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Kivonat

A vérnyomás a szervezet egészségügyi állapotát jellemző egyik legfontosabb adat. Ezen
fiziológia információ alapján számos jelenlegi és jövőbeli betegségre lehet következtetni,
amelyek akár nagyon súlyosak is lehetnek. Ezt az a statisztikai adat is alátámasztja, mi-
szerint napjainkban a legtöbb halálesetet a magas vérnyomással kapcsolatos szövődmények
okozzák, ilyen például a szívroham vagy a stroke. Tehát a nem megfelelő vérnyomás ko-
rai észrevételével akár meg is előzhetőek olyan kóros állapotok, amelyek később súlyos
tünetekkel jelentkeznének.

Mindezért rendkívül hasznos lenne egy a mindennapokban használható eszköz, amely-
nek segítségével valós időben, folyamatosan tudnánk monitorozni ezen élettani jelnek a
pontos értékeit. Az előbb említett feltételeket jelenleg csak az invazív vérnyomásmérés
teljesíti, bár ezen eljárás csak orvosi felügyelet mellett alkalmazható, így a mindennapok-
ban nem használható. A probléma megoldására jelenlévő non-invazív módszerek közül a
leggyakoribb a mandzsettás eljárás, amelynek jelentős hátránya, hogy nem alkalmas fo-
lyamatos vérnyomásmérésre, továbbá a mérés eredményét befolyásolhatja a mandzsetta
okozta szorító érzés pszichológiai hatása. Kísérletek léteznek azonban külsőleg mért jelek
feldolgozásán alapuló eljárásokra is, viszont ezen módszerek teljesítménye még nem kielé-
gítő. Ebben az esetben becslési algoritmusokat szoktak használni, amelyek más, külsőleg
mérhető fiziológia jelek ismeretében próbálják meghatározni az aktuális vérnyomásértéket.
Ezen jelek közé tartozik a fotopletizmográfiás (PPG) jel, amely lehetőséget nyújt a vér-
térfogat változásának kimutatására, valamint az elektrokardiogram (EKG), amely a szív
elektromos jelenségeit regisztrálja.

A dolgozat célja egy olyan vérnyomásmérő rendszer bemutatása, amely a fent leírt
követelményeket képes teljesíteni. Bemenetként EKG és PPG jeleket használok fel, ame-
lyeket egy MAX86150EVSYS hardver egység mér, a mintavételezett értékeket feldolgozza,
majd Bluetooth kapcsolaton keresztül továbbítja. Az elküldött adatokat egy Raspberry
Pi 4 Model B fogadja, amely a rendszer magját képezi. Itt történik a bemenetek további
feldolgozása, valamint neurális hálózat segítségével a vérnyomás aktuális szisztolés, vala-
mint diasztolés értékének becslése. Az ezen két értéket előállító mély tanulást alkalmazó
algoritmus több konvolúciós és LSTM réteget tartalmaz, melyek célja az idő- és frekvencia-
tartománybeli minták megtanulása. A becslés eredményét egy Raspberry-hez csatlakozó
monitor jeleníti meg egy grafikus felhasználói interfész segítségével.

A neurális hálózat becslési hibáját először egy előre feldolgozott adatokat tartalmazó,
publikusan elérhető adathalmazon értékeltem ki, és hasonlítottam össze irodalmi munkák
eredményeivel több osztályozási rendszert felhasználva. Majd az MAX86150EVSYS se-
gítségével saját méréseket végeztem, amelyekre megismételtem a kiértékelési folyamatot.
Az eredmények azt mutatják, hogy a bemutatott módszer meghaladja az összehasonítás
alapjait képező publikációkban ismertetett eljárások eredményeit. A dolgozatom során
bemutatom az elkészített rendszer tervezésének folyamatát, valamint azt, hogy a mély
tanuláson alapuló módszerek milyen ígéretes lehetőségeket teremtenek a non-invazív vér-
nyomásmérés területén.
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Abstract

Blood pressure is one of the most vital data characterizing the health status of a human
body. Based on this physiological information, many current and future diseases can be
detected, which could be very serious. Furthermore, statistics show that most deaths
today are caused by hypertension-related complications, such as heart attack or stroke.
So, with the early detection of an inadequate blood pressure value, it is even possible
to prevent pathological conditions that would later manifest themselves with unpleasant
symptoms.

Therefore, it would be extremely useful to have a device that could be used daily, and it
would also enable monitoring the exact values of this vital signal continuously, in real-time.
These criteria are met only by invasive blood pressure measurement, although this proce-
dure is only allowed under medical supervision, so it is not usable in everyday life. Among
the non-invasive solutions, the cuff-based method is the most common. A significant dis-
advantage of this is that it is not suitable for continuous blood pressure measurement, and
the results can also be affected by the psychological effect of the cuff tightening. How-
ever, there are also attempts at methods based on the processing of externally measured
signals, but the performance of these methods is not yet satisfactory. In this case, esti-
mation algorithms are used to determine the current blood pressure value based on the
knowledge of other externally measurable physiological signals. These signs include the
photoplethysmogram (PPG), which provides an opportunity to detect changes in blood
volume, and the electrocardiogram (ECG), which records the electrical phenomena of the
heart.

This study aims to present a blood pressure measuring system that can fulfill the
previously-mentioned conditions. As input, I use ECG and PPG signals, measured by
a MAX86150EVSYS hardware unit, which collects the sampled values and then transmits
them via Bluetooth. The sent information is received by a Raspberry Pi 4 Model B,
which is the core unit. Here, the inputs are further processed, and the current systolic and
diastolic blood pressure values are estimated using a neural network. The deep learning
algorithm that produces these two values contains several convolutional and LSTM layers,
which aim to learn patterns in the time and frequency domains. The results are displayed
on a monitor connected to the Raspberry using a graphical user interface.

Firstly, I evaluated the estimation error of the neural network on a publicly available
dataset containing pre-processed data and compared it with the results of literary works
using several grading systems. Then I performed measurements using the MAX86150SYS
hardware and repeated the evaluation process on the acquired data. The results show that
the presented method exceeds the results of the procedures described in the publications
that form the basis of the comparison. During this work, I will present the process of
designing the desired system, as well as the promising possibilities that deep learning
methods create in the field of non-invasive blood pressure measurement.
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Chapter 1

Introduction

Blood pressure, body temperature, pulse, and respiratory rate make up the four primary
vital signals. These medical signals indicate the state of the body’s life-sustaining func-
tions. [25] The acceptable range of these signals depends on several factors, such as age,
gender, weight, and health. In the case of long-term inappropriate blood pressure values,
unpleasant illnesses may develop. Two characteristic values of blood pressure are usually
examined, namely the systolic and diastolic blood pressure values. The systolic blood
pressure (SBP) is the maximum value that occurs when the heart beats, while the dias-
tolic blood pressure (DBP) is the minimum value that can be measured when the heart
rests. [26] An inappropriate value of any one of these data can indicate serious prob-
lems. The most common disorder is hypertension. High blood pressure can lead to many
cardiovascular diseases, like coronary artery disease, heart failure, and atrial fibrillation.
These pathological conditions are the leading causes of death worldwide. For example, in
2017, an estimated 10.4 million people died due to elevated systolic blood pressure. [11]
In statistics, these figures might be reducible if inappropriate blood pressure values could
be indicated before the diseases reach a more serious stage.
For all of this, a daily wearable device that could continuously measure blood pressure
in real time would be vital and even life-saving in some cases. However, the accuracy of
today’s wearable devices is not satisfactory. The invasive method has the highest accuracy,
but unusable in everyday life, as medical supervision is mandatory during the process.
The most common non-invasive solutions are discontinuous, such as cuff-based measuring.
However, in the case of this method, the tight feeling caused by the cuff can have a
psychological effect that could negatively influence the measurement. Furthermore, white
coat syndrome [74] can similarly distort the results. It can also be very uncomfortable,
especially with many consecutive uses. These disadvantages could be avoided with the
help of a non-invasive solution that can produce the current SBP and DBP values using
external signals.
Neural networks are used to find the non-linear relationship between these physiological
signals. These networks process external signals that are easily accessible and measurable.
Photoplethysmogram (PPG) and electrocardiogram (ECG) meet these criteria. ECG is a
well-measurable signal that records the electrical activity of the heart. [45] Since blood
pressure is partly the result of the heart’s work, a significant relationship is observable with
ECG. PPG is also significantly related to blood pressure, as PPG allows the detection of
changes in blood volume, which greatly affects blood pressure. [59] Although both signals
are related to blood pressure, it is a common approach to derive SBP and DBP values from
PPG because these two waveforms are very similar, whereas the ECG waveform differs
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significantly from blood pressure. In the case of a PPG-based solution, in contrary to
comfort and portability, the disadvantage is that its accuracy is not adequate. However,
some approaches use ECG in addition to the PPG signal to try to achieve better accuracy,
but this solution mostly appears only on a research level.
Based on the above-mentioned information, I consider it an exciting challenge and an
engaging task to create a system that can sample the input signals and based on these
values estimate the SBP and DBP values with a sufficiently small error and display them.
Nowadays, the use of neural networks is becoming more and more widespread in health-
care as well. These solutions can facilitate the work of doctors and create many new
opportunities to produce automated solutions to various problems.
A prominent member of fields that utilize neural networks is the processing of EEG (Elec-
troencephalogram) signals, which, e.g., provides an opportunity to detect seizures [32] or
to create a brain-computer interface [81]. Furthermore, the field of medical image pro-
cessing is also dominant, within which several solutions can be found, for example, MRI
image-based tumor classification [67] or chest CT image-based COVID-19 identification
[66]. Finally, the topic of physiological signal processing, which is also examined in this
study, has great significance. This area includes, e.g., ECG classification [101] and blood
pressure estimation based on PPG signal [46].
The neural networks implementing the previously-mentioned solutions are often composed
of several types of layers. Among these layers, the convolutional layers should be empha-
sized, which are often used at the beginning of the model for feature extrusion. Further-
more, layers based on RNN (Recurrent neural network) are utilized to process time series
data. Solutions based on the attention layer can be considered a new approach, which
enables fast and efficient processing of large sequences of data.
During my work, I created a neural network that contains three types of layers, namely
convolutional layers, LSTM layers, and fully connected layers, which aim to find patterns
in the time and frequency domains in the input signals. The network is trained, validated,
and tested on a publicly available dataset. The desired system, which is visualized in
Figure 5.1, consists of two chief hardware units. One is the MAX86150EVSYS [2] signal
measurement unit with a client application allowing to save measured data, which I utilized
for transfer learning. The other hardware is the Raspberry Pi 4 Model B [72], which runs
an application responsible for Bluetooth communication with the data acquisition unit,
running the neural network, displaying the obtained results on the monitor, and handling
events generated by the mouse. In addition, as a supplement to the problem, I also
compute the heart rate from the ECG signal.
This work is structured as follows. In Chapter 2, the background of blood pressure mea-
surement and the related signals used in this study are presented. In addition, the neural
network knowledge related to my work is detailed. In chapter 3, two articles are presented,
which deal with a similar problem as this study. These papers also contain information
that helped me get to know the current state of deep learning-based blood pressure mea-
surement better. Chapter 4 shows the pre-processing methods used in the implemented
system and the structure of the created networks. After that, in Chapter 5, I introduce
the desired system and its components, as well as the application I created. Chapter 6
details the data used, the way the networks were trained, the evaluation methods, as well
as the performance of the networks based on them, and the limitations of the final system.
Finally, in Chapter 7, I summarize this work and then mention the future development
opportunities according to this task.
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Chapter 2

