video, meaning that if the aim is to recognize real time, the predicting and postprocessing pro-

cess has to be fast. Since both of these require vast computational space and speed, real time

recognition can only be achieved on GPUs.

2.7. Programming

For the research a fair bit of programming had to be done. The programming was carried out

in the Python programming language and was ran on the GPUs of Google Colab and Kaggle.

Fortunately, the training didn’t require a lot of code, since YOLOv8 makes it relatively easy.

The next programming segment was the video processing part. YOLOv8 supports tracking

functions, and only a few lines of code are needed to make it work. Obtaining the data and

drawing the results, however, was by far the largest segments of the programming. Drawing

statistics was also a significant part of the coding efforts.

A class/object was made from the code for easier use and to potentially make a Python

package (similar to Numpy, Matplotlib, etc) out of it in further development. The code that

downloads videos from www.idokep.hu was made by Gergely Tikász, but was fitted to the fish

recognizer tool by the author. Through this code, the model recognizes the 3-4-second-long

videos, then the code draws a video and saves the data for further statistics frame by frame. All

in all the code is close to 600 lines.

http://www.idokep.hu/

23

3. Results

3.1. Developed models

Many models have been created throughout the training phase, as training AI models is a

trial-and-error method. The first training on the original dataset was done to test the training

time, and capability of the model. The training had the following parameters: model: YOLOv8

nano – the smallest and fastest YOLOv8 model, epochs: 10, batch size: 16, image size:

640x640. The test was a failure, seeing that the training time was 4 hours and the mAP50 of the

model was 0.35. It took 4 hours for the reason that it was done on the CPU (central processing

unit) of a ThinkPad and far too much computation had to be done. Although 4 hours isn’t long

in contrast of AI training time, it is long considering that 10 epochs took this long, when the

model is supposed to be trained on hundreds of epochs. The accuracy of the model was low,

because the number of epochs and batch size was low. From this point onwards, a free Tesla T4

GPU (graphics processing unit) in Google Colab was used to make training faster.

The next training was done on a better dataset (still not the final), on YOLOv8 large, the 2nd

largest out of the five models, 200 epochs, 32 batch size and 480x480 image size. This model

did a lot better than the previous with a final mAP50 of 0.57. Although this number may seem

low, the imbalance of the dataset must be accounted for. The model achieved lower accuracies

on classes with few instances and high accuracies on classes with more instances (Figure 11).

In spite of this fact the model achieved 0.955 mAP50 on pikes (csuka), a species with low

appearance in the dataset. The reason for this is that pikes differ greatly from other fishes, and

they are perfectly seen on the images. This dataset also had the imperfections mentioned in 1.3.

but on a lower scale.

24

Figure 11: 2nd training accuracy per class

After this model, the dataset has been corrected (at least as far as the author could – men-

tioned in 2.3.). It had problems, that could not be solved within the limits of this research, as

some fishes were incorrectly labelled, which consequently impacted the model's accuracy. Nev-

ertheless, the new dataset consisted of close to 800 pictures, which is after augmentation, raised

to 2556 images with 19 fish species not including the “no class” class. The train, validation, test

split ratio was set to 82%, 12%, 6%. This ratio was deemed good, since the whole dataset is

still small. Using this dataset a YOLOv8 large model was trained on 200 epochs, with a batch

size of 32, image size of 480x480 pixels with the Adam optimizer. The model achieved an

astonishing mAP50 of 0.94. This is an average across all classes, meaning that most of the

model predicted most of the classes with an mAP50 of over 0.9 (Figure 12). The weakest pre-

forming classes were the white bream (bagolykeszeg) and the common bleak (szélhajtó küsz),

since even though most issues of the dataset were corrected, false labelling was not. Neverthe-

less, the model performed near perfectly on the validation test, which meant, that it performed

according to the ground truth. This means, if the fish were labelled more accurately, the predic-

tions would be more precise as well.

25

Figure 12: Final model accuracy per class

With this high accuracy, the model was decided to be the final model, and it is ready to be

used on the footage of the Kisköre fish ladder.

3.2. Sample application

After training the artificial intelligence model and programming postprocessing, the next

step was to apply the model to the footage of the Kisköre fish ladder streamed on

www.idokep.hu. The length of the analysis was decided to be one day long, to get realistic but

overwhelming amount of data. A short video (0.5-1 hour long) wouldn’t provide with enough

data, meaning that tangible conclusions won’t be able to be drawn. A longer video (e.g., multiple

days or a week) would provide excessive amount of data that makes conclusions hard to be

drawn, as many meaningful information would be overshadowed by the sheer amount of data.

The 3-4-second-long videos were continuously downloaded from the internet and analysed

real time for one day. Even though the analysis was done in two parts, because of the large

amount of analysed videos filled up the online HDD (hard disc drive). Trough the analysis the

number of fishes were counted based on swimming direction, their sizes were measured, and

http://www.idokep.hu/

26

their trajectories were obtained from the video. The analysis was carried out on October 25,

2023.

Figure 13 depicts the quantities of the fishes based on their swimming direction. Left means

upstream, and right is downstream direction of swimming, respectively. On the horizontal axis

are the classes of the fishes, and the vertical axis is the quantity of the fishes with logarithmic

scale. The figure depicts over 8500 carp swimming in front of the observer window on that day.

The following species were significantly less common, with the coarse fish/common bleak pre-

senting the next highest count of approximately 1000 individuals. The third most common spe-

cies was a three-way tie between pikes, common breams and blue breams, appearing around

900 times each. The direction of the swimming of fish can also be seen in the diagram of Figure

13. The directions were calculated by subtracting the coordinates of starting point from the

ending point.

Figure 13: Quantities with logarithmic scale (left) and with non-logarithmic scale (right)

27

Figure 14: Typical sizes of fish species

Figure 14 illustrates the typical sizes of fish species. The box diagram indicates the average

and outliers of sizes. As seen in the figure, the largest recorded fish species on average was the

pike with an average fork length of 47.3 cm. The diagram also shows that there were some

pikes, that were extraordinarily smaller than their peers. This could also be said of the carps, a

species with a wide range of sizes. Although on average carps were the fourth largest with a

fork length of 38.4 cm, the biggest fish (~ 67 cm) and one of the smallest fishes (~ 5 cm) were

recorded in that species. Although shown, some species like the catfish and owl bream did not

appear many times throughout the analysis, consequently meaningful size data could not be

obtained. It should be mentioned that the size measurements are relative to the size of the area

of the footage, which was only approximated. The size of the footage is approximately 96 x 54

cm based on appearing objects in various photos taken from multiple angle.

