IIIIIIIIIIII

w [AIAIIRIA] o
e .

[T [TTH| T

M UEGYETEM 1782

Cost-efficient Allocation of Clustered
Network Emulation Resources Using

Feedback

Author: Tamas Levai
Neptun-code: BUIHKR

E-mail: levait@tmit.bme.hu

Consultant: Felician Nemeth

E-mail: nemethf@tmit.bme.hu

Budapest, 2015.



Abstract

Network emulation is a technology in which certain network elements (such as
links and switches) are virtual, but, with the exact same behaviour as the physical
ones. As a result of virtualizing certain network elements, the creation of fully
emulated or partially emulated networks has become possible. Network emula-
tion itself is a relatively recent and promising field of research and development
with actual significance. Namely, in the last years many technologies like soft-
ware defined networks (SDN), network function virtualization (NFV), and cloud
computing emerged from network emulation.

Due to the increasing needs and technological improvement it is possible to
emulate all kind of networks in a scale from simple virtual links to complete da-
ta centers. There is a real need in research and in production for development,
testing and measuring purposes to emulate more and more complex networks.
Necessarily, complex emulated networks are heavy on physical resources, there-
fore, it is necessary to interconnect multiple emulator nodes. But then, mapping
the network to emulate onto the infrastructure is not trivial. The current algo-
rithms generally use the bin packing problem or the integer linear programming
relaxed by heuristics. As oppose to this approach, the presented algorithm tries to
find the optimum by trial and error method. In every iteration it tries to allocate
the network emulation resources in a subset of physical resources first. Then, it
tests the success of allocation with on-line tests. The next iteration is based on
the feedback from the tests. A cost efficient allocation will be the result of the
algorithm.

In the work beside the introduction of existing clustered network emulation
tools I present my new algorithm in detail with a proof of concept implementation

using Mininet Cluster Edition and the evaluation of this implementation.



Hungarian Abstract

Hélézatemulaciordl beszéliink ha az egyes hdldzati elemek (példaul linkek, kap-
csolok) ugyan virtudlisak, dam viselkedésiik megegyezik a fizikailag 1étez6k visel-
kedésével. Az egyes haldzati elemek virtualizdldsdra épitve lehetvé vilt teljesen
emulalt vagy csupdn részlegesen emulalt hdl6zatokat 1étrehozédsa. A hdlézatemu-
l4ci6 viszonylag friss €s igéretes kutatasi €s fejlesztési irdny, melynek térnyerése
aktudlis. Ugyanis megfigyelhetd, hogy az utébbi par évben erre épiilve olyan uj
paradigmat jelentd technoldgidk jottek 1étre, mint a szoftveresen definidlt hal6za-
tok (SDN), a hélézati funkci6 virtualizalas (NFV) vagy felh alapu szamitédstech-
nika (cloud computing).

A felhaszndlasi igények és a technoldgiai fejlédés hatdsara az emuldlt halo-
zatok hatdskore jelenleg az egyszer( virtudlis linkekt6l komplett adatkdzpontok
emuldldsdig tart. Valos igényként jelentkezik mind a kutatdsok terén, mind az
iparban, hogy fejlesztési, tesztelési és mérési célokra egyre komplexebb halézato-
kat lehessen emuldlni. Természetesen a komplex emulalt hal6zatok er&forrds igé-
nye jelentGs, tobb emuldcidt futtaté elem Osszekapcsoldsat koveteli meg. Viszont
az emuldland6 hdlézat hatékony felosztdsa az infrastruktirdn nem trivialis feladat.
Az alkalmazott algoritmusok jellemzden vagy a lddapakoldsi problémat vagy az
egészErtékd linedris programozast veszik alapul és relaxdljak azt kiilonb6z6 heu-
risztikdk segitségével. Ezekkel szemben a dolgozatban bemutatott algoritmus az
optimumot alulrdl prébalja megkozeliteni proba-hiba médszer segitségével, azaz
minden 1épésben megprobdlja lefoglalni az emuldcidhoz sziikséges 0sszes erdfor-
rast a fizikai er6forrdsok egy részhalmazan, majd a lefoglalds sikerességét aktiv
tesztekkel ellendrzi, melyek eredményét visszacsatolva torténik a kovetkezd ite-
raci6. Ily médon futtatva az allokdl6 algoritmus eredménye egy koltséghatékony
lefoglalas.

A dolgozatban a 1étezd elosztott hal6zatemuldl6 szoftverek bemutatdsan til
részletesen ismertetem az altalam megvaldsitott 4j algoritmust, illetve annak meg-
valdsitasdt igazold Mininet Cluster Edition alapi mintaimplementacidjat, mely-

nek kiértékelése is része a dolgozatnak.



Contents
1 Introduction
2 Related Work

3 Utilising Trial and Error Approach for Network Emulation Resource
Allocation
3.1 Motivation . . . . . . . .. e
3.2 Requirements . . . . . . . . ...
3.3 The AlgorithminDetail . . . . . ... ... ............
34 ProofofConcept . ... ... ... .. .. ... ... ... ..

4 Evaluation
4.1 Evaluationsetup. . . . . . . . .. .. .o
42 Results. . .. ...

5 Conclusion
5.1 Summary . . ... e
5.2 Future Work . . . . . . . ..

6 References

10
10
10
13
17

21
21
22

27
27
27

28



1 Introduction

On high-level this document focuses on providing network emulation as a service
in an environment with dynamically changing resources such as cloud comput-
ing. Particularly, targeted area of this topic in this document is the allocation
of network emulation resources. The presented approach targets cost-efficiency,
reliability.