Background

Within the framework of this chapter, the information, which is closely related to this
study, is presented. The topics include all the signals utilized and intended to be produced,
as well as the methods used as the building blocks of implementation.

2.1 Arterial blood pressure

Blood pressure is the pressure difference between the central and surrounding parts of
the bloodstream. Furthermore, it can also be defined as the pressure of circulating blood
against the walls of blood vessels. Most of the pressure in the vessels results from the
pumping of the heart. [6] The importance of pressure is the fact that it makes blood cir-
culation possible, and this blood flow delivers oxygen, nutrients, and regulatory substances
to the organs and removes the end products of metabolism. [9]
Therefore, blood pressure is critical for us. This is also why doctors often check this
physiological signal because it is easy to infer the health status of the given person from
these values.

Figure 2.1: Arterial blood pressure waveform
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If the exact place in the body is not defined for blood pressure measurement, then we
are talking about blood pressure that can be measured in the large arteries, and this
value decreases with the division of the arteries into smaller branches. Within the cardiac
cycle, which is defined as the interval between two heartbeats, arterial blood pressure
(ABP) contains two notable values. The first is systolic blood pressure (SBP), which is
the maximum pressure during a cycle, and the second is diastolic blood pressure (DBP),
which is the minimum pressure between two heartbeats. These quantities are measured
in millimeters of mercury (mmHg) above surrounding atmospheric pressure. Figure 2.1
aims to visualize the above-mentioned values.
By knowing the systolic and diastolic blood pressure, the normal and abnormal levels can
be determined. In addition, the blood pressure values differ depending on gender and
age, however, I present the evaluation applied to general adults. Since there are many
classes, the most common ones are highlighted. Table 2.1 indicates the exact values and
limits for the different blood pressure levels in Europe according to the European Society
of Cardiology (ESC) and the European Society of Hypertension (ESH) [100].

Category Systolic (mmHg) Diastolic(mmHg)

Hypotension < 90 < 60
Optimal 90–119 60–79
Normal 120–129 80–84
High normal 130–139 85–89
Grade 1 hypertension 140–159 90-99
Grade 2 hypertension 160-179 100-109
Grade 3 hypertension ≥ 180 ≥ 110
Isolated systolic hypertension ≥ 140 < 90
Isolated diastolic hypertension < 140 ≥ 90

Table 2.1: Adult blood pressure classification [100][28][39]

Table 2.1 clearly shows that we distinguish several abnormal conditions of arterial blood
pressure. If the values are too low, we are talking about hypotension. [28] However, if the
blood pressure is too high, we are talking about hypertension. [13] These cases can be
pending for varying periods. High blood pressure is much more common than low blood
pressure, this is the reason why we divide hypertension into several parts.
The primary symptoms of hypotension are usually lightheadedness and dizziness. Other
symptoms include fatigue, shortness of breath, headache, tremors, increased thirst, irreg-
ular heartbeat, chest pain, and confusion. Severely low blood pressure can deprive the
brain and other vital organs of oxygen and nutrients, leading to a life-threatening condition
known as shock. [28]
High blood pressure is especially dangerous because it can be asymptomatic for a long
time, which can even mean years. [27] However, long-term high blood pressure is a major
risk factor for stroke, heart failure, atrial fibrillation, peripheral artery disease, chronic
kidney disease, and dementia. [13] In addition, hypertension is one of the leading causes
of premature death worldwide. Furthermore, blood pressure is a dynamically varying
parameter, therefore it may happen that intermittent measurements e.g., a medical visit do
not provide the full picture, and as a result, hypertensive periods and repeated temporary
hypertensive states may remain unrecognized for a long time. For all these reasons, it
would be extremely important to constantly measure blood pressure. With the help of
this, the problem could be treated in the initial phase of hypertension, avoiding fatal
consequences.
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In detailing high blood pressure, "high normal" blood pressure is on the border between
normal and hypertension, but is not yet considered a high value. It can rarely cause
dizziness, facial flushing, and blood spots in the eyes. [29] At this blood pressure level, it
would be most optimal to stop the development of high blood pressure. Hypertension is
divided into three stages, in which the third is the most critical, and in all the cases, the
serious diseases mentioned above can occur. Isolated systolic hypertension occurs when
the systolic value is high, while the diastolic value is average. This is more typical for older
people. Over time, it can increase the risk of stroke, heart disease, and chronic kidney
disease. [88] Isolated diastolic hypertension is defined by a high diastolic blood pressure
value with an average systolic value. It can increase the risk of cardiovascular disease, and
this case is more typical for young and middle-aged people. [39]
Based on the knowledge mentioned above and the information provided by the elements
of Table 2.1, it is clear that measuring systolic and diastolic blood pressure values is
extremely important. Accurate knowledge of these values reveals a lot of information
about a person’s current state of health. In addition, the development of many serious
diseases can be prevented.

2.2 Classic measurement methods

There are many ways to measure blood pressure. We distinguish between invasive and
non-invasive measurement methods. The choice of the exact measurement method of-
ten depends on the person being examined, different methods are used for, e.g., infants,
children, the elderly, and pregnant women. In the following I present the classical most
frequently used methods. [69]

1. Invasive blood pressure monitoring

Invasive (intra-arterial) blood pressure (IBP) monitoring is a commonly used tech-
nique in the intensive care unit (ICU) and also during surgery. This technique
consists of direct measurement of arterial pressure by inserting a cannula into the
corresponding artery. The cannula is attached to a sterile, fluid-filled system that is
in connection with an electronic monitor. [31]

This measurement method has several advantages. The most significant one is that
we can continuously measure blood pressure in real time. Furthermore, it is the
most accurate blood pressure measurement method. [31]

However, invasive monitoring also has disadvantages. This method requires exper-
tise and is very expensive. It is essential, for example, to keep in mind proper
sterilization. Moreover, compared to non-invasive techniques, it can cause serious
complications. [90]

2. The oscillometric technique

During this measurement, the cuff, placed on the upper arm, is inflated and then
deflated while the pressure inside the cuff is measured. The rises and falls show small
oscillations indicating the pulsatile blood volume in the artery below the cuff. The
amplitude of these oscillations varies with the applied cuff pressure. Blood pressure
is then estimated from oscillation amplitudes and cuff pressure. [63]

The strengths of the method is the possibility of blood pressure measurement in case
of a weak signal. It does not necessarily require specialist knowledge. Furthermore,
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we get rid of the many inconveniences caused by invasive measurements. [70]

However, we can talk about several weaknesses. For example, oscillometry is very
sensitive to movements due to the bandwidth of the signals, so the arm must be
stationary. Also, the accuracy of systolic and diastolic blood pressure depends on
the estimation algorithm used. Furthermore, it cannot be considered comfortable,
especially in the long term. Last but not least, one of the disadvantages is that it
cannot measure continuously, only at specific intervals.

3. The auscultatory method

It is also important to mention the auscultation method, as it can be called the gold
standard of blood pressure measurement. During the measurement, the bell of the
stethoscope must be held above the brachial artery and the blood pressure cuff must
be inflated to a level higher than the systolic pressure determined by palpation, then
deflate it continuously. After that, record the systolic and diastolic pressure based
on the Korotkoff sounds1. [8]

The advantages and disadvantages of this method are very similar to those I men-
tioned regarding the oscillometric technique, so they are not detailed here.

The methods mentioned above are the most well-known and have been used for centuries2.
They were developed over time, but the basic principle remained. By learning about
these methods, we can gain insights into the basic idea of blood pressure measurement.
According to the previously clarified details, we can try to develop new methods that
will get rid of the above-mentioned disadvantages while containing as many advantages as
possible.
In the following chapters, a new measurement approach is presented, which is intended to
combine the advantages of invasive and non-invasive measurement methods.