28

Figure 15: Trajectories

The figures above depict the trajectories of recognized fish. The trajectory data was calcu-

lated from the bounding boxes of the fish. As seen in the right part of the figure, most of the

fish were swimming on the lower part of the video. On the left side of the figure the trajectories

of the three most common fish species are shown.

Although these diagrams show several meaningful information, it is not the aim of the re-

search to draw conclusions from the collected data. The main objective was to determine the

capability of artificial intelligence to recognize fishes in unconstrained underwater environ-

ments. In light of that, the accomplishments of the fish recognizer model are the following:

• It could recognize most fishes and classify them with a high confidence score.

• Even though not all fishes were classified, they were taken into account by sorting

them into the “no class” category.

• The program could obtain the directions, trajectories, and characteristic sizes of the

fishes.

As stated in Chapter 1.1., fish monitoring is done by classifying fishes and measuring their

fork length. The program could extract both of these information, and in addition the movement

was recorded as well. Furthermore, the model could produce a video that showed each fish

classified (Figure 16).

29

Figure 16: The processed video by the code

In conclusion the model accomplished most of the objectives that were set. If trained on a

larger and more accurate dataset, most fish would be recognizable by the model without issue,

despite changes in uncontrolled environments. Addressing the concerns mentioned in section

2.1, artificial intelligence and deep learning has a promising potential to assist scientists in mon-

itoring fish populations.

4. Discussion

4.1. Main novelty of the study

Many studies have conducted research involving the application of artificial intelligence on

underwater footage. In recent years the number of studies has continuously risen, with most

studies using the methods detecting, measuring, tracking, and classification (Barbedo, et al.,

2020).

Detection and quantification can be done underwater to assess fish populations, as one of the

most basic, but important parts of ecological monitoring. Many studies have applied artificial

intelligence in their studies in order to detect and count fishes. Despite the fact that many re-

search have applied AI in unrestrained underwater environments (Labao & Naval, 2019; La-

radji, et al., 2021), most of them proposed a framework (Liu, et al., 2021), or detected only a

few species (Aliyu, et al., 2020).

30

Measuring fish properties non-invasively proved difficult in uncontrolled underwater habi-

tats, as most of the studies have only studied it out of water or in controlled environments. The

ones, that tried uncontrolled places have only measured the properties of a few species (Díaz,

et al., 2020).

Tracking fishes to observe their movements is also an important role in ecological monitor-

ing. Determining the trajectories of the fishes can help determine diseases among the popula-

tions. Almost all the studies have been studying fishes in controlled environments, and only a

handful have examined them in uncontrolled settings. However, these studies were also limited

to tracking just one or two fish species. (Abe, et al. 2021).

When multiple species are present, simply counting the fishes might not be enough to draw

meaningful conclusions. That is why determining the species of the fishes is important in eco-

logical monitoring. Although an increasing number of studies have explored underwater envi-

ronments, the majority have not. The number of species classified ranged from 3 (Coro &

Walsh, 2021) to 20 (Villon, et al., 2018).

The main novelty of this study compared to previous ones is the fact that the model presented

in this paper has been used on images of uncontrolled underwater setting and the fact that it

does every methods mentioned above in near real time. The model recognizes a fish, identifies

its species, measures its size, tracks its movements, and counts it. Moreover, the model can

recognize 19 fish species common in the study area such as pike, carp, or common bleak.

4.2 Evaluation of results

The results, seen in chapter 3.2., show that close to 12,000 fishes swam through the fish

ladder on the day of the sample application. The species with the most fishes was the carp,

outstanding by far with close to 8,000 individuals. The next biggest species in population size

was the common bleak / coarse fish with close to 1,000 individuals. However, some issues make

the results uncertain.

As seen in Figure 3, the canal splits into two before the fishes can be seen through the win-

dow. Also seen in Figure 2, there are two windows, on at the top and one at the bottom. The

camera only watches the top window. For these two reasons it is safe to say, that only a portion

of the fishes are seen on the footage. Accurate approximations cannot be made to account for

these issues, but the goal of the study does not require them, as the goal is to see how well deep

learning can perform underwater in uncontrolled environments. Moreover, the physical size of

31

the footage was approximated based on footages and pictures. The size of the footage was used

to measure the typical sizes of the fishes trough analysis. It is important to note that this is only

an approximation, not measured.

As mentioned in 2.6., the method for determining the class of a fish is a challenging task, as

the tracking method changes the classes of the fishes as they get closer or farther from the

camera. For statistics a true class must be determined to not count the fishes twice or more

times. The current method of calculating true class is seen in Postprocessing – 2.6. While this

method can eliminate false classes caused by water turbidity, it may also mistakenly remove

correct detections. For instance, a fish may initially be classified as no class because it is far

from the camera, but later be correctly identified as it gets closer; the filter would falsely elim-

inate the correct detection if it only lasted for a short time.

Another issue came up as the one-day-long sample application was performed. The footage

of the fish ladder is uploaded to www.idokep.hu in a continuous stream consisting of 3-4-sec-

ond-long videos. The program gets these videos and feeds it to the tracking method. This is

causing a problem since the tracking function can only track in one video, hence, it resets the

ID counter to 0 for each video. Which means that fishes that took longer than 4 seconds to cross

the window were assessed twice or more times. This issue requires further assessment in order

to enhance the precision of quantification predictions. Nonetheless, the conclusion that way

more carps swam through the fish ladder can’t be drawn as the issue with the tracking method

proposes that carps may have been slower, than other fishes, hence one fish appeared on more

than one 3-4-second-long video, thus counted more than once. But even taking this issue into

account, approximately 1500-2500 carps swam through the fish ladder throughout the day.

In conclusion, four major aspects of the model make the results uncertain:

• fishes aren’t labelled completely correctly,

• only a portion of the fish pass can be seen on the video footages,

• the true class calculation filters out scenarios that shouldn’t be,

• some fishes are assessed more times because of the tracking method.

4.3. Applicability limitations

While the model proves proficient in extracting various fish statistics, its application is cur-

rently restricted to footage exclusively obtained from the Kisköre fish ladder. This confinement

arises because the model was trained only on images obtained from this particular setting.

http://www.idokep.hu/

32

Resolving this challenge requires training the model on a more diverse and inclusive dataset

containing a broader spectrum of environments.

