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Kivonat

A dolgozat jelenlegi és lehetséges architekturalis megoldasokat targyal a Dolgok Internete (10T)
koncepcidjanak ipari esetekre vald alkalmazasahoz. Felvezetésképpen bemutatom az Ipar 4.0
elképzeléseit, foként a régi-uj elvarasok begyiijtésével és értelmezésével, esetiinkben a
Productive4.0 [1] eurdpai unids projekt kapcsan. Ebben a projektben, a MANTIS projekthez
[2] hasonldan, az IoT vildg megkozelitéseit, koncepcioit és technikai megvalositasait kivanjuk
az ipari esettanulmanyok kivitelezésére igaba fognia. A MANTIS-on beliil szamos iparag
szerepelteti magat, tobbek kozott présgépek, hagyomanyos (foldgaz alapu) energiatermelés
vagy akar specidlis ipari jarmiivek (példaul targoncak) gyartdja is.

Mindkét eddig emlitett eurdpai projekt az Arrowhead [3] architekturdjara tdmaszkodik, igy
ezekben az el6z6 munkdim eredményeit hasznaljék fel a partnerek. Tovabba, mindkét projekt
esettanulmanyai érdekes, esetleg eddig még nem lekezelt kdvetelményeket tdmaszthatnak az
Arrowheaddel szemben. Ezek rendkiviil fontosak, az ipari partnerek 6 iizleti folyamataihoz és
példaul logisztikajukhoz kéthetd. gy példaul az adat 1étrehozas és intelligens feldolgozas vagy
a piaci termékek integralhatosaganak kérdései is nyitottak. Néhany ilyen probléma mar
megoldott - néhany pedig még elemzésre szorul.

Ezen problémak egy részét mutatom be dolgozatomban. Igy példdul a MANTIS architektura
referencia implementacidit, melyben az Arrowhead jatssza a tobbszereplds rendszerek
integratoranak a szerepét valos iizleti demonstratorokban (példaul a fentebb emlitett esetekre).
Ezen esettanulmany implementaciokban mutatom be sajat, jelenlegi munkamat, illetve
targyalom a problémakat €s nyitott kérdéseket, melyek felmeriiltek a rendszerek tervezéseikor
(¢s amelyek relevansak az Arrowhead tovabbfejlesztéséhez).

Végezetiil bemutatom a munka kovetkezd, lehetséges fazisait, amelyek egyelére a
megvalosithatosagi tervezési fazisban vannak. Természetesen, ezen ipari igényeken alapulnak,
a Productive4.0 projekt kapcsan.



Abstract

This paper discusses current and possible architecture solutions for industrial Internet of Things
applications. First, a brief introduction to the new concepts of Industry 4.0 is provided. More
precisely, this part of the work focuses on what are the current requirements and how they
can be collected and understood. These aspects include, among others, requirements relating to
real-time communications, security and other non-functional requirements (such as scalability or
reliability). This is specifically presented for a relevant initiative, the ECSEL Productive4.0 [1]
project. This project, similarly to ECSEL MANTIS [2], is dedicated towards utilizing IoT funda-
mentals, concepts and technologies to realize very specific industrial use cases. Within MANTIS,
various fields of industry are represented, such as press machines, conventional energy plants or

even special purpose vehicles (e.g. forklifts).

Both projects are based on the Arrowhead architecture 3], and within that, my previous works.
Moreover, they both showcase very specific, industrial requirements towards the Arrowhead
framework, i.e. related to data collection (or generation), or using commercial, off-the-shelves
(COTS) product for further, specific subtasks. These are necessary, since they create the core
business processes of the involved partner companies. Therefore, it needs to be established, how
the service-oriented architecture of the Arrowhead framework can integrate these specific data
processing systems - and aid their operations. Some of these requirements can be facilitated

already, but some not - analysis is needed.

These are presented with examples from the MANTIS architecture instantiations (i.e. in the
above mentioned use cases), where the Arrowhead framework plays the integrator role for such
multi-vendor system-of-systems. In here, my major contributions to these use case implementa-
tions are presented with a discussion on the issues raised during architecting and coordinating

these demonstrators (in the above mentioned use cases within MANTIS).

Finally, future work is presented on the currently ongoing design phase about the missing capabil-
ities and approaches. The goals of these are to align with the industrial use cases of Productive4.0

and help the integration of business and logistics systems and processes.



Introduction

The concepts, ideas and fundamentals of the Internet of Things (IoT) paradigm is interesting for
industrial players and domains as well. There are many initiatives, industrial working groups or
even products that are targeting this world. However, in my experience within various initiatives,
they all only cover certain aspects or tasks, and maybe only provide solutions suitable for a given
set of application domains. Building whole systems, even for pilot use cases, still requires serious
integration work and expertise combining traditional engineering and information technologies.
This is “architecting” work is pressing, and I have seen state-of-the-art solutions brought by
large companies, that are not feasible to implement or deploy any other place — yet interoper-
ability would be necessary and mutually beneficial. Moreover, in such deployments, the various
issues of [oT are even more pressing, that are related i.e. security, real-time communications,

interoperability or reconfigurability.

My previous works also revolved around certain well-defined parts of this problem space, as part of
the Arrowhead framework. ' My efforts were related to the refining and designing the framework’s
service-oriented architecture, aided by certain centralized, core functionalities. Although, the
resolved problems are essentials within the framework and forward pointing for its evolution,
current issues are related to its wider usability and exact scope of functionality. Therefore, this
work is a dedicated towards describing and designing Industry 4.0 use cases and their application

systems, using the Arrowhead framework and other products.

These current changes in industry is often referred to as the fourth industrial revolution — or
shortly Industry 4.0. The end goal is more or less clear (and defined in many places, such as in
the Platform Industrie 4.0 - RAMI [6]). Besides the natural cost-related motivations, this turn

of tide is more focused on achieving among others:
e End-user customizable products: “customer wishes for everything from the product idea
through the recycling shall be taken into account”.

e More flexible production: production techniques like just-in-time (JIT) requires serious

logistics not to cause unexpected shutdowns.

e An easier integration possibility for small- and medium-sized enterprises to the “big league”.

!See my Scientific Student’ Associations Conference Papers of 2015 [4] and 2016 [5].



Moreover, the overall design principles are still a work in progress, but the fundamentals have
been laid down [7]:

e Interoperability: The ability of devices, sensors and people to connect via the Internet of
Things paradigm.

e Information transparency: The ability of information systems to create a virtual copy of
the physical world by enriching digital plant models.

e Technical assistance: The ability of assistance systems to aggregate and visualize informa-
tion for advanced and spot-on decision making (i.e. using big data systems).

e Decentralized decisions: Cyber-physical systems are ought to operate as autonomously as

possible without human intervention.

Accommodating these expectations is not an eagy challenge, since most parts are still considered
green-field research areas — and therefore also rewarding ones. Many technologies and approaches
are competing on how to achieve it — and partially succeed. Now, it is an interesting area how such

pilot systems and COTS (commercial off-the-shelves) products can be utilized and integrated.
Arrowhead, MANTIS and Productive4.0
This current paper primarily discusses my contributions in three European Union funded projects.

Firstly, my previous works were parts of the Arrowhead Project [3], which has ended by January
2017. It had the vision of a wide-ranged industrial consortium, and aimed at nothing less than
to create a full-scoped framework enabling collaborative automation by networked embedded
devices. The grand challenges it faced were the creation of interoperability and integrability of
almost any device. The represented stakeholders also showed heterogeneity - as opening to an
integrated IIoT world is in the interest of many technological areas. Since the primary objective
was to create a common platform for all sorts of future implementations, the primary pilot (use

case) scenarios of the project involved several business domains:

e industrial automation and production: both the processing and manufacturing sectors,
e smart buildings and infrastructure in smart cities,
e clectro mobility: smart electric cars, smart traffic control,

e energy sector: virtual market of energy, energy production and end-user services.

The MANTIS project [2] is similar in a sense to Arrowhead, however more targeted in its objec-
tive. It is aimed to utilize IoT technologies and approaches to a specific task: building proactive
maintenance enabling systems. The business goal is clear here: prevent unexpected failures and
have knowledge about the status of various components well in advance. However, building up
such a system architecture and implementing something that is capable of facilitating such tasks
is a challenge here. New data collection devices and methodologies (strategies) have to be es-
tablished, since general maintenance or asset status related information is usually not collected
in a well processable or aggregate-able manner. Moreover, since the collected data "has to go
somewhere", a cloud-based architecture needs to be proposed - specifically tailored to the re-
quirements of the involved use cases. Figure 1 depicts how such a MANTIS solution would embed

into a business scenario.
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Figure 1: Overview of the scope for a MANTIS platform

Meanwhile, the Productive4.0 [1] project started in May 2017, and within one of the work pack-
ages it wishes to continue the development of the Arrowhead framework. This is a large initiative,
with more than 110 partners coming from many European industries and sizes (from ball bear-
ings to car manufacturers). It supposed to provide an integrated solution from sensory and
actuating level up to enterprise decision making assistance. It is targeting exclusively industrial

environments, namely three aspects of production and the supply chain is in scope:

e digital production,
e supply chain management and monitoring,

e and product life cycle management.

