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Abstract

Egalitarian solutions in the stable roommates problem

The analysis of stable matchings in one-sided matching markets

Matching markets naturally occur in any �eld of life, most relevant examples including the
admission of pupils to schools or matching patients with kidney failure to appropriate donors.
It is common that the allocation is undertaken by a central scheme, a mechanism that yields
an equitable, optimal matching. For instance, the Hungarian university admission system is
based on such considerations.

Applications modelled by a two-sided matching market usually involve preferences that agents
on either side of the market form about the counter-market party. The goal is to determine a
stable matching. The classical showpieces in the �eld are the high school and university admis-
sion systems. The standard representation of the matching problem is a bipartite graph which
encodes pupils and universities into vertices and an edge links a pupil and a university if and
only if the pupil actually applies to the institution in question. While pupil-side preferences
are determined by the application order, the preferences of the universities are implicitly deter-
mined by the score of applicants from their previous studies. The aim is to centrally compute a
matching, where university quotas are �lled such that no pupil is rejected from a highly ranked
university unless all the accepted applicants possess a higher score. This property is called
stability.

One-sided markets attempt to pair up agents of a single object-space with stability in mind. A
typical application in the �esh is the dormitory quota-distribution system used by the Technion
Israel Institute of Technology [17]. Students within the same living facility are paired up into
rooms based on their personal preferences about each other. The very name of this market
problem, the Stable Roommates problem, originates from this example. The goal is to achieve
a matching, in which there are no two students that were not paired up, yet they mutually
prefer each other to the assigned partners.

Fair, optimal stable matchings

In the roommates-problem, the mean rank of partners taken over all agents may well di�er
among stable matchings. The aim of our research was to select an optimal, or so called,
egalitarian solution from the possible stable matchings. Notwithstanding the fact that the task
is proven to be NP-hard, there are signi�cant results concerning approximation algorithms,
which, by de�nition, compute e�ciently an almost optimal solution. Our main purpose is the
enhancement of such algorithms by designing new techniques. By the end of the work, we will
manage to improve the well-founded 2-approximation in general case to a 9/7-approximation
in a special case, where the length of lists are limited.
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Chapter 1

Introduction

As already stated in the Abstract, the knowledge of matching markets and matching problems
involving preferences are increasingly useful when it comes to large, even nation-wide matching
schemes. With the advent of high performance information technology, matching tasks, pre-
viously done on local scale, �computed� on paper, are now often centralised and computed on
global scale. For instance, schemes in China are required to distribute over 10 million students
among higher education institutes through a centralised process [16]. Similar matching systems
are used, for instance, in New York to allocate over 60 thousand pupils to high schools [16], or
in Hungary to assign school-leavers to universities [1, 18].

Matching theory itself is a widely studied area, see for example [14]. This area studies mostly
independent sets of edges within graphs, in a bare model, where edges are considered equally
good. Nevertheless, the problem becomes more enthralling as soon as preferences are intro-
duced. Sticking to practical examples, pupils do not only provide a set of universities they
wish to be admitted to, but exact preferences are determined as well. Another hailed example
is the assigning process of doctors and residents to hospital-positions implemented by the Na-
tional Resident Matching Program (NRMP) [19, 24] in the US. According to the 2017 annual
report [23], in 2017 just over 43.000 students applied via the NRMP system for 31.757 positions.

While the latter examples de�ne two-sided matching markets, many applications have at their
basis a one-sided market as a model. Traditionally, this is called the Stable Roommates problem.
Probably the most relevant and implemented application in one-sided matching theory is the
living kidney exchange program [15], where patients waiting for kidney transplant are looking
for appropriate donors. The patients usually provide a donor who is most often physiologically
unsuitable for them. They form a pair and are introduced to a central matching scheme that
matches the patient-donor pairs if the donors are proper for the other pair's patient. The
system may also consider other physiological aspects that make some donors more acceptable
than others. A further �eld of application involves the study of P2P systems with stability
criteria in mind. Lebedev et al. [13] investigated collaboration choices in P2P networks and
derived an evolution model from stable roommates aspects. This result could bare fruit in
future network design, since service providers wish to complete �le transactions among system
participants as e�ciently as possible. Moving on, the existing literature handles bipartite
problems with single-sided preferences too, although this report will no longer re�ect on this
area (the reader is referred to [16]). Example applications include the allocation of dormitory
facilities to students [17].

The goal in every case is to compute a matching that is optimal, stable with respect to some
rigorous de�nition. The literature de�nes multiple types of stability, more speci�cally: weak,
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CHAPTER 1. INTRODUCTION 2

strong and super [10]. This report omits these re�ned notions of stability because the simpler
model that is analysed here incorporates the three notions into the same de�nition of stability.
The game theory and economics literature (see e.g. [21]) move further on to analyse strategy-
proof or truthful mechanisms that ensure the most preferred strategy of agents being that
of revealing their true preferences. Computational social choice theory (e.g. [2]) addresses
problems where decision is reached collectively by multiple agents and which decision will
surely yield winners and losers. Economic and social choice aspects consist also a signi�cant
contribution of stable matching theory, which could not be presented here, so the reader is once
again referred to [16].

Due to the typical size of applications, the �manual� computation of stable matchings is infea-
sible. Therefore, the problems are solved by advanced information technology and algorithms
that automate the computation. Nevertheless, running time being a factor of paramount impor-
tance, algorithm designers still face a serious challenge considering, once again, the increasing
size of problems. This report intends to discuss the stable marriage problem and its variants
from an algorithmic point of view and, thus, to contribute to the immense existing knowledge
in this and other parts of the �eld [8].

A further concern of the �eld is the study of di�erent solutions of the same problem-instance. It
is easily seen that the number of solutions can be exponentially bigger than the input size itself.
Moreover, the solutions may even di�er with respect to further optimality criteria. Therefore,
primitive algorithms, previously used for �nding and producing at least on of the solutions, are
continuously tried to be enhanced to produce speci�c solutions with speci�c properties. Again,
there are multiple optimality criteria de�ned by frontrunners, yet we are to focus on probably
the most important of them: egalitarianism. Unfortunately, we must get disillusioned because
of the computational hardness of �nding egalitarian stable matchings [4]. Nonetheless, we do
attempt, with success, to approximate these with e�cient algorithms, starting from an already
existing, but not entirely correct result of Cseh et al. [3].

The rest of the report is organised according to the points raised in previous paragraphs.
Chapter 2 revisits preliminary notions from other �elds and then introduces the speci�c vocab-
ulary of our area along with much of the upcoming notation. Chapter 3 con�nes itself to present
fundamental structural results about stable matchings, with accent mostly put on the connec-
tion between multiple such matchings. Chapter 4 is the �rst chapter to relate the algorithmic
point of view by presenting the two most elementary and most celebrated algorithms in the
�eld that solve the stable marriage and the stable roommate problem. Both the algorithms'
correctness are proved in detail. Chapter 5 aims to introduce egalitarianism and the weighted
stable matching problem. This chapter also invites us to think on what will be the main focus
of Chapter 6 and the entire report. The short-listed con�guration of the problem is introduced
along with the main result of this work. Chapter 6, section 6.1 introduces de�nitions and
necessary notions to understand proofs, after which section 6.2 presents the new algorithm of
the author and his supervisor, which can e�ciently compute a �near optimal� stable matching
from a stable roommate instance with short lists. Subsections 6.2.1, 6.2.2 and 6.2.3 contain the
proof of correctness for di�erent cases. In Chapter 7 the �nal conclusion is drawn and some
further open questions are outlined, too.



Chapter 2

Notions, notation, models

The existing literature distinguishes between multiple matching market models, as suggested
by Manlove in [16] and in Chapter 1. This report is going to focus on two of them: two-
sided matching problems (or more commonly, bipartite matching problems with two-sided
preferences, or simpler: bipartite matching problems) and one-sided matching problems (or
non-bipartite matching problems with preferences).

2.1 Preliminaries

Before entering the discussion, we introduce some common notation and basic notions from
graph theory, relation theory and algorithm theory.

2.1.1 Graph theory

Let us be given a graph G = (V,E) with vertex set V and edge set E. Unless stated else, from
now on any such graph will be considered simple, i.e. neither having multiple edges nor loops.
Also, unless stated else, m will denote |E| and n will denote |V |. We denote the number of
edges incident to an arbitrary vertex v ∈ V by d(v) and call it the degree of v. The adjacent
vertices of v ∈ V are the vertices reachable from v via a single edge, i.e. u is adjacent to v if
and only if there exists e = uv ∈ E. The set of all adjacent vertices form the neighbourhood of
v and is denoted by N (v). More generally, given a subset X of the vertices, the neighbourhood
of X is: N (X) = {u ∈ V : ∃v ∈ X such that uv ∈ E}. Particularly, N ({v}) = N (v).

A set of edges M ⊆ E is called a matching, if no two edges in M are incident to the same
vertex, or equivalently, each vertex v ∈ V is covered by at most one edge in M . If, for vertices
u and v, uv ∈ M , then we say that M matches u and v. We also de�ne M(v) to be u, if
M matches u and v. A matching M is called maximal, if it isn't a strict subset of any other
matching, or equivalently: there is no edge e ∈ E \M , such that M ∪ {e} is a matching.

A graph is called bipartite, if the vertex set V may be decomposed into vertex-sets U and W
(i.e. V = U ∪W and U ∩W = ∅) such that all edges are incident to exactly one vertex from
U and exactly one vertex from W . Occasionally, we will use the following notation: nU = |U |
and nW = |W |.
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CHAPTER 2. NOTIONS, NOTATION, MODELS 4

2.1.2 Relation theory

Let us be given a set A. A set R ⊆ A×A is called a relation (de�ned) on A. If (a, b) ∈ R, then
it is said that a is in relation with b or, more frequently, a is greater than b and it is denoted
as aRb or a ≺ b. A relation is

� re�exive, if a ≺ a, for any a ∈ A;

� antisymmetric, if for any a, b ∈ A, a ≺ b and b ≺ a implicates that a = b (a and b denote
the same element of A);

� transitive, if for any a, b, c ∈ A, a ≺ b and b ≺ c implicates that a ≺ c.

A relation R on A is called a total or linear ordering of A, if it is re�exive, antisymmetric,
transitive and for any a, b ∈ A, either a ≺ b or b ≺ a holds. Note that in this case, R actually
orders the elements of A into a list where the greater element is in front of the lower element.
In case of linear orderings we de�ne the relation 4: a 4 b if and only if either a ≺ b or a = b.

2.1.3 Algorithm theory

Let Σ denote a set of characters and call it abc. Words are �nite lists of characters and the set
of all words is denoted by Σ∗. An arbitrary L subset of Σ∗ is called language. A language L
is said to be e�ciently recognisable, if there exists an algorithm that for any word w decides
whether w is an element of L or not and the number of steps in the execution of the algorithm is
polynomial in |w|, the length of the input-word. The set of all e�ciently recognisable languages
is denoted by P. Hence, L is recognisable if and only if L ∈ P.

Moving on, there are the languages who are e�ciently recognisable under the circumstances
that we provide a short enough certi�cate. More precisely, for any word x ∈ L there exists a
certi�cate yx ∈ Σ∗ such that the length of yx is polynomial in |x| and L′ = {(x, yx) : x ∈ L} ∈ P.
The set of all such languages is denoted by NP. Since languages in P are recognisable with a
0-long certi�cate, P ⊆ NP.

Furthermore, any function f : Σ∗ → Σ∗ is said to be e�ciently computable, if there exists
an algorithm that computes from x the value of f(x) and the number of steps is polynomial
in |x|. The set of such functions is denoted by FP. Many times, these functions appear as
some algorithmic tasks, e.g. colour the vertices of a graph with at most two colours, if possible,
or otherwise claim that it is impossible to do it. In this example f maps a graph-input to a
colouring or a claim of impossibility. Other, invalid inputs are mapped to an error-message. It
happens frequently that such a problem is said to be in P(instead of being in FP). In most
cases a problem f may be reformulated in a decisional problem, e.g. in the example discussed
the decisional version is the problem to answer whether an arbitrary graph admits a 2-colouring,
but the justifying colouring is not interesting, the computation of it may even be omitted. Such
a decisional problem is actually a language Lf de�ned by the inputs, for which the answer is
a�rmative. Obviously, f ∈ FP implicates that Lf ∈ P and many times the reversed statement
holds as well.