Furthermore, incapacity of the model to perform real-time analyses without a high-powered

GPU is evident. When tested on a CPU of a ThinkPad device, a 5-minute video required an

extensive 3-hour analysis time. In contrast, the analysis on a Tesla T4 GPU took less than 8

minutes. However, depending on the research team’s budget, an investment in high-performing

GPUs or renting online GPUs may significantly raise the cost of the examination. One potential

solution to this challenge involves exploring faster CNN models capable of preserving accuracy

while reducing processing time.

Another constraint stems from the substantial light obstruction in water, which limits the

visibility range to only nearby fish. This phenomenon leads to inability of the footage to capture

fish in more extensive water bodies, such as lakes, depicting merely a fraction of the fish pop-

ulation. As a result, the model performs optimally within constrained water bodies, particularly

narrow canals or fish ladders.

4.4. Future development directions

The current phase of the fish recognition system, while marking progress in understanding

fish behaviors within the Kisköre fish ladder, encounters various limitations. To refine and

broaden its application, several avenues of development are essential.

The existing challenge primarily revolves around the limitation and inadequacy of the da-

taset. To make the model richer of diverse fish species and behaviors, there is a critical need to

expand the dataset. Collaboration with environmental agencies, scientific departments, and

fisheries would play an important role in evolving the dataset. This expanded data will be im-

portant for the AI to recognize and interpret a wider spectrum of fish behavior patterns.

The current reliance on high-performance GPUs for near real-time functioning poses a sig-

nificant constraint. The forthcoming focus aims to reconfigure the model architecture for com-

patibility across a broader range of hardware configurations. This optimization seeks to enable

the AI to operate efficiently across various computing setups, ensuring its applicability on di-

verse computational systems.

While the current application can only be used for the specific conditions of the Kisköre fish

ladder, future enhancements seek to transcend these limitations. Efforts will concentrate on

33

enhancing adaptability and versatility of the model, enabling it to function effectively in various

aquatic ecosystems and fish migration systems.

The tracking methodology sometimes leads to multiple assessments of the same fish, poten-

tially compromising the precision of behavioral analysis. Future initiatives will revolve around

fine-tuning the tracking algorithms to mitigate such occurrences and enhance tracking accuracy.

Advanced tracking methodologies, including sophisticated object recognition and refined mo-

tion prediction, will be explored to ensure precise fish tracking without redundancy.

In conclusion, solving these challenges through dedicated research and development will not

only advance the capabilities of the fish recognition AI but also expand its potential applications

in ecological monitoring and comprehensive analysis of fish behavior. These future develop-

ments aim to propel the model toward greater adaptability, accuracy, and wider applicability in

diverse aquatic settings.

4.5. My contribution

As a 16-year-old high school student I enjoyed taking part in a university research. My con-

tributions to the study are the following:

• researched past literature,

• corrected the annotation of nearly 1000 labelled images for the AI model,

• trained models and picked the best one to work with,

• wrote a program to analyze and process videos from the Kisköre fish ladder and draw

statistics,

• implemented the model into the code that downloads the videos from the internet.

Throughout this project I learned Hungarian freshwater fishes, I discovered the Kisköre fish

ladder and hydropower plant, and I studied artificial intelligence. After reviewing and correct-

ing the annotated images I picked up on recognizing fishes, obviously not at a professional level

yet. I began to like fishes and working on recognizing them. I also studied a lot about artificial

intelligence, deep learning and CNNs. Although I had prior knowledge about neural networks,

I learned so much more, that I realized that I still know less than 1% of the subject, which I

believe is the beginning of real knowledge. I also learned how to write a scientific paper like

34

this, and how to manage project time. I enjoyed making this research and gained a lot of expe-

rience.

Acknowledgements

Above anything I owe my thanks to my supervisors and consultants, Dr. Sándor Baranya

and Gergely Tikász for their help and advice during the preparation of my thesis. I want to give

my thanks to Middle Tisza District Water Directorate (KÖTIVÍZIG) for the annotated images,

and to Gergely Tikász for the code that downloads the videos from the internet.

Figures

Figure 1: Kisköre hydropower plant and fish pass .. 10

Figure 2: Kisköre fish ladder window ... 11

Figure 3: Kisköre fish ladder window structure .. 12

Figure 4: Epoch flow chart .. 14

Figure 5: Intersection over Union ... 15

Figure 6: Precision and Recall ... 15

Figure 7: Instances of species .. 18

Figure 8: Image of Kisköre fish ladder .. 18

Figure 9: Instances of species enhanced .. 19

Figure 10: Augmentation ... 19

Figure 11: 2nd training accuracy per class .. 24

Figure 12: Final model accuracy per class .. 25

Figure 14: Quantities with logarithmic scale (left) and with non-logarithmic scale (right) 26

Figure 14: Typical sizes of fish species ... 27

Figure 15: Trajectories ... 28

Figure 16: The processed video by the code ... 29

Bibliography

Abe, S.; Takagi, T.; Torisawa, S.; Abe, K.; Habe, H.; Iguchi, N.; Takehara, K.; Masuma, S.;

Yagi, H.; Yamaguchi, T.; et al. Development of fish spatio-temporal identifying technology

using SegNet in aquaculture net cages. Aquac. Eng. 2021, 93, 102146.

file:///C:/Users/marto/Downloads/Fish%20rec%20–%20An%20AI-based%20fish%20recognizer%20tool%20-%20Final.docx%23_Toc149802959
file:///C:/Users/marto/Downloads/Fish%20rec%20–%20An%20AI-based%20fish%20recognizer%20tool%20-%20Final.docx%23_Toc149802963
file:///C:/Users/marto/Downloads/Fish%20rec%20–%20An%20AI-based%20fish%20recognizer%20tool%20-%20Final.docx%23_Toc149802964
file:///C:/Users/marto/Downloads/Fish%20rec%20–%20An%20AI-based%20fish%20recognizer%20tool%20-%20Final.docx%23_Toc149802965
file:///C:/Users/marto/Downloads/Fish%20rec%20–%20An%20AI-based%20fish%20recognizer%20tool%20-%20Final.docx%23_Toc149802969

35

Aliyu, I.; Gana, K.J.; Musa, A.A.; Adegboye, M.A.; Lim, C.G. Incorporating Recognition in

Catfish Counting Algorithm Using Artificial Neural Network and Geometry. KSII Trans.