In its first year of the project and therefore current efforts are related to establishing a the
common, unanimous understanding of the requirements (which is a general problem in current
[ToT endeavors). This is of highest priority, and a shall result in a roadmap for the further
development of the Arrowhead framework. In here, we shall build upon the lessons learned in
the Arrowhead and MANTIS project, and clarify how Arrowhead can be utilized as full system
integrator in broader IloT applications targeting all aspects of production. To this end, this

paper is presented in three major steps.
Outline of this work

Firstly, Industry 4.0 is discussed, with its difference compared to traditional production engi-
neering. In here, the importance of the ISA95 architecture is emphasized and how this is being
replaced by an IoT minded approach. It is of essence here to describe how the new requirements
are phrased: the architecture elements that will need to be translated into implementation. For
this purpose, an IToT (Industrial IoT) modeling reference architecture is presented: the 'Industrial

Internet of Things Reference Architecture’ [8].

Secondly, related previous works is presented on the Arrowhead framework and currently avail-



able functionalities and modules. These include my previous contributions and additional systems
from various partners. Although the Arrowhead project has ended, the developed technology is
used in other initiatives. This framework is essential and used later on in this paper, as part of

use case demonstrations, and also future work is drawn up for it.

Then IIoT application architectures are identified and analyzed. This is presented in two steps.
Firstly, the general system architectures of IoT and big data applications are presented and
discussed, which culminates in the lambda architecture. Secondly, my major contribution is
presented in various applications, as use case pilot demonstrators within the MANTIS project.
These implementations are utilizing Arrowhead while building upon commercial products and

sometimes rapid prototyped devices, as presented in Chapter 3.

Moreover, the literature overview and lessons learned (from MANTIS solutions) are used to build
a requirements collection questionnaire that is supposed to represent the use cases within the

Productive4.0. The results (responses from partners) are also elaborated, in Chapter 4.

Finally, future work is presented, based on the technology gap analysis provided previously and
the lessons learned from the relevant application demonstrators from the MANTIS project. This

results in a road map for the developments, now as part of the Productive 4.0 project.



Chapter 1

The World of the Industrial Internet of
Things

1.1 Traditional Networks within Industrial Automation

Traditional automation systems are built having the maximum security and reliability in mind.
These are monolithic systems, often provided by one company as a whole, closed solution. Making
changes often require a complete overhaul of the system, e.g. one replacement of a single device
requires a whole team of experts specializing on the various levels of the ISA 95 [9] architecture

pyramid (as shown on Fig. 1.1). Here, there are five levels to a traditional system, namely:

e Level 0: the physical process to be controlled;

e Level 1: Sensors and actuators connected to the physical process;

e Level 2: Monitoring, controlling and supervising elements of Level 1 (e.g. PLC-s);

e Level 3: Manufacturing Execution System (MES) controls the work flow, operate on ma-
chine level;

o Level 4: Enterprise Resource Planning (ERP) systems are aimed to utilize the data coming

from Level 3, e.g. for material usage planning and shipping.

ISA 95 is accompanied by many related standards that define the general and communications
architecture within and between the pyramid levels (e.g. IEC 62443 [11] is related to industrial
network and system security). However, each level has many possible suppliers and vendors, each

of them often specializing for a small number of application fields.

There are a limited number of well accepted networking technologies for industrial use, mostly
proprietary solutions capable of real-time performance (millisecond range latency). These are not
Internet Protocol-based (IP) usually. For the actual physical control loops, and process control

mechanisms (between levels 1-2-3), closed networks have always been created.

In here, legacy communication protocols are accepted, ranging from one-way analog technologies
(like 4-20 mA current loops [12]) to field buses (i.e. Profibus [13]). These are well-built robust

networks, with usually one or more controller systems (i.e. a PLC-s) in charge over one or many
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Figure 1.1: The ISA-95 system hierarchy [10]

"slaves” (i.e. sensors, actuators or human-machine interfaces). On the physical layer, we can
usually find RS 232 or fast industrial Ethernet [14].

In here, masters "pull” data from slaves, usually at equidistant time intervals, ranging from sub
millisecond to couple of seconds refresh rate (cycle time). These control loops are inherently com-
peting for controller resources to meet their own cycle time. Therefore, communication latency

and jitter has to meet serious, so-called hard real-time requirements in a deterministic way [10].

The controllers themselves then can have outbound connectivity (towards higher levels in the
pyramid, towards level 3), and might pose the last point of software reconfigurability. The input
and output (I/O) ports are usually fixed to sensor and actuator instances (design time binding),
any modifications require physical access. All access to level 1 is centralized in level 2 — level 3

only communicates via level 2 [14].

This creates a fairly rigid network setup, both on a physical level and in an accessibility sense. Any
modification to the system requires that all levels are partially shut down and entered the new
setup. Moreover, if e.g. a technician wishes to see environmental variables (such as temperature
of the process), it has to access it via the MES system - that will access the level 2 controller

instance, and that controller will access the 1/O port of its own, locking it from parallel use.

According to [10], a "number of clear trends related to such automation systems have been stated

via different road maps and initiatives”. These include:

1. Production flexibility and customization shall be easier.

10



2. Multi-stakeholder interactions shall be possible, all having proper access to the automation
systems according to their "stakes” in it.

3. The possibility to build larger automation systems (current practicality limit is around 100
000 I/0 ports).

4. Maintain automation system security while moving away from closed, proprietary network-

ing technologies.

It is a focal point of Industry 4.0 approaches: everything should be on the same network (e.g.
[P-based), for easier reconfigurability. Current developments in sensing technologies enable for
so-called smart sensors and actuators which themselves can be IP endpoints, addressable and
accessible on the network directly. This way, every elements or device in a production plant can

become a "thing” in the IoT sense [10].

Internet of
Things

Industrial loT

Cyber-
Physical
System

Cyber-
Physical
Production
System

Figure 1.2: Understanding the terminology

Figure 1.2 depicts how the various terms should be considered regarding industrial IoT, how
we get from industrial "things" to a whole new generation of enterprise systems building on
IoT fundamentals. Basically, in this terminology, we are starting from production systems, that
are becoming "cyber-physical", described and discussed in the next section. Then such cyber-
physical systems can be part of a larger, industrial environment, where many of such systems shall
cooperate, providing data and receiving commands from one another, creating the possibility for

quick reconfigurability and flexibility.

1.2 Smart Shop Floors: Cyber-Physical Systems Communicating

The first aim is clear from our property list of visions: utilize current developments in embedded
microprocessor systems and sensing technologies and build automation systems based on IP
networks, rather than proprietary technologies. Smart sensors nodes, motes can be built, and

they can connect through a whole new variety of wired or wireless networks. This way an "old”

11



automation system can be monitored and even controlled, with comparatively cheaper solutions
than previously. All data describing the environment (and process) can be collected, while not

connected to the real-time control loops of the process at first.

Moreover, the legacy machines and systems themselves can also have an "addon” that can repre-
sent the capabilities of the machine control system towards the "modern network”. These "gate-
ways” can be connected to the PLC-s or controller PC-s of the machines, and can utilize the
legacy (e.g. RS 232-based) interfaces of the machine. Here, we can access diagnostic and telemetry

type of information from the machine controllers.

This concept is connecting the "physical and cyber spaces”, hence such a system is called cyber-
physical system (CPS). A working definition for CPS has been offered in [15|, where a CPS
is defined as a systems consisting of computational, communication and control components

combined with physical processes.

Therefore, CPS-s are establishing the foundation for the deployment of a new generation of
complex systems. Until now, embedded computing has been focused on improving on-device
computational capabilities, on the other hand CPS are focusing more and more on the neces-
sity to have some kind of communication between CPS-s, i.e. the need of autonomous CPS to

dynamically interoperate in order to achieve a higher (e.g. production) goal.

Primarily, CPS-s differ from traditional centralized MES systems in one major aspect: CPS-s are
intended to be autonomous to some extent. They can incorporate level 2-3 functionalities, and
represent these resources to other level 3 or level 4 entities in the ISA95 sense. They shall pose
(the cyber part) an interface towards other CPS-s that help with the monitoring, telemetry and

even configuration of the incorporated physical resources, processes.

This concept is pointing towards Service-Oriented Architectures (SOA) [16] that use exactly such
fundamentals. The novelty of migrating from a legacy process control systems into a SOA, is
to transform and gradually upgrade highly integrated and vendor-locked standards into a more
open structure while maintaining and extending the functionality. Decentralization and non-
design time bindings are key components here. There are several definitions and descriptions
available for SOA, OASIS [17] defines it the following way:

A paradigm for organizing and utilizing distributed capabilities that may be under the control of
different ownership domains. It provides a uniform means to offer, discover, interact with and use

capabilities to produce desired effects consistent with measurable preconditions and expectations.

From a communication point of view, as mentioned earlier, Industry 4.0 sees IP-based networking
as the cost-effective, proven and pervasive technology that — with special restrictions — can be
used for the new generation of automation systems. Moving away from master-slave field buses,
the IP technology offers communication in a Plug-and-Play and sometimes zero-configuration

way.

It is worth noting, that the characteristics of of the network used is not in scope of this paper. We
only assume that there will be endpoints that can be accessed on a local network when needed,

these endpoints will be usually connected to automation systems and industrial processes.

12



1.3 Arrowhead !

The Arrowhead project was started exactly on these fundamentals: make automation based
on CPS-s operating in a Service-Oriented Architecture (SOA) manner. This approach can be
interpreted as an extension of the interface concept used in the object-oriented programming
paradigm. A SOA based system is built upon a collection of loosely coupled components that
are somehow interconnected: they provide services to one another [18]. Fig. 1.3 depicts how this

can be abstracted (and presented in the Arrowhead nomenclature).