Moving one, given languages L1 and L2, it is said that L1 may be reduced to L2 if there exists
a function f ∈ FP such that x ∈ L1 if and only if f(x) ∈ L2. In this case it is said that L2

is computationally at least as hard as L1, since an instance of the latter problem may always
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be solved by transforming an input with an e�cient function to an input of the L2-problem.
In notation, we many times write that L1 ≺ L2. Besides that, such a function f is called a
reduction from L1 to L2. The relation ≺ is re�exive, transitive. If L1 ≺ L2 and

� if L2 ∈ P, then L1 ∈ P;

� if L2 ∈ NP, then L1 ∈ NP.

A language is said to be (in) NP-hard, if all languages in NP may be reduced to it: L ∈
NP-hard if and only if L′ ≺ L, for any L′ ∈ NP. An NP-hard-language that itself is in NP is
said to be (in) NP-complete. The following holds: if L ∈ NP,Lc ∈ NP-complete and Lc ≺ L,
then L ∈ NP-complete. NP-complete-problems are the hardest decisional problems inside
NP. Also, a function f (most of the time appearing as a problem) is usually said (in a not too
precise manner) to be NP-complete if the decisional version Lf is NP-complete.

2.2 Problem instances

2.2.1 Bipartite matching problem instances

The classical example of bipartite matching problems was introduced by Gale and Shapley [6].
In this example men and women formed their preferences about a subset of the other gender-
class. These preferences form a linear ordering on the corresponding subset. The construction
given this way is called an instance of the stable marriage problem with incomplete lists.

De�nition 2.2.1. Let G = (U ∪W,E) be a bipartite graph. For each v ∈ U ∪W , let ≺v be
a linear ordering of N (v). Then ≺v is called the preference-relation of v. For any vertex-class
C ∈ {U,W} let RC denote the the set of linear orderings on C: RC = {≺v: v ∈ C}. Let
R = RU ∪RW . The pair I = 〈G,R〉 is called an instance of the stable marriage problem with
incomplete lists. The set of all instances of the stable marriage problem with incomplete lists
is denoted by SMI-ins. Vertices in U(and W ) are usually called men (and women).

It is fair to imagine that not any matching between men and women could work out. There
could exist a man and a woman who were not paired up, yet they mutually prefer each other
to their assigned partners. Such an edge is called blocking. The motivation of the stability
criteria, as it is to be de�ned soon, is exactly that of eliminating such couples.

2.2.2 Non-bipartite matching problem instances

In this model agents belong to the same object-space and there is no constraint on who they may
be paired up. Similarly, preferences form a linear ordering. Due the already aforementioned
application of the Technion Israel Institute of Technology [17], where students within the same
dormitory facility are paired up based on personal preferences, this kind of problem is called
the stable roommates problem and instances of the problem are called instances of the stable
roommates problem with incomplete lists.

De�nition 2.2.2. Let G = (V,E) be a graph. For each v ∈ V , let ≺v be a linear ordering of
N (v). Then ≺v is called the preference-relation of v. Let R be the set of all linear orderings
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de�ned on the vertices: R = {≺v: v ∈ V }. The pair I = 〈G,R〉 is called an instance of the
stable roommates problem with incomplete lists. The set of all instances of the stable roommates
problem with incomplete lists is denoted by SRI-ins. Vertices in V are usually called agents.

This case de�nes the same stability criteria as the one before. It should not happen in a stable
matching that non-matched agents would prefer sharing rooms with each other to sharing it
with their allocated partners.

2.3 Stability

It is noteworthy that every instance of the stable marriage problem is an instance of the stable
roommates problem, or equivalently, SMI-ins ⊂ SRI-ins. The roommates problem gener-
alises the marriage problem. Furthermore, the de�nitions of blocking edge and stability are
exactly the same in the two cases.

De�nition 2.3.1. Let I = 〈G,R〉 ∈ SRI-ins and let M be a matching in G. Then M is
called a matching of I.

1. An edge uv ∈ E is called a blocking edge with respect to M , if uv /∈ M and either u is
unmatched in M or v ≺u M(u) and either v is unmatched in M or u ≺v M(v). We also
say that uv blocks the matching M .

2. Matching M is called stable if there is no blocking edge with respect to M .

Having introduced all necessary notions, now we are able to formulate questions. Chapter 4
is going to investigate the problem of determining whether an instance of the stable marriage
(roommates) problem admits a stable matching and whether this problem is computationally
easy to answer. We conclude this chapter by introducing some further notation, after which
Chapter 3 summarises some basic structural results concerning stable matchings.

2.4 Further notions and notation

Let I = 〈G,R〉 be a stable roommates instance.

� In a stable marriage or roommates problem, for any vertex v, the set N (v) is usually
referred to as the acceptable partners to v.

� LetM be an arbitrary matching. AM denotes the set of vertices covered byM . According
to Corollary 3.2.1, stable matchings of the same problem-instance cover the same set of
vertices. The set of these vertices is going to be denoted by A.

� Let the set of all stable matchings of I be denoted by SM(I).

� If I admits a stable matchings, i.e. SM(I) 6= ∅, then I is said to be a solvable instance.
The set of solvable instances of the stable marriage (roommates) problem with incomplete
lists is denoted by solv-SMI-ins(solv-SRI-ins). The main point of Theorem 4.1.1
will be that any stable marriage instance is solvable, hence solv-SMI-ins = SMI-ins.
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� If I ∈ solv-SRI-ins, then an edge found in at least one of the stable matchings is called
stable edge. Edges that are found in all stable matchings are called �xed edges. Obviously,
�xed edges are stable edges as well.

� If the length of preference lists (the degree of vertices in G) in a stable roommates problem
is upper-bounded by d, then the instance belongs to the d-SRI-problem. The set of
the instances of the d-SRI-problem is d-SRI-ins, and the set of solvable instances is
solv-d-SRI-ins.



Chapter 3

Basic structural results

In this chapter we display a handful of structural results on stable matching that are gripping in
themselves and, besides that, serve as crucial background-statements for upcoming theorems.
Since the report is incapable to cover the wide range of structural properties addressed by the
literature, the reader may wish to further deepen into details in [8].

3.1 Union of stable matchings

The simplest observation is that stable matchings are maximal as well, for otherwise the amend-
ing edge is blocking.

Proposition 3.1.1. Let I = 〈G,R〉 ∈ solv-SRI-ins and let M ∈ SM(I). Then, M is
maximal as a matching.

The lemma that stands at the basis of most of the upcoming claims is related to the union of
matchings (not necessarily stable) within the same graph.

Lemma 3.1.2. Let G be a graph (the reader is reminded that since Chapter 2 any graph is
considered to be a simple graph) and letM1 andM2 be two matchings of G. Then the symmetric
di�erence M14M2 consists of cycles and paths whose edges are alternately taken from M1 and
M2. We also say that M14M2 consists of alternating cycles and paths.

Proof. Let us take S = M14M2 and let H = (V (G), S), i.e. the graph composed by the edges
in S. Since any vertex v may be covered by at most one edge from both matchings M1 and
M2, the degree of any vertex in H is at most 2. Such a graph may consist of cycles and paths.
Furthermore, in any such path or cycle no vertex with degree 2 may lie on edges taken from
the same matching, hence edges are taken alternately from the two matchings.

Remark. Therefore,M1∪M2 consists of coincident edges (edges contained by bothM1 andM2)
and of alternating cycles and paths.

The following statements discuss the structure of stable matchings and the connection between
them. An interesting result about the structure of the stable matchings of an instance is that
they cover exactly the same set of vertices. This a direct consequence of the fact that the
symmetric di�erence of two stable matchings may only contain alternating cycles.

8
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Claim 3.1.3. Let I = 〈G,R〉 ∈ solv-SRI-ins and let M1,M2 ∈ SM(I). Then M1 4M2

consists of alternating cycles.

Proof. M1 and M2 are matchings, hence, because of Lemma 3.1.2, M1 4M2 consists of alter-
nating cycles and paths. We show that the latter is excluded. Let us suppose that M1 4M2

contains a maximal (not expandable) alternating path v0v1 . . . vr, where v2i−1v2i ∈ M1 and
v2iv2i+1 ∈ M2, for all possible i. For the sake of explanation, for any edge e contained by
exactly one of the matchings M1 or M2, we call the other matching the counter-matching of e.

It is easy to see that either v0v1 or vr−1vr blocks the counter-matching. Let us suppose that
none of them do so. It is not possible that r = 1, for otherwise v0 and v1 are unmatched by the
counter-matching of v0v1, so v0v1 blocks it. Neither may r = 2 hold, for otherwise v1 together
with the preferred vertex from {v0, v2} blocks the counter-matching. Hence, r ≥ 3. v0v1 or
vr−1vr are not blocking the counter-matchings, so v2 ≺v1 v0 and vr−2 ≺vr−1 vr. Therefore, there
exists k ∈ {1, 2, . . . , r − 2} such that vk+1 ≺vk vk−1 and vk ≺vk+1

vk+2. Thus, vkvk+1 blocks the
counter-matching, contradiction.

Therefore, either v0v1 or vr−1vr blocks the corresponding counter-matching, which contradicts
the �rst assumption. Thus, M14M2 may only consist of alternating cycles.

3.2 Connection of stable matchings. The Rural Hospitals

Theorem

Corollary 3.2.1 (Rural Hospitals Theorem [20]). In an I = 〈G,R〉 solvable stable roommates
instance all the stable matchings cover the same set of vertices. Equivalently, AM = AS, for
any M,S ∈ SM(I).

Remark. From now on AM = AS is going to be denoted by A.

From the proof of Claim 3.1.3 one may easily deduce that in the symmetric di�erence of two
stable matchings, in any alternating cycle preference-relations �point into the same direction�
in the sense how Claim 3.2.2 formalises it.

Claim 3.2.2. Let C = (v1v2 . . . vr) be an alternating cycle in M1 4M2. Then either vk−1 ≺vk
vk+1 for all k = 1, r or vk+1 ≺vk vk−1 for all k = 1, r, where indexes are taken mod r.

The proof of this claim is trivially constructable from the second paragraph of the proof of
Claim 3.1.3. Furthermore, a relatively simple statement follows from this claim as well:

Corollary 3.2.3. Let I = 〈G,R〉 ∈ solv-SRI-ins and let M1,M2 ∈ SM(I). Let us suppose
that v and w are two adjacent vertices in G such that vw ∈ M1, but vw 6∈ M2. Then exactly
one of the vertices v and w must be better o� and exactly one of them must be worse o� in M2.
Formally, the following holds: either M(v) ≺v w ∧ v ≺w M(w) or w ≺v M(v) ∧M(w) ≺w v.

Proof. Since vw ∈ M1 and vw /∈ M2, then vw ∈ M1 4M2. Let C be the alternating cycle
containing vw. Then the statement follows from Claim 3.2.2.



Chapter 4

Fundamental algorithms

In the current chapter we are to investigate two algorithms that decide whether an instance
of the stable marriage and stable roommates problem admits a solution and that produce a
solution in a�rmative situation. We are going to show that the stable marriage problem is so
much simpler than the more general con�guration that any instance admits a stable matching.

4.1 Gale-Shapley Algorithm

Theorem 4.1.1 (Gale and Shapley, 1962 [6]). Any arbitrary I ∈ SMI-ins admits a stable
matching and there exists an O (m) time algorithm that computes and outputs a stable matching
of I. Hence, solv-SMI-ins = SMI-ins.

The theorem is proven by designing an algorithm that ful�ls the requirements. The components
of Algorithm 1 represent a compilation of all previous descriptions and interpretations [6, 12]
of the original algorithm, the so called �deferred acceptance� procedure.

Algorithm 1 Gale-Shapley
Input: I = 〈G(U ∪W,E),R〉 ∈ SMI-ins
1: while there exists a man u ∈ U whose all proposals, if any made, have been rejected and

whose list is non-empty do
2: let w be the �rst woman on u's list
3: u proposes to w
4: for each man u′ such that u ≺w u′ do
5: if w was proposed to u′ then
6: reject the proposal
7: end if
8: withdraw the edge u′w from G
9: end for

10: end while

11: let M be the set of proposal edges
12: STOP and OUTPUT M

The best way to understand the algorithm is to learn from nature. The men try to propose
to the best possible woman on their list (lines 2 and 3). Whenever a man u proposes to a

10
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woman w, uw becomes a proposal edge. In this case both u and w have a proposal. The women
naturally withdraw any man from their list found lower than the proposing one (lines 4 and 8).
In this case, the edge itself is deleted and the woman in question is withdrawn from the list of
these men. The procedure continues until each man is either proposed to a woman or has run
out of possible spouses (line 1).