Internet Inf. Syst. 2020, 14, 4866–4888.

Barbedo, J.G.A. A Review on the Use of Computer Vision and Artificial Intelligence for Fish

Recognition, Monitoring, and Management. Fishes 2022, 7, 335.

CA. Fausch, K.D., Lyons, J., Karr, J.R., Angermeier, P.L., 1990. Fish communities as indicators

of environmental degradation. Am. Fish. Soc. Symp. 8, 123–144

Coro, G.; Walsh, M.B. An intelligent and cost-effective remote underwater video device for fish

size monitoring. Ecol. Inform. 2021, 63, 101311.

Islam, M.J.; Xia, Y.; Sattar, J. Fast Underwater Image Enhancement for Improved Visual Per-

ception. IEEE Robot. Autom. Lett. 2020, 5, 3227–3234.Zhou, C.; Lin, K.; Xu, D.; Chen, L.;

Guo, Q.; Sun, C.; Yang, X. Near infrared computer vision and neuro-fuzzy model-based

feeding decision system for fish in aquaculture. Comput. Electron. Agric. 2018, 146, 114–

124.

J.C. Kurtz, L.E. Jackson, W.S. Fisher, Strategies for evaluating indicators based on guidelines

from the Environmental Protection Agency’s Office of Research and Development., Ecol.

Indic., 1 (2001), pp. 49-60

Kinsley, H., Kukieła, D., Neural Networks from Scratch in Python. 2020

Labao, A.B.; Naval, P.C. Cascaded deep network systems with linked ensemble components

for underwater fish detection in the wild. Ecol. Inform. 2019, 52, 103–121.

Laradji, I.H.; Saleh, A.; Rodriguez, P.; Nowrouzezahrai, D.; Azghadi, M.R.; Vazquez, D.

Weakly supervised underwater fish segmentation using affinity LCFCN. Sci. Rep. 2021, 11,

17379.

Liu, H.; Liu, T.; Gu, Y.; Li, P.; Zhai, F.; Huang, H.; He, S. A high-density fish school segmen-

tation framework for biomass statistics in a deep-sea cage. Ecol. Inform. 2021, 64, 101367.

Oberdorff, T., & Hughes, R. M. (1992). Modification of an index of biotic integrity based on

fish assemblages to characterize rivers of the Seine Basin, France. Hydrobio-logia, 228, 117–

130.

36

Rico-Díaz, J.; Rabuñal, J.R.; Gestal, M.; Mures, O.A.; Puertas, J. An Application of Fish De-

tection Based on Eye Search with Artificial Vision and Artificial Neural Networks. Water

2020, 12, 3013.

Saleh, A.; Sheaves, M.; Jerry, D.; Azghadi, M.R. Applications of Deep Learning in Fish Habitat

Monitoring: A Tutorial and Survey. arXiv 2022, arXiv:2206.05394.

Seymour A. Papert. The summer vision project. AIM-100, 1966.

Villon, S.; Mouillot, D.; Chaumont, M.; Darling, E.S.; Subsol, G.; Claverie, T.; Villéger, S. A

Deep learning method for accurate and fast identification of coral reef fishes in underwater

images. Ecol. Inform. 2018, 48, 238–244.

Water Framework Directive, 2000/60/EC

Zhou, C.; Yang, X.; Zhang, B.; Lin, K.; Xu, D.; Guo, Q.; Sun, C. An adaptive image enhance-

ment method for a recirculating aquaculture system. Sci. Rep. 2017, 7, 6243.

Internet references

cermaq.com

https://www.cermaq.com/news/ifarm---cermaq-towards-individual-based-farming

[viewed at 2023.10.28.]

deci.ai

https://deci.ai/blog/history-yolo-object-detection-models-from-yolov1-yolov8/

[viewed at 2023.10.15]

fao.org

https://www.fao.org/fishery/static/eifaac/wpfmfw/DraftGuidelinesMonitoringFishFreshwa-

ters.pdf

[viewed at 2023.10.19.]

fish.ai

https://fishial.ai/

[viewed at 2023.10.28.]

kotiweb.vizugy.hu

https://kotiweb.vizugy.hu/doksik/hallepcso.pdf

[viewed at 2023.10.05.]

https://www.cermaq.com/news/ifarm---cermaq-towards-individual-based-farming
https://deci.ai/blog/history-yolo-object-detection-models-from-yolov1-yolov8/
https://www.fao.org/fishery/static/eifaac/wpfmfw/DraftGuidelinesMonitoringFishFreshwaters.pdf
https://www.fao.org/fishery/static/eifaac/wpfmfw/DraftGuidelinesMonitoringFishFreshwaters.pdf
https://fishial.ai/
https://kotiweb.vizugy.hu/doksik/hallepcso.pdf

37

wikipedia.org

https://en.wikipedia.org/wiki/Training,_validation,_and_test_data_sets

[viewed at 2023.10.16.]

Appendix

from ultralytics import YOLO

import cv2

import supervision as sv

from collections import Counter

from statistics import mean

from PIL import Image as Img

import matplotlib.colors as mcolors

from matplotlib import pyplot as plt

import numpy as np

import pickle

from matplotlib.ticker import FormatStrFormatter

class FishDetectorFunctions:

 def __init__(self):

 pass

 def roundImg(self, img, ratio):

 img = np.array(img).astype(np.uint8)

 imgw = img.shape[1]

 imgh = img.shape[0]

 # mask data

 radius = int(imgh * ratio / 2)

 w = int(imgh * ratio)

 h = int(imgh * ratio)

 mask_base = np.zeros_like(img[0:h, 0:w])

 img_mask = np.ones_like(img)

 img_mask *= 255

 # mask1

 mask1 = cv2.circle(mask_base.copy(), (w//2,h//2), radius, (255,255,255), -1)

 cv2.rectangle(mask1, (0,h), (w, h//2), (255,255,255), -1)

 cv2.rectangle(mask1, (w//2,0), (w,h), (255,255,255), -1)

 # mask2

 mask2 = cv2.circle(mask_base.copy(), (w//2,h//2), radius, (255,255,255), -1)

 cv2.rectangle(mask2, (0,h), (w, h//2), (255,255,255), -1)

 cv2.rectangle(mask2, (0,0), (w//2,h), (255,255,255), -1)