Addressing the problem in detail requires further clarification. Network em-
ulation is a well-known technology with a long tradition. It provides virtual net-
work elements that behave the same way as the non-virtual ones. It is possible
to emulate all of the ISO model’s layers, therefore, it is possible to virtualise by
software all kinds of network elements from links to hosts even on large scale.
Nowadays we can differentiate internal network virtualisation and external net-
work virtualisation. In case of internal network virtualisation the virtualised net-
work runs on a single machine (e.g., PC). In this scenario the hosts, interfaces
and links are all virtual. There are several options to implement internal network
virtualisation, one common method is to implement all the virtualisation in ker-
nel space, and rely on these features. It is usually realised in Linux, since all of
the required tools are already existing in it. Virtual network interfaces are sup-
ported since a long time ago. Virtual links can be created by the traffic controlling
and shaping features of the kernel; network interfaces can be connected by vir-
tual bridges, link quality can be set in the network scheduler by configuring tc
(traffic control). The virtualised end hosts can be virtual machines (e.g., Kernel-
based Virtual Machine) or software containers (e.g., Linux Containers). Utilising
these basic tools by hand is cumbersome, therefore, several wrapper tools (e.g.,
Mininet [4]) exist to deploy and maintain virtual networks. This way it is possi-
ble to emulate large networks even with hundreds of hosts on off-the-self personal
computers. This number can be increased a bit by various slightly distorting tricks
such as time dilation [6]. But even with tricks, this order of magnitude is not suf-
ficient for current research and testing purposes, such as studying traffic in data
centres or in complete telecommunication networks.

External network virtualisation can provide solution for this scaling problem



by interconnecting multiple hosts. It utilises the technologies mentioned by inter
network virtualisation plus the virtual links between the virtual network compo-
nents running on different hosts. These virtual links are using tunnelling protocols
over physical links. For this purpose several tunnelling technologies (i.e., Generic
Routing Encapsulation tunnel and Secure Shell tunnel) are used. These tunnels
can be connected to the virtual switches (e.g., Open vSwitch) running on the arbi-
trary hosts, so the internally virtualised network segments can be interconnected
into a whole externally virtualised network.

Many new technologies emerged from network virtualisation. Based on these
subsequent technologies (e.g., Software Defined Networking) and the significant
development and utilisation of virtualisation technologies, cloud computing came
into existence. The fundamental idea behind cloud computing is to decouple the
running software from the underlying hardware. To achieve that the cloud com-
puting environment consist of managed virtual machines and virtual links atop a
computer cluster. As a consequence of this infrastructure, it is possible to dynam-
ically scale the set of resources available for running applications. This approach
seems a big success in research and in production too, therefore, there is a real
need to develop methods to emulate networks on this platform in a cost-effective
and reliable manner.

The rest of this document is organised the following way. In Section 2, I
present nowadays most common network emulators (Mininet [4, 5], Maxinet [1,
2], Distributed Openflow Testbed [3]) that support external network emulation
in detail. The main work, the proposed approach suiting for cloud computing
environment is presented in Section 3. Evaluation results of the proof of concept

are described in Section 4. Finally, I conclude in Section 5.1.



2 Related Work

This section presents relevant network emulators focusing on external network
emulation. All of these emulators use different algorithms for placing the emu-

lated network elements onto the hosts.

Mininet

Mininet [4] is the de-facto network emulator, initially started as an SDN exper-
imenting tool, that can emulate links, switches, routers, middleboxes and end-
hosts. The end-host behave just like real hosts: they are able to run arbitrary
programs, and they have virtual Ethernet interfaces. The links in Mininet can
be characterised (e.g., bandwidth, delay) and network elements in between the
end-hosts behave just like real Ethernet devices: they process the incoming data
just like regular Ethernet devices. Therefore, results of measurements done in a
Mininet network should look like results of measurements done in an identically
same physical network.

Mininet is written mostly in Python. It provides an extensive API to describe
custom network topologies and functions. Mininet currently runs only on Linux
due to its dependency on underlying Linux technologies; it uses process groups,
CPU bandwidth isolation, virtual Ethernet links, network namespaces and link
schedulers to emulate networks. Namely, end-hosts are isolated user-level pro-
cesses put into network namespaces with exclusive network interfaces, ports and
routing tables. The emulated links are virtual Ethernet pairs configured by Linux
Traffic Control (tc). Switches can use Linux virtual bridge or Open vSwitch to
switch packets. Moreover, Mininet networks can be controlled via OpenFlow.
Since version 2.2.0 Mininet also has an experimental external network emulation
support via clustering Mininet instances running on arbitrary hosts.

The cluster support in Mininet heavily relies Secure Shell (SSH) and SSH tun-
nels, therefore, it requires some manual setup before using it. First of all Mininet
must have installed on each host. The user that runs Mininet must have the same

name on all machine. The hosts must have pre-configured password-less sudo and



=3

s5 s6 s8 s9 s1@ s11 s12 s13
hll hl4 hl7 h:IL@ hi3 hjl.6 hig hiz héS
h2 h5 h8 h11 hi4 h17 h2e h23 h26
hx3 hI6 h:B hiz his h1l.8 hél h£4 hé?
localhost server2 server3
switches hosts Mininet servers
— cross-server tunnels  — virtual Ethernet links

Figure 1. Mininet clustered fat-tree topology. [5]

password-less ssh access. Also, permitting tunnelling, disabling DNS, increasing
the number of simultaneous sessions and allowing TCP forwarding, must be con-
figured for the secure shell daemon on each host in order to run the clustered
emulation. To ease this cumbersome process, Mininet provides a partial setup
script which configures the password-less ssh access temporarily or permanently
on the hosts.