Proof of Theorem 4.1.1. We prove the theorem by showing that after the execution of Al-
gorithm 1 on I, the edge-set M is a stable matching. First and foremost, M is a matching.
Indeed, no man can have multiple proposals, since they only went on proposing whenever the
previous one has been turned down and deleted. Moreover, women only keep the last proposal,
any previous proposal is implicitly rejected and deleted.

Secondly, let us take an edge uw /∈ M such that u either �nished with a less preferred woman
w′ or has run out of chances. Since he moved down his list further than w, there are two
possibilities: either he proposed to w, but this proposal was rejected as a consequence of w
being proposed to by a preferred man u′; or even before u could have moved down to w, uw
was deleted because of the same reason. In either cases, u was dominated by a proposing man
u′. Note that in the algorithm an already proposed woman always holds a proposal and only
changes it at the sight and proposal of a better partner. Hence w has a partner u′′ in M , and
u′′ 4w u

′ ≺w u. Hence, uw cannot be blocking and the matching M is stable.

4.2 Irving Algorithm

Contrary to the previous situation, not all stable roommate instances admit solution. For
instance see the example in Figure 4.1. There are tree agents numbered with 1, 2 and 3,
respectively, and all agents �nd all the others acceptable. Preferences form a cycle. Any
matching leaves at least one vertex uncovered. However, one of the matched vertices will prefer
this one to its partner, hence the matching is unstable.

1 2 3
2 3 1
3 1 2

Figure 4.1. An SRI-instance that admits no stable matching.

Nevertheless, it is computationally easy to determine the existence of a solution and to produce
one in a�rmative situation. This result belongs to Irving [9] and the algorithm described here is
the adaptation of the one given in Irving's paper with some notions borrowed from Gus�eld [7].

Theorem 4.2.1 (Irving, 1985 [9]). There exists an O (m) time algorithm that for any I ∈
SRI-ins either computes a stable matching of I or provides a proof for its non-existence.

We are going to prove the theorem by proving the correctness of Algorithm 2 (which uses
Algorithm 3 as a subroutine). The main routine breaks down into two phases, which we
investigate separately.
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4.2.1 Description of the Algorithm

4.2.1.1 The �rst phase

The �rst phase resembles the Gale-Shapley-type �deferred acceptance� procedure presented
earlier. For the sake of grasping the essence better, we adopt the terminology related to
proposals. Here, everyone will propose (see line 13), as opposed to the previous settings, where
only men engaged women. However, rejections happen with the same mechanism. Whenever a
person receives a better proposal (for becoming the roommate of the proposer), he turns down
the previous rejection and withdraw any worse acceptable partner on their list (lines 14 to 20).
Similarly to the previous case, the withdrawal of a person q from p's list involves withdrawing
p from q's list and the subsequent deletion of edge pq. The instance is truncated.

After the proposal-rejection process is over, some of the agents run out of entries on their lists.
These agents are removed from the instance (line 23). We will see later that these are the agents
who are unmatched in any stable matching, if there is one (keep in mind Corollary 3.2.1). By
deleting isolated agents, the instance is brought into a special state: for any agents a 6= b, b is
�rst on a's list if and only if a is last on b's list (Lemma 4.2.2). Throughout the second phase
the execution keeps this property invariant. Let us call this property proposal-consistency.

The goal of the algorithm is to pair up agents. Line 25 and later, in the second phase, line 33
match agents whose list contain a single entry. Notice that this can be done, because from
line 25 till the end of the execution the reduced instance IR is proposal-consistent. See details
in Lemma 4.2.2 and Corollary 4.2.3. The purpose of the second phase will be to cut down the
rest of the agents' lists to one element. Note that exactly because of proposal-consistency, if
a has multiple entries with b being �rst, then b's list may not be lead by a, hence agents with
multiple entries cannot be paired up.

4.2.1.2 The second phase. Rotations

The second phase reduces the lists by eliminating rotations [7]. Let us assume that after
executing the �rst phase and zero or more times the second phase, there is a sequence of
agents a1, a2, . . . , ar with multiple entries on their list, such that the second element of ai's list
is the same as ai+1's �rst element and ar's second element is the same as a1's �rst element.
Alternatively: there exists another sequence of agents b1, b2, . . . , br such that ai's list starts
with bi, bi+1 and ar's list starts with br, b1. For such sequences the ordered set R of agent-triples
written in the form (ai : bi, bi+1) is called a rotation (Gus�eld [7] calls it exposed rotation. In
his paper he conducts a deep investigation into rotations and their structure. Since this is out
of our purpose, we use the shortened term). The member ai is called list-owner, bi is called
the list-heading and bi+1 is the list-second (with respect to ai's list, obviously). Lemma 4.2.4
will justify that there is a rotation if and only if there is an agent with multiply inhabited list,
but it is actually straightforward from Algorithm 3, which is designed clearly for the purpose
of manufacturing rotations. One further convention is that the last element of a list is called
list-ending.

Elimination of rotations The elimination of a rotation involves the following: for each i,
bi is forced to reject ai, who in return proposes to bi+1 (lines 28 to 30). The natural rejection
process learned from the �rst phase is also repeated: bi+1 withdraws partners strictly worse than
ai (including ai+1) and rejected partners also withdraw bi+1 from their list (line 31). However,
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as opposed to the �rst, Gale-Shapley-type phase, this does not induce a proposal-rejection
avalanche, since bi+1's previous proposal came from ai. Hence, the only agents whose proposals
are turned down are the ai's who immediately propose to the bi+1's, respectively.

At the end of each execution of the second phase, agents with single-entry lists are paired
up. Since edges are deleted in each iteration, the process ends with either all the agents of
the reduced instance being paired up or at least one agent running out of possible partners.
The former case outputs the solution, while the latter one claims the non-existence of a stable
matching.

Algorithm 2 Irving
Input: I = 〈G(V,E),R〉 ∈ SRI-ins
PHASE 1

13: while there exists an agent u ∈ V whose all proposals, if any made, have been rejected and
whose list is non-empty do

14: let w be the �rst agent on u's list
15: u proposes to w
16: for each agent u′ such that u ≺w u′ do
17: if w has previously accepted the proposal from u′ then
18: reject the proposal
19: end if
20: withdraw the edge u′w from G
21: end for
22: end while

23: remove agents whose list became empty
24: let IR be the reduced instance
25: pair up the agents whose lists have only one entry each

PHASE 2
26: while there exists no agent with empty list and there exists an agent a whose list has at

least two entries do
27: let R := FindRotation(IR, a)
28: for each list-owner ai in R do
29: list-heading bi rejects ai
30: ai proposes to bi+1

31: bi+1 deletes everyone from its list below ai and these agents delete bi+1 on their list
32: end for
33: pair up the agents whose lists have only one entry each
34: end while

OUTPUT
35: if there is an agent with an empty list then
36: STOP and OUTPUT �There is no stable matching.�
37: else
38: let M be the set of pairs formed throughout the execution
39: STOP and OUTPUT M and �There is a stable matching.�
40: end if
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Algorithm 3 FindRotation

Input: IR, a reduced instance and a, an agent in IR with more than one entry on his list

41: let S be an ordered set
42: let a0 = a, b0 and b1 the �rst two persons on a0's list
43: insert at the end of S the element (a0 : b0, b1)
44: let a1 be b1's list-ending
45: let j = 1

46: while there is no k < j such that aj = ak do
47: let bj and bj+1 be the �rst two agents on aj's list
48: insert at the end of S the element (aj : bj, bj+1)
49: let aj+1 be the list-ending of bj+1's list
50: let j := j + 1
51: end while

52: let k < j such that aj = ak
53: remove elements from S inserted before (ak : bk, bk+1)
54: return S

4.2.2 Formal proof of correctness

Most of the lemmas that lead to the complete proof of Theorem 4.2.1 are derived from Irving's
paper [9], but most probably with di�erent terms, in an altered sequence, and with di�erent
perspective. First of all we shall see some of the structural properties that hold. Let I ∈
SRI-ins and execute Algorithm 2 taking I as input.

Lemma 4.2.2. After the execution of the �rst phase and zero or more times the execution of
the second phase, or more precisely, whenever lines 25 and 33 are reached:

1. a is on b's list if and only if b is on a's list;

2. the reduced instance is proposal-consistent, i.e. a is last on b's list if and only if b is �rst
on a's list.

Proof. It su�ces to prove that these properties are invariant with respect to one iteration of
the second phase and that they hold initially, after the execution of the �rst phase.

1. At the beginning of the algorithm this property holds by de�nition of the instance. The
rejection and withdrawal mechanism (in the �rst and the second phase) is deliberately
designed in a way that it keeps this property. The only way that a list shortens is that
an agent b rejects an agent a. Nevertheless, at the same time a withdraws b from his list.

2. On one hand, in the �rst phase a will only ever have b as the list-heading if a was b's last
proposal. However, at the time of the proposal b rejected everyone ranked lower on his
list.

On the other hand, assume that at the end of the �rst phase b's list-ending is a. The
process terminated because everyone either run out of entries or managed to propose
to somebody. Because of the �rst statement, empty-listed people are not proposed to.
Besides that, di�erent agents may only propose to di�erent agents at the same moment.
To conclude, the agents left with a successful proposal propose to exactly the set of
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agents determined by themselves. Hence, exactly the agents with non-empty lists are the
proposed ones. Agent b's list is non-empty, so b is proposed to, but the only proposer can
be a.

This argument is true for the �rst and the second phases as well, so the property is
proven.

Corollary 4.2.3. Arriving to lines 25 or 33, a is the only person on b's list if and only if b is
the only person on a's list. Hence, they can be paired up indeed.

Lemma 4.2.4. Let IR be the reduced instance at the start of some iteration of the second phase.
If there is an agent a who has multiple entries on his list, then there exists a rotation in IR and
such a rotation can be computed by Algorithm 3 taking (IR, a) as input.

Proof. As initiated in lines 41 to 44, let a0 = a and the �rst two elements of a0 are b0, b1.
However, at each step, the list of bi+1 has at least two elements due to Lemma 4.2.2. On one
side, bi+1 is on ai's list, so ai is on bi+1's list. On the other side, bi+1 is not the only element
of the list of ai, so bi+1's list is inhabited by multiple agents. Denote the last one of them by
ai+1. Then the list-heading of ai+1 is bi+1. Since bi+1 has multiple elements, ai+1 should have
multiple elements, too. Let us call the list-second bi+2. This process goes on until for some j
there exists k < j such that aj = ak. In that case the ordered set of elements (ai : bi, bi+1),
where i = k, j − 1 is a rotation. Algorithm 3 returns this rotation.

Corollary 4.2.5. The execution of Algorithm 2 on I ∈ SRI-ins terminates after O (m) steps.

Proof. Since the number of edges is �nite, the �rst phase will halt after �nite steps. Besides
that, each iteration of the second phase eliminates a rotation, thus deletes at least 2 more edges.
Hence, the second phase is iterated �nite times. Thus, the execution reaches an end after �nite
steps.

As far as time complexity is concerned, the cost of the algorithm is estimated by the number of
accesses to the data structures representing the input. An instance I may be described entirely
by a graph represented by the adjacency lists of vertices, where agent v's adjacency list re�ects
his preferences over acceptable partners. We assume that every operation on any adjacency list
has cost O (1).

The size of the input is, thus, Ω(n + m). Every single edge may be proposed and deleted
at most once. Therefore the cost induced by proposals and deletions is upper-bounded as
O (2 ·m) = O (m). As for �nding rotations, Algorithm 3 imposes a cost of at most O (n′),
where n′ is the number of agents with non-empty lists, since each person comes for at most
once, and the number of data structure accesses for each agent is at most O (1). Consequently,
the cost of the execution is O (n′ +m) = O (m).

The aim of the following lemmas and theorems is to prove that instance I admits a solution if
and only if the algorithm outputs a stable matching.

Lemma 4.2.6. If the algorithm outputs a matchingM , then it is stable, and, hence, the instance
I is solvable.

Proof. Let us take an edge ab 6∈M and presume that either a is not matched inM or b ≺a M(a).
This means that at a certain point in the execution b withdrew a from his list no matter they
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had a common proposal or not. This could only happen because an agent a′ such that a′ ≺b a
proposed to b.

Furthermore, notice that agents who have ever received a proposal are matched in M . Firstly,
in the �rst phase no proposed agent will turn down the proposal without the advent of a better
partner. Secondly, the algorithm would never have outputted a matching if somebody in the
second phase had run out of possible partners (see lines 26 and 35). Hence, b has a partner
in M . Moreover, another feature of the algorithm is that agents only reject others for better
partners, so the �nal partner of b, a′′ say, is such that, a′′ 4 a′ ≺ a. Therefore ab is non-blocking,
the matching M is stable.