Service
System . 0D System
P!! "/ C!!
”” Producer Consumer 7

Figure 1.3: Services produced and consumed by systems

The building blocks of the SOA systems are these services. There is no standardization on what
characteristics services have, or how they can be implemented. The authors of [19] emphasized

the following characteristics of service abstraction:

e Loose coupling: hardwired connections between entities are not permitted.

e Rather services are dynamically discoverable upon need (run-time).

e Services are self-contained and modular. A service supports a set of interfaces and these
interfaces are logically cohesive (they implement the same functionality).

e Modular understandability: the user has to be able to use the service without having knowl-
edge of any other underlying implementation details.

e Modular decomposability: a complex service can be created from simpler atomic services.

e Interoperability: systems using different platforms and programming languages should able

to communicate with each other using services.

SOA is primarily associated with the Web Service ? stack. However, it is worth noting, that
the SOA principles can be implemented using (nearly) any technology - might be even used
outside of information technology purposes [21]. Its main advantage lies in its emphasis on a
minimalistic common ground and thrive for resource reuse. Moreover, late binding essentially
has the capability of providing reconfigurability since service discovery can be tailored to retrieve

specially chosen service providers.

The Arrowhead Framework aims at providing interoperability (connectivity) by facilitating the
service interactions within closed or at least separated automation environments, called Local
Automation Clouds (LC-s). Hence creating central governance with a minimalistic set of core
components that take over certain configuration tasks from individual systems and components

(e.g. sensors). In such Arrowhead Local Clouds there can be an arbitrary number of Systems that

!This subsection is extract of Arrowhead based on my Scientific Student’ Associations Conference Paper of
2016 [5].

2Web Services (WS) are basically a given protocol (HTTP) and design guidelines to provide (mainly) a
machine-to-machine interoperability layer managed by OASIS [17] and W3C [20].

13



can provide and consume Services from one another: they create and finish servicing instances

dynamically in run-time. Figure 1.3 depicts these relations.

Lookup Authorize
Orchestrator Authorization

Service

Registry

Publish | Core Systems and Services ] Request
T | Application Systems and Services | K
A Service A
Service P Service
Provider Consumer

Figure 1.4: Interactions with the Arrowhead core

There are Currently, there are three mandatory Core Systems and other optional ones that

support automation, as depicted in Figure 1.5.

e The Service Registry stores all the Systems (that are currently available in the network)
and their service offerings. Systems have to announce their presence, and the services they
can offer. The registry takes note of this information when systems come on-line, and might
have to revoke them when they go off-line.

e The Authorization System - as its name suggests - manages authentication and authorization
(AA) tasks, however, it covers some other security-related issues as well (e.g. certificate
handling).

e The Orchestrator is responsible for instrumenting each System in the Cloud: where to
connect and what to consume. It instructs Systems so by pointing towards specific Service
Providers to consume specific Service(s) from.

e The QoS Manager concept aims to make the real-time constrained embedded devices inte-
grable in a Local Cloud (i.e. actuators) [22].

e The System Configuration Store [23] provides customized storage for firmware and configu-
ration file updates for Application Systems. This storage solution has to support a multitude
of transport and firmware management protocols in a secure and safe way.

e The Plant Description system [24] aims to integrate various topologies that might be used
to describe the same establishment.

e The Historian hosts application data for Systems, and stores the data in query-able form.

e The Translator System [25] can (will) provide application-level translation so that a pro-
ducer and consumer implementing a different protocol of the same Service can still interact.

e Event handlers are tasked with the run-time detection of various events and errors and

triggering the appropriate Systems (in a publish - subscribe manner).

My previous contributions were related to local orchestration and also inter-Cloud servicing.
Arrowhead Local Clouds might be sufficient to handle certain tasks in their isolation. However,
as one single Arrowhead Cloud (one SoS) cannot serve for all, there is need for inter-cloud

operations to achieve true global interconnectivity within the Framework-compliant networks.

14
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My inter-Cloud communication architecture builds heavily upon the Core Systems’ exclusive
involvement in facilitating and managing the connections (servicing instances) within their au-
thority: in this sense, the Core Systems are responsible for all other Application Systems and
their data handled in the Local Cloud. This concept will be fundamental for later analysis. Fig-
ure [?] depicts a sequential overview of the inter-Cloud orchestration process using Gatekeepers

and Gateways.
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Registry System System > System System —»  System System Registry
et et et
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System [FC

=
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System
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Figure 1.6: Inter-Cloud collaboration using Gatekeepers and Gateways

To conclude, Arrowhead primarily assumed so far that there is a physically and conceptually
closed local network in automation environments, where Application Systems (CPS-s) are com-
municating in order to achive their operating goals. These processes are aided by the Core Sys-
tems of framework through providing reconfigurability and late binding, resource management

and monitoring.

With inter-Cloud collaboration, we are opening up these closed networks (not just on a con-
ceptual level), and allowing external stakeholders and their systems to consume some sort of
Services (information) from our production network. My Gatekeeper and Gateway [26] modules
are intended to restrict and see over such connections, but in principle the data that will be given

out is still dependent on the Service contract (interface definition regarding functionality).
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Chapter 2

Internet of Things and Big Data

Processing

2.1

IoT Platforms and Components

This chapter discusses a completely different world - yet to be merged within industrial automa-

tion. A "usual” application scenario here involves things collecting enormous amount of data and

sending them to a cloud. There are many competing, full or partial solutions to the problems of

this world, with many communication protocols, networking technologies and cloud architectures.

It is of essence for this paper to identify and analyze the generic architecture model of 10T systems

and the data flows between components. A survey of 39 IoT platforms [27] concluded in a generic

architecture and common characteristics of IoT platforms. In here, all relevant “big player” of

the industry are inspected and included. These systems naturally have common characteristics,

such as:

1.

There is usually a cloud-based solution that collects data from many type of devices in a

centralized manner.

2. There is only a handful of protocols that can be used to submit data to the cloud.

3. Majority of the platforms only allow specialized protocols to be used for transmission. Usu-

ally, no add-dons can be created for the platform to receive data in a proprietary protocol.

. The majority of the listed platforms are not incorporating mechanisms for storing or ma-

nipulating the data locally, rather the data is sent to the cloud platform in raw format,
stored there, unencrypted.

Moreover, later on, access control to the collected data is not well established in most cases
either. Data ownership is given up once the device sent the record to the cloud.

There are various data processing entities that can operate on the data.

. There is an included Human-Machine Interface (HMI) that can present the data.

Figure 2.1 depicts a generalized commercial IoT framework in its fullest form, based on these

characteristics. In here, there are two possibilities shown. The various IoT services can be deployed
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Figure 2.1: A generalized IoT framework [27]

on local premises or within an IT cloud. For both cases, however, there is distinct two levels:
devices, "things” and a platform that receives data and processes it and provides a User Interface
(UI) to view the data and the provided analytics of it. The generic modules in such a platform

are:

e Sensor or actuator nodes, motes that send in the data.

o Gateways that "hide” too constrained devices that might be communicating via non-IP
based networking and/or incapable of implementing the platform interface (e.g. REST or
MQTT).

e A platform interface that receives the data from the devices and passes it to other modules
(data distributor).

e Distributed data storage, accessible by all.

e Various service modules that can access the historical or even the current inbound data
streams and provide insights and various processing possibilities (e.g. big data applications).

e Graphical interfaces (Business Insights) for operators to manage the system and validate

the output.

In this generic data flow model, things are collecting the data, and the cloud processes it. The
device-cloud interface is - in majority - is implemented using popular protocols. These include pri-
marily the Representational State Transfer (REST |28]) over HT'TP, sometimes uses Web Sockets
or the Constrained Application Protocol (CoAP [29]). Moreover, publish-subscribe typed proto-
cols are also gaining popularity, such as the Message Queue Telemetry Transport — MQTT [30])

protocol is also used.

The data distributor module is basically a publish-subscribe brokering pattern [31] on its own.
However, it has very unique operational conditions, and the engineering of a such system is
mostly dedicated towards maintaining is scalability, resilience and fault tolerance. It receives and

aggregates the data streams form the devices, and passes it on to the appropriate modules in
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the cloud: presistent data storage, analytic services, HMI-s, and so on. This module is usually
deployed on a cluster, and exposes multiple, load-balanced IP endpoints for devices to upload

their data. A popular, open source implementation of this module is the Apache Kafka [32].

In some cases, this distributor even realizes two-way communication with the devices: cloud
components can also push back information (cloud to device) using the same interface (e.g. if it
is implemented over MQTT or other persistent connection). These messages can be related to

commands towards the devices. However, in a generic [oT application this feature is not required.

Data storages are naturally a cornerstone of such platforms, and there is wide literature on how
to build and maintain distributed data storages, on both SQL- and non-SQL-based technologies
as well [33, 34, 35]. The same design and operational aspects are relevant as to all cloud-based
modules (i.e. with special attention to scalability, fault tolerance, robustness). One popular, open
source implementation used by the majority of the players is the Apache Hadoop [36]. It has
REST |28| based API (Application Programming Interface), as many other technologies in this

world.

2.2 Data Processing: The Lambda Architecture

This section discusses how IoT platforms process and make use of the collected data: what are
the analytic services and how they operate. This is highly important, since the whole purpose
of ToT is to facilitate data analytics for various business purposes. Industrial use cases shall be

built this way as well, and will use the same tool set available on these platforms.

According to the generalized lambda architecture pattern [37] defined by industry experts, data
can be processed either as soon as it reaches the platform (stream processing), or later on, on

demand fetched from storage (batch processing).