On cluster start-up every arbitrary machine of the cluster starts a Mininet in-
stance that communicates with the initiator head Mininet instance in a star topol-
ogy. Even remote links are connected to this head machine. The remote links
that interconnect switches on different hosts are Secure Shell tunnels as you can
see in Figure 1. As a consequence, links between hosts has significant delay and
limited bandwidth due to the characteristics of the underlying physical link and
the overhead of SSH tunnel.

Various placement algorithms are supported in Mininet: user-defined, random
that instantiates network elements on a random host of the cluster; round robin,
that cycles through hosts and puts network elements one by one, and equal sized
bins that solves a relaxed bin packaging problem in which the bins are the hosts

and the items are the network elements, it finishes in polynomial time due to the



fix and known number of hosts. As a conclusion, we can say that all of Mininet’s
algorithms require to know the number of hosts inside the cluster. Moreover, for
the placing decision the algorithms do not take account of the requirements of the

network elements and the topology currently.

MaxiNet

MaxiNet [1, 2] is an external network emulation tool based on Mininet. It was
mainly developed to experiment with novel protocols and routing algorithms in
real life scenarios, especially in data centres that are emulated.

The schematic architecture of MaxiNet can be seen in Figure 2. On the bot-
tom, the workers are computational nodes of the cluster emulating a segment of
the network emulated by unmodified Mininet instances. This instances are con-
trolled and managed from the front-end which is a special computational node in
the cluster. It is the head of the architecture. Maxinet is focusing on running exper-
iments on emulated clusters, therefore, on the top-level it contains the description
of the experiment to perform on the emulated network. This experiment can be
written in Python using the Maxinet API via itsets up, controls and stops the vir-
tual network of MaxiNet. This API is very similar to Mininet’s API. MaxiNet
communicates with the Mininet instances via remote procedure call. The virtual
links between the network segments emulated by arbitrary workers are GRE tun-
nels. Maxinet is also able to monitor its network and plot the statistics after the
experiment is finished.

The placing algorithm of MaxiNet relies on the METIS ! graph partitioning
library. For N workers it computes N partitions of near equal weight. The optimi-
sation criteria is minimal edge cut, mainly because, the partitioning process tries
to keep most of the emulated elements locally, circumventing the limited links
between hosts. Edge weights are proportional to the specific bandwidth limits of
the links, and node weights are proportional to the node degree, because nodes

with higher number of links are more likely cause big system load.

'METIS webpage: http://glaros.dtc.umn.edu/gkhome/metis/metis/overview


http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

Frontend

Experiment

r Y
MaxiNet API
¥
MaxiNet
9 rS -~
Alininet AFPI
Nininet AP \‘\'Uf].i(‘l' 21f Mininet API
T . < LS --.-"\“‘\‘b . .
Worker 1y . I L G e v Worker 3
- % Mininet ‘_*'.3‘:‘ -

- 3
|
5 = 5= =

——u

Mininet Mininet

Figure 2. MaxiNet in nutshell. [1]

Distributed Openflow Testbed

Distributed Openflow Testbed (DOT) [3] is an OpenFlow compatible external net-
work emulator. It was mainly designed to solve Mininet’s scaling out issues. DOT
is built from scratch using various existing technologies. In DOT Hosts are em-
ulated by user supplied virtual machines. Switches are Open vSwitch instances.
Links are either Linux virtual Ethernet pairs if both of their endpoints is on the
same host, or GRE tunnels it links are interconnecting physical hosts. The link
characteristics are set by Linux Traffic Control (tc). Propagation delays are set by
the netem kernel module. Moreover, DOT can also provide guaranteed bandwidth
between the hosts and switches.

The infrastructure of DOT consists of multiple entities which can be seen in
Figure 3. The main entity is the DOT Central Manager which is responsible for

allocating resources required for the network described by the user. It has two



DOT User &

Emulated Metwork
specification

DOT Central Manager

Provisioning
— Module

Infowrmation Statistics

Dralsbase Collection Module
T k
¥ r
DOT Node Manager 1 DOT Node Manager 2 DOT Node Manager n
|ant Provisioning Mndu]|:| |Ht:ul Provisioning Mc:dulcl |[—]n:il Provisioning Mndu]cl
L N N
| Logring Module | | Logzring Module | | Logeing Module |

Figure 3. DOT infrastructural architecture. [3]

processing components and a storage unit: one processing component is the Pro-
visioning Module which is responsible for running the placement algorithm, and
the other is Statistics Collection Module which activates only after the placement
is done. It gathers information from the logging modules placed on the nodes.
The gathered information with other, management information are stored in the
Information Database.

On each host there is a DOT Manager which consists of the Host Provisioning
module which is responsible for allocating and configuring the required resources
on that node, and the Logging module which collects local statistics: among oth-
ers resource utilisation, packet rate, throughput, delay, packet loss and OpenFlow
messages. Each node also runs the following software: a hypervisor to man-
age virtual machines and their virtual connections, Virtual machines that can act
as end-hosts or middleboxes. There are also Open vSwitches as programmable
OpenFlow compatible virtual switches for connecting inner links, and there is one
Gateway Switch per host for handling external links. Gateway switches are trans-
parent for DOT users, however, they require unique setup in the background. Its
setup is done in three steps: first, DOT creates as many virtual Ethernet pairs as
the number of virtual switches on the host, and connects the virtual switches to

the gateway switch with them. The second step is the creation of the GRE tun-



nels between the physical hosts. Each virtual link has an unique identifier and the
packages forwarded through them are tagged with the corresponding identifier.
As a consequence of this phenomena, it is possible to identify the source Gateway
Switch on the other end. Finally, the Gateway Switch has to be configured with
static routes to interconnect the emulated network segments on the hosts.