Lemma 4.2.7. In the �rst phase of the algorithm no stable edge is ever deleted.

Proof. Let us assume that for instance I, the execution of the �rst phase deletes some stable
edges, the �rst of which is uw, as a consequence of w having received a proposal from a preferred
agent u′. Let the corresponding stable matching beM . SinceM is stable and u′w 6∈M , u′w may
not block M . Nonetheless, u′ ≺w u, so u′ must have a partner w′ in M , hence w′ ≺u′ w. Since
during the execution of the algorithm u′ proposed to w, the edge u′w′ must have been deleted
prior to uw's deletion. This contradicts the fact that uw was the �rst to be withdrawn.

As we already de�ned, the reduced instance IR is the truncated instance formed from the initial
instance by applying the �rst phase of the algorithm and zero or more times the second phase.
If I admits a solution, then let M be a stable matching. We say that M is contained in the
reduced instance IR if all the edges of M are found in IR.
Remark. Lemma 4.2.7 essentially claims that all stable matchings are contained in the reduced
instance after the execution of the �rst phase.

Lemma 4.2.8. For I ∈ solv-SRI-ins let IR be a reduced instance and let

R = {(ai : bi, bi+1) : i = 1, r, where index is taken modulo r}

be a rotation in IR. Let M be a stable matching contained in IR. Then:

� either M(ai) = bi, for all i,

� or M(ai) 6= bi, for all i.

Proof. Let us assume that M(ai) = bi, for some i. Agent bi is also found on ai−1's list (see
Figure 4.2). However, since bi is ai's list-heading, because of Lemma 4.2.2, ai is the list-ending
of bi. Thus, ai−1 ≺bi ai. Therefore, ai−1 is matched in M , for otherwise ai−1bi blocks M , and
in order for M to be stable, M(ai−1) ≺ai−1

bi. M is contained in IR, so the only possibility is
that M(ai−1) = bi−1. Following the same argument, we �nd that M(ai) = bi, for all i.

ai−1 bi−1 bi . . .
ai bi bi+1 . . .

bi . . . ai−1 . . . ai

Figure 4.2. The list of agents ai−1, ai, bi.

Lemma 4.2.9. If there is a stable matching M contained in IR such that M(ai) = bi, for all
i, then there is a stable matching M ′ contained in IR such that M ′(ai) 6= bi.
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Remark. The idea of the proof is to eliminate the rotation R and let the ai's match up with
bi+1's, respectively. In order to do that, we �rst need to check whether this matching is actually
feasible. If the set of list-owners is not disjoint from the the set of list-headings, then the
matching's existence is questionable. However, this cannot happen.

Proof. Let A = {a1, a2, . . . , ar} and B = {b1, b2, . . . , br}. Suppose A ∩ B 6= ∅. Then there
exist indices j, k such that aj = bk. It is obvious that aj's list has at least two entries and so
does bk's. In M aj is paired up with his list-heading. Now, bk is matched with ak and bk is
ak's list-heading, so ak is bk's list-ending. Thus aj is matched to multiple agents on his list, a
contradiction.

Let M ′ be the matching, in which M ′(ai) = bi+1 for all i. This can be done, since the previous
proposers of elements in B were the elements of A, so elements of B actually permute proposers
amongst themselves. All other elements outside A ∪B are paired with their partner in M : for
all c ∈ A ∪B,M ′(c) = M(c). M ′ is claimed to be a stable matching with the desired property.

All agents, except for the list-owners (A) have received the same partner or a strictly better
one. Therefore edges among these may not block M ′, for otherwise they would have blocked
M . Hence any blocking edge involves one of the members of A. Assume that an edge aic blocks
the matching M ′, where c 6= bi+1 = M ′(ai). Then c is in front of bi+1 in ai's list. There are two
cases to consider:

� c = bi. However, bi received a strictly better partner then ai, contradicting that aic is
blocking M ′;

� c ≺ai bi+1 in the original list, but c is not present on ai's list any more. This could only
happen, because c withdrew ai from his list (we remind the reader that the elimination of
rotations was also interpreted as list-headings being forced to reject their proposals). At
the time of that withdrawal c must have received a better proposal than ai. Consequently,
c �survived� the �rst phase, i.e. it is part of the reduced instance. However, the algorithm
did not halt before starting the new iteration of the second phase, hence, c's list is sill
non-empty, so c is still proposed. The monotonicity of the preference for proposals causes
that M ′(c) ≺c ai, once again contradicting the fact that aic is blocking M ′.

Corollary 4.2.10. If the original problem admits a solution (i.e. I ∈ solv-SRI-ins), then
Algorithm 2 will output a stable matching of I.

Proof. According to Lemma 4.2.7, no stable edge is deleted during the �rst phase. So after
zero iterations of the second phase, the reduced instance IR contains a stable matching. We
prove that at the end of each iteration of the second phase, IR will contain a stable matching.

Suppose that after i−1 iterationsM is a stable matching of IR. In the ith iteration of the second
phase we eliminate a rotation Ri. Due to Lemma 4.2.8, inM either all the list-owners of Ri are
paired up with their list-headings or none of them. In the latter case, after the elimination of
Ri, IR still contains M . (Note that because of ai being paired up in M with bi+1 or worse, bi+1

may not be paired up with someone to whom he prefers ai. Thus, the deletion of non-proposal
edges does not a�ect M .) In the former case, courtesy of Lemma 4.2.9, there exists a stable
matching M ′ after the elimination as well.

It is here that we also see that none of the lists may become empty after such an elimination
(obviously with respect to the reduced instance). If an agent u's list empties, and his list-ending
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(or in other words, his proposer) before the elimination was w, then uw certainly blocks M ′,
since w could not possibly receive a better partner in M ′. Contradiction.

Therefore, the execution continues until everybody's list remains with one entry. Due to Corol-
lary 4.2.5, the execution will terminate. Because of Corollary 4.2.3, the agents can be paired up
forming a matching. The property that the reduced instance always contains a stable matching
induces that this sole matching is stable and it is outputted.



Chapter 5

Egalitarian stable matchings

Theorem 4.2.1 showed that deciding whether an instance of the stable roommates problem
admits a solution can be done in polynomial time (hence solv-SRI-ins ∈ P). However,
stable matchings may di�er in a number of aspects. The purpose of this and Chapter 6 is
to investigate a particular optimality concept: egalitarianism. In section 5.1 we are going to
de�ne the rank of an agent with respect to another agent. Afterwards, the egalitarian stable
roommates problem will be de�ned, whose aim is to minimise the average rank over all stable
matchings. Section 5.2 introduces the weighted stable matching problem and celebrates Teo and
Sethuraman's [22] result on approximating optimal matchings within such a problem-instance.
Not only is this result thought-provoking in itself, but it represents the basis for our result,
outlined later in section 5.3 and in Chapter 6.

5.1 Introduction to egalitarian stable matchings and their

algorithmics

De�nition 5.1.1.

Let I = 〈G,R〉 ∈ SRI-ins be a stable roommates problem.

1. If u, v ∈ V are two acceptable partners, then the position of v in u's preference list is
called the rank of v with respect to u and is denoted by ru(v).

Further, assume that I ∈ solv-SRI-ins.

2. Courtesy of Corollary 3.2.1, all stable matching cover the same set of vertices, denoted
by A. In this case

c(M) :=
∑
v∈A

rv
(
M(v)

)
is called the cost of the stable matching M .

3. Megal ∈ SM(I) is called an egalitarian stable matching of I, if

c(Megal) ≤ c(M), for all M ∈ SM(I).

Remark. Note that instances are �nite in the number of edges, hence the number of possible
matchings is �nite as well. Thus, there always exists an egalitarian among them.

19
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Our obvious goal is to determine for any problem-instance the egalitarian stable matching.
The naivest approach, the brute force search for the egalitarian (or any stable matching with
a speci�c property) among all the stable matchings is undermined by the simple observation
that the number of stable matchings alone can be exponential in the size of the input. As for
example, see Figure 5.1. This is a stable marriage instance constructed from n blocks, each
of them consisting of two men and two women. Within a block there are 2 distinct stable
matchings. However, any combination of �local� stable matchings adds up to a �global� one,
since there are no interconnecting edges. Thus, there are 2n stable matchings, whereas the size
of the input is Θ (4n+ 4n) = Θ (n).

u11

w1
1

u12

w1
2

u21

w2
1

u22

w2
2

. . .

un1

wn1

un2

wn2

Figure 5.1. An SMI-instance that contains 4n people �grouped� into blocks with 4 mem-
bers each. There are two local stable matchings within each group, hence there are 2n stable
matchings in the instance.

Nonetheless, an egalitarian stable matching within a stable marriage problem is computationally
feasible (see [11]). However, according to Feder [4, 5], there is most probably no sophisticated,
polynomial-complexity algorithm that would compute an egalitarian stable matching from any
stable roommates input, since the problem is NP-hard. Feder also gave a 2-approximation
algorithm for the problem, which means that there is a polynomial time algorithm that produces
for any instance a stable matching whose cost is at most twice the cost the egalitarians'. It
is the contribution of Feder, once again, that probably there is no approximation with a ratio
strictly smaller than 2 for the general case, unless a widely believed conjecture is false. These
results are summarised in the upcoming theorems.

De�nition 5.1.2.

1. Let the problem of determining an egalitarian stable matching in a solvable instance of
the stable roommates (marriage) problem be denoted by egal-SRI (egal-SMI).

2. Let the decisional version of the problem of determining an egalitarian stable matching
be denoted by egal-SRI-dec (and egal-SMI-dec). Formally:

egal-SRI-dec = {(I, k) : I ∈ solv-SRI-ins,∃M ∈ SM(I) such that c(M) ≤ k}

egal-SMI-dec = {(I, k) : I ∈ SMI-ins,∃M ∈ SM(I) such that c(M) ≤ k}

Remark. Note that in De�nition 5.1.2, item 1 required the problem-instance to be solvable,
i.e. in solv-SRI-ins. The reason for this is that the existence of solutions isn't a computa-
tional question any more due to Theorem 4.2.1. Thanks to Theorem 4.1.1, the de�nition of
egal-SMI-dec didn't even require formally the instance to be solvable, since it automatically
admits solutions.
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Theorem 5.1.3 (Irving, Leather, Gus�eld, 1987 [11]). egal-SMI-dec ∈ P. There exists a
polynomial time algorithm that computes an egalitarian stable matching from an instance of the
stable marriage problem.

Theorem 5.1.4 (Feder, 1992 [4] and 1994 [5]).

1. egal-SRI-dec ∈ NP-complete

2. egal-SRI is 2-approximable, i.e. there exists a polynomial time algorithm that, for any
instance of the stable roommates problem, approximates the egalitarian stable matching
within a factor of 2.

3. egal-SRI ∈ UGC-hard, i.e. assuming the Unique Games Conjecture, the egal-SRI
problem cannot be approximated within 2− ε, for any ε > 0.

Remark. Later in section 5.2, we will see that Teo and Sethuraman [22] generalised this result,
although the 2-approximation wasn't improved.

5.2 The weighted stable matching problem

The min weight-SRI is the problem of providing a minimum weight stable matching in an
instance I ′ = 〈G,R, w〉, where I = 〈G,R〉 would be a usual stable roommates instance that
admits a solution, but it now has an added weight function de�ned on the edges: w : E(G)→ R.
Obviously, there is a natural reduction from egal-SRI-dec to min weight-SRI-dec with
the weight function w(uv) = ru(v) + rv(u), for all uv ∈ E(G), hence min weight-SRI-dec ∈
NP-complete.

Nevertheless, according to the results published in [22], Teo and Sethuraman designed a poly-
nomial time algorithm, which produces a stable matching from a min weight-SRI instance,
whose weight approximates the weight of the optimal stable matching within a factor of 2 on
the account of the weight function being of a special form. Let us discuss this form.

De�nition 5.2.1. Let I = 〈G,R〉 ∈ SRI-ins be a stable roommates instance. A function
fu : N (u) → [0,+∞) on the neighbourhood of any u ∈ V (G) is called U-shaped if there is a
neighbour q of u such that fu is monotone decreasing on neighbours in order of u's preference
list until q and fu is monotone increasing on neighbours in order of u's preference list from q.