2.3 Photoplethysmogram

Photoplethysmography (PPG) is an optically acquired signal, which allows the detection
of changes in blood volume in the microvascular bed of the tissue. This optical signal is
easily measurable and accessible. PPG is often used due to the simplicity and cheapness
of the sensor needed to measure it. The construction of the PPG sensor is very simple.
It contains an LED and a photodetector. For a smoother understanding, Figure 2.2
illustrates the measurement methods of the PPG sensor.
It is clear from Figure 2.2 that PPG has two modes, transmission, and reflection. In
transmission mode, the transmitted light is detected by a photodetector placed in front
of the LED. In contrast, in reflection mode, the sensor detects light reflected from tissue,
bone, or blood vessels. [91]
The method of LED lighting is also an important part. The choice of light wavelength
depends on the application and the designer’s priorities. The most frequently used colors

1The sounds detected by the stethoscope during auscultatory blood pressure measurement are called
Korotkoff sounds. The external pressure made by the cuff causes deformation of the underlying arteries
and jetting of the flowing blood. It can be shown both analytically and experimentally that the sounds
are caused by the instability of the vessel wall. [37]

2The first recorded invasive blood pressure measurement was in the 18th century. The oscillometric
technique method was first demonstrated in the 19th century and the auscultatory method at the beginning
of the 20th century. [77]

6



Figure 2.2: Visualization of PPG signal measurement [91]

are red and green. Although, sometimes yellow LEDs are also used. Longer wavelength
light penetrates deeper into the tissue, however, Denisse Castaneda et al. stated that
infrared light is more susceptible to motion artifacts3. [36]
As Figure 2.2 demonstrates, the measurement is usually done on the fingertip, although,
this signal can also be measured in other places. It can be detected, for example, on the
forehead, earlobe, wrist, torso, or ankle, but the most common place is the fingertip. We
can find PPG sensors in our everyday life, e.g., smartwatches (on the wrist) or finger pulse
oximeters (on the fingertip). [36]
Lower and higher frequency components of the PPG can be separated based on their
sources. The lower frequencies are caused by breathing, sympathetic nervous system
activity, and thermoregulation. The higher frequency components represent changes in
blood volume caused by heart action, which is dependent on the systolic and diastolic
phases. So we can talk about two phases of the signal. The systolic phase begins with a
valley and ends with the systolic peak of the pulse wave. The end of the pulse wave is
marked by another valley at the end of the diastolic phase. Characteristics such as rise
time, amplitude, and shape can indicate vascular changes in blood flow in advance. [36]
PPG shows a great similarity with the blood pressure signal, which is illustrated in Figure
2.3. This characteristic is crucial for the presented study. The blue line represents the
PPG and the red represents the aortic (aorta is an artery) blood pressure signal.

2.4 Electrocardiogram

Electrocardiography is a non-invasive diagnostic procedure resulting in an electrocardio-
gram, which contains the electrical signals of the heart, recorded with the help of electrodes
placed on the skin. These electrodes detect the small electrical activities during each car-

3Motion artifacts are one of the most common disturbances in signal processing. The most significant
phenomenon that creates movement artifacts is the change in the position of the electrodes relative to the
skin. Therefore, significant electrical signal distortion occurs. So, during our everyday activities, motion
artifacts are created. [49]
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Figure 2.3: Comparison of PPG and blood pressure signals [92]

diac cycle, which is the result of the depolarization and followed by the repolarization of
the heart muscle. [45]
The effect of many heart diseases is to change the signal from the original ECG pat-
tern. Examples of such diseases are atrial fibrillation [65] and myocardial ischemia [34].
Therefore, when examining the ECG signal, stress testing is recommended, because some
abnormal phenomena cannot be detected at rest, but their presences are recognizable
under stress. It can be observed from the previously-mentioned information, that the
continuous measurement of this physiological signal is essential since the health state of a
person can be inferred from it.
There are several ways to measure an ECG. The conventional measurement method is the
12-lead ECG, which is recorded in a supine position. During this procedure ten electrodes
are placed on the patient’s limbs and the surface of the chest. The total magnitude of the
heart’s electrical potential is then measured at twelve different angles. In this way, the
overall magnitude and direction of electrical depolarization of the heart are recorded at
each instant of the cardiac cycle. Although this method provides the most information,
other methods can also be used to measure ECG. In terms of this work, the single-lead
method is the most important, because these means of measurement is most commonly
used by wearable health devices such as smartwatches. Although this method provides less
information than its counterpart with more measurement points, it is suitable for detecting
many diseases, such as atrial fibrillation. Furthermore, it is much more comfortable than
the others and makes long-term measurements possible. Perhaps the most ergonomic
solution for this is to place the two electrodes on one fingertip of each of our two index
fingers.
It is worth examining the shape of the ECG signal in detail. Several waves appear in the
signal. Each represents the depolarization or repolarization of a specific part of the heart.
These waves can be observed in Figure 2.4.
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Figure 2.4: ECG waves [99]

Interpreting Figure 2.4, the P wave represents atrial depolarization, while the cause of the
QRS complex is ventricular depolarization. In contrast, the T wave indicates ventricular
repolarization. And the U wave represents the repolarization of the papillary muscle.
Based on the above, the ECG contains a large amount of information about the condition
and functioning of the heart, from which we can conclude that it is closely related to blood
pressure. However, it does not contain enough information to make an accurate estimation
only by itself. Nevertheless, by supplementing ECG with the PPG signal, we can obtain
sufficiently more information. We can consider this approach as the improvement of the
photoplethysmography-based method that only uses the PPG signal for the estimation.

2.4.1 Heart rate

Heart rate is an outstandingly crucial physiological value. Together with blood pressure, it
is part of the four primary vital signs. [25] It is also known as pulse rate. This physiological
information shows the frequency of the heart’s contractions per minute, which is usually
indicated in the unit of measure, beats per minute (bpm). Many factors can influence
this value, including, e.g., age, stress, hormonal status, and the presence of diseases. [103]
Therefore, the knowledge of these values can significantly facilitate the establishment of a
proper diagnosis for a given subject.
Like most data in physiology, it has healthy and unhealthy ranges. According to the
American Heart Association, the usual resting adult human heart rate is 60 to 100 bpm.
However, these limits are not as sharp as in the case of blood pressure since this value
for athletes can be even 30 bpm. If the individual’s heart rate is higher than this during
rest, we speak of tachycardia. If it is below this range, we speak of bradycardia. It is also
worth mentioning that 40-50 bpm is healthy during sleep.
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Heart rate is measured by listening to or palpating the heartbeat. A measurement point
can be found in any part of the body. If we want to determine this value accurately,
we need to use an electrocardiogram. Based on the ECG, the instantaneous heart rate
is calculated based on the R-wave to R-wave interval, which can be observed in Figure
2.5. In the following section, a method based on the ECG signal that implements the
calculation of this value is described.

Figure 2.5: R wave-to-R wave interval in ECG waveform [98]

2.4.2 Pan–Tompkins algorithm

During my work, I measured the heart rate using an ECG signal. This task requires
the accurate detection of R peaks. I used the Pan–Tompkins algorithm [71] to solve this
problem.
The algorithm was proposed by Jiapu Pan and Willis J. Tompkins in [71], in 1985. The
Pan–Tompkins algorithm detects the QRS complexes, presented in the previous section,
in electrocardiographic signals. The procedure uses a series of filters to emphasize the
frequencies related to rapid cardiac depolarization and removes noise. Then after applying
these filters, it detects peaks using threshold values. [71] Figure 2.6 shows the series of
filters.

Figure 2.6: Series of filters in Pan–Tompkins algorithm

The steps of the algorithm are detailed below:

1. As a first step, to increase the signal-to-noise ratio, it is recommended to apply
a band-pass filter (this is the combination of the low-pass and the high-pass filter
from the block diagram above). This filter aims to highlight the desired peaks and
suppress muscle noise and other disturbances.

2. As the next step, a derivative filter is applied, which emphasizes the parts of the
signal where faster changes occur, thereby highlighting the steep rise and fall of the
QRS.
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3. The signal obtained as the output of the previous step is then squared to highlight
the already outstanding R peak, thus reducing the possibility of a T-wave being
detected as an R peak.

4. Finally, a moving average filter is applied to provide information on the duration of
the QRS complex, and also functions as a low-pass filter on the resulting waveform,
which may contain several outliers due to derivation and squaring.

Even though the PPG waveform differs significantly from the ECG waveform, the algo-
rithm can also be used for PPG if its parameters are modified slightly. This is possible
because the steepest part of the PPG signal is just before the systolic peak, just like
around the R peak in ECG.

2.5 Neural networks

Neural networks utilize and imitate many ideas we learned from the signal transmission
between biological neurons. Artificial neural networks are graph-based models in which
artificial neurons communicate with each other. The neurons form the vertices, and the
connections represent the edges.
In the simplest case, the models can be divided into three main parts. The first is the input
layer, which forwards the input data to the rest of the network. The second part consists of
hidden layers, whose task is to transform and transcode the data and create intermediate
representations. The last layer is the output layer, the implementation differs depending
on whether we are talking about a classification problem or a regression problem. In the
case of classification, we produce the same amount of output as the number of classes. The
values obtained for each output node contain information characterizing the probability
of belonging to the given class, from which it can be determined which class the input
belongs. However, in the case of regression problems, a continuous value is predicted
based on the input variables, which will serve as the output. So the principal goal of these
problems is to estimate a function utilizing inputs and outputs. [54]
Figure 2.7 visualizes the above-mentioned information with a simple example.

Figure 2.7: Artificial neural network
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Neural networks are becoming more and more widespread in all areas of life. The use of
these models is preferred for many problems that cannot be solved by other methods or
would take a very long time. Examples of such tasks are signal processing([52][80][105]),
image processing([44][64][62]), or natural language processing([50][89][40]). In the follow-
ing, models are presented that are important in terms of the current work.

2.5.1 Deep learning

Deep learning models are neural networks that contain several hidden layers. The task of
these layers between the output and input is to learn important patterns and details. As a
result, deep learning networks do not require manual feature engineering as most machine
learning applications do, because they are able to learn the important characteristics of
the input data. [35]
The algorithms created during my work use architectures based on deep learning, namely
recurrent neural networks, convolutional neural networks, and a part of Transformers
called as attention layer. These models are preferred for signal processing problems, so
analyzing and using them was reasonable. In the following, these are presented in more
detail.