The placement algorithm is the key part of the Distributed Openflow Testbed.
The work of the placement algorithm is an useful example of utilising integer lin-
ear programming and heuristics for network mapping effectively. The algorithm
abstracts the network as an undirected graph with virtual switches as nodes and
links as edges. To find the optimal placement, the algorithm reckons multiple
resource types required for the virtual hosts (e.g., CPU, memory and disk) and
for the virtual links (e.g., bandwidth, propagation delay) with some relaxation: it
supposes that each pair of hosts are interconnected with full bisection bandwidth.
In the model, virtual switch resource requirements depend on network utilisation
which correlates to the number of connecting links. Virtual machines are more
complicated than virtual switches, becuase their resource requirements consist of
their resource requirements of CPU and memory plus the resources required by
the its connecting switch. Gateway Switches must be instantiated on each host and
the resource requirements of these switches are proportional to the bandwidth ca-
pabilities of their virtual links, therefore, their resource requirements can be also
estimated. Of course for the purpose of effective network emulation the best is
to minimise the usage of physical links due to their translation overhead which is
also a subject to the objective function used by the DOT placement algorithm. The
objective function of the integer linear programming is to minimise the number
of required physical nodes. This is an NP-hard problem because it generalises the
multi-dimensional bin-packing problem. Therefore, a heuristic approach is used
to solve this problem in polynomial time. The heuristic algorithm first places
switches one by one onto active hosts based on their requirements. If there is not
enough resource for a switch on any of the computational node, the algorithm ac-
tivates an another host and deploys the switch there. If it is not feasible to place all

the elements onto the whole set of available computational nodes, the algorithms



stops and rejects the placement. The most important heuristic used during the run
is the ranking of switches based on their number of connecting links; as it was
already mentioned, the resource requirement of switches are proportional to the
number of their links, and also at the beginning of the algorithm’s run there are a
lot of unused resources, so it is easier to place those resource-heavy switches then
as at later time. On the other hand switches that have neighbours already placed
should be placed with high priority in order to minimise traffic between physical
hosts. The other important aspect of the algorithm is the physical host selection
which is based on two criteria; first, the minimisation of residual resources is
important to keep resource fragmentation low and machine utilisation high. With
these optimisations the algorithm’s complexity is O(|N?|log| N |+|N||H|log|H|),
where NV is the number of virtual switches, and H is the number of active compu-
tational nodes.

Winding up Distributed Openflow Testbed, one can say that it has a power-
ful placing algorithm and an infrastructure that is not as powerful as Mininet’s

infrastructure due to the overhead of the virtual machine approach used for hosts.



3 Utilising Trial and Error Approach for Network

Emulation Resource Allocation

3.1 Motivation

The technologies presented in Section 2 came into existence due to the increasing
need for experimenting with large networks having such big resource require-
ments that hardly if even could be accomplished by a single computational node.
The large number of these tools forecast an increasing need for emulating large
scale networks in the not so far future. An other relevant tendency of our days is
the bloom (massive utilisation) of clouds mainly due to their flexibility and low
costs. Cloud computing seems a promising technology for network emulation
purposes too. The main advantage of cloud based network emulation is that it
is really easy to use it as an end-user, and it is easier and cheaper to maintain it
as system administrator than utilising dedicated servers for experiments done in
large scale emulated networks.

A network emulator that suits for cloud computing environment requires great
flexibility and low resource utilisation to cope with clouds clustered infrastruc-
ture. The cornerstone of these needs is the cost-efficient and reliable allocation of
resources respecting the elastic nature of clouds. For this purpose, the good old

trial and error approach with some feedback seems a good idea.

3.2 Requirements

The trial and error approach can guarantee minimal or almost minimal resource
utilisation, but it can not guarantee reliable operation which is required for provid-
ing valid measurement results. To achieve reliability some feedback is required
from the running network emulation.

The effective feedback generation relies on monitoring. Two sets of phe-
nomenons have to be observed. One of them is the computational resource utili-
sation on the arbitrary hosts. Because, if there is not enough free resource on the

host, the results of measurements done on the emulated network might get dis-

10



torted due to the degraded network performance. For network emulation the CPU
usage and the memory usage are the most relevant, but disk and other I/O usage
might be also suitable for detecting bottlenecks. As an example, if there is no
free processor capacity, it is problematic for the emulation in the sense of validity:
processing time on individual network elements might get prolonged due to the
time spent waiting for the scheduler.

There are diverse methods to measure various system resources. Modern op-
erating systems of our days log detailed statistics about the resourcses used by
the system and by the individual processes. As an example, on Linux maximal-,
minimal- and actual frequency, load average, time spent in userspace, time spent
in kernel mode, time spent witing for I/O, CPU clocks used by the individual pro-
cesses are among others logged about the central processing unit. Since different
operating systems might interpret these values differently, one have to take this
phenomena to account during the implementation of a multi-platform network
emulator.

The other relevant metric is memory utilisation which is a wide-ranging met-
ric; the amount of actively used, buffered, cached and swap memory can be
queried. For the emulation’s point of view, memory statistics are the most impor-
tant at allocation time: whether the network element can be placed on a specific
node or not. However, a sufficient amount of memory is required during the run
of the emulation if the memory usage of the virtual hosts and middleboxes are not
limited; in that case the system can run out of memory during emulation. In ad-
dition, memory consumption of background and non emulation-related software
can be problematic too if they suddenly try to allocate memory (e.g., a cron pro-
cess starts). If there is no more free memory available on the system, it is not
guaranteed that the experiment executed on the emulated network will finish with
no disturbance.