Theorem 5.2.2 (Teo, Sethuraman, 1997 [22]). Let I ′ = 〈G,R, w〉 be a min weight-SRI-
instance with weight function w having the following property: for each u ∈ V (G) there exists
a U-shaped function fu such that w(uv) = fu(v) + fv(u) holds for every uv ∈ E(G). In this
case there exists a polynomial time algorithm that determines a stable matching of I ′, which
approximates the optimal weight within a factor of 2.

5.3 Approximation of egal-SRI in special cases

5.3.1 Short lists

This section aims to give insight into the existing literature about approximation-attempts in
the past, but it also provides the disclaimer for Chapter 6. Cseh, Irving and Manlove [3] invest-
igated the problem where preference lists of agents are upper-bounded by di�erent constants,
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namely 3, 4, 5 and, in each case, designed a polynomial time algorithm that calculates a stable
matching approximating the egalitarian solution within factors strictly lower than 2. Our in-
spection revealed that the proof was incorrect. The main result of the author and his supervisor
is the reassessment of these cases. The approximation results neither increase nor decrease, but
stay intact. Nonetheless, we incline to believe that these results could be improved. The main
theorem:

Theorem 5.3.1. There exists a polynomial time algorithm that, given a solvable stable room-
mates instance with preferences lists consisting of at most d items (d ∈ {3, 4, 5}), produces a
stable matching whose cost approximates the cost of egalitarian stable matchings within a factor
of 2d+3

7
, i.e. for values 3, 4, 5 we have approximations within 9

7
, 11

7
, 13

7
.

The proof of the Theorem 5.3.1 is outlined and fully detailed in Chapter 6. In the rest of this
section a subset of �aws in the proof of Cseh et al. [3] are outlined that we discovered. For the
sake of notions and notation of the article, the reader is referred to Chapter 6, since these are
kept from the original article with some additions. We even recommend the reader to return
to subsection 5.3.2 after having understood the �ow of the proof in Chapter 6 and to ignore
subsection 5.3.2 until then. No term or statement builds on this subsection in the rest of the
report.

5.3.2 Flaws in the original proof

5.3.2.1 Preprocessing phase of [3, Theorem 6]

The very �rst observation is a rather unclear and error-prone explanation regarding a prepro-
cessing phase for the authors' algorithm in [3]. The following statement originates from the
paper, more precisely from the proof of Theorem 6:

`To simplify our proof, we execute some basic pre-processing of the input graph.
If there are any (1, 1)-pairs in G, then these can be �xed, because they occur in
every stable matching and thus can only lower the approximation ratio. Similarly,
if an arbitrary stable matching contains a (3, 3)-pair, then this edge appears in all
stable matchings and thus we can �x it. Those (3, 3)-pairs that do not belong to the
set of stable edges can be deleted from the graph. From this point on, we assume
that no edge is ranked �rst or last by both of its end vertices in G and prove the
approximation ratio for such graphs.

Take the following weight function on all uv ∈ E:

w(uv) =

{
0, if uv is a (1, 2)-pair,
1, otherwise.'

First and foremost, from this description it is not obvious how the modi�ed instance is related
to the initial instance in terms of weights and egalitarianism. Indeed, (1, 1)-pairs may be
�xed in the sense that the stable matchings of the original instance and that of the instance
reduced by such vertices are essentially the same as far as (1, 1)-pairs are neglected (see for
details Lemma 6.1.8). Nevertheless, the rank of agents change and the weight w applied by the
proof may apply a weight 1 on edges that have been (1, 2)-pairs in the original instance and a
weight 0 on edges that have had cost at least 4 in the initial instance. It is debatable, whether
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the solution revealed by their algorithm on the truncated instance will indeed hold the same
approximation-ratio in the original instance when (1, 1) pairs are added again. Neither could
we refute nor prove the statement. Instead of that, the corrected algorithm in our report (see
Algorithm 4) changes the order of these operations in the �rst place.

Secondly, the statement of being �allowed� to remove the �x (3, 3)-pairs is vague, too. In fact,
removing these edges along with vertices may even bring in new solutions into the truncated
instance, see for example Figure 5.2. It is straightforward that the initial instance (Figure 5.2a)
admits a single stable matching, namely {a1a5, a2a6, a3a7, a4a8}. However, after removing the
a3a7 edge, which is a (3, 3)-pair, the truncated instance (Figure 5.2b) admits two distinct stable
matchings: {a1a5, a2a6, a4a8} and {a1a2, a5a6, a4a8}. By adding back the edge a3a7, the �rst of
these solutions converts into the original solution, but the the second solution converts into an
unstable matching, since a2a3 blocks {a1a2, a5a6, a3a7, a4a8}.
On one hand, this example shows that such a preprocessing step is not allowed, since the solution
computed from the truncated instance is not even necessarily convertible into a solution of the
original problem, let alone ful�lling requirements on the approximation ratio. On the other
hand, this transformation is not a necessity and, as one can check it out, the execution and the
proof of correctness of Algorithm 4 in Chapter 6 do not build on this operation.

a1

a2

a3

a4

a5

a6

a7

a8

1

3

2

1

2

2

2

1

3

1

2

2

2 1

1 2

3 3

1 1

(a) Initial instance.

a1

a2

a3

a4

a5

a6

a7

a8

1

2

2

1

2 1

1 2

3 3

1 1

(b) After cutting (3, 3)-pairs.

Figure 5.2. A 3-SRI-instance that contains at the beginning one single stable matching, yet
after cutting o� the stable (3, 3)-pair, the truncated instance admits a new solution as well.

5.3.2.2 Second part of the proof of [3, Theorem 6]

The second, more important error in the proof concerns the second part of the proof of Theorem
6, which resembles our proof of Lemma 6.2.6.

The following is quoted from [3]:

`2|M (1,2)
egal | − |M | > 0
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Let us denote 2|M (1,2)
egal | − |M | > 0 by x̂. Notice that |M (1,2)

egal | =
x̂+|M |

2
. We can now

express the number of edges with cost 3, and at least 4 in Megal.

c(Megal) ≥ 3 · x̂+ |M |
2

+ 4 ·
(
|M | − x̂+ |M |

2

)
= 3.5|M | − 0.5x̂

Let |M ′(1,2)| = z1. Then exactly z1 edges in M ′ have cost 3. It follows from (1) that
z1 ≥ x̂. Suppose that z2 ≤ z1 edges in M (1,2) correspond to edges in M (1,2)

egal . Recall

that |M (1,2)
egal | =

x̂+|M |
2

. The remaining x̂+|M |
2
− z2 edges in M (1,2)

egal have cost at most 4

in M ′. This leaves |M | − |M (1,2)
egal | − (z1 − z2) = |M |−x̂

2
− z1 + z2 edges in Megal that

are as yet unaccounted for; these have cost at most 5 in both Megal and M ′.'

Inequality (1) looks like `M ′(1,2) ≥ 2|M (1,2)
egal | − |M |'.

Now, the meaning of the statement that `The remaining x̂+|M |
2
− z2 edges in M (1,2)

egal have cost
at most 4 in M ′' is questionable. The authors most probably wished to emphasize that M ′

and M (1,2)
egal commonly have z2 edges of type (1, 2) and that the rest of the (1, 2)-pairs in Megal

`have a low cost' in M ′. However, paper [3] doest not feature any statement that concerns a
bijection between the edges of Megal and M ′ (note our Claim 6.1.7 addressing this problem).
Paper [3] only states and proves what is called in our report Claim 6.2.3, which only discusses
the change in the cost contribution of vertices that are paired up in Megal. It is true that the
cost contribution of endpoints of those x̂+|M |

2
− z2 edges becomes at most 4 in M ′, but these

vertices do not necessarily pair up into x̂+|M |
2
− z2 edges in M ′. Hence, the statement `This

leaves |M | − |M (1,2)
egal | − (z1 − z2) = |M |−x̂

2
− z1 + z2 edges in Megal that are as yet unaccounted

for' becomes meaningless.



Chapter 6

Egalitarian stable matchings in SRI with

short lists

This chapter is designated to prove Theorem 5.3.1, already studied in [3], but published with
an incorrect proof. Section 6.1 aims to introduce necessary de�nitions and presents, once again,
the main theorem in question along with some auxiliary theorems that surround and justify the
existence and necessity of our theorem. Section 6.2 unfolds the new algorithm that computes
the stable matchings with the claimed approximation-ratios and proves general statements that
apply for all situations when d is 3, 4 or 5. After this, subsections 6.2.1, 6.2.2 and 6.2.3 close the
proofs for individual cases. The latter sections concentrate mostly on the speci�c statements
that hold for these particular cases.

6.1 Preliminaries

6.1.1 De�nitions, main theorems

First, we are going to de�ne the problem in question, together with the decisional version:

De�nition 6.1.1.

1. Let the problem of �nding an egalitarian stable matching in a solvable stable roommates
instance, where the preference list of each agent is upper-bounded by a positive integer
d, be denoted by egal-d-SRI.

2. Let the decisional version of egal-d-SRI be denoted by egal-d-SRI-dec, or formally:

egal-d-SRI-dec ={(I, k) : I ∈ solv-SRI-ins, d(v) ≤ d for all agents v,

∃M ∈ SM(I) such that c(M) ≤ k}

Our attention will drop on particular cases, when d ∈ {3, 4, 5}, since the barrier between
tractability and intractability is between the d = 2 and d = 3 cases. This dual result is
conveyed, as follows:

Theorem 6.1.2 (Cseh, Irving, Manlove, 2017 [3]).

25
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1. egal-2-SRI-dec ∈ P and there exists a polynomial time algorithm that computes an
egalitarian stable matching from an egal-2-SRI problem-instance.

2. egal-3-SRI-dec ∈ NP-complete. Consequently, egal-d-SRI-dec ∈ NP-complete,
for any d ≥ 3.

Proof.

1. In an instance I = 〈G,R〉 ∈ solv-2-SRI-ins, graph G is the union of cycles and paths.
Any stable matching of the instance is a �local� stable matching in these components
and the cost of the �global� stable matching is computed as the sum of the costs of local
stable matchings. Notice that because of Proposition 3.1.1, any stable matching in I
is maximal, thus each cycle and path contains at most 2 stable matchings. We only
need two �nd component-wise the stable matchings with lowest cost. The union of these
will be an egalitarian stable matching. Thus, we designed an O (m) time algorithm for
egal-2-SRI.

2. For the NP-completeness proof the reader is referred to [3]. The second part of the
statement is trivial from the fact that there is natural reduction from egal-3-SRI-dec
to egal-d-SRI-dec, for any d ≥ 3.

The main result of this chapter and of this entire report is that the egalitarian stable match-
ings can be approximated within factors of 9

7
, 11

7
, 13

7
for cases d = 3, 4, 5, already stated in

Theorem 5.3.1. We repeat the theorem once again here, with the introduction of the new
notation.

Theorem 6.1.3. egal-d-SRI is approximable within a factor of 2d+3
7

, if d ∈ {3, 4, 5}. Par-
ticularly:

1. egal-3-SRI is approximable within 9
7
.

2. egal-4-SRI is approximable within 11
7
.

3. egal-5-SRI is approximable within 13
7
.

The rest of the section introduces two possibilities (subsections 6.1.2 and 6.1.3) to investigate
the cost of stable matchings by changing from one such matching to another. Moreover, a
so-called preprocessing lemma (subsection 6.1.4) is presented that will aid the execution and
the proof of correctness of Algorithm 4.

6.1.2 Change in cost through constraint on preference-changes

First of all, Cseh et al. [3] contributed a very simple de�nition along with a straightforward
observation. Claim 6.1.5 basically provides us with constraints on how the cost contribution of
connected vertices in a stable matching changes when another stable matching is considered.

De�nition 6.1.4. Let I = 〈G,R〉 ∈ SRI-ins. Call an edge vw ∈ E(G) an (i, j)-pair if w is
v's ith choice and v is w's jth choice, i.e. rv(w) = i and rw(v) = j.

Claim 6.1.5. Let I = 〈G,R〉 ∈ solv-d-SRI-ins, where d ≥ 3, and take two stable matchings
M,M ′ ∈ SM(I). Take an edge uw ∈M .
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1. If ru(w) = rw(u) = 1, then uw ∈M ′ (uw is a �x pair).

2. If ru(w) = rw(u) = d, then uw ∈M ′ (uw is a �x pair).

3. If ru(w) < rw(u) or there is equality, but ru(w) = rw(u) 6∈ {1, d}, then ru(M
′(u)) +

rw(M ′(w)) ≤ d+ rw(u)− 1.

Consequently,
ru(M

′(u)) + rw(M ′(w))

ru(w) + rw(u)
≤ d+ 1

3
, (6.1.1)

and, for the equality to hold, it is necessary that uw is of type (1, 2).