Figure 2.2 depicts the overview of a generic analytic platform. In here, the “speed layer” comprises
of stream processing technologies, that are processing inbound data real time. It is an event
driven programming paradigm, where the processing functionality receives periodically touples
and executes the same function over them (e.g. creating a counter for a specific message type).
This type of processing shall not take too much time and effort, and should be prepared to be

heavily parallelized, over various network nodes in a cluster.

Such stream processors can usually only execute in a directed acyclical graph (DAG), as does
the most popular open source implementation, Apache Storm [38]. Within Apache Storm for
example, every data touple forms an immutable data structure, and operations are distributed
over nodes in the cluster, in a fault tolerant manner. More design guidelines on implementing

application pipelines can be found in its documentations.

The other type of processing is asynchronous to the inbound data, and can be called on batch
datasets queried from the data storage. These tasks are run once at a time and might take long
to complete. In here, machine learning algorithm training or other hard computation-heavy jobs

can be run.
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An other major responsibility of the batch layer is to maintain the data storage, aided by the
serving (database) layer. Primary functions of the latter include access control and enforcing
the data ownership policies over the database. As discussed in |27], the authentication and data
retention policies are usually resolved with access (and API) tokens that verify the sender mote.
Moreover, the Public Key Infrastructure (PKI, certificates) is used, especially for the REST

based implementations.

On a side note, as discussed in our article [39], these IoT platforms, systems are subject to
a number threats on its every "layer”, coming from the data sources up to the applications
that utilize them. Figure 2.4 depicts how such a system can be abstracted as a layered solution.
Appendix 2 contains the main conclusions of this research, determining the main security threats

present for each layer.

Application Layer

Data Processing Layer

Networking Layer

Sensors and Actuators Layer

Figure 2.3: IoT framework layers
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2.3 Edge Computing
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Figure 2.4: The IIoT Reference Architecture model [8]

Industrial use cases are more inclined to refine this general business model of ToT platforms.
One of the main reasons for this is related to the security and data ownership policies (or better
said their lack of) of the commercial systems. European data retention policies [40] are very
restrictive on what type of business (or customer) data can be stored, and especially where.
Moreover, companies are also reluctant to trust third parties with their business sensitive data
(naturally, for corporate espionage reasons). However, the biggest issue with sharing all data
with a remotely deployed platform is related to the data quantity. Process control or general
telemetry data is of millisecond resolution, while various logs are generated in a very verbose,

lengthy format.

Therefore, it is viable to place various (pre-)processing tasks locally, close to the data source.
This concept is called edge computing, and here the cloud platforms do not get directly in contact

with the devices themselves, but through an edge gateway.

The need for this is also verified in the Industrial Internet of Things Reference Architecture [8].
In here, the architecture is dissected into three tiers. The first one is the edge tier that can be
located in shop floors, and might include real-time control loops (cf. ISA95). In here, we are
collecting the data, aggregating it, preprocessing it and doing preliminary analytics that can be

done locally (e.g. outliers detection), as seen in 2.4.

The platform tier can be cloud-based, or generally run on corporate servers.The platform tier
receives, processes and forwards control commands from the enterprise tier to the edge tier. It
consolidates processes and analyzes data flows from the edge tier and other tiers. It provides
management functions for devices and assets. It also offers non-domain specific services such as

data query and analytics.
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The enterprise tier implements domain-specific applications, decision support systems and pro-
vides interfaces to end-users including operation specialists. The enterprise tier receives data
flows from the edge and platform tier. It also issues control commands to the platform tier and

edge tier.
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Chapter 3

Building an IIoT architecture for
MANTIS

3.1 General MANTIS Platform Design

This chapter details my contributions on establishing the reference architecture for the MANTIS
project. MANTIS aims to provide a proactive maintenance platform for cyber pyhiscal systems.
Based on the requirements submitted by partners, my job was to research and draw up a reference
architecture model for a cloud-based proactive maintenance targeting IoT system that fits within
the industrial use cases. This was used as a “architecture template” afterwards, and use cases
can contribute on which modules are they implementing, what are the use case specific modi-
fications they had to make. Moreover, I participated in three of the eleven pilot demonstration

implementations.

Within the project, there are pilot demonstrators that were not starting from scratch (internally
called “brown field use cases”), and there were partner groups whose use case were yet to be
architected (“green field ones”). Therefore, my suggested architecture model is based on my
research (as presented in Chapter 2) and the lessons learned from the first trial implementations

done by the brown field use cases.

The purpose of the MANTIS architecture is to make proactive maintenance possible. Since large
amounts of data can be collected from industrial devices, machines or vehicles, there is sense in
trying to utilize them. One of the first drawbacks experienced, of course, was that although data
has been collected for several years now, this data collection, aggregation and storage systems
were not designed to be actually used later on. This means that the format, structure and quality
of the data is not sufficient for today’s analytic services to comprehend or use. Within MANTIS,

analytic services are that need to be developed are related to three functions [41]:

e Remaining Useful Life (RUL) of components: continous tracking of telemetry (usage) data
and estimating how much time the given device or component has left before needs to be

replaced,
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e Fault Prediction (FP): the system shall predict based on diagnostic data an inbound failure
mode (different to wear-out to be detected by RUL),
e Root Cause Analysis (RCA): when an unpredicted, complex failure occurs, the system shall

deduct the actual module (cause) that caused the break .

The MANTIS platform has designed to support these functions [ibid.]. All three functionality
requires that various, preprocessed data is streamed into the platform, with appropriate device
and location identification. It was decided early on within the project, that one commonly used
platform instance is not in the interest of project partners (yet again due to business-related rea-
sons). Moreover, a reference architecture in general shall not be implementation-specific, see [8].
As a first step, I have identified key differences in the requirements that are pointing away from

a standard IoT system implementation (described in the literature):

1. The edge computing paradigm has to be used to reduce the data sent to the platform and
to enable on-site maintance operations.

2. Therefore, a whole infrastructure within the edge has to be defined for storage, limited
analytics and HMI support.

3. Various legacy data formats need to be translated to a unified MANTIS-capable one before
sent to the cloud, if possible.

4. Dynamical discovery of available platforms and and attachment procedure to a platform
instance is needed.

5. Emphasis must be put on a bi-directional edge-cloud interface specification so that the
platform and enterprise tiers can access the edge and command it.

6. Many platform tiers shall be able to reach one edge installation for multi-stakeholder inter-

actions.

Based on this, I have proposed the MANTIS architecture as presented on Figure 3.3. In this high
level overview, I utilize the edge-platform separation and we should also allow standalone devices
to send their data directly. Here, we have to emphasize that the edge level is a fully fledged system
on its own. It shall have local storage, analytic tool sets and even man-machine (HMI) interface.
Nevertheless, when the edge system is not a standalone device, but e.g. a shop floor, the edge
gateway must be the sole module that shall be tasked with keeping the connection to a higher
level, corporate platform. It needs to tap into the relevant local data sources (i.e. CPS-s), and
transmit the pre-processed stream. The purpose of the higher level platform is to collect data
from various sources (not just e.g. from production sites), and create analytic modules that can

utilize the extra data sources, not available locally.

Since we are facing serious interoperability issues when using and trying to monitor legacy sys-
tems and custom-made devices, understanding the data and parsing it into a unified, processable
format is not an easy task. For this reason, MIMOSA [42| was selected as a (SQL) database
schema. This way, all partners can store their data in a unified manner, and the algorithms
developed for prognostics can be reused between use cases. As presented in our joint paper [43],
MIMOSA can be a standard-bases cornerstone that creates interoperability for such a mainte-

nance platform. Even if later on the SQL nature of the database schema will have to be changed,
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Figure 3.1: Overview of the proposed MANTIS architecture

the implied data ontology and semantics can still be reused. However, this design decision will
have to be revisited, once the MANTIS platform reaches its scalability limit in its use (and the
bottleneck turns out to be the very complex SQL nature of MIMOSA).

The standards that MIMOSA develop are compliant with the ISO-13374 Standard (Condition
Monitoring and Diagnostic of Machines), being an implementation of the latter’s functional
specifications. According to this standard, a Condition Based Monitoring (CBM) system should
be composed of various functional blocks: 1) Data Acquisition (DA), 2) Data Manipulation
(DM), 3) State Detection (SD), 4) Health Assessment (HA), 5) Prognostics Assessment (PA) 6)
Advisory Generator (AG) [42]. This corresponds well to a general loT system architecture with

edge computing.

Arrowhead is intended to resolve not just the edge computing interoperability and connectivity
issues, especially if real time control loops are kept. In my general concept, Arrowhead can be
used to resolve issues #4 and #6, regarding multi-stakeholder applications. Multiple “cloud levels”
shall be enabled to access one single production site or edge device in order to get the necessary
information. The same goes vice versa, one edge instance shall be able to locate and connect to
additional services, once local decision making algorithms are deployed, e.g. the production plant
shall be submit replacement part orders if it detects the need for it (based on RUL). Arrowhead’s

metadata-based service discovery and orchestration could be utilized for this exact purpose.

This can be achieved, if the edge level is abstracted and implemented as an Arrowhead Local
Cloud on its own, and the same is done for the global IT cloud implementation. Since, inter-cloud
collaboration in the Arrowhead framework assumes that the two Core System sets are negotiating
the connection. This way, one edge level is accessible by multiple stakeholder clouds, if those need
additional data (e.g. one from the operator corporate, and one from the ball bearing supplier).
Moreover, this way we are also enabling local decision making, and such algorithms can utilize

the Arrowhead architecture to collect the ad hoc, on demand information the algorithm needs,
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fetched from its original source. Figure 3.2 depicts how the edge, platform and enterprise tiers

can be abstracted as Arrowhead objects.