 # mask3

 mask3 = cv2.circle(mask_base.copy(), (w//2,h//2), radius, (255,255,255), -1)

 cv2.rectangle(mask3, (0,0), (w, h//2), (255,255,255), -1)

 cv2.rectangle(mask3, (w//2,0), (w,h), (255,255,255), -1)

 # mask4

 mask4 = cv2.circle(mask_base.copy(), (w//2,h//2), radius, (255,255,255), -1)

 cv2.rectangle(mask4, (0,0), (w, h//2), (255,255,255), -1)

 cv2.rectangle(mask4, (0,0), (w//2,h), (255,255,255), -1)

 # add masks

 img_mask[0:h, 0:w] = mask1

 img_mask[0:h, imgw-w:imgw] = mask2

 img_mask[imgh-h:imgh, 0:w] = mask3

 img_mask[imgh-h:imgh, imgw-w:imgw] = mask4

 # put alpha channel on img

 #result = cv2.cvtColor(img.copy(), cv2.COLOR_BGR2BGRA)

 #result[:,:,3] = img_mask[:,:,0]

 #result = cv2.bitwise_and(img, img_mask)

 result = img * (img_mask / 255)

 return result.astype(np.uint8)

 def placeStatLabel(self, frame, label, xy, ysize):

 x, y = xy

 text_size = cv2.getTextSize(text=label, fontFace=cv2.FONT_HERSHEY_PLAIN, fontScale=1.5, thickness=2)

 ty = y + text_size[0][1] // 2

 tx = x - text_size[0][0] // 2

 cv2.putText(frame, label, (tx, ty), cv2.FONT_HERSHEY_PLAIN, 1.5, (0,0,0), 5)

 if 'no class' in label:

 cv2.putText(frame, label, (tx, ty), cv2.FONT_HERSHEY_PLAIN, 1.5, (255,0,0), 2)

 else:

 cv2.putText(frame, label, (tx, ty), cv2.FONT_HERSHEY_PLAIN, 1.5, (255,255,255), 2)

 return frame

 def calculate_box_center(self, xyxy):

 centerx = xyxy[0] + (xyxy[2] - xyxy[0]) // 2

 centery = xyxy[1] + (xyxy[3] - xyxy[1]) // 2

 return (centerx, centery)

 def add_to_tuple(self, tup, index, num):

 tup_list = list(tup)

 tup_list[index] += num

 return tuple(tup_list)

 def draw_graph(self, frame, size, video_bottom):

 width, height = size

 x1 = (len(frame[0]) - width) // 2

 y_sep = (len(frame) - video_bottom - height) // 2

 y1 = video_bottom + y_sep

 x2 = x1 + width

 y2 = y1 + height

 # draw lines

 cv2.rectangle(frame, (x1,y1), (x1,y2 + 5), (255,255,255), 2)

 cv2.rectangle(frame, (x1 - 5,y2), (x2,y2), (255,255,255), 2)

 # draw triangles

 pts = np.array([(x1 - 5, y1 + 3), (x1, y1-2)])

 cv2.drawContours(frame, [pts], 0, (255,255,255), 2)

https://en.wikipedia.org/wiki/Training,_validation,_and_test_data_sets

38

 pts2 = np.array([(x1 + 5, y1 + 3), (x1, y1 - 2)])

 cv2.drawContours(frame, [pts2], 0, (255,255,255), 2)

 pts3 = np.array([(x2 + 2, y2), (x2 - 3, y2 - 5)])

 cv2.drawContours(frame, [pts3], 0, (255,255,255), 2)

 pts4 = np.array([(x2 + 2, y2), (x2 - 3, y2 + 5)])

 cv2.drawContours(frame, [pts4], 0, (255,255,255), 2)

 return frame

 def get_sizes(self, boxes):

 return [np.mean([boxes[id][i][2] - boxes[id][i][0] for i in range(len(boxes[id]))]) for id in boxes.keys()]

 def draw_size_bars(self, frame,xyx,bar_height_scaled,sizes):

 x1,y,x2 = xyx

 avg = np.mean(sizes)

 maxim = max(sizes)

 minim = min(sizes)

 # calculate min,max place

 mx1 = x1 + (x2 - x1) // 4

 mx2 = x2 - (x2 - x1) // 4

 my1 = int(y - bar_height_scaled * minim)

 my2 = int(y - bar_height_scaled * maxim)

 lx = x1 + (x2 - x1) // 2

 # draw rectangle

 cv2.rectangle(frame, (x1,y), (x2,int(y - bar_height_scaled * avg)), (200,200,200), -1)

 cv2.rectangle(frame, (x1,y), (x2,int(y - bar_height_scaled * avg)), (255,255,255), 1)

 # draw min,max

 cv2.rectangle(frame,(lx,my1),(lx,my2), (255,255,255), 1)

 cv2.rectangle(frame,(mx1,my1),(mx2,my1),(255,255,255), 1)

 cv2.rectangle(frame,(mx1,my2),(mx2,my2),(255,255,255), 1)

 return frame

 def rand(self, n):

 b = []

 for i in range(n):

 a = []

 a.append(np.random.randint(25))

 a.append(np.random.randint(10))

 a.append(np.random.randint(a[0],200))

 a.append(np.random.randint(a[1],100))

 b.append(a)

 return b

class FishDetector(FishDetectorFunctions):

 def __init__(self):

 super().__init__()

 self.HEIGHT = 720

 self.WIDTH = 1280

 self.BAR_SEPARATION_RATIO = 0.5

 self.bar_width_scaled = 10

 self.SIZE_BAR_SEP_RATIO = 0.5

 self.bar_height_scaled = 5

 self.id_stat = {}

 self.cls_stat = {}

 def detect_init(self, model_path, outpath, id_stat={}, cls_stat={}):

 self.out = cv2.VideoWriter(outpath,cv2.VideoWriter_fourcc(*'mp4v'),30,(self.WIDTH,self.HEIGHT))

 self.model = YOLO(model_path)

 self.id_stat = id_stat

 id_stat_init = {'class': -1, 'conf': -1, 'trajectory': -1, 'boxes': [], 'classes': [], 'confs': []}

 self.cls_stat = cls_stat

 cls_stat_init = {'num':(0,0), 'boxes':{}} # (left, right)

 self.names = []

 self.names = {0: 'owl bream', 1: 'asp', 2: 'common roach', 3: 'carp', 4: 'pike', 5: 'common bream', 6: 'chub', 7: 'prussian carp', 8: 'no class',