Proof.

1. (1, 1)-pairs are obviously found in any stable matching, for otherwise they block the
matching.

2. Let us assume that uw /∈M ′. According to Corollary 3.2.3, exactly one of u and w must
be better-o� and exactly one of them must be worse-o� in M ′. Nevertheless, none of u
or w can be paired up with a worse partner. Hence, uw ∈M ′.

Remark. Note that this only means that stable (d, d)-pairs are �xed, but there could well
be non-stable (d, d)-pairs.

3. A simple consequence, once again, of Corollary 3.2.3. We reach the greatest expansion of
u and w's combined cost by allowing w to improve his partner by 1 position and pair up
u with his least preferred partner. Thus, ru(M ′(u)) + rw(M ′(w)) ≤ d+ (rw(u)− 1).

For the proof of the consequence let us denote ru(w) = a, rw(u) = b. In cases 1 and 2 the ratio
is 1, which is obviously smaller than the expression on the right. In case 3 we have that a ≤ b
and if a = 1, then b ≥ 2 and a 6= d. Then, according to item 3,

ru(M
′(u)) + rw(M ′(w))

ru(w) + rw(u)
≤ d+ b− 1

a+ b
.

Now, function g(a, b) = d+b−1
a+b

, where a ∈ {1, 2, . . . , d − 1} and b ∈ {2, 3, . . . d} and d ≥ 3 is
monotone decreasing in both of its variables. For variable a this is trivial. For variable b, we
transform g as follows:

g(a, b) = 1 +
d− a− 1

a+ b
,

which is monotone decreasing in b, since d− a− 1 ≥ 0. Then, we �nd that

g(a, b) ≤ g(1, 2) =
d+ 1

3
.

Since g is strictly decreasing in a, for equality a = 1 is a necessity. In that case d− a− 1 > 0,
thus g(1, b) is strictly decreasing in b. So b = 2 is a necessity as well.

Claim 6.1.5 has an impact on the worst case cost of stable matchings in a d-SRI-instance.
Namely:
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Corollary 6.1.6. In an instance I ∈ solv-d-SRI-ins, where d ≥ 3, the cost of any stable
matching approximates the cost of egalitarian stable matchings within a factor of d+1

3
.

Proof. Let Megal be one of the egalitarian stable matchings in I and let M ∈ SM(I) be an
arbitrary stable matching. We know that

c(Megal) =
∑
v∈A

rv(Megal(v)) =
∑

vw∈Megal

(rv(w) + rw(v)).

From Corollary 3.2.1 M covers the same vertices as Megal, therefore

c(M) =
∑
v∈A

rv(M(v)) =
∑

vw∈Megal

(rv(M(v)) + rw(M(w))).

According to Claim 6.1.5, however,

rv(M(v)) + rw(M(w)) ≤ d+ 1

3
· (rv(w) + rw(v)), for any vw ∈Megal.

Hence,
c(M)

c(Megal)
≤
∑

vw∈Megal

d+1
3
· (rv(w) + rw(v))∑

vw∈Megal
(rv(w) + rw(v))

=
d+ 1

3
.

6.1.3 Change in cost through bijection between Megal and M

Let Megal be one of the egalitarian stable matchings in I and let M ∈ SM(I) be an arbitrary
stable matching. Claim 6.1.5 in subsection 6.1.2 showed how the cost contribution of vertices
connected in Megal change when we switch to matching M . In order to prove Theorem 6.1.3
another technique is constructed, which allows the investigation of M . We would like to design
a bijection from Megal to M so that we could examine M through the lens of the bijection.

Let ϕ : Megal →M such that for any e ∈Megal ∩M , ϕ(e) = e. Note that (1, 1)- and �x (d, d)-
pairs fall under these circumstances. The rest of the mapping is discussed in the following
paragraphs.

It is known from Lemma 3.1.2 and Claim 3.1.3 that the union of two stable matchings consists
of common edges and even cycles, whose edges are alternately taken from the two matchings.
From Claim 3.2.2 and Corollary 3.2.3 it is also clear that within an alternating cycle the
preferences at each vertex point at the same direction.

Now, the symmetric di�erence Megal 4M consists only of disjoint alternating cycles. In each
cycle ϕ maps Megal-edges to their neighbours. Obviously, this can only be done in two ways in
each cycle: to one of the Megal-edges we assign one of its two neighbours, then the rest of the
mapping is speci�ed. ϕ should always map into the direction of preference, in the sense that
if there are consecutive vertices vi−1, vi, vi+1 in an alternating cycle such that vi−1vi ∈ Megal

(obviously vivi+1 ∈M) and vi+1 ≺vi vi−1, then ϕ(vi−1vi) = vivi+1.

Remark that if in a cycle there exists an edge vivi+1 = ei ∈ M (1,2)
egal such that rvi(vi+1) = 1 and

rvi+1(vi) = 2, then ϕ assigns ei the neighbour on the side of vertex vi+1. Also, if there exist two
neighbouring edges e ∈Megal, f ∈M of type (1, 2), then ϕ(e) = f .
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A very similar statement to Claim 6.1.5 may be developed by the means of this bijection.
We extend the previously described ϕ to a bijection between arbitrary stable matchings, since
neither the construction, nor the argumentation depended on the egalitarianism of the domain
matching. We are going to call ϕ the standard bijection between M and M ′.

Claim 6.1.7. Let I = 〈G,R〉 ∈ solv-d-SRI-ins, where d ≥ 3, and take arbitrary stable
matchings M,M ′ ∈ SM(I). Let ϕ : M → M ′ be the standard bijection between them as
explained above. Take an edge uw ∈M . Let ϕ(uw) = pq ∈M ′.

1. If ru(w) = rw(u) = 1, then pq = uw ∈M ′ (uw is a �x pair).

2. If ru(w) = rw(u) = d, then pq = uw ∈M ′ (uw is a �x pair).

3. If ru(w) < rw(u) or there is equality, but ru(w) = rw(u) 6∈ {1, d}, then rp(q) + rq(p) ≤
d+ rw(u)− 1.

Consequently,
rp(q) + rq(p)

ru(w) + rw(u)
≤ d+ 1

3
, (6.1.2)

and for the equality to hold, it is necessary that uw is of type (1, 2).

Proof. 1 and 2 should be clear. As for 3, either uw = pq is �x pair, in which case the statement
holds, because ru(w) = rw(u) = d cannot hold; or uw is non-�x, but {p, q} ∩ {u,w} 6= ∅. The
rank at the common agent may only improve by the de�nition of ϕ, so this rank is at most
rw(u)−1 and we are done. For the consequence the very same proof applies as the one outlined
in the proof of Claim 6.1.5.

6.1.4 Preprocessing lemma

The following lemma presents a basic preprocessing method by cutting of edges of type (1, 1).
By this, smaller instances are obtained and approximation algorithms make smaller absolute
and relative errors. The lemma basically claims that edges of type (1, 1) are part of all stable
matchings and can be removed without in�uencing the �e�ective� part of the stable matching.

Lemma 6.1.8. Let I = 〈G,R〉 ∈ SRI-ins and let Mf be the set of edges of type (1, 1). Let
us denote by I ′ the stable roommates instance created from I by removing from instance I the
endpoints of edges in Mf along with all the edges incident to these vertices. Preference lists
are kept with the exception that removed edges shorten the corresponding lists. In this case the
stable matchings of I ′ are exactly those of I without the edges in Mf . Formally:

SM(I ′) = {M ′ ⊆ E(G) \Mf : M ′ ∪Mf ∈ SM(I)}.

Proof. On one hand, let M ′ be a stable matching in I ′ and let M = M ′ ∪Mf . Since not only
the edges of Mf , but endpoints were cut o� from I, M is indeed a matching. Furthermore,
the endpoints of edges in Mf are all matched to their favourite choice, therefore none of them
participates in a blocking edge. Hence, the endpoints of a possible blocking edge are from I ′.
However, M ′ was stable in I ′, so there cannot be any blocking edge. Consequently, M is stable
in I.
On the other hand, let M be a stable matching in I and let M ′ = M \Mf . Due to the fact
that Mf ⊆ M , M ′ does not cover any vertex incident to an edge from Mf , therefore M ′ is a
matching in I ′. Since instance I was only reduced by cutting o� edges, the stability of M ′

could not be compromised. Hence, the proof is complete.
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6.2 New algorithm

We are now completely prepared to present the main algorithm of this report. It is noteworthy
that the same algorithm is applied in cases egal-3-SRI, egal-4-SRI, egal-5-SRI, but it
obviously yields di�erent results. The most relevant impetus for such an algorithm is suggested
by the consequence of Claim 6.1.5, stating that the blame for an explosion in the cost of
stable matchings should be put on edges of type (1, 2) in an egalitarian stable matching whose
cost convert into d + 1 in an arbitrary matching. In order to minimise the preponderance of
such transformations, our algorithm aims to accumulate as many (1, 2)-pairs as possible. This
is achieved by applying the known results about the min weight-SRI problem. We label
(1, 2)-pairs with 0 weight, facilitating an optimal matching with an abundance in such pairs.

Algorithm 4 Approximation of egal-d-SRI
Input: I = 〈G,R〉 ∈ solv-d-SRI-ins, where d ≥ 3 is arbitrary, but �xed

55: Apply the following weight function on the edges of G:

w : E(G)→ [0,+∞) , w(uv) =

{
0, if uv is a (1, 2)-pair,
1, otherwise.

(6.2.1)

56: Let Mf denote the edges of G of type (1, 1). Remove the vertices connected with these
edges along with all the edges incident to these vertices. Preferences lists and edge-weights,
baring removed edges, are kept intact.

57: Apply the algorithm of Teo and Sethuraman [22] to the newly created I ′ = 〈G′,R, w〉
min weight-SRI input. This yields an M ′ stable matching.

58: Let M = M ′ ∪Mf .
59: STOP and OUTPUT M .

We claim that the Algorithm 4 justi�es Theorem 6.1.3 and in all three cases we will have the
right approximations. First, we prove the generally applicable statements.

Let us introduce the following notation: f = |Mf |, µ = |M |, µ′ = |M ′|, where M ′ is the
matching computed in line 57 and M is M ′ ∪Mf , computed in line 58. Obviously, µ = µ′ + f
holds. Also, for an arbitrary stable matching N , let N (1,2) denote the set of edges in N of type
(1, 2). Let Megal denote one of the egalitarian stable matchings of I.

Lemma 6.2.1. Algorithm 4 eventually halts and runs in polynomial time.

Proof. The size of the input is Θ (n), since the preference lists are of length at most d. The de-
scription of the weight function and the removal of (1, 1) edges in line 56 should be proportional
to the number of edges, thus to n. Because of Lemma 6.1.8, instance I ′ ∈ solv-SRI-ins.
It is also clear that the weight function applied on I meets the condition of Theorem 5.2.2.
Indeed, since edges of type (i, j) may only be assigned weight 0, if i, j ≤ 2, therefore the
weights found on edges incident to an arbitrary, but �xed vertex u, in order of the preference
list of u, are of form (a, b, 1, . . . , 1), where a, b ∈ {0, 1}. In each combination, the weight
function itself is U-shaped (considering only edges pointing from u). This means that by taking
fu(v) = w(uv)

2
, (∀)uv ∈ E(G), for each u ∈ V (G), fu is U-shaped and for each uv ∈ E(G),

w(uv) = w(uv)
2

+ w(uv)
2

= fu(v) + fv(u). Moving on, notice that in line 56 edges of type (1, 1)
are cut o�. However, this means that some lists may shorten by losing their �rst element.
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Nevertheless, a U-shaped list keeps its property even after the withdrawal of its �rst element.
Thus, the instance I ′ = 〈G′,R, w〉 prepared for line 57 ful�ls all conditions of Theorem 5.2.2,
according to which line 57 computes indeed a stable matching in polynomial time. Thanks to
Lemma 6.1.8, M is stable in the original instance.

The costs of the addition in line 58 and the outputting of M are also linear in n.

Lemma 6.2.2. After the execution of Algorithm 4, the following holds:

|M (1,2)| ≥ 2 · |M (1,2)
egal | − µ

′. (6.2.2)

Proof. As already stated in the proof of Lemma 6.2.1 the weight function applied on I ′ ful�ls
the condition of Theorem 5.2.2. Note that the weights assigned to edges in line 55 do not
change when edges are removed in line 56 (i.e. after cutting edges one may spot edges of type
(1, 1) with weight 0 and (1, 2)-pairs with weight 1). Due to Theorem 5.2.2, the yielded M ′

stable matching approximates the optimal weight within a factor of a 2. According to Lemma
6.1.8, M is a stable matching in I and M ′

egal = Megal \Mf is a stable matching in I ′.
Remark. Although it does not in�uence the string of thoughts, keep in mind that M ′

egal is
generally not an egalitarian stable matching in I ′.