In here, we can utilize the Arrowhead framework for three example data flows. Firstly, motes,
industrial “things” are collecting data, let those be sensor nodes, data coming from industrial PC-s
or even PLC-s logging their activity. They shall utilize the Arrowhead framework to establish the
connections they need, and start their operations. This usually shall end in a local (and sometimes
temporary) storage of the (sometimes pre-processed) data. Secondly, the platform level receives
batch uploads from edge instances, that can be done via the Arrowhead core framework’s lookup
and (inter-cloud) orchestration features. This way, not just one platform instance can receive the
data from the edge, but many, in an ad hoc, on demand manner. Thirdly, analytic algorithms
(e.g. remaining useful life calculation in our case) can trigger the enterprise level when a certain
corporate action is needed (event handling, in this case e.g. ordering a new replacement part,

since our current component is breaking down soon).

All this can be aided, so that multiple stakeholders can in run-time receive and request informa-
tion they need, in an asynchronous way. More Arrowhead supporting core systems can be used
as well, implemented on any platform that can facilitate the official service interfaces that belong

the given system.
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3.2 Demonstration of the MANTIS Platform for Various Use Cases

In this project, there are eleven pilot demonstrations to be created. I have participated in four of
them in the architecting phase, and within those, in two as a developer-contributor. This section
shortly reviews the differences in approach and design deviations from the generally established
reference model. The first two use cases are examples for edge computing, and the latter two are

standalone devices with special communication requirements for the edge-cloud interface.

3.2.1 Conventional Energy Production
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Figure 3.3: Instantiation of MANTIS for conventional energy production [/3]

In this use case, we are monitoring a power plant [44] that operates with a wide range of uti-

lizable fuels, mainly wood biomass, peat and waste based fuels in Finland. The generator is the
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device under scope, and most importantly the ball bearings inside. Failure and remaining lifetime
estimation is highly important for this machine, since unexpected maintenance shutdowns are
endangering the power supply of the region. To this end, accelerometers are placed in the gener-
ator, and commercial sensor motes (developed by a local Finnish project partner) are sampling
the vibration with high frequency. This data is sent to a local storage, in addition to the teleme-
try data coming from the PLC system via traditional 4-20 mA analoge output signal, through
a MANTIS developed gateway mote. The overall architecture is compliant with my MANTIS
platform proposal, depicted in Figure 3.3.

As presented in our paper [43], the primary analytic tool is based on the spectrum of the vibration
emitted by the generator. This tool is running in Microsoft Azure, and can be presented on site,
in the local machine HMI. The vibration data is collected in a central MIMOSA database, with
specific measurement site identification. Various other stakeholders are also interested in the
prognostics of the system, such as the local supplier of the bearings. The presented RUL and

fault prediction output is invaluable for proper stocking of replacement parts.

In this use case, I have participated in the design of the MANTIS platform instantiation, and the
cooperations with the various partners. Moreover, I have adapted the MIMOSA REST interface
implemented in Java (deployed on a Tomcat servlet container), by adding two new SQL tables

to be accessible via this interface.

It is worth noting, that this use case does not implement stream distribution or processing, and
the central data distribution method is via the MIMOSA database, in an asyncronous manner.
Each data source puts its information into MIMOSA using the REST interface, and all other
“subscribers” are fetching the data via the database as well. This design decision was taken by
the Finnish partners for rapid prototyping, but it is a known risk of being a bottleneck for further

developments.

Future work within this use case includes the integration into the Arrowhead framework as the
final demonstration at the end of the project. This use case will be the first that will adapt

inter-cloud communication once the Gateway module is fully available for public use !.

3.2.2 Industrial Press Machines

My second contribution was in making an the industrial sheet metal press machine "smart”
residing at ADIRA [46], Portugal. In here, the overall MANTIS solution was realized in an
open source manner. This is also an edge computing scenario, where the edge-cloud interface
is realized by using RabbitMQ). This architecture implementation is worth examining, since all

popular, quick prototyping technologies for IoT projects are present, see Figure 3.4%:

e All legacy machines have a gateway mote (Raspberry Pi 3B [47]) representing it as a CPS
on the network.

e New sensor motes were developed using Arduino and Bluetooth 4.2 (BLE) [48].

!This addition is developed and presented by Nikolett Szeles in this section of the conference [45].
2This figure is presented in an internal MANTIS deliverable D7.16 Use case integration report UC1.3.
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These CPS-s are connected in a local OPC-UA [49] network.

The edge gateway is implemented using Node-Red [50] and uses the Advanced Message
Queuing Protocol (AMQP) towards the cloud.

The RabbitMQ [51] broker is utilized as the cloud gateway.

e Apache Kafka [32] is used to deliver the data for the various cloud modules.

e Binary objects (e.g. csv files) are stored in Hadoop [36].

e An R server [52] is used to do offline analytics on the data.

My contribution to this use case was supporting the integration of the local automation network
into Arrowhead. All local modules (CPS-s, the MANTIS-PC and edge gateway) are behaving as
an Arrowhead Application System, and the SOA paradigm of late binding is taken advantage of.
Although, the Open Platform Communications - Unified Architecture (OPC-UA, [49]) enables
in theory for runtime binding using the OPC Discovery feature, open source implementations
are not supporting it - or not in an interoperable way. This is a shortcoming of the OPC frame-
work that even though there are many implementations (commercial or open source), modules
are not always interoperable with each other. Nevertheless, one’s shortcoming, is Arrowhead’s

opportunity.

As a lesson learned, future work will have to include the full implementation of the Arrowhead
framework over the popular, publish-subscribe protocols, since currently it is only implemented in
REST. Such message-oriented middlewares (MOM) are gaining popularity for various reasons.
These scenarios will have to be properly analyzed, since various automation supporting core
system functionalities can and should be provided by the brokering mechanism itself. I have
identified the following major pros and cons of using MOM-s while working on this use case with

the partners (this list is incomplete, full analysis can be found in e.g. [53]):

+ Easy to get started, available broker implementations and client skeletons in many pro-
gramming languages.

+ The client initiates the connection towards the broker, so clients can be behind firewalls

and Network Address Translation (NAT).

There can be broker clusters, hence no single point of failure (even with load balancing).

The client-broker communication can be secured with Secure Socket Layer (SSL) variations.

The publisher is not overloaded when it has to deliver to multiple subscribers.

+ 4+ + +

Clients can even go to sleep, the broker can retain messages and deliver upon reconnection

(asyncronous communication).

+

The broker can store the communications, easy to create accountable systems.

— Centralized architecture, the broker is an additional entity.
— End-to-end security (i.e. payload encryption) is hard to achieve.
— The broker can read everything, and store everything.

— If the brokering system is down, the whole network falls apart.

It is worth noting, that all IoT platforms are utilizing some sort of brokering mechanism. How-
ever, they are not interoperable mostly, even if they implement the same protocol theoretically.

Therefore, we need establish how this can be handled: via translators at cloud level.
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Figure 3.4: Instantiation of MANTIS for industrial press machines1

3.2.3 Special Purpose Vehicles

Our department (BME-VIK TMIT) is primarily involved with these two use cases. In here, we are
developing the full solution for the two use cases, from sensing and data collection, up to analytic
services provided for the three main targets: RUL, fault prediction and RCA. Our contributions
made here are a team effort, and presented in two other papers submitted by Zoltan Umlauf [54]
and Attila Franko [55] to this conference, to different sections. My involvement here is the design
and specification of the architecture with the modules and analytic services to be developed by

my fellow students.
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Figure 3.5: Instantiation of MANTIS for forklifts

Special purpose vehicles here are translating into forklifts, since STILL GmbH [56] is a German
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producer of such fine machinery. The business value is there for a proactive maintenance plat-
form, since majority of the clients are merely renting the forklifts from STILL. Therefore, the
maintenance is STILL’s to do, and the client expects high availability for the renting fee (as
settled in the Service Level Agreement - SLA).

Since these are vehicles with their own onboard systems providing all sorts of data, it might seem
easy to create a platform that collects everything (usage characteristics, environmental condi-
tions, system telemetry) and then assumes e.g. remaining useful life for components. However,
current fleet management platforms are limited, historical data is very scarce and not processable
mostly (the data collection for service reports and fleet manager data has been done for legal
purposes only so far). Moreover, these forklifts can only communicate via mobile networks (2G-
3G-4G), and network subscription fees are very volatile and still expensive. Hence, we cannot

“send everything all the time”, as from a production plant.

Nevertheless, we are making headway - despite the initial hardships. Our work here is sepa-
rated into three phases. Firstly, offline data mining and analysis has been done for the provided
historical data sets from STILL. These datasets are related to the fleet manager system, ser-
vice technician reports and specially recorded CAN bus error message traces. This concluded on
what type of algorithms we can develop for fault prediction and root cause analysis, and that we
need to conduct new controllered data gathering for assessing tire wearout (RUL). This phase is

described by Zoltan’s paper, with regard to the second phase, special attention to RUL.

Secondly, we are going to implement the algorithms on the Apache Storm and Spark systems,
and firstly replay parts of the historical data (emulating as if it was coming from the trucks).
Thirdly, for the final demonstration part, three test trucks at STILL’s test facility will be equipped
with special modem firmwares to send us online, revised set of telemetry data. The data flow
architecture is presented in Figure 3.5, and the proposed stream processing nodes to be developed
for Apache Storm is depicted in 3.6. This stream processing entity shall receive periodical updates
on the usage and environmental conditions from the forklifts, and calculate RUL expectations

based on Zoltan’s developed algorithm (boosted decision tree).