9: 'sabrefish', 10: 'catfish', 11: 'ide', 12: 'white bream', 13: 'blue bream', 14: 'nase', 15: 'zander', 16: 'coarse fish', 17: 'vimba', 18: 'bull-

head', 19: 'common rudd'}

 self.colors = np.random.choice(list(mcolors.CSS4_COLORS.values()), size=len(self.names), replace=False)

 self.colors = [tuple(np.array(mcolors.to_rgb(self.colors[i]))*255) for i in range(self.colors.shape[0])]

 self.start_save = 0

 def process_video(self, video, save_time=-1, save_path=''):

 if len(list(self.id_stat.keys())) > 0:

 start_id = list(self.id_stat.keys())[-1]

 else:

 start_id = 0

 self.frame_width = 0

 self.frame_height = 0

 # processing video

 for i, result in enumerate(self.model.track(source=video, stream=True)):

 video_frame = result.orig_img

 frame = np.zeros((self.HEIGHT,self.WIDTH,3)).astype(np.uint8)

 if self.frame_width == 0:

 self.frame_width = result.orig_img.shape[1]

 self.frame_height = result.orig_img.shape[0]

 # get results

 if len(self.names) == 0:

 self.names = result.names

 self.colors = np.random.choice(list(mcolors.CSS4_COLORS.values()), size=len(self.names), replace=False)

 self.colors = [tuple(np.array(mcolors.to_rgb(self.colors[i]))*255) for i in range(self.colors.shape[0])]

 detections = sv.Detections.from_ultralytics(result)

 if result.boxes.id is not None:

 detections.tracker_id = result.boxes.id.cpu().numpy().astype(int)

 # calculate within results

 for xyxy, _, confidence, class_id, tracker_id in detections:

 if tracker_id:

 # initializing

 tracker_id += start_id

 if tracker_id not in self.id_stat.keys():

 self.id_stat[tracker_id] = {'class': -1, 'conf': -1, 'boxes': [], 'classes': [], 'confs': []}

 # feeding data

 self.id_stat[tracker_id]['boxes'].append(xyxy)

 self.id_stat[tracker_id]['classes'].append(class_id)

 self.id_stat[tracker_id]['confs'].append(confidence)

39

 # calculating true class

 classes = self.id_stat[tracker_id]['classes']

 confs = self.id_stat[tracker_id]['confs']

 true_class = -1

 true_conf = -1

 cls_num = None

 conf_cls = {}

 max_conf_cls = {}

 cls_scores = {} # true_class is the maximum scored class, score = num_of_cls_appearance * avg_conf**2

 cls_num = dict(Counter(classes))

 if len(cls_num.keys()) == 1 and 8 in cls_num.keys():

 true_class = 8

 true_conf = max(confs)

 else:

 for j in range(len(classes)):

 if classes[j] != 8:

 if classes[j] not in conf_cls.keys():

 conf_cls[classes[j]] = []

 conf_cls[classes[j]].append(confs[j])

 if 8 in cls_num.keys(): cls_num.pop(8)

 for cls in cls_num.keys():

 cls_scores[cls] = cls_num[cls] * mean(conf_cls[cls])**2

 max_conf_cls[cls] = max(conf_cls[cls])

 true_class = max(cls_scores, key=cls_scores.get)

 true_conf = max_conf_cls[true_class]

 # calculating trajectory

 first_box_center = self.calculate_box_center(self.id_stat[tracker_id]['boxes'][0])

 last_box_center = self.calculate_box_center(self.id_stat[tracker_id]['boxes'][-1])

 trajectory = (last_box_center[0] >= first_box_center[0]) * 1 # False -> 0 -> left; True -> 1 -> right

 # calculating self.cls_stat

 if self.id_stat[tracker_id]['class'] != true_class or self.id_stat[tracker_id]['trajectory'] != trajectory:

 boxes = []

 if self.id_stat[tracker_id]['class'] >= 0:

 self.cls_stat[self.id_stat[tracker_id]['class']]['num'] = self.add_to_tuple(self.cls_stat[self.id_stat[tracker_id]['class']]['num'],

self.id_stat[tracker_id]['trajectory'], -1)

 boxes = self.cls_stat[self.id_stat[tracker_id]['class']]['boxes'].pop(tracker_id, None)

 if true_class not in self.cls_stat.keys():

 self.cls_stat[true_class] = {'num':(0,0), 'boxes':{}}

 self.cls_stat[true_class]['num'] = self.add_to_tuple(self.cls_stat[true_class]['num'], trajectory, 1)

 if len(boxes) > 0:

 try:

 [self.cls_stat[true_class]['boxes'][tracker_id].append(box) for box in boxes]

 except:

 self.cls_stat[true_class]['boxes'][tracker_id] = boxes

 else:

 self.cls_stat[true_class]['boxes'][tracker_id] = [self.id_stat[tracker_id]['boxes'][-1]]

 # feeding data into self.id_stat

 self.id_stat[tracker_id]['class'] = true_class

 self.id_stat[tracker_id]['conf'] = true_conf

 self.id_stat[tracker_id]['trajectory'] = trajectory

 # draw on video_frame

 # draw box

 rgb = tuple(self.colors[self.id_stat[tracker_id]['class']])

 color = (int(rgb[0]), int(rgb[1]), int(rgb[2]))

 cv2.rectangle(video_frame, (int(xyxy[0]),int(xyxy[1])), (int(xyxy[2]),int(xyxy[3])), color, 3)

 # draw text

 nameID = self.id_stat[tracker_id]['class']

 name = self.names[nameID]

 conf = round(self.id_stat[tracker_id]['conf'], 2)

 text = '#' + str(tracker_id) + ' ' + name + ' - ' + str(conf)

 cv2.putText(video_frame, text, (int(xyxy[0]), int(xyxy[1] - 10)), cv2.FONT_HERSHEY_PLAIN, 2, (0,0,0), 5)

 cv2.putText(video_frame, text, (int(xyxy[0]), int(xyxy[1]) - 10), cv2.FONT_HERSHEY_PLAIN, 2, color, 2)