2.5.2 Fully-connected layer

Concerning deep learning, we often come across a so-called fully-connected neural network
(FCNN) [94]. They are used as the last layer in all of the networks presented in this work
since they produce the output with the correct dimensions. Concerning the FFCN, the
structure and function of a neuron are presented, however, it works identically in other
types of neural networks. The neurons generate the dot product of the weights(w) and
the inputs(x) and then add a bias. The value obtained as a result of completing these
operations is entered into a non-linear activation function4 and this will give the output(y)
of the neuron. The above is illustrated in Figure 2.8.

Figure 2.8: Operations done by a neuron in FCNN

Figure 2.8 can also be written in the form of equation, which is shown by Equation 2.1,
where φ denotes the activation function and b denotes the bias.

4In artificial neural networks, the activation function of a graph vertex gives the output for a given
input. Non-linear activation is called non-linearity because they allow networks to learn not just linear
relations. [87]
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y = φ(
n∑

k=1
xk · wk + b) (2.1)

The advantage of this neural network is that it is simple and fast, as it is based on the
calculation of linear combinations. The disadvantage is that, due to its network topology,
it is expensive in terms of the number of weights. It is also significantly sensitive to
vanishing5 and exploding gradient problems6.

2.5.3 Convolutional neural network

A prominent type of artificial neural network is the convolutional neural network, which
is based on the cross-correlation operation. These convolutional layers contain filters
(or kernels) with weights that slide along the input features and produce feature maps
as outputs corresponding to the filters. This type of network is used with preference
in image processing, recommender systems, natural language processing, physiological
signal processing, financial data processing, and other type of time series processing. This
network learns the optimal values of the filters in an automated way. The advantage of
a convolutional network is that it can search for local patterns in the input signal and
allows learning much more complex ones by combining them. Furthermore, the use of
kernels make the network independent of local pattern positions. Also, since not every
data point is associated with a neuron, but examines the data with kernels, this is a much
more efficient method, which many articles call weight sharing. [83]

Convolutional layer: The convolutional layer can be created with many different prop-
erties. I present the most important of these parameters below. [75]

1. Kernel size: The size of the kernel determines the number of inputs that participate
in the same filtering step.

2. Input channels: This determines the number of input channels.

3. Output channels: Defines the number of feature maps to be created.

4. Padding: Defines the method that determines the way the filters handle the edges
of the input samples.

5. Stride: Defines the step size when a filter passes through the input samples.

6. Dilation rate: This defines a specific spacing between kernel elements.

Furthermore, it is important to mention the equation of the convolution layer, which is
shown by Equation 2.2, where N is the batch size7, C is the number of channels, L is the

5We encounter the vanishing gradient problem when we train neural networks with backpropagation.
The problem is that in some cases the gradient will be too small in the course of the gradients’ backward
flow, which significantly prevents the values of the weight to be changed. In the worst case, learning can
stop completely. [96]

6We encounter the exploding gradient problem when neural networks are trained by backpropagation.
This phenomenon occurs when the error gradients are large and cause enormous updates of the neural
network model weights during training. Proper training, on the other hand, would be effective if these
updates were small and controlled. When the magnitude of the gradients increases, an unstable network
is likely to occur, which in the worst case results in a model that fails to do its task. [38]

7Batch size is the number of samples processed simultaneously while training the model.
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length of the sequence, b is the bias, w is weights, x is the input, y is the output, and ∗
is the cross-correlation operator. Assuming a 1-dimensional convolution, the size of the
input is (N, Cin, L), and the size of the output is (N, Cout, Lout).

y(Ni, Cout,j) = b(Cout,j) +
Cin−1∑

k=1
w(Cout,j , k) ∗ x(Ni, k) (2.2)

Batch normalization layer: Batch normalization layers are often called directly after
convolution layers. This layer implements a method, called Batch normalization, which
enables faster and more stable training of neural networks by normalizing (re-centering
and re-scaling) its inputs. [53] The operation of this layer is shown by Equation 2.3, where
x denotes the input, y denotes the output, µ is the mean of the input data, σ is the
standard deviation of the input data, so σ2 is the variance of the input data, ε is 10−5 by
default, and γ and β are learnable parameters.

y = x − µ√
σ2 + ε

· γ + β (2.3)

Furthermore, this layer not only enables effective training but can be used to avoid over-
fitting8 the model. This method was proposed by Sergey Ioffe and Christian Szegedy9 in
2015 [53].

Activation function: After normalization, the activation functions are used, which are
most often implemented with ReLU layers in the case of convolutional networks. The
ReLU means rectified linear unit, which uses the following non-linear activation function:
f(x) = max(0, x). It is clear from the formula that it keeps the positive inputs, while
the negative ones are set to zero. So, with the help of this layer, we inject non-linearity
into the network, which makes it able to learn non-linear relationships between the input
and the output. In addition, in the past, sigmoid [87] was used instead of ReLU as an
activation function whose formula is shown in Equation 2.4.

σ(x) = 1
1 + e−x

(2.4)

However, the most recently proposed functions are Sigmoid-weighted Linear Unit (SiLU)
and Swish. The operation of SiLU is described by the following equation: f(x) = x · σ(x),
while Swish, which complements SiLU with parameter β, is described by this equation:
f(x) = x · σ(β · x). [78]

Pooling layer: After the ReLU, pooling layers are sometimes used. This performs
non-linear downsampling of the input data. This layer reduces the spatial size of the
representation to reduce the number of parameters and helps to avoid overfitting. The
most common implementation of this layer is max pooling and average pooling, during

8One of the goals of deep learning models is to get adequate generalization ability by learning the
training data. However, there are occasions when the model tries to learn too many details from the
training data as well as the noise. As a result, the performance of the model will not be satisfactory for
unseen data. This phenomenon is called overfitting. [48]

9Christian Szegedy completed his high school studies in Budapest and obtained his first degree at
Eötvös Loránd University in the field of Mathematics and Computer Science.

14



which the pools containing the input data of a given size are replaced with the maximum
or the average of the values contained in them. [79]

Dropout layer: Finally, the Dropout layer is occasionally used, which is a mask that
cancels the contribution of some neurons to the next layer. Dropout layers are of particular
importance when training convolutional layers because they prevent the phenomenon of
overfitting and help each neuron to learn adequately at the proper rate. [33]
So, the advantage of convolutional layers is that they can be applied to several types of
problems, using their skill of learning the important features in the input data without any
human supervision. However, its disadvantage is that it does not encode the location of
the objects, it needs a large amount of training data, and since it does not contain memory
elements, therefore, it cannot model the temporality of time series signals by itself, which
is often indispensable information.
The convolutional layers play a significant role in the structure of my desired neural
network, for which I used all the above-mentioned layers to achieve proper functioning
during the preparation.

2.5.4 Recurrent neural network

Recurrent Neural Network (RNN) creates a method for efficient time series processing.
This network has internal memory elements to monitor temporal dependencies, so it has
internal states. [42] During the operation of the RNN, the current value of its internal
state is calculated based on the current input and the value of the internal state one step
earlier. Furthermore, the output of the cell is equal to the current internal state. Such
a cell is shown in the Figure 2.9, which visualizes that an RNN cell contains three linear
layers and an activation function, which is most often a hyperbolic tangent activation
function (tanh) [102], whose operation is described by Equation 2.5:

tanh(x) = ex − e−x

ex + e−x
(2.5)

In Figure 2.9, h represents the internal state, x represents the input, y represents the
output, and t represents the time index.

Figure 2.9: Cell of Recurrent Neural Network

This type of neural network offers many possibilities because it has internal states. How-
ever, it also has several disadvantages. For example, its training process is outstandingly
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slow and is significantly affected by vanishing and exploding gradient problems. In the
following, I will present the developments of RNN that eliminate these negatives. I inves-
tigated both improved versions (LSTM and GRU) during my work.

2.5.4.1 LSTM

In the case of RNN, vanishing and exploding gradient problems can often occur. The
probability of occurrence of this issue is reduced by LSTM, i.e. Long short-term memory,
which contains feedback connections that allow them to process entire data sets because
they have access to necessary information about previous data. As a result, LSTMs are
especially useful in processing data sequences such as text, speech, signals, and general
time series. [41]
This special RNN layer uses a series of gates. The task of the gates is to control how data
enters the cell, how it is stored in the network, and how it leaves the cell. So the three
gates are the forget gate, the input gate, and the output gate, however, the input gate
is often divided into input gate and cell gate. The structure of the LSTM cell is shown
in Figure 2.10, where the cell is separated according to the three main gates, and f , g, i,
and o denote the more detailed version of the gates, which respectively mean forget, cell,
input, and output gate. Furthermore, c is the cells state, h is the hidden state, x is the
input, y is the output, and t is the time index.

Figure 2.10: Cell of Long short-term memory

Two types of activation functions can be observed in the figure. One is the hyperbolic
tangent and the other is the sigmoid function. The latter function converts the input value
to an interval between 0 and 1, while the tangent hyperbolic maps it between -1 and 1.
Figure 2.10 can also be written in the form of equations, which is shown by Equation
2.6, in which the marks correspond to those seen in Figure 2.10, ∗ denotes the element-
wise multiplication, t is the time index, W denotes the weights, and b denotes the biases
corresponding to the given gate.
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ft = σ(Wxf · xt + bxf + Whf · ht−1 + bhf )
gt = tanh(Wxg · xt + bxg + Whg · ht−1 + bhg)
it = σ(Wxi · xt + bxi + Whi · ht−1 + bhi)
ot = σ(Wxo · xt + bxo + Who · ht−1 + bho)
ct = ct−1 ∗ ft + i ∗ gt

ht = ot ∗ tanh(ct)

(2.6)

The tasks of the three main gates, shown in Figure 2.10, are different. The forget gate
decides which parts of the long-term memory should be forgotten at a given time, using
the current input and the hidden state of the previous cell. The next gate is the input
gate, which aims to determine what new information should be added to the cell state,
which is the long-term memory of the network. This gate utilizes the previous hidden
state and the new input data. The last unit is the output gate, which decides the new
hidden state, which also serves as the output of the given cell. The newly updated cell
state, the previous hidden state, and the new input data are used to solve this task.
As I mentioned earlier, LSTM has the advantage of reducing the probability of vanishing
and exploding gradient problems, however, its learning speed is even slower than RNN,
which is its main disadvantage.