In here, besides the overall architecture design and planning works, I have lead the discussions
with STILL experts directly, and researched the Microsoft Azure [57] platform, on how we can
implement the three cloud modules: RUL, fault prediction and RCA. As a result of this lengthy
process, Figure 3.5 is established. My current works are related to MIMOSA: how to use it,
what fields we can utilize for mesurements, warnings and forecast value storage. Moreover, since
MIMOSA is connected to the reference MANTIS HMI instance, I am working on establishing
the usage scenarios with the appropriate (Slovenian) partners. Future works is now to implement
the modules both at edge device (forklift) and cloud levels.

3.2.4 Railway Switches

For the ANSALDO STS [58] rail switches use case, we are deploying the same infrastructure,

but the analytic services are provided by a different, Italian partner. The endgoal is the same,
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Figure 3.6: Overview on stream processing data flow for RUL and online fault pre-
diction engines

create prognostic models for RUL, fault prediction and RCA. However, our main contribution
here is a measurement device that will measure how a rail switch works over time, and also in
what environmental conditions it is used. This device is communicating using my interoperable
message ontology, and the data arrives in MIMOSA. Details of this device can be found in Attila’a
paper [55].

To this end, I have written a translator module in Java, that is receiving the message over MQTT
and posts it in the database, using the Tomcat 8 [59] servlet container-based REST interface
(that I have extended to support other types of measurement posts as well). This translator can
be deployed at the broker, and automatically detects if a new measurement is sent in. Later
work might include migrating the whole edge-cloud broker into Azure, maybe using the IoT Hub
implementation of MQTT, by Microsoft. Currently, the following messages are implemented both

on the measurement box and the server-side as well:

e Periodical environmental measurements (every half an hour or so): rail temperature, ambient
humidity and temperature;

e Movement measurements: four analog industrial-grade displacement sensors;

e Warning for error detection (switch blade stuck before reaching endpoint);

e Request on-the-spot measurements from server side.

Moreover, I have adapted the interoperable data models (to be used between the various mod-
ules). These are based on MIMOSA embedded in the IoT-A message ontology [60] as suggested
by work package leadership, and submitted to the consortium for consideration, as part of my
reference model proposal. The loT-A was another European project, marked as a technical cor-

nerstone to MANTIS. All four message types are formatted now in JSON, using this ontology.

As Figure 3.7 depicts, the overall architecture of this use case is a fairly simple one, not utilizing
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Figure 3.7: Instantiation of the MANTIS architecture for railway switches

advanced edge-cloud communication, as the special purpose vehicle use case will. In here, only

generic IoT pattern is followed:

1.

The measurement box [55] is measuring and sending in the data over MQTT [30]. This box

uses a simple 2G modem, and will never even go to sleep mode over the demonstration.

2. A generic MQTT broker is receiving the interoperable messages.
3. My MQTT client is parsing the messages and posting the data in MIMOSA [42].
4. The MANTIS reference HMI is fetching the data from MIMOSA and can send the spot

measurement command to the box.
Additional analytic services will be developed, once sufficient amount of measurement have
been done over a longer time period. The final demonstrator will hopefully showcase online

version of the services as well.

32



Chapter 4
Requirements Collection for I11oT

This chapter details my work within a freshly started project, Productive4.0. This project is
aimed to utilize the results of its predecessor initiatives, such as Arrowhead or MANTIS. The
architecture baseline is offered by the current Arrowhead framework (and in there my previous
contributions), however, the currently targeted scope, maturity level and use case scenarios are
far more extending than previously. Our department (BME-VIK TMIT) is task leader with the
reference architecture design and modeling, and therefore has high stakes in the requirements
collection phase as well. This chapter is presenting my work done within this, where I have
developed a questionnaire to try and cluster the ten new use case visions of the project. Hopefully,
we shall find commonalities and they shall be clear enough to start developing a road map for

the Arrowhead framework. Use cases here are now related to:

Tracing the product in its life cycle: during production, transport, end user usage;

Process simulation framework for semiconductor and other chemical production plants;

Machine and fleet management services;

Production network reconfigurability.

4.1 Questionnaire

Since Arrowhead was primarily focusing on interoperability issues for industrial scenarios, par-
tially delt with the shop floor issues (however, only the last entry in the list above). Therefore, it
was also in focus how the ISA95 design and implementation paradigm can be shifted towards a
service oriented thinking (see Chapter 1), other aspects and requirements of Industry4.0 visions
were not considered. Therefore, Arrowhead in its core is a closed-network connectivity platform
that aimed to establish a level of connection reconfigurability and component reuse for closed

automation networks.

The current, reference implementation is based on REST. However, based on the lessons learned
in MANTIS (see chapter 3) and the new use case visions within Productive4.0, Arrowhead has to

reconsider its scope and purpose. Since our department (BME-VIK TMIT) is responsible for the
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reference architecture modeling within this project (that is supposed to be Arrowhead-based),

therefore it is necessary to analyze what is needed.

To this end, I created a questionnaire to assess three aspects mainly: (i) what type of Application
Systems will be there, (ii) what are the resource management and Quality of Service (QoS)
expectations, and (iii) on what level of high security is regarded. This questionnaire is formed
primarily using the Arrowhead nomenclature, and assumed that that workpackage participating
partners are familiar with the core framework, presented in Section 1.2. It was an interactive
Google Forms form, and we have received 34 answers, both from the industrial and academic
partners. After cleaning and aggregation, sadly, not all use cases have provided at least one

partner’s response (or at least not put the affiliation).

4.2 Results and assessment

Exactly as expected, the automation-related use cases are voting for a local network, consisting
of traditional elements (like PLC-s) and some additional sensing elements (IoT motes) to be
connected to monitor an already established process. In here, device replacements are not in
scope, once the deployment was made, it should stay like that (1/3 of the replies). Inside such a
local cloud (in the Arrowhead sense), majority of the partners indicated using the OPC framework

(60%).

® Yes
@ Yes, but only per-hop Qos
guarantees (direct links between s...

Yes, but only per-path QoS
guarantees

@ Yes, but end-to-end QoS provisioning
@ No, there is no need for this: BestE...
@ No need for management, but QoS...
@® | don't know

@ Not for now. Perhaps in the future

Figure 4.1: Questionnaire answers related to QoS enforcement

Regarding QoS, real time networks are to be established during design time: hard delays have
to be engineered at network design level. For other cases, best effort is sufficient, only delivery
has to be guaranteed. Some not-so-closed control loops can require on-the-fly (statistical) QoS
provisioning, only indicated by one partner. However, they will also use a proprietary technology

to achieve that (time sensitive networking way). This is depicted in Figure 4.1.

Responses given for data quantities is also interesting,as shown in Figure 4.2. For fixed setups,
constant connections are made, and therefore data flows are almost all the time there. However,
the other usage of the network is related to system logging and telemetry. These connections
are small traffic, and occasional. It is a question here, whether they are also deterministic (e.g.
following a scheduling) or on demand. If the latter were true, it would be necessary to verify
whether the QoS of other flows are violated while this new traffic is generated or not. Follow-up

questions are necessary.
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@ Limited, few KB / day, occasional
data transfer with small bursts

@ Hourly data transfer with small data
bursts, adding up to larger traffic a...

Streaming every second (<1MB/s)
@ more than 1 MB/s all times (flows)

@ Machines don't communicate with
each other...(l think)

@ depending on system requirements
@ Depends on the use case scenario

Figure 4.2: Questionnaire answers related to data quantities

Almost 2/3 of partners indicated a connection to a cloud platform, which, similarly to MANTIS,
provide analytic services, asyncronous to the production. Here, data processing in some cases (2
answers) would have a feedback possibility to new batches in the production (quality control). For
other purposes (4 answers), the tracking and tracing of products or other entities (e.g. vehicles)
is the scope. This might be connecting to the previous statement about ad hoc, small traffic

bursts indicated.

This also relates to the overwhelmingly indicated utilization of system logs, telemetry or the
monitoring of logging interfaces (more than 2/3). Such information shall be first transported to
a local storage and processed locally (1 case), and then submitted to a distributed processing
platform. The transmission shall happen rarely, in a batched way. It might be even possible that

the closed “gates” of the production network would be lifted for the data streaming.

Interestingly, automation partners are still overconfident in their networks being physically seg-
gregated. Hightened security is expected, however, no security assessments are to be taken (except
for 3 responses, from the proposing security expert researchers). Moreover, one use case is ex-
pecting to use block chains and distributed ledger technologies to be used for its cyber-physical

production system pilot.

One major aspect for a local automation system is the visualization of data. Half of the relevant
responses indicate that advanced HMI is necessary, maybe even both at edge level, and within
the cloud. However, the need for user roles and access rights management could not be indicated,
because the questionnaire form didn’t have space for it. Therefore, follow up interviews will be

necessary to conduct here.

Regarding orchestration capabilities, as Appendix 3’s evaluation suggests, the partners either
didn’t fully understand this Arrowhead terminology, or didn’t see the applicability to their use
cases in most (here, only the industrial partner responses shall be validated, since they are the
pilot owners). In there, T have assessed the partners’ answers to the orchestration capabilities
and security on a subjective scale of 1-5. Also, the raw answers are depicted on Figure 4.3. These
two diagrams show that devices will not be replaced or newly introduced often, and their role is
also fixed most of the time. As indicated here, there might be need for rearrangement possibility,

that can be provided by late binding (and new system configuration pushes).