Monitoring these important system resources can be done in various ways.
Fundamentally, the statistics already mentioned and even more low-level, raw
statistics can be queried from the operating system, but, the low-level, raw statis-

tics in many cases can not provide enough and relevant information. This nuisance

11



can be ironed out by using one of the numerous resource monitoring tools which
provide trustworthy information that are easy to process and use. An implementa-
tion of the algorithm presented in Section 3.3 can rely on the information provided
by these tools (e.g., top, cAdvisor).

The other phenomena to monitor is link utilisation. It is trivial that link must
exist between the nodes, but it is non-trivial to discover and monitor the capa-
bilities and changes of these links.The underpinnings of these problem are the
non-trivial definitions of links: links exist on physical layer as well as on virtual
layer loosely coupled. Virtual links between nodes are essentially tunnels over
physical links. Tunnels are just encapsulating packets into a tunnelling packet
which is then sent over the physical link. Due to the headers of this encapsulation,
the packet on the virtual link has a shorter maximum transmission unit (MTU)
than the packet on the wire. Therefore, these virtual links have a smaller MTU.
As a consequence, the fragmentation of a packet on a virtual link is different than
the fragmentation of the very same packet on the physical link. Therefore, if an
error occurs, the damaged part of the packet was different on the virtual link than
on the physical link. According to this phenomena, the virtual links and the phys-
ical links require different fault detection, however virtual links depend on the
underlying physical links, therefore errors on the physical link can cause errors on
the virtual link as well and it is merely impossible to detect the same error in the
same way on both links.

If there is support from the operating system about virtual interface statistics, it
is easy to monitor most of the characteristics of a link. The number of transmitted,
received, dropped packets can be easily queried. If that is not the case, it is hard
to detect failures like package dropping precisely. There are multiple causes of
packet dropping: for example if there is not enough processing capacity, so the
processing queues are overflowing or there is an issue with the link. A good
approach for link error monitoring is to provide a small margin of error.

Monitoring link performance is also problematic due to the on-line behaviour
of the measurement: packets must be sent on the link to calculate round trip time,

practical maximum bandwidth or delay. The problem is that by sending packets

12



on the same link used by the emulation, the two traffic can interfere. That is
not the case if we measure the link characteristics before the emulation starts,
but, links characteristics in packet switched network are not constant, therefore
constant monitoring is required which unfortunately utilises these links.

Beside the difficulty of measuring link metrics, it is really easy to validate
them with the required characteristics. For example, if the emulation should cre-
ate a link with 100 Mb/s capacity and we can measure its practical maximum

bandwidth, it is trivial to check if the link requirements are realised or not.

3.3 The Algorithm in Detail

The presented algorithm that targets the motives described in Section 3.1, namely,
to provide a cost-efficient and reliable resource allocation algorithm for clustered
network emulator solutions that can run creditable experiments on emulated net-
works in the cloud. Obviously, there is a slight trade-off between cost-efficiency
and reliability. In order to provide creditable measurement results which are im-
portant to suit for academic usage as well as for production, the reliability must be
prioritised over cost-efficiency. Accordingly, the algorithm is designed to provide
a reliable and also a cost-efficient resource allocation.

As the figure of algorithm’s naive version (Figure 4), shows, the algorithm’s
input is the description of the network to emulate. This description contains the
parameters of the emulated network (topology, link characteristics, resource limi-
tation of emulated hosts, mapping constraints, etc.).

Based on the input, the next step of the algorithm is the discovery of the ar-
bitrary nodes of the cluster and the resources available on them. For the purpose
of network emulation, the resources mentioned in Section 3.2 as very important
to monitor are the most important ones at resource discovery as well. These re-
sources are namely CPU performance, memory capacity and quality of links.

The results of this discovery is used in the next step of the algorithm. In
this step the discovered nodes are put into a list (mentioned as node-list) that is
ordered by the predicted network emulation performance of the nodes. The first

element of this list is the most powerful node, and the last one is the least powerful

13



according to a predicting function. This function that predicts the performance of
a node is not pre-wired, because, the costs of the resources depend on the tariffs
by the cloud provider. Because this function is the one of the key aspects of cost-
efficiency, choosing it carefully is required to achieve maximal cost-efficiency.

After the ranking of nodes, the algorithm tries to embed the network onto
the first n number of computational nodes of the node-list using a placement
algorithm that is either provided by an existing network emulator or built from
scratch. This placement algorithm must be able to embed the arbitrary segments
onto the arbitrary nodes and interconnect them by virtual links. In parallel with
the embedding, the monitoring of operation critic resources which are described
in Section 3.2) begins.

When monitoring detects any threat such as there is not enough free processor
resource to resume the emulation without any disturbance, then it will interrupt
the emulation and this interrupt will be a feedback that will launch a new itera-
tion of network embedding with a bigger resource set (with more computational
nodes) than before. Otherwise, the algorithm terminates when the emulated net-

work terminates.

14



Emulated
network's
description

l

Get resource information
about compute nodes

:

Rank compute nodes
and create a list of them

\
Map network to the ﬁrstt n
compute node of the list
n:=n+1

error occured T

Monitor

Figure 4. Flowchart representation of the naive algorithm.

Additional remarks for the steps of the algorithm:

1. Criteria (e.g., link bandwidth, host CPU limit) given in the input network
description can provide useful information for the next steps of the algo-

rithm.