2.5.4.2 GRU

GRU stands for gated recurrent units. Like LSTM, it is constructed by gates. Compared
to RNN and LSTM, it has a significant benefit in terms of the speed of the training
process. The GRU is similar to the LSTM, however, it does not have an output gate,
and therefore has fewer parameters. GRU approaches the performance of LSTM in many
tasks, such as polyphonic music modeling, speech signal modeling, and natural language
processing. Furthermore, on smaller datasets, GRU outperforms LSTM, which performs
better on longer ones. [57]

2.5.5 Attention layer

The attention layer became widely known with the spread of transformers [95], which were
mostly invented for natural language processing tasks, but can also be used to process any
type of sequence. For me, the encoder part of the transformer is important, which can be
observed in Figure 2.11.
According to Figue 2.11, it can be observed that the input sequence goes through the
input embedding, which pre-processes the given data to create a hidden representation of
it. The next step is positional encoding, which records the meaning and position of the
individual elements of its input.
The resulting data is directed into vectors called "query", "key", and "value", which form
the inputs of the upcoming layer. The next layer is the multi-head self-attention layer,
which has the previously-mentioned three inputs having the same values. This layer is
the most important among the other elements that make up the neural network. The
attention module performs parallel calculations. Elements running in parallel are called
attention heads. The module divides the three input vectors according to the number
of attention heads and then passes each part through its corresponding parallel element.
Then the result acquired in parallel are merged to generate the Attenuation score. This
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Figure 2.11: Neural network based on attention layer

method allows the detection of several types of relationships in the input. The attention
layer is followed by a fully-connected feed-forward network applied position-wise.
Residual connections10 are performed around the attention and the feed-forward layer.
The output of these residual connections goes to ReLUs, and the output of the last ReLU
layer forms the result of this neural network architecture.

2.5.6 Training

A neural network model can be written in the form of a parametric function y = f(x, ϑ),
in which y is the output, x is the input, and ϑ are the parameters. The training process
aims to find a parameter set of this function that provides the smallest possible difference
between the output given by the function and the expected output. In the following,
essential elements of this training process are presented.

Loss function During the training, loss functions are used, which is also called cost
function or error function or objective function. This method quantifies how well our
algorithm can model the desired function. [93]

Optimization Optimization aims to minimize the previously-mentioned loss function.
Gradient-based methods can be used for optimization, of which I present the relatively
simple and the improved versions as well.
In the case of gradient-based optimization, we can take advantage of the fact that both
the model and the loss function can be derived. Based on this, we can calculate the
gradient of the error function according to each weight. If we turn these gradients in the

10The residual connection provides an alternative path for the flow of data and gradients, during which
the information flowing on this branch bypasses a few layers. This helps to avoid the difficulties arising
from the problem of gradient flow that often occurs in the case of deep neural networks. Furthermore,
networks with residual connections converge faster than networks without such layers. [51]
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opposite direction, we get the direction of the steepest decrease. Since this method is slow,
we divide the training dataset into equal-sized, randomly selected subsets(minibatches),
and after each minibatch, an optimization step is performed. The previously-mentioned
method is called Stochastic Gradient Descent. The formula of this method is shown in
Equation 2.7, where E denotes the error, W the weights, and α the learning rate, which
is a hyperparameter11.

Wk+1 = Wk − α · ∂||E||2

∂W
(2.7)

This method can be further developed by adding a kind of momentum to the gradient
method. According to this method, the step in a given time is the weighted average of the
step taken in the direction of the negative gradient and the step taken one step earlier.
This development of the gradient-based method can accelerate the optimization process
and helps to avoid getting stuck in local minima.
As an improvement of the previously-mentioned method, higher derivatives can be used,
which make the process faster and also helps to avoid oscillating near the optimum. Dur-
ing this method, the cost function is approximated by a quadratic Taylor polynomial,
whose minimum point can be calculated analytically. However, since the function is not
quadratic, we apply this procedure iteratively. The resulting method is shown in Equa-
tion 2.8, where Hw is the Hesse matrix containing second-order partial derivatives, and
W contains the weights.

Wk+1 = Wk − H−
w

1 ∇wf(Wk) (2.8)

Backpropagation It is important to mention backpropagation, as it creates the basis
for training neural networks. This term strictly refers only to the algorithm for computing
the gradient, on the other hand, this term is often used to refer to the entire learning algo-
rithm. During the adjustment of the neural network’s weights, backpropagation calculates
the gradient of the loss function regarding the network weights for a single input-output
example. This procedure is very efficient and therefore provides an opportunity to train
multi-layer networks. This algorithm utilizes the chain rule [84] during the gradient flow.
The gradient is calculated layer by layer, iterating from back to front, during which process
the gradient of the loss function is calculated for each weight. [58]

11Hyperparameters are the neural network parameters whose values are not learned during training but
can be adjusted manually. An example of this is the kernel size in convolutional layers.

19



Chapter 3

Related work

Continuous measurement of blood pressure is a great task these days, because it would
allow us to detect abnormal blood pressure quickly and make early treatment. This
would provide an opportunity to prevent serious diseases associated with inadequate blood
pressure. The best way to measure real-time values would be with a device that could be
worn the whole day and utilizes externally measurable signals to determine blood pressure
values.
The works in the literature presented below show possible solutions to this problem. These
articles describe blood pressure estimation algorithms using different input signals and
methods. In addition to their procedures, they present several evaluation methods and
the results obtained based on them. A large amount of information about the current
state-of-the-art solution to this problem, found in these studies, has a great impact on the
current work.

3.1 Approach based on PPG

Due to the similarity between PPG and ABP signals, some researchers have attempted to
create methods that continuously estimate systolic and diastolic blood pressure based on
photoplethysmography.

Approach For example, Ali Tazarv and Marco Levorato [92] attempted such a solution
at the University of California. In their article, they present an approach based on deep
learning. The neural network they developed has one input, which is an 8 second time
window with a step of 2 second that contains the PPG signal. Its outputs are the systolic
and diastolic blood pressure values for the given time frame. The network was trained
with the maximum and minimum values of the given time window, which correspond to
the systolic and diastolic values.

Model The first block of their deep learning model contains a CNN layer. The CNN
layer starts with a 1-D filter with filter size 15, followed by a Rectified Linear Unit (RELU)
as an activation function, a batch normalization layer, a max-pooling layer, and finally
a dropout layer with a dropout rate = 0.1. In the max-pooling layer, the pooling size is
set to 4. The purpose of this block is to find informative features efficiently in the PPG
signal.
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The next block is an LSTM network consisting of two identical consecutive LSTM modules
with 64 units. The role of this block is to capture long-term temporal inter-dependencies
in an automated way.
At the end of the network, there is a Multi-Layer-Perceptron (MLP) layer, which consists
of three fully connected layers. The first is the input layer, followed by the hidden layer,
and finally the output layer. The role of this MPL is to produce the appropriate outputs.
The above-mentioned model was trained using the Adam optimizer with the batch size
set to 20.

Dataset Training and evaluation were performed on two datasets. One was the
MIMIC-II [60] dataset and the other was The University of Queensland Vital Signs
Dataset(UQVSD) [82]. Filtering was performed on both datasets. In the case of the
PPG signal, signal components with frequencies outside of 0.1 and 8 Hz were removed
using a bandpass filter. The arterial blood pressure signals were filtered with a low-pass
filter with a cutoff frequency of 5 Hz. Finally, these signals were resampled at 20 Hz and
normalized to zero mean and unit variance.
A one-window-out validation is performed for evaluation. So, in the case of a subject, an
8-second time window is kept separately for validation and one for the test. Training is
done on the other data. The estimation errors of the obtained results are illustrated in
Figure 3.1.

Figure 3.1: Prediction Error for SBP, and DBP [92]

Evaluation The performance of the network was evaluated based on three metrics, all of
which are detailed later in Section 6.2. The first metric utilizes the absolute value of errors,
which I called Statistical in the previously-mentioned section. Afterward, the British
Hypertension Society standard was used for evaluation, which can be used to classify neural
networks based on the absolute value of their estimation errors. Based on this metric, this
model meets the criteria of the best possible class. Finally, the authors evaluated their
model based on the US Association for the Advancement of Medical Instrumentation
(AAMI) standard, which criteria are fulfilled by the current network. Based on these
metrics, the results of this network are compared in Section 6.4.1 with the results of the
approach, presented in the next section, as well as with the results of the model I created.
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Conclusion In conclusion, this article is very useful and forward-looking. For my work,
I collected several ideas from this article, which I supplemented and thought about further.
This information includes the idea of 8 second windows, the extraction of the SBP and
DBP, the convolutional layer at the beginning of a neural network to extract features
from the input signal, the use of the LSTM layer to properly handle long-term temporal
inter-dependencies, and finally the metrics that help evaluate the result produced by the
network.

3.2 Approach based on both PPG and ECG

The measurement method with only PPG can be supplemented with ECG, as the ECG
contains vital information about the functioning of the heart. By itself, the ECG does
not contain a sufficient amount of information, but by combining these two signals, we
can obtain significantly more data compared to the approach based only on photoplethys-
mography. However, the methods that utilize both ECG and PPG signals appear only as
research subjects. In the following, I present the work of Yung-Hui Li et al. [61], that
deals with this topic in detail.

Background The pulse transit time (PTT) is one of the most important parts of this
paper. It can be defined as the time taken by the arterial impulse to travel from the
heart to the peripheral location. This value can be obtained by knowing the PPG and
ECG signals. PTT can be calculated as the time interval between the ECG peak and the
maximum slope (first derivative) of the PPG. This is illustrated in Figure 3.2.