On a sidenote, there are two complete project tasks related to process simulation. Here, Ar-

rowhead is not considered yet, because a proprietary simulation framework will be used. The
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@ ltis rare, and only due to

maintenance (fixed setup)
@ Devices are changed/moved aroun...
/ My network is consisting of the sa...
A @ Itis a dynamical organization, elem...

@ For one installation, changes are ra...
@ no hardware

@ Devices are changed/moved aroun...
@ N/A, depends on the particular sce...
@ New systems of the same type intr...

How are the interactions between your systems handled?

34 responses

Only hardwired. .. 8(23.5%)

Pre-configurable 18 (52.9%)

System architect... 16 (47.1%)

System architect 11 (32.4%)

Configuration sh... 1(2.9%)

The software ca... 1(2.9%)

OPGC UA based 1(2.9%)

Figure 4.3: Questionnaire answers related to orchestration capabilities

integration of this is not in scope for this paper.

4.3 Roadmap for Future Developments: Arrowhead 4.0

Based on these responses, my assessment is that there are a couple of urgent matters need
attending to be resolved as Arrowhead develops its fourth iteration. This section explores my
proposals for augmenting the Arrowhead framework (described in Chapter 2) on these six topics.

These are related to:

Legacy adapters and translator motes

Arrowhead core implementations using publish-subscribe protocols (OPC-UA)
A Logger core System

Arrowhead Local Clouds connecting to global clouds

Arrowhead core implementations for platforms (IoT gateways, cloud platforms)

SEER A

Arrowhead’s AAA features (authentication, authorization and accountability)

The first two cases are related to edge computing, and making CPPS-s. Arrowhead assumed so
far, that all systems are capable of (i) communicating with the Arrowhead core, (ii) providing
its services in one of the protocols related to IoT and (iii) consume various other services. This
can be achieved by either (i) writing the whole software in an Arrowhead-compliant manner,
(ii) modifying the software on a legacy device or (iii) adding an extra hardware adapter that is

facing the legacy device in its primary interface, e.g. via serial port.

This idea is representing itself in the responses as well. Having an OPC-UA local network assumes
the integration via translators, or better said: adapters. Arrowhead should provide a couple of
adapter implementations, ready to be used for the pilot projects. This was not a focal point

before, every use case expected to develop its own. However, with this wider range of partners,
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if Arrowhead wishes to be a viable platform, it should invest in these. Hardware targets can be
ARM-based embeddable devices, such as the Raspberry Pi 3B (as we used it in MANTIS, a
first prototyping tool). There are many alternatives in hardware, some even capable of industrial
grade resilience, yet the software would still be the same. The platform architecture work package
should issue follow up questions to the use cases on what the target environment should be. This
would also require, that the Arrowhead client skeletons (Arrowhead Provider and Consumer

interfaces) are reproduced in not just Java, but other languages as well.

A more pressing design issue is related to publish-subscribe mechanisms, and their popularity.
Arrowhead was primarily imagined for a request-response protocol (i.e. REST). Surely, REST
(HTTP) servers and requests are easy to code (even on embedded), but the overwhelming advan-
tages of publish-subscribe protocols (that were also expressed here, in Chapter 3) are pointing
towards their more widepsread use. Next steps shall include the careful examination of the OPC-
UA stack, and deciding on what and how needs to be re-implemented there, from an Arrowhead
core point of view. Service Discovery and Authorization System functionalities are already pro-
vided by this protocol stack, orchestration needs to be solved — and runtime central governance

as well.

Thirdly, in here (and also in MANTIS) we are facing a very prevalent scenario: we want to
utilize logs from various machines. These might be syslogs [61], or any custom logging format.
We need a new supporting Core System that shall take the logs from Application Systems in two
ways: the systems themselves submit their entries over time or the logger periodically fetches it
from the device. In the ADIRA use case (Section 3.2.2) for example, industrial press machine
logs is fetched via simple File Transfer Protocol (FTP) periodically and the result is a Comma

Separated Values (csv) file, stored in Hadoop.

This is necessary for Arrowhead as well. Arrowhead shall provide a new supporting Core System
that provides this feature, or change the primary purpose for the Historian. Furthermore, this
logger functionality has to support various formats, yet all log information should be stored in one
way, in one storage. To this end, this Core System should be modular in a sense that log format
templates could be added to help parsing the inbound message types. These addons should be
easy to create, and should use an appropriate descriptive language. Also, the integration with
popular big data storage technologies — such as Hadoop — might be wise. Nevertheless, this
System and its interfaces should support legacy devices, as well as publish-subscribe protocols
used. Moreover, push and pull has to be supported: for the latter case, a handshake procedure is
needed as well. It is also worth exploring, how this logging might be connected to the orchestration

process.

Regarding the fourth (and with that the fifth) item on this list, Arrowhead has to adapt to the a
general use case architecture: edge and cloud-based computing. My inter-cloud architecture, and
the new Gateway implementation is pointing towards this concept. As depicted in 3.2, Arrowhead
should facilitate periodical or ad hoc connections outside of its closed network ("Local Cloud”).
Arrowhead (and within that the inter-cloud collaboration mechanisms introduced by me) assumes

that the Local Cloud is governed by the Core Systems, and all connection attempts happen with
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Figure 4.4: Data path realization inbetween Arrowhead Local Clouds [45]

the sanction of these Core Systems: this is necessary for security reasons, as discussed in our
previous article [62]. Therefore, when an Application System “wishes” to connect somewhere,
it should request orchestration: this orchestration process then negotiates with another Cloud,
if necessary, to establish the connection. The data path is also built up during this inter-cloud

orchestration process, as Figure 4.4 [45] presents using a generic, RabbitMQ broker.

However, in order for this mechanism to work, the Arrowhead core has to be available for IT
cloud platforms. In here, we can think of virtual machine images, Docker or Tomcat containers,
or even some other modular, easily deployable implementation. This needs to be put up as follow
up questions for the pilots. The generic idea is, however, that we need have the support for an

IT cloud platform to become Arrowhead Local Cloud as is.

Moreover, the Gateway module has to be adapted, so that it would be somewhat related to the
brokering mechanism used by the cloud platform itself. For example in Azure [57|, the gateway
towards devices is called “IoT Hub”, a special implementation of MQTT over SSL. This technology
has to be connected to my Gatekeeper module and the inter-cloud orchestration process. The
IoT Hub can be abstracted as an implementation of the Gateway module — with some additional

security mechanisms.

Finally, Arrowhead’s Authentication-Authorization-Accounting (AAA) capabilities have been
somewhat limited, especially regarding the last ‘A’. So far, authentication was tasked to the trans-
port layer using the Public Key Infrastructure (X.509 certificates, using SSL connections [63]).
Authorization was built upon it in my development version, as discussed in my last conference
paper [5]. Accounting, on the other hand, requires that we are aware of any use case specific

requirements. I have suggested a separate working group to be established for this purpose.
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Conclusion

This work was presented in three parts. Firstly, the generic understanding of industrial IoT and
cyber-physical (production) system is established. The motivation and how-to is given, in the
context of the Arrowhead framework. Additionally, as a fundamental research, I have given an
brief overview on IoT solutions: “things” and “clouds”. This work was part of the result of our
paper regarding IoT security. Moreover, I presented what different the extra I in IIoT makes,

how are we moving away from standard engineering solutions towards something new.

Secondly, a specific 1IoT project was shown in MANTIS, in which we are using the concepts
and popular technologies of 10T to realize very a specific and unique industrial scenario: enable
proactive maintenance for a handful of industries. In here, my work is related to a general-
ized architecture design, and research on possible implementation directions. Moreover, I have
also participated in the high level design and negotiations of four use case pilot demonstrators,
and within those, in two as major contributor. These included German forklifts, Italian railway
switches, Finnish energy production plant and Portuguese press machines. In the first two use
cases, I am working together with two other MSc students [55, 54|, and we are developing a
full IoT solution with devices, a cloud architecture and various big data analytic services. My
involvement here is the design and specification of the architecture with the modules and ana-
lytic services to be developed by my fellow students. Moreover, my work in the latter two use
cases has already resulted in one conference paper describing the approach taken in a Portuguese

pilot [43]. This paper is being re-submitted for a journal edition.

Thirdly, I have presented my requirements collection work done in the Productive4.0 project,
pointing towards the development of a full stacked IloT solution to become of Arrowhead. As
a first general, orientating trial, I have created a questionnaire to make the project consortium
start thinking in a service-oriented, Arrowhead way. The results are also analyzed in this paper,

along with a possible road map given for the architecture working group.

To conclude, the IoT paradigm is also interesting for industrial partners as well. However, their
generic skepticism towards IoT technologies is more or less understandable, there are still many
problems to solve. It is easy to create a sensor mote based on rapid prototyping, such as Arduino,
however making it industrial grade is a huge challenge. Not just on a networking level (i.e. wireless
in challenging environments), but on application level as well. These new solutions have to be
cost effective, yet be able to replace traditional proven technologies — and even provide new
functionalities as well. Cloud technologies are also promising, however their business and legal

aspects are still a hold-back for many cases.
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Also, the current maturity level of IIoT solutions, in my experience and based on literature, is
still in the early stages: partners are assessing what is even possible to do, and how. There are
many ideas floating around, from dynamically re-orchestrated production plants with individually
customized products, up to assembly line machines utilizing blockchains to measure the exact
cost of making for the product itself. Resolutions of the arising issues and contradictions is still

ahead this time: managing the expectations and maintaining “industrial grade”.