Let M ′
opt be a weight-optimal stable matching in I ′. It is clear from the de�nition of M ′

opt that

w(M ′) ≤ 2 · w(M ′
opt) ≤ 2 · w(M ′

egal), (6.2.3)

where w(N) denotes the weight of N : w(N) =
∑

uv∈N w(uv).

The construction of the weight function implies that w(N ′) = µ′ − |N (1,2)|, if N ∈ SM(I),
N ′ ∈ SM(I ′) and N = N ′ ∪Mf , because

w(N ′) = |{e ∈ N ′ : w(e) 6= 0}| = |{e ∈ N ′ : e /∈ N (1,2) (⊆ N ′)}|.

Hence, (6.2.3) can be transformed:

µ′ − |M (1,2)| ≤ 2 ·
(
µ′ − |M (1,2)

egal |
)
, or

|M (1,2)| ≥ 2 · |M (1,2)
egal | − µ

′.

Lemma 6.2.2 provides a �rst clue on how Algorithm 4 intends to maximise the number of (1, 2)-
pairs in the output and, thus, minimising the cost of the stable matching. Based on the sign of
the right hand side of inequality 6.2.2, we are going to distinguish two cases. In negative case
Megal contains only a handful (1, 2)-pairs. In this case inequality (6.2.2) conveys no information,
but the fact that not even the half of edges in Megal are (1, 2)-pairs makes Megal so expensive
that all the stable matchings' costs stay in our reach. In positive case, the matching outputted
by the algorithm contains a large number of (1, 2)-pairs and will be proper for our purposes.
From now on we discuss the special cases for d = 3, 4, 5 in separate subsections.
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type of uw max(ru(M
′(u)) + rw(M ′(w))) and max(rp(q) + rq(p)) max ratio

(1, 1) 1 + 1 1
(1, 2) 3 + 1 4/3
(1, 3) 3 + 2 5/4
(2, 2) 1 + 3, 3 + 1, 2 + 2 1
(2, 3) 2 + 3, 3 + 2 1
(3, 3) 3 + 3 1

Table 6.1. Maximum cost of change from M to M ′ in 3-SRI.

6.2.1 egal-3-SRI

This section �nishes the proof of Theorem 6.1.3 for case d = 3.

Claim 6.2.3 (Application of Claims 6.1.5 and 6.1.7 for d = 3). Let I ∈ solv-3-SRI-ins
and M,M ′ ∈ SM(I) and let ϕ : M → M ′ be the standard bijection. Take uw ∈ M and let
ϕ(uw) = pq. The maximum of ru(M

′(u)) + rw(M ′(w)) and of rp(q) + rq(p) varies according to
Table 6.1.

Claim 6.2.4 (Application of Corollary 6.1.6 for d = 3). In I ∈ solv-3-SRI-ins any stable
matching approximates the egalitarian stable matching within a factor of 4/3.

As already stated in Theorem 6.1.5, edges of type (3, 3) are either found in all stable matchings
or in none of them. Let us denote the number of �x (3, 3)-pairs by y. Now two cases are
distinguished depending on the sign of the term on the right of inequality (6.2.2).

Lemma 6.2.5. Suppose that 2 · |M (1,2)
egal | − µ′ ≤ 0. In that case, any matching M∗ ∈ SM(I)

is within a factor of 9/7 compared to Megal, i.e. c(M
∗) ≤ 9

7
c(Megal). Since the approximation

ratio is true for any M∗ ∈ SM(I), it is also true for M .

Proof. Denote 0 ≤ µ′ − 2 · |M (1,2)
egal | = x. Equivalently, we have |M (1,2)

egal | = µ′−x
2

, where x ≥ 0.

In this case, in Megal there are f (1, 1)-pairs, y (3, 3)-pairs, µ
′−x
2

(1, 2)-pairs and the rest of the
edges is of cost at least 4 (see Claim 6.2.3). Thus,

c(Megal) ≥ 2f + 3 · µ
′ − x
2

+ 4 ·
(
µ′ − µ′ − x

2
− y
)

+ 6y =

= 2f + 2y + 3.5µ′ + 0.5x. (6.2.4)

Let M∗ be an arbitrary stable matching in I. M∗ must contain exactly the same f (1, 1)-
pairs and exactly the same y (3, 3)-pairs as Megal. Nonetheless, M∗ and Megal cover the

same set of vertices. We saw that there were µ′−x
2

(1, 2)-pairs and
(
µ′ − µ′−x

2
− y
)
edges of

types (1, 3), (2, 2), (2, 3) in Megal. Once again, courtesy of Claim 6.2.3, the contribution of
the endpoints of (1, 2)-pairs is at most 4 and the contribution of endpoints of edges of types
(1, 3), (2, 2), (2, 3) is at most 5 in stable matching M∗. Therefore, it holds that

c(M∗) ≤ 2f + 4 · µ
′ − x
2

+ 5 ·
(
µ′ − µ′ − x

2
− y
)

+ 6y =

= 2f + y + 4.5µ′ + 0.5x. (6.2.5)
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From (6.2.4) and (6.2.5) we conclude that

c(M∗)

c(Megal)
≤ 2f + y + 4.5µ′ + 0.5x

2f + 2y + 3.5µ′ + 0.5x
. (6.2.6)

If µ′ = 0, then all the edges of any stable matching in I are (1, 1)-pairs. In that caseM∗ = Megal

and c(M∗)/c(Megal) = 1. If µ′ 6= 0, then

c(M∗)

c(Megal)
≤ 2f + y + 4.5µ′ + 0.5x

2f + y + 3.5µ′ + 0.5x
≤ 4.5µ′

3.5µ′
=

9

7
.

Lemma 6.2.6. Suppose that 2 · |M (1,2)
egal | − µ′ > 0. In that case M approximates Megal within a

factor of 9/7, i.e. c(M) ≤ 9
7
c(Megal).

Proof. Let us denote 2 · |M (1,2)
egal | − µ′ = x̂ > 0. Hence, |M (1,2)

egal | =
µ′+x̂
2

.

Similarly to the previous case, we observe that Megal has f (1, 1)-pairs, y (3, 3)-pairs, µ′+x̂
2

(1, 2)-pairs and the weight of the rest of the edges is at least 4. Therefore,

c(Megal) ≥ 2f + 3 · µ
′ + x̂

2
+ 4 ·

(
µ′ − µ′ + x̂

2
− y
)

+ 6y =

= 2f + 2y + 3.5µ′ − 0.5x̂. (6.2.7)

Moreover, let |M (1,2)| = z1. According to inequality (6.2.2), z1 ≥ x̂. Let ϕ be the standard
bijection from Megal to M and let

C =
{
e ∈M (1,2)

egal |ϕ(e) ∈M (1,2)
}

and |C| = z2.

Obviously z2 ≤ z1 and z2 ≤ |M (1,2)
egal |. Now we analyse edges found in M (1,2)

egal \ C. Let vw = e ∈
M

(1,2)
egal \ C. Since ϕ(e) /∈ M (1,2), Claim 6.2.3 leaves us with the only possibility that ϕ(e) is a

(1, 3)-pair. Hence, the cost of edge ϕ(e) is exactly 4.

Subsequently, in M there are exactly f (1, 1)-pairs, y (3, 3)-pairs, |M (1,2)| = z1 edges are of
type (1, 2). At least |ϕ(M

(1,2)
egal \ C)| = |M (1,2)

egal | − z2 edges are of type (1, 3), i.e. of cost 4. The
rest of the edges have cost at most 5. Thus,

c(M) ≤ 2f + 3z1 + 4 ·
(
µ′ + x̂

2
− z2

)
+ 5 ·

(
µ′ − z1 −

(
µ′ + x̂

2
− z2

)
− y
)

+ 6y =

= 2f + y + 4.5µ′ − 0.5x̂− 2z1 + z2.

Furthermore, because of z2 ≤ z1 and x̂ ≤ z1, we can deduce that

c(M) ≤ 2f + y + 4.5µ′ − 0.5x̂− 2z1 + z1 ≤
≤ 2f + y + 4.5µ′ − 1.5x̂. (6.2.8)

From (6.2.7) and (6.2.8) we conclude that

c(M)

c(Megal)
≤ 2f + y + 4.5µ′ − 1.5x̂

2f + 2y + 3.5µ′ − 0.5x̂
. (6.2.9)
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It is easy to see from |M (1,2)
egal | = µ′+x̂

2
and |M (1,2)

egal | = |ϕ(M
(1,2)
egal )| ≤ |M ′| = µ′, that x̂ ≤ µ′.

Hence, by applying similar transformations to the previous case it results, that for µ′ 6= 0

c(M)

c(Megal)
≤ 4.5µ′ − 1.5x̂

3.5µ′ − 0.5x̂
<

9

7
,

for any x̂ > 0, which was the assumption of this case. In case µ′ = 0, similarly to other case,
all edges of any stable matching are of type (1, 1) and all stable matchings are egalitarian.

To summarise, in all cases stable matching M has a cost within a factor of 9/7 compared to
any egalitarian stable matching. Now the proof of Theorem 6.1.3, case d = 3 is closed.

6.2.2 egal-4-SRI

In this section we are to �nish the proof of Theorem 6.1.3 for case d = 4.

Claim 6.2.7 (Application of Claims 6.1.5 and 6.1.7 for d = 4). Let I ∈ solv-4-SRI-ins
and M,M ′ ∈ SM(I) and let ϕ : M → M ′ be the standard bijection. Take uw ∈ M and let
ϕ(uw) = pq. The maximum of ru(M

′(u)) + rw(M ′(w)) and of rp(q) + rq(p) varies according to
Table 6.2.

type of uw max(ru(M
′(u)) + rw(M ′(w))) and max(rp(q) + rq(p)) max ratio

(1, 1) 1 + 1 1
(1, 2) 4 + 1 5/3
(1, 3) 4 + 2 6/4 = 3/2
(1, 4) 4 + 3 7/5
(2, 2) 1 + 4, 4 + 1 5/4
(2, 3) 4 + 2 6/5
(2, 4) 4 + 3 7/6
(3, 3) 2 + 4, 4 + 2, 3 + 3 1
(3, 4) 3 + 4, 4 + 3 1
(4, 4) 4 + 4 1

Table 6.2. Maximum cost of change from M to M ′ in 4-SRI.

Claim 6.2.8 (Application of Corollary 6.1.6 for d = 4). In I ∈ solv-4-SRI-ins any stable
matching approximates the egalitarian stable matching within a factor of 5/3.

Let us denote the number of (4, 4)-pairs by y. Based on the sign of the right-hand side of
inequality (6.2.2), two cases are once again distinguished.

Lemma 6.2.9. Suppose that 2 · |M (1,2)
egal | − µ′ ≤ 0. In that case, any matching M∗ ∈ SM(I) is

within a factor of 11/7 compared to Megal, i.e. c(M
∗) ≤ 11

7
c(Megal). Since the approximation

ratio is true for any M∗ ∈ SM(I), it is also true for M .
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Proof. Similarly to the proof of Lemma 6.2.5, we have |M (1,2)
egal | = µ′−x

2
, where x ≥ 0. Fur-

thermore, denote the number of edges in Megal with cost at least 5 by t. In summary, Megal

contains f (1, 1)s, y (4, 4)s, µ
′−x
2

(1, 2)s, t edges with cost at least 5 and the rest of edges have
cost exactly 4 (these are exactly the (1, 3)- and (2, 2)-pairs).

c(Megal) ≥ 2f + 3 · µ
′ − x
2

+ 4 ·
(
µ′ − µ′ − x

2
− t− y

)
+ 5t+ 8y =

= 2f + t+ 4y + 3.5µ′ + 0.5x. (6.2.10)

Let M∗ be an arbitrary stable matching in I. M∗ must contain exactly the same f (1, 1)-pairs
and exactly the same y (4, 4)-pairs as Megal. Thanks to Claim 6.2.7, the total cost contribution
of endpoints of (1, 2)s in Megal may become maximum 5 in M∗. For edges with cost 4 and at
least 5 this maximum is 6 and 7, respectively (see Table 6.2). Consequently,

c(M∗) ≤ 2f + 5 · µ
′ − x
2

+ 6 ·
(
µ′ − µ′ − x

2
− t− y

)
+ 7t+ 8y =

= 2f + t+ 2y + 5.5µ′ + 0.5x. (6.2.11)

From (6.2.10) and (6.2.11):

c(M∗)

c(Megal)
≤ 2f + t+ 2y + 5.5µ′ + 0.5x

2f + t+ 4y + 3.5µ′ + 0.5x
≤ 11

7
,

with the same argumentation, as previously.