2. There are diverse methods to discover resources of nodes (examples can be

15



seen in Section 3.2), but there is the problem of comparing these results be-
tween different software (e.g., operating system) or different hardware (e.g.,
CPU architecture). One solution for this issue might be to run a dedicated
CPU intensive test application and measure its completion time on the hosts

at resource discovery time.

. It seems trivial to rank the nodes with all the relevant resource information,
however, it is not the case. Because there is a huge set of non-technical
aspects such as management and economic considerations: different cloud
providers price resources differently. To achieve maximal cost-efficiency,
these aspects must be considered and the weights in the comparing function

should be set accordingly to the tariffs.

. The presented algorithm can rely on the placement algorithm of a network
emulator when it tries to embed a network. Fundamentally, there is no need
for complex algorithms at that stage, the simple ones can be very effective
in many real life scenarios. For example, it is typical that the cluster consist
of nodes with the very same resources (e.g., same hardware); in this case the
bin placer algorithm which places the network elements to emulate evenly
on the nodes of the cluster knowing the number of nodes. This algorithm in

this use case is incredibly fast, scales well and easy to implement.

The granularity of the iteration steps during embedding tries, namely, how
many hosts should it activate at each iteration, is determining for efficiency.
For networks that are as large as they require more then one or a couple of
nodes to embed properly, it is pointless to try to embed these networks onto
smaller number of nodes than they require. Therefore, these superfluous
steps can be omitted, and hereby it increases the efficiency of the algorithm.
The number of required hosts for a virtual network to embed can be put into
a database to speed up the re-embedding process of the same network on

the same nodes.

As oppose to these optimisation, the naive algorithm which can be seen in

Figure 4 uses very simple stepping. It starts with the first element of the

16



node-list and adds additional elements one by one to the resource set for
embedding. The main advantage of this solution is the simple implementa-

tion, but, it is far from the optimal solution.

Resource requirements of the emulated network can be queried from the
emulated network’s description. If it does not define its requirements ex-
plicitly, it is still possible to forecast the capabilities of the nodes (how
many and what kind of network elements can it run) by heuristics and per-
formance measurements and embed the network accordingly. Due to the

possible error of the forecast, there is an extra need for monitoring.

. There are multiple paradigms to implement monitoring that follows the as-
pects described in Section 3.2. The cluster nodes involved in network emu-
lation can be monitored in a centralised or in a distributed manner. In case of
centralised approach the monitoring actions like measuring and data query-
ing are done by the central entity which also runs the implementation of the
algorithm. By the other approach the monitoring is distributed: the nodes
measure their resource utilisation separately, then aggregate and forward
their measurements. The big advantage of this approach is the even distri-
bution of monitoring overhead over the active nodes of the cluster, however
the implementation and installation of distributed monitoring is more com-

plex than central monitoring.

During the implementation of the algorithm one must take account of the
monitoring overhead, and should endeavour to keep this overhead low in
order to achieve high cost-efficiency. If the network emulator provides such
capability, it is a good solution to rely on its functionality during implemen-

tation.

3.4 Proof of Concept

To check the viability of the concept behind the algorithm presented in Section 3

a proof of concept was implemented in Python utilising the cluster support of

Mininet. It wraps Mininet transparently, so each Mininet command line argu-

17



ment provides the same functionality as it would provide in vanilla Mininet except
—cluster. Due to the heavy collaboration with Mininet, the proof of concept
was developed under the code name Micronet referring to its frugal resource util-
isation. The installation of Micronet is the same as Mininet’s. It runs on one node

and requires no extra software.

—— SSH tunnel
SSH connection

Figure 5. Infrastructure of the Proof of Concept.

The infrastructure of the implementation is simple (see Figure 5). It runs on
one node in the cluster (this node will be referred as “head”) and accesses other
nodes via secure shell connection. During its operation, it collects resource infor-
mation and manages other nodes via this ssh connection. The resource informa-
tion are queried from operating system provided statistics, and the network emula-
tion functions are provided by Mininet, so this proof of concept can focus only on
the implementation of the trial and error resource allocation algorithm presented
in Section 3.3, and its required monitoring functions described in Section 3.2 in
details.

During its run the application first parses its command line arguments search-

18



ing for Mininet’s “—cluster” argument to gather the host names of the nodes of
the cluster. The program then discovers these hosts based on their names: gets
their IP addresses and their available resources which are required for ranking
the nodes. Currently, the program can only query the processor performance and
memory capacity of the node from the system’s statistic files on local host and
on remote hosts via ssh. The processor performance is represented in bogomips
read from the CPU statistic describing /proc/cpuinfo. However, bogomips
is not necessarily provides a valid image of the processor’s performance, it still
provides a constant and easy to access metric about the processor. Therefore, it
is good for concept proving purposes. The memory capacity is represented by
the sum of the available memory in the system. This information is provided by
/proc/meminfo. In addition to CPU performance and memory capacity, the
quality of the links between the given node and the head node is measured. The
two metric used here are round trip time and maximum practical bandwidth. The
round trip time is determined as an average result of three ping. The measurement
of maximum practical bandwidth is a bit more complicated. Namely, the the mea-
surement is carried out with iperf. The head node is in the role of the server, and
the actual node to measure is the client. If the measurable node is the local host,
these measurements are omitted, because these measurements are needless due to
the all-importance of the local host . This all-importance will be further detailed.