Regarding future endeavors, I intend to start executing the road map detailed in Chapter 4, and
also finishing the remaining tasks in my four use cases within MANTIS (as discussed in Chapter

3) as my MSc thesis work — or even further.
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2017.07. 26. Productive4.0 Service Platform Questionnaire

Productive4.0 Service Platform Questionnaire

Think of your system or system-of-system, that you aim to create, further develop, or enhance
during Productive4.0. Think about what is your desired outcome for your systems during
Productive4.0.

Try to answer these questions with that in mind. These questions are aimed to discover the focal
points of the project use cases and in what scenarios the service platforms are to be deployed in.

Questions marked with red * are mandatory, although if possible, elaborate on those that are not
mandatory, as well.
Note that Squares represent MULTIPLE choices - whereas Circles represent SINGLE choices.

This questionnaire will take about 15 minutes of your time.
Thank you!

*Required

1. Email address *

2. Your company *

3. Your name *

4. What is your position in the company? *

5. Please describe your use case's objective and/or demonstration system scenario plans
*briefly*. (Optional)

Skip to question 5.

Your Application Systems’ capabilities

The purpose of this section is to assess what systems are already there - and what can we build upon
later on in the project.

Here, we shall collect information connected to the to-be-used systems in the use cases.

*NOTE* that a "system" here can be any addressable entity (through IP or other protocol), may it be
hardware, software embedded in hardware, or software module(s).

**NOTE** that "system-of-systems" is a set of systems collaborating with each other to reach greater
goals.

https://docs.google.com/forms/d/1hShjT4JRiv2DoLIKXP_5EdI4kVOkdMIrgOPEL-bRcv0/edit



2017.07. 26. Productive4.0 Service Platform Questionnaire

6. What sort of elements are in your own Productive4.0 target system-of-systems in mind?
(More than one answer can be ticked.) *

Tick all that apply.
Sensors, (wireless) sensor networks
Controlled actuators
loT gateways
Data processing elements locally
Data processing elements in a private (or local) cloud / server cluster

Distributed (e.g. big data analytic) systems in a public cloud (e.g. Hadoop, Mapreduce,
Azure, etc.)

Advanced Human Machine Interface (Web browser, Mobile Application, or even more
modern...)

Other:

7. If possible, please give a short description about the *purpose*, *processing* and
*communication capabilities* of your application systems.

8. Please detail your targeted deployment scenarios and use case objectives, if possible.

9. How do you rate your system-of-systems in terms of resource constrained devices? There
are...*

Tick all that apply.

Resource constrained, embedded devices (e.g. low-power 8- or 32-bit CPU and running on
battery)

Highly capable embedded devices (e.g. multi-core processors but still battery operated, like
smart phone strength)

Legacy (industrial) PC-s (fixed power supply, e.g. old x86 architecture, Windows NT, etc.)

Systems with no resource constraints at all (e.g. PC-s, multi-core, multi network interface,
etc.)

Other:

https://docs.google.com/forms/d/1hShjT4JRiv2DoLIKXP_5EdI4kVOkdMIrgOPEL-bRcv0/edit
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2017.07. 26. Productive4.0 Service Platform Questionnaire
10. You may elaborate on your resource constraints here.

11. How are the interactions between your systems handled? *
Tick all that apply.

Only hardwired connections between my systems

Pre-configurable connections that almost never change

System architecture and elements can change regularly - through human interaction
System architecture and elements can change regularly - dynamically

Other:

12. System management and diagnostic capabilities (Tick if 'yes') *
Tick all that apply.

Do you utilize their logs? Do you transmit reports over the network to another location (e.g.
database)?

Do your systems have system management interfaces?
Can you remotely push new firmware/system configuration onto them?
Do you have a central configuration server which provides the config files?

Do you have a secure boot image loading mechanism over the network?

Other:

13. Please detail how system management and diagnostics is handled, if possible.

14. How regular is to introduce/change a device in your system-of-systems (network)?
Mark only one oval.

It is rare, and only due to maintenance (fixed setup)
Devices are changed/moved around for re-organization of the network, but rarely

My network is consisting of the same devices in general, but their places/roles are
changed frequently.
It is a dynamical organization, elements come and go (e.g. market-like scenarios)

Other:

https://docs.google.com/forms/d/1hShjT4JRiv2DoLIKXP_5EdI4kVOkdMIrgOPEL-bRcv0/edit
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2017.07. 26. Productive4.0 Service Platform Questionnaire

15. How are system elements and components identified and described? Describe *roughly*
what type of identifiers and metadata are stored per a system. (e.g. ID-s, location, network
addresses, MAC address, textual description, etc.)

16. Do you follow any metadata or data
descriptive ontology schemal/standard? (e.g.
SenML)

Skip to question 16.

Network, QoS and resource management
This section is aimed at assessing network and resource management conditions in the use cases.

17. Are there low-latency requirements in your system? *
Mark only one oval.

Real time, absolute delay < 10 ms

Soft real time, e.g. mean delay < 100 ms
On-the-fly, 100- 500 ms mean delay
Best effort, sec-range response

Other:

18. You may describe your real-time
requirements in more detail here.

19. How much data is transmitted between elements (one-to-one) in general? *
Mark only one oval.

Limited, few KB / day, occasional data transfer with small bursts

Hourly data transfer with small data bursts, adding up to larger traffic a day (e.g. couple
MB-s)

Streaming every second (<1MB/s)

more than 1 MB/s all times (flows)

Other:

20. You may describe your data flows here, briefly.

https://docs.google.com/forms/d/1hShjT4JRiv2DoLIKXP_5EdI4kVOkdMIrgOPEL-bRcv0/edit
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21. What other QoS guarantees do you need in your network? *
Tick all that apply.

guarantees for message delivery (e.g. 100%, at least once/at most once)
guarantees for given (range of) latency

guarantees for given throughput

Other:

22. You may detail your Quality of Service needs
here.

23. Do you need centralized QoS enabling and enforcing governance? (QoS management
system)
Mark only one oval.

Yes

Yes, but only per-hop Qos guarantees (direct links between systems)
Yes, but only per-path QoS guarantees

Yes, but end-to-end QoS provisioning

No, there is no need for this: Best Effort is enough in all communications

Other:

24. What is/will be your network infrastructure made of? (More than one option) *
Tick all that apply.

Devices access through wireless, IP-based network (e.g. Wi-Fi)

Devices access through wired, IP-based infrastructure (e.g. Ethernet)

Switches and routers are part of the infrastructure

There are/will be redundancies (multiple, redundant links, connections).

There are redundant networking elements (or load balancing between elements)
It partially uses ungoverned infrastructure (e.g. goes through Internet)

There are elements in a private cloud/server cluster

There are elements in a public cloud

| use proprietary/legacy networking technology.

Other:

25. What kind of application protocols do you intend to use between your systems? *
Tick all that apply.

Request-response: e.g. REST, FTP, CoAP, SOAP
Publish-subscribe: e.g. MQTT, AMQP, OPC-UA
Push model: e.g. WebSocket, Comet

Non IP-based: e.g. elements communicating on Modbus, Profibus, 4-20 mA

Other:

https://docs.google.com/forms/d/1hShjT4JRiv2DoLIKXP_5EdI4kVOkdMIrgOPEL-bRcv0/edit
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26. What protocols and networking technologies do you intend to use precisely? Please,
elaborate.

Skip to question 26.
Security

27. How strict are your security and safety requirements for this system of systems? *
Mark only one oval.

Very High: potential
attack is probable
and rewarding

Very Low: my deployment is within a
safe and guarded environment

28. How strict is (going to be) your network security in the project use case? *
Mark only one oval.

Physically segregated network, no connection outbound

Closed network, but with occasional short connections to the outside world (e.g. for
backing up)

Business sensitive network with connection to the Internet, but secured (e.g. firewall or
VPN)

Services and interfaces are provided towards the open Internet (maybe even unsecured)

Other:

29. Do you have resource constrained devices
that you would like to secure?

30. Do you force users to follow a security procedure when they bootstrap/introduce a new
device in the network?

https://docs.google.com/forms/d/1hShjT4JRiv2DoLIKXP_5EdI4kVOkdMIrgOPEL-bRcv0/edit
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2017.07. 26. Productive4.0 Service Platform Questionnaire

31. What security aspects do you need? *
Tick all that apply.

Parties mutually authenticated

Message integrity assured (data integrity verified)

Authorization checked and guaranteed (access control, data confidentiality)
The communication encrypted

Data availability at all times

Other:

32. You may provide additional comments, questions or ideas regarding the previous
question.

33. Do you already have any specific *Authentication-Authorization-Accounting” (access
control) technologies already implemented?

34. Do you plan to carry out a complete security assessment of your deployment (use case
scenario)? (e.g. based on STRIDE) *

Mark only one oval.

Yes
No
Maybe
Other:

Powered by
B Google Forms

https://docs.google.com/forms/d/1hShjT4JRiv2DoLIKXP_5EdI4kVOkdMIrgOPEL-bRcv0/edit
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Physical p £ _ P P g £
Denial of Service spread-spectrum techniques
active firewalls,
) Denial of Service passive monitoring (probing),
Networking traffic admission control,
bi-directional link authentication
Eavesdropping encryption, authorization
Back door attack properly configured firewalls on
Data all system entry point
processing Social Engineering | educating employees to security
awareness
Exhaustion traffic monitoring
Malware malware detection
Client app. anti-virus filtering
Comm. channel proper authentication, authoriza-
tion, integrity verification
Application | Integrity testing
Modifications validation
Multi-user access process planning and design
Data access Traceability

.2 Appendix 2

Figure 5: Security threats within IoT systems [39]
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