Lemma 6.2.10. Suppose that 2 · |M (1,2)
egal | − µ′ > 0. In that case M approximates Megal within

a factor of 11/7, i.e. c(M) ≤ 11
7
c(Megal).

Proof. Denote 2·|M (1,2)
egal |−µ′ = x̂ > 0. Hence, |M (1,2)

egal | =
µ′+x̂
2

. Furthermore, denote the number

of edges in Megal with cost at least 5 by t. In summary, Megal contains f (1, 1)s, y (4, 4)s, µ
′+x̂
2

(1, 2)s, t edges with cost at least 5 and the rest of edges have cost exactly 4 (these are exactly
the (1, 3)- and (2, 2)-pairs).

c(Megal) ≥ 2f + 3 · µ
′ + x̂

2
+ 4 ·

(
µ′ − µ′ + x̂

2
− t− y

)
+ 5t+ 8y =

= 2f + t+ 4y + 3.5µ′ − 0.5x̂. (6.2.12)

Similarly to the proof of Lemma 6.2.6, let |M (1,2)| = z1. According to inequality (6.2.2), z1 ≥ x̂.
By taking ϕ as the standard bijection from Megal to M and

z2 =
∣∣∣M (1,2)

egal ∩ ϕ
−1 (M (1,2)

)∣∣∣ ,
we have that z1 ≥ z2 and |M (1,2)

egal | − z2 edges are of type (1, 3) or (1, 4), hence with cost at most
5.

Consequently, the image of edges in Megal of type (1, 1), (4, 4) and (1, 2) are all accounted for.
Assume that a2 edges from the t edges in Megal with cost at least 5 map to (1, 2)-pairs in M .
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The rest of them convert into edges with weight at most 7 (see Table 6.2). Also suppose that
a1 edges from the ones in Megal with cost exactly 4 map to (1, 2)-pairs and the rest of them
convert into cost at most 6. Hence,

c(M) ≤ 2f + 3z1 + 5 ·
(
µ′ + x̂

2
− z2

)
+ 6 ·

(
µ′ − µ′ + x̂

2
− t− y − a1

)
+ 7(t− a2) + 8y =

= 2f + t+ 2y + 5.5µ′ − 0.5x̂+ 3z1 − 5z2 − 6a1 − 7a2.

What is more, outside the z2 + a1 + a2 edges that converted into (1, 2)-pairs, no other edge can
map to a (1, 2), hence z1 = z2 + a1 + a2, or z1 − z2 = a1 + a2. Combined with the fact that
x̂, z2 ≤ z1, we �nd that:

3z1 − 5z2 − 6a1 − 7a2 = 3z1 − 5z2 − 6(z1 − z2)− a2 =

= −3z1 + z2 − a2 ≤
≤ −3z1 + z1 = −2z1 ≤
≤ −2x̂. (6.2.13)

Hence, we deduce that

c(M) ≤ 2f + t+ 2y + 5.5µ′ − 2.5x̂. (6.2.14)

From (6.2.12) and (6.2.14) it can be concluded that

c(M)

c(Megal)
≤ 2f + t+ 2y + 5.5µ′ − 2.5x̂

2f + t+ 4y + 3.5µ′ − 0.5x̂
. (6.2.15)

Again, from |M (1,2)
egal | = µ′+x̂

2
and |M (1,2)

egal | = |ϕ(M
(1,2)
egal )| ≤ |M ′| = µ′ it is obvious that x̂ ≤ µ′.

Hence, for µ′ 6= 0
c(M)

c(Megal)
≤ 5.5µ′ − 2.5x̂

3.5µ′ − 0.5x̂
<

11

7
,

for any x̂ > 0. In case µ′ = 0, all edges of any stable matching are of type (1, 1) and all stable
matchings are egalitarian.

6.2.3 egal-5-SRI

Claim 6.2.11 (Application of Claims 6.1.5 and 6.1.7 for d = 5). Let I ∈ solv-5-SRI-ins
and M,M ′ ∈ SM(I) and let ϕ : M → M ′ be the standard bijection. Take uw ∈ M and let
ϕ(uw) = pq. The maximum of ru(M

′(u)) + rw(M ′(w)) and of rp(q) + rq(p) varies according to
Table 6.3.

Claim 6.2.12 (Application of Corollary 6.1.6 for d = 5). In I ∈ solv-5-SRI-ins any stable
matching approximates the egalitarian stable matching within a factor of 6/3 = 2.

Denote the number of (5, 5)-pairs by y. Based on the sign of the right-hand side of inequal-
ity (6.2.2), two cases are again distinguished.
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type of uw max(ru(M
′(u)) + rw(M ′(w))) and max(rp(q) + rq(p)) max ratio

(1, 1) 1 + 1 1
(1, 2) 5 + 1 6/3 = 2
(1, 3) 5 + 2 7/4
(1, 4) 5 + 3 8/5
(1, 5) 5 + 4 9/6 = 3/2
(2, 2) 1 + 5, 5 + 1 6/4 = 3/2
(2, 3) 5 + 2 7/5
(2, 4) 5 + 3 8/6 = 4/3
(2, 5) 5 + 4 9/7
(3, 3) 2 + 5, 5 + 2 7/6
(3, 4) 5 + 3 8/7
(3, 5) 5 + 4 9/8
(4, 4) 3 + 5, 5 + 3, 4 + 4 1
(4, 5) 5 + 4, 4 + 5 1
(5, 5) 5 + 5 1

Table 6.3. Maximum cost of change from M to M ′ in 5-SRI.

Lemma 6.2.13. Suppose that 2 · |M (1,2)
egal | − µ′ ≤ 0. In that case, any matching M∗ ∈ SM(I)

is within a factor of 13/7 compared to Megal, i.e. c(M
∗) ≤ 13

7
c(Megal). Since the approximation

ratio is true for any M∗ ∈ SM(I), it is also true for M .

Proof. Similarly to the previous proofs, we have |M (1,2)
egal | = µ′−x

2
, where x ≥ 0. Furthermore,

denote the number of edges in Megal with cost exactly 5 by t and the number of edges with
cost at least 6 by w. In summary, Megal contains f (1, 1)s, y (5, 5)s, µ′−x

2
(1, 2)s, t edges with

cost exactly 5, w edges with cost at least 6 and the rest of edges have cost exactly 4 (these are
exactly the (1, 3)- and (2, 2)-pairs).

c(Megal) ≥ 2f + 3 · µ
′ − x
2

+ 4 ·
(
µ′ − µ′ − x

2
− t− w − y

)
+ 5t+ 6w + 10y =

= 2f + t+ 2w + 6y + 3.5µ′ + 0.5x. (6.2.16)

Let M∗ be an arbitrary stable matching in I. M∗ must contain exactly the same f (1, 1)-pairs
and exactly the same y (5, 5)-pairs as Megal. Due to Claim 6.2.11, the total cost contribution
of endpoints of (1, 2)s in Megal may become maximum 6 in M∗. For edges with cost 4, 5 and
at least 6 this maximum is 7,8 and 9, respectively (see Table 6.3). Thus,

c(M∗) ≤ 2f + 6 · µ
′ − x
2

+ 7 ·
(
µ′ − µ′ − x

2
− t− w − y

)
+ 8t+ 9w + 10y =

= 2f + t+ 2w + 3y + 6.5µ′ + 0.5x. (6.2.17)

From (6.2.16) and (6.2.17):

c(M∗)

c(Megal)
≤ 2f + t+ 2w + 3y + 6.5µ′ + 0.5x

2f + t+ 2w + 6y + 3.5µ′ + 0.5x
≤ 13

7
.
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Lemma 6.2.14. Suppose that 2 · |M (1,2)
egal | − µ′ > 0. In that case M approximates Megal within

a factor of 13/7, i.e. c(M) ≤ 13
7
c(Megal).

Proof. The proof follows the same route as the proofs of Lemmas 6.2.6 and 6.2.10. First, we
introduce the occurring notation.

Denote 2 · |M (1,2)
egal | − µ′ = x̂ > 0. Hence, |M (1,2)

egal | = µ′+x̂
2

. Furthermore, denote the number
of edges in Megal with cost exactly 5 by t and the number of edges with cost at least 6 by
w. Summarising, Megal contains f (1, 1)s, y (5, 5)s, µ′+x̂

2
(1, 2)s, t edges with cost exactly 5, w

edges with cost at least 6 and the rest of edges have cost exactly 4 (these are exactly the (1, 3)-
and (2, 2)-pairs).

c(Megal) ≥ 2f + 3 · µ
′ + x̂

2
+ 4 ·

(
µ′ − µ′ + x̂

2
− t− w − y

)
+ 5t+ 6w + 10y =

= 2f + t+ 2w + 6y + 3.5µ′ − 0.5x̂. (6.2.18)

The z1 (1, 2)-pairs of M are assigned through ϕ to z2 (1, 2)-pairs, a1 edges of cost exactly 4, a2
edges of cost exactly 5 and a3 edges of cost at least 6. Hence, z1 − z2 = a1 + a2 + a3. Also, in
Megal

µ′+x̂
2
− z2 edges convert to cost at most 6, t− a2 to cost at most 8, w− a3 to cost at most

9 and the rest of cost-4 edges (except those a1 edges) to cost 7 in M . Hence,

c(M) ≤ 2f + 3z1 + 6 ·
(
µ′ + x̂

2
− z2

)
+

+ 7 ·
(
µ′ − µ′ + x̂

2
− t− w − y − a1

)
+ 8(t− a2) + 9(w − a3) + 10y =

= 2f + t+ 2w + 3y + 6.5µ′ − 0.5x̂+ 3z1 − 6z2 − 7a1 − 8a2 − 9a3.

Nevertheless,

3z1 − 6z2 − 7a1 − 8a2 − 9a3 = 3z1 − 6z2 − 7(z1 − z2)− a2 − 2a3 =

= −4z1 + z2 − a2 − 2a3 ≤ −4z1 + z1 = −3z1 ≤
≤ −3x̂. (6.2.19)

Consequently,

c(M) ≤ 2f + t+ 2w + 3y + 6.5µ′ − 3.5x̂. (6.2.20)

From (6.2.18) and (6.2.20) it can be concluded that

c(M)

c(Megal)
≤ 2f + t+ 2w + 3y + 6.5µ′ − 3.5x̂

2f + t+ 2w + 6y + 3.5µ′ − 0.5x̂
<

13

7
,

with the same arguments, as in the previous proofs of Lemmas 6.2.6 and 6.2.10.



Chapter 7

Conclusion and open questions

We investigated stable matchings within non-bipartite matching markets, which model kidney
exchange programs or dormitory admission schemes. Special attention was paid to matchings
with a particular form of optimality, namely egalitarianism, where the average rank of assignees
takes its minimum. We proved Theorem 6.1.3, which was inspected prior to us in [3], yet
the proof had �aws. Theorem 6.1.3 and Algorithm 4 provide us with a tool to approximate
the egalitarian solution in the case of short lists within better factors then the ones known
previously. Nevertheless, most applications rely on permitting users to specify a limited number
of preferences, hence our result could bear fruit any such �eld of application (for instance,
university admission schemes operated on nation-wide level).

However, there is much room for improvement in the area. Theorem 5.1.4 reminds us on the
UGC-hardness of the problem of approximating egalitarian stable matchings within a factor of
2− ε (ε > 0) among general instances. Yet, there are no previous known attempts on proving
approximation-hardness for short list cases. Moreover, Theorem 5.2.2 provides us with a 2-
approximation of the min weight-SRI problem in the general setting. Our representation,
though, only counted on the approximation of short listed min weight-SRI-instances. Hence,
any enhancement on Teo and Sethuraman's algorithm could immediately lead to improvements
in our result. In addition, we may not restrict only to constant length-limits, but to instances,
too, where the length of lists are bounded by some increasing functions of n, the number of
agents. In general, there could be Θ (n) acceptable partners for each agent. By restricting this
to, e.g. O (log n) we have a special case, yet large enough lists. Last, but not least, it would
be interesting to extend egalitarian stable matchings to instances with generalised preference
structures that involve ties as well. For instance, universities may rank school-leavers equally
based on an integer-valued admission score.
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