Figure 3.2: Visualization of pulse transit time (PTT) [61]

A derivation can be found in the detailed presentation of the PPT. This shows that the
value of the PPT and the value of the blood pressure have a non-linear (more precisely,
logarithmic) connection with each other. This implies that the current value of blood
pressure can be estimated from the current pulse transit time. Based on this information,
it can be concluded that this method provides a great approach to solving the assigned
task (continuous blood pressure estimation). However, this is still not straightforward,
since many variables are dependent on the specific arterial characteristics of the person.
Equation 3.1 shows the non-linear relationship between PPT and blood pressure.

P = − 2
α

· ln (PPT ) + 1
α

· ln (2 · r · ρ

E0 · h
·D2) , (3.1)
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where the radius of the artery is indicated with r (in unit m), and h is the thickness
of the artery (also in unit m). E0 is the modulus of elasticity of the arterial wall at 0
mmHg (in unit mmHg), and ρ is the density of the blood in the artery (in unit kg/m3).
Furthermore, if the pulse wave is detected by two sensors, the distance between them is
D, measured in meters. Real-valued parameter α is greater than zero and closely related
to arterial stiffness. For completeness, P is blood pressure and measured in mmHg, and
PPT is pulse transmit time and measured in seconds.
From these variables, we can see how complex the task is, because these values are different
for each person, and even in the case of a single person these values can vary quickly with
changes in the circumstances and time.
Furthermore, the PTT-based blood pressure estimation technique has not been widely
accepted yet for cuff-less and continuous BP monitoring [104]. This is because no solution
has been created that has satisfactorily low estimation errors and passed all authentication
and verification procedures. So in my opinion, it is a really exciting and challenging task
to create a solution with adequate accuracy using ECG and PPG simultaneously, which
has a huge potential.

Dataset and pre-processing In this article, they used the same database as Ali Tazarv,
and Marco Levorato [92], which is the MIMIC-II [60]. So this data set contains the input
and output data for the neural network that will be detailed later. The input signals
were filtered before entering the network. Here, the deletion of low-frequency artifacts
was emphasized, which means frequencies below 0.1 Hz. After filtering, the next step was
normalization, which was done according to Equation 3.2 where xi is an input sample and
x′

i is a normalized one. [61]

x′
i = xi − xmin

xmax − xmin
(3.2)

Models and methods Unlike the solution that only estimates from the PPG signal,
feature extraction is not done here with the help of convolution layers, but the authors have
done it manually. First, they perform ECG R peak detection using the Pan–Tompkins
algorithm [71]. Based on this, a time frame can be defined, which is an interval that starts
from an R peak followed by a systolic peak and the next R peak and finishes with the
following R peak. They define seven features within one window, and the mathematical
form and detailed description of them are presented in the article [61].
These features are:

• Pulse Transit Time

• Heart Rate

• Reflection Index

• Systolic Timespan

• Up Time

• Systolic Volume

• Diastolic Volume
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These features will be the input for the following networks. Four LSTM models are
presented in this paper. Each model starts with a Bi-LSTM (Bidirectional-LSTM) layer.
This is followed by a series of LSTM layers, then a fully-connected layer and finally a
regression layer as output. Residual connection (marked with arrows in the following
figure) is applied between the LSTM layers. The output consists of two scalar, which are
the systolic and diastolic blood pressure values. The structures of these four networks are
illustrated in Figure 3.3.

Figure 3.3: The four proposed LSTM models

After filtering the used data set, 1,113,634 cycle records remain from 3,000 randomly
selected subjects. SBP and DBP values were extracted from the ABP signals as ground
truth for training. Furthermore, parts with some outliers were removed (e.g. SBP 180
mmHg, DBP 130 mmHg, SBP 80 mmHg, DBP 60 mmHg). The final data sets consist
of 678,202 records. They keep 80% of them as a training set and the rest for the test set
without overlap. So, in the end, 542,561 records are for training and 135,641 for testing.

Evaluation As a first approach, not the entire data set was used, but only 50 subjects.
This meant 5482 training and 1370 body records. The authors compared the results with
three traditional machine learning methods, Linear Regression [86], Random Forest [76],
and Least Squares Boost [47]. The mean value and the standard deviation of the errors
obtained during the evaluation revealed that all four LSTM-based solutions outperformed
the machine learning-based methods. Table 3.1 shows the results.
Model (b) can be considered as the best network among the models shown in Figure 3.3.
Therefore, further evaluations and tests were made on this LSTM model.
After that, using all the available test records, in a similar way to the previous article,
Model (b) was evaluated according to three metrics. These metrics were the Statistical,
and the procedures based on the British Hypertension Society standard and the US As-
sociation for the Advancement of Medical Instrumentation standard. These metrics are
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Systolic Blood Pressure Diastolic Blood Pressure
Method MAE SD MAE SD

Linear Regression 9.14 11.50 2.98 1.21
Random Forest 2.60 3.36 3.02 1.39
Least Squares Boost 4.87 6.68 3.45 1.39
Model (a) 1.17 1.40 0.75 0.83
Model (b) 0.74 0.96 0.56 0.51
Model (c) 1.79 0.81 0.75 0.48
Model (d) 1.24 0.73 1.03 0.46

Table 3.1: Performance according to absolute error (units are measured in mmHg)

detailed later in Section 6.2. Based on the BHS standard, this model received the second-
best grade for systolic blood pressure values and the best for diastolic blood pressure
values. Furthermore, it could not fulfill all of the AAMI criteria. The results of Model (b)
are compared with the results of the model in the previously-mentioned article and with
my approach in Section 6.4.1.

Conclusion This article contained a lot of useful information that I later used in my
work, for example, the combined utilization of ECG and PPG. It also helped me to learn
about the nature of signals and the possibilities offered by deep learning. Maybe the
authors could have achieved better results, for example, if they did a longer training or
did not perform the feature extraction by themselves. But in my opinion the aim of the
article was not to achieve a very high result but to show the potential of this approach.
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Chapter 4

Methodology

This chapter presents the pre-processing methods required for the different tasks of the
implemented system, as well as the created neural networks, with particular regard to the
model utilized in the implemented system.

4.1 Pre-processing

In the implemented system, we have two input signals, the ECG and the PPG. The
board used for measurement has passive RC low-pass filters with a cutoff frequency of
319 kHz at both of the sensor unit’s ECG inputs. The purpose of this analog filter is to
reject high-frequency electromagnetic interference (EMI). The low-frequency filtering is
performed by the internal filters of the MAX86150. [3] Also, the PPG signal is filtered by
the sensor unit, which includes a discrete time filter to reject 50Hz/60Hz interference and
slow-moving residual ambient noise. [4]
According to the previously-mentioned information, the input signals are received by the
core unit in an already pre-processed form, however, their subsequent use requires further
processing, which is presented in the following.

4.1.1 Producing the proper number format

As the first step of the pre-processing, these received signals must be converted to a proper
number format from a bit array, which is the integer, because they are ADC values. This
conversion had to be done according to the information that the received ECG and PPG
value is represented in two’s complement. Then I calculated the resulting values into
physical units of measure, which help the displayed data to become more understandable.
In the case of PPG, this can be done using Equation 4.1, which will give the result in nA.

PPG = ADCint

219 − 1 · 32768 [nA] (4.1)

The 32768, shown in Equation 4.1, is the full-scale value of the ADC belonging to the
PPG in nA units, and the 19 in the exponent of 2 is the resolution of the ADC in bits.
These data can be found in the datasheet of the sensor [4].
In the case of ECG, according to the datasheet [4], Equation 4.2 can be used to convert
the ADC value, obtained in integer, into mV units.
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ECG = ADCint · 12.247
8 · 9.5 · 1000 [mV ] (4.2)

The value 12.247 shown in Equation 4.2 is given in µV , however, since the result is needed
in mV , it still needs to be divided by 1000, which is observable in the denominator.
Furthermore, the value 8 is the PGA (Programmable Gain Amplifier) ECG Gain, and the
value 9.5 is the IA Gain (Instrumentation Amplifier Gain), both of which have units of
mV
mV . All the previously-mentioned values can be found in the datasheet [4].

4.1.2 Pre-processing for the neural network

As soon as we have at least 1,600 pieces of data in a suitable format, the neural network
can operate using these data as input. However, before we direct these data to the input
of the network, certain pre-processing must be performed. In the following two Numpy
[16] arrays of 1600 elements are processed, which contain the PPG and ECG signals.
The neural network was created for the publicly available database, presented in Section
6.1.1, in which the signals were sampled at 125 Hz. Since the settings of MAX86150EVSYS
allow a minimum sample rate of 200 Hz, the measured signals needed to be resampled at
125 Hz to produce the correct input for the neural network. The resample() [20] function
of the Scipy [22] program library helped me solve this task.
After re-sampling, the signals are filtered with a Butterworth [43] band-pass filter. I chose
this type of filter because I didn’t want to emphasize specific frequencies because of the
waves in some other types of filters, and the exact cutoff frequencies were not known,
so there was no need for an abrupt cutoff in the amplitude characteristic. The so-called
maximally flat magnitude filter, i.e. the Butterworth filter, meets these criteria. This
method accomplishes this task with the help of the butter() [7] function provided by the
Scipy [22] Python library. I gave this function the following inputs:

• The order of the filter: N = 3

• The cutoff frequencies at which the gain drops to 1/sqrt(2) of the passband also
known as, the -3 dB points: WnECG = [ 1, 50 ], WnP P G = [ 0.8, 12 ] (Units are
measured is Hz.)