 # round video_frame

 video_frame = video_frame[int(self.frame_height*0.2):, :]

 vframe_height = len(video_frame)

 vframe_width = len(video_frame[0])

 video_frame = self.roundImg(video_frame, 0.1)

 # place video_frame on frame

 video_left = (self.WIDTH - vframe_width) // 2

 video_right = video_left + vframe_width

 frame[20:20+vframe_height, video_left:video_right] = video_frame

 # draw statistics

 bar_sep_height = int((vframe_height - 30) // (len(self.names) // 2))

 bar_height = int(bar_sep_height // (1 + self.BAR_SEPARATION_RATIO))

 sep_height = int(bar_height * self.BAR_SEPARATION_RATIO)

 middle_lines = (10 + (video_left - 10 - 10) // 2, self.WIDTH - 10 - (video_left - 10 - 10) // 2)

 y1 = 35 + sep_height // 2

 y2 = (35 + (len(self.names) // 2 - 1) * (bar_height + sep_height) + sep_height // 2) + bar_height + sep_height // 2

 cv2.rectangle(frame, (middle_lines[0], y1), (middle_lines[0], y2), (255,255,255), 1)

 y3 = (35 + (len(self.names) // 2 - 1) * (bar_height + sep_height) + sep_height // 2) + bar_height + sep_height // 2

 cv2.rectangle(frame, (middle_lines[1], y1), (middle_lines[1], y3), (255,255,255), 1)

 # adjust bar_width_scaled

 if len(self.cls_stat.keys()) > 0:

 nums = [self.cls_stat[cls]['num'] for cls in self.cls_stat.keys()]

 max_x = max(nums, key=lambda tup: tup[0])[0]

 max_y = max(nums, key=lambda tup: tup[1])[1]

 if max_x > max_y and int(middle_lines[0] - 10 - self.bar_width_scaled * max_x) < 10:

 self.bar_width_scaled = (middle_lines[0] - 10) / max_x

 elif max_x < max_y and int(middle_lines[0] + 10 + self.bar_width_scaled * max_y) > video_left - 10:

 self.bar_width_scaled = (video_left - 10 - middle_lines[0]) / max_y

 # place bars

 for j in range(len(self.names)):

 color = ((2, 10, 230), (250, 226, 7))

 if j < len(self.names) // 2:

 # place left bars

 x2 = middle_lines[0]

 if j in self.cls_stat.keys():

 x1 = x2 - int(self.bar_width_scaled * self.cls_stat[j]['num'][0])

 else:

 x1 = x2

 y1 = 35 + j * (bar_height + sep_height) + sep_height // 2

 y2 = y1 + bar_height + sep_height // 2

 cv2.rectangle(frame, (x1,y1), (x2,y2), color[0], -1)

 cv2.rectangle(frame, (x1,y1), (x2,y2), (255,255,255), 1)

 # place right bars

 x1 = middle_lines[0]

 if j in self.cls_stat.keys():

 x2 = x1 + int(self.bar_width_scaled * self.cls_stat[j]['num'][1])

 else:

 x2 = x1

40

 y1 = 35 + j * (bar_height + sep_height) + sep_height // 2

 y2 = y1 + bar_height + sep_height // 2

 cv2.rectangle(frame, (x1,y1), (x2,y2), color[1], -1)

 cv2.rectangle(frame, (x1,y1), (x2,y2), (255,255,255), 1)

 # place label

 if '_' in self.names[j]:

 label = ' '.join(self.names[j].split('_'))

 else:

 label = self.names[j]

 if j in self.cls_stat.keys():

 label += ': ' + str(self.cls_stat[j]['num'][0] + self.cls_stat[j]['num'][1])

 else:

 label += ': 0'

 y = y1 + (y2 - y1) // 2

 frame = self.placeStatLabel(frame, label, (middle_lines[0],y), bar_height)

 else:

 # place left bars

 x2 = middle_lines[1]

 if j in self.cls_stat.keys():

 x1 = x2 - int(self.bar_width_scaled * self.cls_stat[j]['num'][0])

 else:

 x1 = x2

 y1 = 35 + (j - len(self.names) // 2) * (bar_height + sep_height) + sep_height // 2

 y2 = y1 + bar_height + sep_height // 2

 cv2.rectangle(frame, (x1,y1), (x2,y2), color[0], -1)

 cv2.rectangle(frame, (x1,y1), (x2,y2), (255,255,255), 1)

 # place right bars

 x1 = middle_lines[1]

 if j in self.cls_stat.keys():

 x2 = x1 + int(self.bar_width_scaled * self.cls_stat[j]['num'][1])

 else:

 x2 = x1

 y1 = 35 + (j - len(self.names) // 2) * (bar_height + sep_height) + sep_height // 2

 y2 = y1 + bar_height + sep_height // 2

 cv2.rectangle(frame, (x1,y1), (x2,y2), color[1], -1)

 cv2.rectangle(frame, (x1,y1), (x2,y2), (255,255,255), 1)

 # place label

 if '_' in self.names[j]:

 label = ' '.join(self.names[j].split('_'))

 else:

 label = self.names[j]

 if j in self.cls_stat.keys():

 label += ': ' + str(self.cls_stat[j]['num'][0] + self.cls_stat[j]['num'][1])

 else:

 label += ': 0'

 y = y1 + (y2 - y1) // 2

 frame = self.placeStatLabel(frame, label, (middle_lines[1],y), bar_height)

 # place size graph

 frame = self.draw_graph(frame, (self.WIDTH - 400, self.HEIGHT - 20 - vframe_height - 30), 20+vframe_height)

 bar_sep_width = (self.WIDTH - 410) // ((1 + self.SIZE_BAR_SEP_RATIO) * len(self.names))

 sep_width = bar_sep_width * self.SIZE_BAR_SEP_RATIO

 bar_width = bar_sep_width - sep_width

 all_sizes = []

 for cls in self.cls_stat.keys():

 sizes = self.get_sizes(self.cls_stat[cls]['boxes'])

 all_sizes.append(sizes)

 if len(sizes) > 0:

 if max(sizes) * self.bar_height_scaled > self.HEIGHT - 20 - vframe_height - 30:

 self.bar_height_scaled = (self.HEIGHT - 20 - vframe_height - 30) / max(sizes)

 for j, cls in enumerate(self.cls_stat.keys()):

 if len(all_sizes[j]) > 0:

 x1 = int(205 + cls * (bar_sep_width) + sep_width // 2)

 x2 = int(x1 + bar_width)

 y = int(self.HEIGHT - 20)

 self.draw_size_bars(frame,(x1,y,x2),self.bar_height_scaled,all_sizes[j])

 frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)

 self.out.write(frame)

 if save_time >= 0 and self.start_save % save_time == 0:

 self.save_results(save_path)

 self.start_save += 1

 if i == 9465:

 print(len(self.names))

 print(self.names)

 print(len(self.id_stat.keys()))

 def save_results(self, save_path=''):