After the resource discovery, the program, strictly following the algorithm,
ranks the nodes according to their resources. During this ranking the local host has
an all-importance even if it hass the lowest amount of resources in the cluster. This
artificial modification of the ranking is required to harvest the low management
costs of the local host. Namely, there is no need to build ssh connection to manage
and monitor the local host, so the overhead of a monitoring ssh connection can be
saved. The ranking algorithm considers two factors. One is the local resource set
(CPU and memory) of the node, the other is the quality of the link to the node
(bandwidth, rtt).

After node ranking the program tries to embed the given network on the nodes.

The proof of concept uses the naive algorithm to embed the given network onto

19



the nodes of the node-list’s ever increasing prefix sub list. So, in first iteration it
tries the local host which is the first element of the list, then goes one-by-one to
embed the network onto that subset of cluster nodes. Each iteration starts with
the initiation of monitoring threads. This threads starts monitoring with a small
delay and in one or two seconds periodically check the current CPU and memory
utilisation on the active hosts. After starting monitoring, the program fires up the
required Mininet network with its parameters. In this step Mininet builds up the
cluster using only the nodes from the node-list, places network elements, provides
user interface, etc. If there are not enough free resources on the hosts, so starting
Mininet fails, a new iteration of the embed probing begins with an additional node
added the node list if there are still inactive nodes. If all of the available nodes are
used and the cycle can not add utilise new node, the allocation fails. The allocation
is also unsuccessful if the monitoring threads find high resource utilisation threats
that can harm the validity and the authenticity of the on-going experiments and

measurements on the emulated network.

20



4 Evaluation

4.1 Evaluation setup

The evaluation of the proof of concept took place on a PC with a dual-core
2.6 GHz Intel Core 15-3320M and 16 GB of RAM. The base operating system
was Debian 8 (Jessie). The used virtualisation software was Oracle VirtualBox
5.0.6 and the virtual machines were instantiated from official Mininet 2.2.1 im-
ages (mininet-2.2.1-150420-ubuntu-14.04-server-amd64) with the default config-
uration (1 CPU core at full capacity, 1024 MB RAM) using one NAT network.

mn-cluster-node-0

mn-cluster-node-1 mn-cluster-node-2

Physical host

Figure 6. Infrastructure used for evaluating the proof of concept.

The infrastructure of the evaluation can be seen in Figure 6. There was one
physical machine on which VirtualBox emulated three almost identical Mininet
virtual machines in the the same network. The virtual machines were named

as mn—cluster—-{0, 1, 2}. These VMs formed the cluster infrastructure for

21



the evaluation. The configuration of the cluster was done from mn-cluster-node-
0 because only that one was accessible from the outside world via its second
network interface.

Some preparation was required in order to fire up Mininet Cluster Edition in
this setup, however, the official Mininet VM images were used. Each VM was the
copy of the first one, therefore, setting arbitrary host names and configuring static
routing and host name resolution was the first thing done during installation. After
that, some configuration on the ssh daemon was required. Disabling DNS usage
was written in the documentation, permitting tunnelling and increasing the maxi-
mum number of parallel sessions was mentioned only as a workaround for some
issues, however setting these parameters is necessary. The last configuration step
was distributing ssh keys over the cluster nodes by the given cluster setup shell
script. This script can set the keys temporarily and permanently. Temporal key
configuration is useful for ad-hoc clustering which was not the case for the evalu-
ation, therefore, the keys set up was done permanently. Later, the ssh compression
was activated and ciphers were changed to blowfish-cbc and arcfour due to their
low resource usage in order to increase the bandwidth between nodes.

The proof of concept was copied to the home folder of mininet user on mn-
cluster-node-0 via ssh, and was installed by its install script which downloads and

sets up the required tools. By issuing these steps, the test bed was ready to use.

4.2 Results

The viability of the concept was justified by two types of measurements. One
group of measurements were targeted to confirm that the simple implementation
of the algorithm can be so efficient that it can overcome the resource allocation of
the de facto network emulator, Mininet. The metric of efficiency was the number
of active nodes. A small number of active nodes is important, beside its econom-
ically justification, because of the small number of slow and cumbersome node
interconnecting links. The other group of measurements was targeted to deter-
mine the amount of overhead generated by the required constant monitoring of

the approach. Both group of measurements were carried out in the testing setup

22



described in Section 4.1.

For these comparative measurements tree topology (Figure 1) was used with
various depth and fanout parameters. Depth sets the level of the tree and fanout
sets the number of branches of a single tree element. Tree topology was used
because of the large number of hosts to emulate. Hosts have higher resource
requirements than switches, therefore they are more relevant.

First measurement was targeted to demonstrate the frugality of the implemen-
tation. This measurement was about embedding a simple network that could even
run on a single node, on an increasing number of hosts. As it can be seen in Fig-
ure 7, Mininet uses all the available nodes to embed the virtual network no matter
of how minimal is the resource set that is required for the network. On the other
hand, the implementation of the trial and error algorithm utilises only the required

amount of resources.

Node Utilisation of Mininet and the Proof of Concept

For Tree,3,3 Topology

== Mininet === Proof of Concept

4
1]
g 3
o
c
o
e 2
>
s
s 1 * O
=
>
c

0

1 2 3

number of nodes

Figure 7. Node Utilisation of Mininet and the Proof of Concept.

In the second measurement scalability was tested. There was a fix number
of available nodes in the cluster, but the network to emulate was changing in a
sequence of increasing number of hosts. The calculation of host number in a tree

topology is simply tree’s depth raised to the power of tree’s fanout parameter. As

23



you can see in Figure 8, the implementation scales well as oppose to Mininet

which utilises all the available resources in each case.