• Sampling frequency of the digital system: fs = 125, due to the previously mentioned
resampling

The amplitude characteristic of the transfer function of the filters obtained with these
parameters can be seen in Figure 4.1, where the x-axis is represented with a logarithmic
scale, while the values on the y-axis are expressed in decibels with a linear scale.
The signals are filtered with Scipy’s filtfilt() [12] function, which performs the filtering
with the previously-mentioned Butterwort filter in such a way that the filter moves from
the beginning to the end of the signal and back. This method implements a zero-phase
filter with twice the order of the base filter. The zero phase is important since the relative
location of the values of the two signals provides important information, so if either signal
suffers a shift, the estimation ability of the network may deteriorate.
After that, I only converted the PPG signal. This is necessary because the training data of
the pre-trained network was measured in a different measurement arrangement compared
to MAX86150EVSYS. As a result, the waveform of the current, acquired during one
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Figure 4.1: Amplitude characteristics of the used band-pass filters

measurement, can be obtained by reflecting the other on the x-axis. So, while according
to one case the largest current is generated, in the other it means the smallest. Based on
this information, I made the conversion of the PPG.
Finally, I standardized the signals in such a way that I subtracted the average of the
signals from all the elements of the signal and then divided this difference by the standard
deviation of the signals. The method of standardization for one element is shown by
Equation 4.3, where µ denotes the mean of the input values, σ denotes the standard
deviation of the input values, x is one element of the input, and z is its standardized
version of this element.

z = x − µ

σ
(4.3)

Following the sequential execution of the previously mentioned procedures, we obtained
ECG and PPG values in a suitable form for feeding them to the neural network.

4.1.3 Pre-processing for the heart rate computation

To determine the heart rate, it is necessary to process the time frame containing the ECG
values. During the processing, I want to perform operations on the ECG that result in a
signal that can be easily used to determine the number of heartbeats within the given time
frame. The heartbeats in the ECG signal are identified by their corresponding R peaks,
from the number of which the heart rate can be calculated. I made this pre-processing
using the Pan–Tompkins algorithm.
I implemented the algorithm as follows:

• Band-pass filter: Here, I utilized the Butterworth filter presented in Section 4.1.2,
with the difference that I set the sampling frequency to 200 Hz since resampling was
done here. Similar to Section 4.1.2, I performed this filtering with the Butterworth
filter using the filtfilt() function.
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• Derivative filter: To implement this, I used a Savitzky–Golay filter1 with the help
of the savgol_filter() [21] function from the Scipy Python library. Here I used the
following parameters:

– The length of the window, which goes through the entire signal, similar to the
convolution operation: 16.

– Order of the filter: 6.
– Order of the derivative: 1, because the first derivative is needed.
– The type of extension to use for the padding of the signal: ’Nearest’, which

means that the padding contains the nearest input value.

• As the next step, I squared the elements of the signal obtained as the output of the
previous step.

• Moving window integration: to implement this, I used Scipy’s convolve1d() [10]
function, which can implement one-dimensional convolution along a one-dimension
array. The filter, given as an argument of the function, was a fifteen-element array
containing only ones to implement integration operation.

I found these parameters and settings to be the most suitable for this task, the result of
which is illustrated in Figure 4.2. The upper part of the figure shows the input ECG signal
before these operations. And the lower part is the processed version of this, on which the
red dots indicate the detected peaks.

Figure 4.2: Result of the Pan–Tompkins algorithm on ECG

After performing these transformations, the R-peaks can be detected in the resulting ECG
signal and based on these information, the heart rate can be calculated.

1The Savitzky–Golay filter is a digital filter that, in the case of equally spaced data points, is capable
of smoothing the signal and calculating the derivative of the smoothed signal without distorting the signal
tendency. [85]
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4.1.4 Pre-processing to verify compliance

To determine whether the ECG and PPG signals are appropriate, they must be properly
pre-processed. If the number of R peaks and systolic peaks are known, then the adequacy
of the input signals can be determined based on the relationship between these values.
The pre-processing described in Section 4.1.3 creates the opportunity to transform the
ECG signal in such a way that the R peaks can be easily detected. However, I also
applied this algorithm to the PPG signal, the parameters of which I only changed that I
moved the cutoff frequencies to 0.8 Hz and 12 Hz, due to the different characteristics of
the signal.
Figure 4.3 shows the result of the algorithm. The upper part of the figure shows the input
PPG signal before these operations. And the lower part is the processed version of this,
on which the red dots indicate the detected peaks.

Figure 4.3: Result of the Pan–Tompkins algorithm on PPG

A slightly different application of the Pan–Tompkins algorithm on ECG and PPG results
in signals in which the main peaks can be easily detected and counted. Based on this
information, it is possible to decide whether the input data is correct, the method of
which is detailed in Section 5.4.5.

4.2 Neural network design

During the preparation of this study, I created several deep learning models to examine
which one is the most suitable for solving the given task. Three of the implemented models
are presented in this chapter, as the others were made with minor changes from them.
These three neural networks are illustrated in Figure 4.4.
All of these networks were pre-trained with data from the public database available on
Kaggle. In the following, the models and their layers, shown in Figure 4.4, are detailed.
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Figure 4.4: Structure of the implemented models

Model 1 The model has six convolutional layers. After the CNN layers, shown in Figure
4.4, some layers are not visualized for the sake of conciseness, however, there is a batch
normalization layer, a RelU layer, and a dropout layer with 10% masking probability after
each convolution layer. Furthermore, after the first and second convolution layers, I apply
average pooling with a kernel size of 2. In Table 4.1, the number of filters, the kernel size,
and the stride are presented according to these layers.

Layer Number of filters Kernel size Stride

CNN 1 512 8 2
CNN 2 256 4 1
CNN 3 128 4 1
CNN 4 64 4 1
CNN 5 32 4 1
CNN 6 16 4 1

Table 4.1: Parameters of the CNN layers

In addition, in CNN 1 padding is not applied, while in the case of the other convolutional
layers I used the so-called "same" padding, due to which the length of the output signal
sequence is the same as the input length.
At the end of the model I used two fully-connected layers. The first produces 512 output
features, followed by a ReLU and a dropout layer, which are not shown in Figure 4.4 for
the sake of conciseness. And the FC 2 has two outputs, which correspond to systolic and
diastolic blood pressure values.

Model 2 This model contains exactly the same network of six convolutional layers at
the beginning that I presented according to Model 1. The purpose of these layers is feature
extraction, i.e. to learn patterns in the time and frequency domain, thus highlighting the
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important information of the input signal. After these layers, I used two identical LSTM
layers. Together, these layers form a so-called stacked LSTM, in which the input of the
second layer is given directly by the output of the first layer. Furthermore, the number
of features in the hidden state is 128 in both layers, and I also used a dropout of 0.1 for
the training process. These LSTM layers aim to learn the patterns found in the temporal
sequence. At the end of the model, I used the same two fully-connected layers that I
mentioned according to Model 1.
It is worth mentioning that I also created this model with residual connections across
convolutional layers, using bidirectional LSTM2 instead of LSTM, using GRU and bidi-
rectional GRU3 instead of LSTM, but since these did not perform better than Model 2, I
kept it.

Model 3 This model started with the same six convolution layers and ended with the
same two fully-connected layers as the other two models. However, instead of the two
LSTMs, attention layers, described in Section 2.5.5, are used here. The attention layer
aims to examine the entire input sequence to find patterns and relationships. The number
of input features of this layer is 16, the number of heads is 8, and the dimensions of
the feed-forward network are 1024. Furthermore, I set a dropout to 0.1 for the training
process. I adjusted the number of layers to 4, which means this model uses 4 attention
layers with the previously mentioned parameters, which is not visualized in Figure 4.4 for
the sake of brevity.
In the case of this model as well, I attempted to create residual connections across convo-
lutional layers, but I could not achieve a significant increase in performance with them.

Conclusion After evaluating the performance of all three networks, I came to the de-
cision to use Model 2 in the created system. The basis for this decision was that Model
2 exceeded the results of Model 1 in terms of estimation errors, so I chose Model 2 from
these two models, which can be understood as an extended version of Model 1. Model 3
produced similar results as Model 2 according to estimation errors, however, Model 3 had
higher values both in the number of parameters and in the network’s runtime, so in terms
of the final implementation, Model 2 proved to be more appropriate.
In conclusion, Model 2 has the best performance among the described models, and as a
result, this algorithm is used in the implemented system to estimate blood pressure values.
However, to learn the characteristics of the data measured by the MAX86150EVSYS,
I applied transfer learning4 on this pre-trained model using the data recorded by the
previously-mentioned device. As a result, it can estimate the systolic and diastolic blood
pressure from the signal provided by the MAX86150 sensor with a low estimation error.

2The bidirectional LSTM supplements the unidirectional LSTM with another LSTM layer, in which
the direction of the information flow is reversed, i.e., the input sequence flows backward. The outputs of
the whole layer are calculated with the combination (e.g., sum, average) of the outputs of the two layers.
[107]

3Analogous to the bidirectional LSTM.
4Transfer learning is a machine learning methodology designed to transfer knowledge across domains.

This allows a model to utilize knowledge of more general information to solve more specific problems. [106]
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Chapter 5

Implementation

In this chapter, I describe the implementation of my task. The hardware units used and
the system resulting from their connection, as well as the software running on the central
unit are presented in detail.

5.1 System plan

The central unit of the system is the Raspberry Pi 4 Model B, on which an applica-
tion runs, which has four tasks. The first is pre-processing, which converts the data,
received from the MAX86150EVSYS, into a suitable form for computation and display.
Next is the communication, which is responsible for the Bluetooth connection with the
MAX86150EVSYS. The third is computation, within the framework of which the systolic
and diastolic blood pressure values are estimated, and the heart rate is computed. Finally,
the graphical user interface (GUI) is responsible for the appropriate display of the received
and calculated data. This core unit is connected to all other elements of the system. The
MAX86150EVSYS sends and receives messages via Bluetooth, so this communication is
two-way. Furthermore, it receives data from the computer mouse, while it sends data to
the monitor. For easier understanding, the block diagram of the system is shown in Figure
5.1.

Figure 5.1: Block diagram of the system
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5.2 Hardware components

Besides the peripherals, the system contains two hardware units. These components pro-
vide the proper functioning of the system. In the following points, these hardware units
are presented in detail.

5.2.1 Raspberry Pi 4 Model B

This hardware component forms the central unit of the system, and all the other hard-
ware units communicate with it. The Raspberry runs the application, created in this
work, which controls the graphic display, the running of the neural network that estimates
blood pressure, the determination of the heart rate (HR), and the communication with
MAX86150EVSYS via Bluetooth.
This Raspberry Pi 4 Model B is a small-sized, low-power, but powerful computer. This
hardware is used for different applications like smart home hub, media center, factory
controller, and much more. [72] The task-related technical specifications can be found in
Table 5.1.