 # save dictionaries for statistics

 fcls = open('/kaggle/working/cls_stat.pkl','wb')

 fid = open('/kaggle/working/id_stat.pkl','wb')

 pickle.dump(self.cls_stat,fcls)

 pickle.dump(self.id_stat,fid)

 fcls.close()

 fid.close()

 def detect_finish(self):

 self.out.release()

 def statistics(self, stat_path='', show=False):

 # Statistics

 if os.path.getsize(stat_path + 'id_stat.pkl') > 0:

 self.id_stat = pickle.load(open(stat_path + 'id_stat.pkl','rb'))

 self.cls_stat = pickle.load(open(stat_path + 'cls_stat.pkl','rb'))

names = {0: 'owl bream', 1: 'asp', 2: 'common roach', 3: 'carp', 4: 'pike', 5: 'common bream', 6: 'chub', 7: 'prussian carp', 8: 'no class', 9: 'sabre-

fish', 10: 'catfish', 11: 'ide', 12: 'white bream', 13: 'blue bream', 14: 'nase', 15: 'zander', 16: 'coarse fish', 17: 'vimba', 18: 'bullhead', 19:

'common rudd'}

colors = np.random.choice(list(mcolors.CSS4_COLORS.values()), size=len(names), replace=False)

colors = [tuple(np.array(mcolors.to_rgb(colors[i]))*255) for i in range(colors.shape[0])]

all_sizes = []

size_names = []

nums = {'Upstream':[],'Downstream':[]}

get num and size

for cls in names.keys():

 if cls in cls_stat.keys():

 if len(cls_stat[cls]['boxes']) > 0:

 all_sizes.append(get_sizes(cls_stat[cls]['boxes']))

 size_names.append(names[cls])

 nums['Upstream'].append(cls_stat[cls]['num'][0])

 nums['Downstream'].append(cls_stat[cls]['num'][1])

 else:

 nums['Upstream'].append(0)

41

 nums['Downstream'].append(0)

plot

fig = plt.figure(constrained_layout=True, figsize=(10,10))

ax = fig.add_gridspec(2, 2)

ax1 = fig.add_subplot(ax[0, 0])

ax1.set_title('Sizes')

ax2 = fig.add_subplot(ax[0, 1])

ax2.set_title('Quantities')

ax3 = fig.add_subplot(ax[1, 1])

ax3.set_title('Trajectories')

ax4 = fig.add_subplot(ax[1, 0])

ax4.set_title('Trajectories most common')

asizes = [[round(size * 96 / 580, 1) for size in sizes] for sizes in all_sizes]

ax1.boxplot(asizes, vert=True)

ax1.set_xticklabels(size_names, rotation=30,ha='right')

ax1.yaxis.set_major_formatter(FormatStrFormatter('%d cm'))

pos = np.arange(len(all_sizes)) + 1

medians = [np.mean(size) for size in all_sizes]

upper_labels = [str(round(s * 96 / 580, 1)) + 'cm' for s in medians]

weights = ['bold', 'semibold']

box_colors = ['darkkhaki', 'royalblue']

yplace = [0.97, 0.93]

for tick, label in zip(range(len(all_sizes)), ax1.get_xticklabels()):

 k = tick % 2

 ax1.text(pos[tick], yplace[k], upper_labels[tick],

 transform=ax1.get_xaxis_transform(),

 horizontalalignment='center', size='x-small',

 weight=weights[k], color='royalblue')

ax = ax2

x = np.arange(len(names.values())) # the label locations

width = 0.25 # the width of the bars

multiplier = 0

for attribute, measurement in nums.items():

 offset = width * multiplier

 rects = ax.bar(x + offset, measurement, width, label=attribute)

 multiplier += 1

Add some text for labels, title and custom x-axis tick labels, etc.

ax.set_xticks(x + width, names.values(), rotation=45, ha='right')

ax.legend(loc='upper left', ncols=2)

ax.set_yscale('log')

ax.yaxis.set_major_formatter(FormatStrFormatter('%d db'))

plot trajectories

for id in id_stat.keys():

 boxes = id_stat[id]['boxes']

 if id_stat[id]['class'] > -2:

 trajx = [boxes[i][0] + (boxes[i][2] - boxes[i][0]) // 2 for i in range(len(boxes))]

 trajy = [580 - boxes[i][1] - (boxes[i][3] - boxes[i][1]) // 2 for i in range(len(boxes))]

 ax3.plot(trajx,trajy,color='b')

#ax3.set_xlim(0,752)

ax3.set_ylim(0,580)

ax3.set_aspect(1)

ax3.set_xticks([])

ax3.set_yticks([])

colors = ['b','g','r']

dictionary = {cls:cls_stat[cls]['num'][0] + cls_stat[cls]['num'][0] for cls in cls_stat.keys()}

k = Counter(dictionary)

high = k.most_common(3)

high = [tup[0] for tup in high]

namesax4 = [names[cls] for cls in high]

plot trajectories

for id in id_stat.keys():

 boxes = id_stat[id]['boxes']

 if id_stat[id]['class'] in high:

 trajx = [boxes[i][0] + (boxes[i][2] - boxes[i][0]) // 2 for i in range(len(boxes))]

 trajy = [580 - boxes[i][1] - (boxes[i][3] - boxes[i][1]) // 2 for i in range(len(boxes))]

 ax4.plot(trajx,trajy,color=colors[high.index(id_stat[id]['class'])])

#ax4.set_xlim(0,752)

#ax4.set_ylim(0,580)

ax4.set_aspect(1)

ax4.set_xticks([])

ax4.set_yticks([])

patches = []

for i in range(len(colors)):

 patches.append(mpatches.Patch(color=colors[i], label=namesax4[i]))

ax4.legend(handles=patches)

plt.savefig("statistics.png")

 if show:

 plt.show()