Number of Active Nodes

W Mininet ® Proof of Concept

4
3
8 2
©
o
c
1
0
Tree, 2,2 Tree, 3,3 Tree, 3,4 Tree, 4,4 Tree, 3, 6 Tree, 4,5
topology

Figure 8. Node Usage of Mininet and the Proof of Concept for Different Tree
Topologies.

Based on these measurements, one can say that the algorithm scales well and
also economises the available resources well.

For the approximate determination of monitoring overhead, the used CPU cy-
cles, allocated memory and extra network traffic was analysed. As an intuition,
the largest amount of CPU and memory overhead mostly came from the ssh con-
nection establishment and termination. Therefore, not just the resource usage of
the implementation was monitored, but also the resource usage of the required ssh
processes. As Figure 9 shows, the operation of the proof of concept did reached
only two percentage of the overall CPU capacity on a single-core 2.6 GHz head
node with two additional computational nodes (Figure 6). It is not surprising that
the implementation of the algorithm is not CPU intensive — there is no exten-
sive computation in the algorithm. For the CPU bursts secure shell connections
are responsible mostly. Fortunately, this load can be lowered by configuring ssh

properly with ciphers requiring less resources and disabled compression. Other

24



method to consider is to use other than SSH remote access technology.

CPU Usage of the Proof of Concept

SUM === python ssh

25

15

percentage [%]
[

0.5

% & oV P A PG AD D P AV L O ® gV LD 3 A O A
SR A ARSI (L R S R R A R S SR SR Ce

v

time [1/10s]

Figure 9. CPU Usage of the Proof of Concept.

The memory usage of the implementation was also low. As Figure 10 plots,
the memory usage was 1.2 percentage at maximum on a computer with 1024

megabytes of random access memory and no swap.

RAM Usage of the Proof of Concept

SUM === python === ssh
1.4

1.2

1
0.8
0.6

0.4

percentage [%)]

0.2

0

S © O A D © O ® © S © O © O & &P
SRCC ORI R AP R R OPQQQ’“\,&@W&\Q@’“%@&Q FTSE

time [1/10s]

Figure 10. RAM Usage of the Proof of Concept.

25



The extra network traffic was determined the following way. All traffic was
logged during measuring some ssh monitoring cycle, then the relevant ssh traffic
was filtered out from the ssh tunnel packets. As these measurements involve send-
ing a quasi fix amount of data due to the fix size of the analysed statistic files, it
is possible to logged proportion the measured traffic to the elapsed time and the
number of active nodes to determine the extra network overhead’s bandwidth. The
empiric formula to calculate the bandwidth of the extra network overhead is very
simple: measure the traffic of one query from remote node to local node including
ssh build up, divide it by the monitoring period time and multiply by the number
of active remote nodes. For querying processor utilisation in the evaluation test
bed this number was 9878bytes/2seconds x 2 = 9878bytes/sec which is practi-
cally 9.9 kB/s. For memory monitoring this value was 10378bytes/1second 2 =
20756bytes/sec, which is practically 20.8 kB/s. Altogether this two value is 30,7
kB/s which is really low supposing high speed, gigabit links.

To conclude the performance evaluation of the presented algorithm, one can

say that the monitoring requires fractional amount of computational resources.

26



5 Conclusion

5.1 Summary

This document presented existing clustered network emulators in details and stated
that these tools are not capable to work in a dynamically changing environment
like cloud efficiently. So, to roll back this limitation of them, a possible cost-
efficient and reliable resource allocation algorithm was produced targeting experi-
ments involving large scale networks requiring cloud infrastructure and presented.

To better understand this problem, the work also included a proof of concept
based on the de facto network emulator, Mininet in order to see the viability of
the designed approach. The viability of this trial and error based allocation was

proved during its evaluation.

5.2 Future Work

The work presented in this document is not finished, there are many ways to con-
tinue.

A straight-forward future work will be to test the approach on real cloud envi-
ronments such as Amazon EC2.

Also there is still space to improve the proof of concept because it does not
utilise all the potential of the presented algorithm currently. This work will be
benefitial, because it provides a better understanding how things should be done
in a real life scenario and to make further findings (e.g., adaptive iteration) based

on these feedback.

27



6 References

References

[1] Wette, P., Draxler, M., Schwabe, A., Wallaschek, F., Zahraee, M. H., Karl,
H. Wette, Philip, et al. "Maxinet: Distributed emulation of software-defined
networks., Networking Conference, 2014 IFIP. IEEE, 2014.

[2] Maxinet website, http://maxinet.github.io, 2015-10-23

[3] Roy, A. R., Bari, M. F, Zhani, M. E., Ahmed, R., Boutaba, R., Design and
management of DOT: A distributed OpenFlow testbed., Design and man-
agement of DOT: A distributed OpenFlow testbed., Network Operations and
Management Symposium (NOMS), 2014 IEEE. IEEE, 2014.

[4] Mininet website, http://mininet.org, 2015-10-23

[5] Lantz, B., O’Connor, B., A Mininet-based Virtual Testbed for Distributed
SDN Development., Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication. ACM, 2015.

[6] Gupta, D., Yocum, K., McNett, M., Snoeren, A. C., Vahdat, A., Voelker, G.
M., To infinity and beyond: time warped network emulation, Proceedings

of the twentieth ACM symposium on Operating systems principles. ACM,
2005.

28


http://maxinet.github.io
http://mininet.org

	Introduction
	Related Work
	Utilising Trial and Error Approach for Network Emulation Resource Allocation
	Motivation
	Requirements
	The Algorithm in Detail
	Proof of Concept

	Evaluation
	Evaluation setup
	Results

	Conclusion
	Summary
	Future Work

	References