CPU Broadcom BCM2711, quad-core ARM Cortex-A72 (ARM v8) 64bit SoC @ 1.5GHz
Memory 2GB LPDDR4-3200 SDRAM
Ports micro-HDMI, USB 3.0, USB 2.0, Bluetooth 5.0

Table 5.1: Technical specifications of the Raspberry Pi 4 [73]

5.2.2 MAX86150EVSYS

The MAX86150EVSYS [2] (evaluation system) provides a platform for using the
MAX86150 integrated PPG and 1-lead ECG sensor module. The EV system consists of
two boards, a MAX32630FTHR microcontroller board, and a MAX86150 evaluation kit.
The first board contains an embedded processor called Cortex-M4F [1], which combines
high-efficiency signal processing functionality with the advantages of low power consump-
tion, low cost, and ease of use. This unit is responsible for Bluetooth communication and
power management. The sensor board contains the MAX86150 module and two stainless
steel dry electrodes for ECG measurement. Furthermore, this system is powered by a
lithium-ion battery. Figure 5.2 shows this system.

Figure 5.2: MAX86150 Evaluation System [2]
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It is important to highlight that the MAX86150 [30] sensor module is the most important
part of the system, as it contains an integrated electrocardiogram and photoplethysmo-
gram sensor. It also includes internal LEDs, a photodetector, and low-noise electronics
with ambient light rejection. This evaluation kit operates from a 1.8V supply with a sep-
arate power supply for the internal LEDs. Communication with the microcontroller is via
a standard I2C-compatible interface. Figure 5.3 shows the block diagram of this sensor
module.

Figure 5.3: MAX86150: Simplified Block Diagram [30]

During the solution I implemented, I did not use the built-in pair of electrodes. The
reason for this was that it was probably a manufacturing defect since when measuring the
resistance of one electrode, a value of around 50 Ohm was obtained, while according to
the datasheet, it should work as a short circuit, as the other electrode does. This error
was noticed in such a way that the received waveforms did not resemble the ECG signal.
After this observation, the process of troubleshooting began, during which the cause of
the inappropriate waveforms was found. I solved this problem by soldering two electrode
wires used for ECG measurement to the soldering of the built-in electrodes. The resulting
ECG waveform has become much more appropriate.
In the case of this hardware component, it is necessary to mention the associated client
application, which displays the waveforms of the measured data and also allows several
settings. For instance, in terms of ECG, it is possible to adjust the adaptive filter, as
well as the cutoff and notch frequency, or in the case of PPG, the AGC (Automatic Gain
Control). These settings affect the measurement via software. The main view of the client
application is shown in Figure 5.4.
One of the most practical features of this client application is the register map, which
shows all the registers of the MAX86150 and allows you to modify the writable registers
through this interface. Another mentionable function is that it allows saving the measured
data, which was extremely useful when I created my dataset.

5.3 User interface

Monitor The monitor connects to the Raspberry Pi 4 Model B. Its job is to display the
graphical user interface that runs on the Raspberry.
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Figure 5.4: MAX86150EVSYS clinet application

Computer mouse A computer mouse enables user interactions. It connects and gives
information to the Raspberry Pi 4 Model B. Thus, the user has the opportunity to start
and stop the measurement, as well as to open and close the application.

5.4 Application

The application running on the Raspberry Pi 4 Model B was created in Python pro-
gramming language [18]. The reason for this is that the Raspberry runs a Raspberry Pi
OS (previously called Raspbian) that is capable of running Python programs, and also
because it is a high-level programming language that enables rapid development. The
most important parts in the structure of the application are illustrated in Figure 5.5 using
the UML (Unified Modeling Language) class diagram. In the following, the program is
detailed from the point of view of functionality.

5.4.1 Graphical user interface

The Graphical user interface is the component of the program that runs on the main
thread. It does not perform calculations, its task is only to display the graphical elements
(e.g. buttons), the waveforms, and the proper output values correctly. The Python file
that implements this component contains a class, called App, that holds the components
together. It can be called the main component since it contains as attributes the class of
the communication component, the neural network model, and the heart rate computation
component. When the App is instantiated, the constructor creates its attributes with
their corresponding initializer values. It also creates a graphical interface with graphical
elements.
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Figure 5.5: UML class diagram of the application

To implement this graphical part of the task, I used the tkinter [24] Python library,
which simplified the graphic display with several built-in functions and graphical elements.
The resulting graphical interface is shown in Figure 5.6, which contains several graphical
elements, including:

• The central element of the application is a figure that displays the ECG and PPG
input signal without further filtering. Before display, only the ADC values are con-
verted into the appropriate numerical format and correct physical units, which is
detailed in Section 4.1.1. This figure consists of two subplots, the upper one shows
the ECG signal in the mV unit, and the lower one shows the PPG signal in the
nA unit. In both cases, the sample indexes are found on the x-axis, and the signals
are displayed as a function of the samples. The figures show 8 seconds of data at a
time. As soon as the measurement exceeds this value, the oldest input sample will
be discarded, so the data storage procedure works like FIFO (First In First Out).

• Two buttons can also be observed, the first one indicates the start, and the other
indicates the stop of the measurement.

• There are also three panels on the right side of the display, which I implemented
using label elements. These labels display the systolic blood pressure, the diastolic
blood pressure, and the heart rate.
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• There is a title element showing the title at the top of the canvas.

• In addition, the x in the upper right corner allows you to exit the application.

Figure 5.6: The graphical user interface

5.4.2 Logical part

The App class has many attributes. For instance, one of the attributes is the class that
enables communication (myComm), and other attributes are the class that implements
a neural network (myModel) or the one that computes the heart rate (myHR). The
App also contains Numpy’s ndarrays for the computed results (hr_buff , sys_buff ,
dia_buff), the average of which gives the attributes containing the displayed double
values (hr_res, sys_res, dia_res). It also creates two threads, which I implemented
using a Python program library called Threading [23]. The first thread (comm_thread)
is responsible for the continuous collection of data with the help of the communication
component. The second (calc_thread) is responsible for calculating the results utilizing
the neural network and the HR computation components. Since there is also communica-
tion between the threads, lock elements are needed to protect variables against possible
problems caused by simultaneous access of the same variable by different threads. The
first lock (data_lock) aims to protect the variables that store the measured input ECG
or PPG samples in the class responsible for communication. This lock is necessary be-
cause, in the case of active measurement, the communication component continuously
writes these blocks, and the thread, responsible for the graphical display, also reads them
periodically. To prevent possible simultaneous reading and writing, I use a lock to make
these reading and writing operations atomic. The other lock (result_lock) protects the
variables containing results, written by the thread responsible for result computation. The
App also reads these variables periodically, so the lock is necessary in this case.
The app class has several methods in addition to the constructor, which are the following:

• plot_data(): This method is responsible for writing and plotting: Depending on the
adequacy of the input, it displays the outputs and the input signals. If the inputs
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are incorrect, a line is displayed in place of the outputs to indicate that there is no
output to display.

• data_acquisation(): This method runs on a separate thread. If the measurement has
already started, then continuously read the data with the help of the communication
component.

• res_evaluation(): This also runs on a separate thread. This method is responsible
for evaluating the heart rate (HR), determining the quality of the inputs, estimating
the blood pressure, and writing the results into the appropriate attributes.

• start_meas(): This is the event assigned to the start button, so if someone presses
the start button, this function starts running. The task of this method is to reset
the buffers and start data collection.

• stop_meas(): This is the event assigned to the stop button, so if someone presses
that button, this function starts running. The task of this method is to stop the
measurement.

The App class descends from a class defined in tkinter, which represents the main win-
dow of an application. Several useful functions are available thanks to inheritance. For
example, the after() method, one of whose arguments is a time specified in milliseconds,
and the other is a function that is called after the specified time. With this function, I
resolved to call the plot_data() method 1 ms after it finished its previous running. Fur-
thermore, inheritance also gives access to the method that starts the execution of the
graphical interface, called mainloop().
As soon as we exit the graphical interface, the program breaks the connection using the
component responsible for communication, then waits for the other threads to finish run-
ning using the join() operation.

5.4.3 Neural network model

This software component is responsible for producing the systolic and diastolic values
based on the input data. The measurement can be started via the graphical user interface.
As soon as the first 8-second sample arrives, the execution of the neural network begins
on a separate thread. After estimation, it returns the obtained results to the graphical
interface. Then, this thread repeats this process again and again until the measurement
is stopped.
So there are two classes in the python file that implements this component:

• The first class implements the chosen neural network model (Model 2) described in
Section 4.2 using the Python library called Pytroch [19]. In this class, there are
attributes representing individual layers of the network, as well as an additional
method beside the constructor, the so-called forward function, which returns the
estimated values if the input is adequate according to the dimensions. For the sake
of brevity, this class is not detailed in the UML diagram shown in Figure 5.5.

• The second is a class whose attribute is the previously-mentioned class that imple-
ments the neural network. Furthermore, it has an evaluation method, which expects
two Numpy [16] arrays of 1600 elements that contain the PPG and ECG signals.
Inside this function, the pre-processing described in Section 4.1.2 takes place. The
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resulting signals are suitable for feeding them to the neural network, which part runs
after the pre-processing. So essentially this class provides a method that evaluates
the neural network given the appropriate inputs and returns an array whose first
element is the systolic blood pressure value and the second element is the diastolic
blood pressure value.

In the thread that runs the network, the heart rate is also evaluated by a function provided
by the Heart rate computation component. This method also provides information that
determines whether the input data is correct. If it is, then the thread runs the neural
network on this data, and places the resulting output in a 5-element array. Then the
average of these array’s elements is copied to the variable that will later be read and then
shown on the screen by the graphic interface. This is necessary to smooth the output and
thereby increase the user experience.

5.4.4 Communication

This software component enables communication with the MAX86150EVSYS via Blue-
tooth. Therefore it establishes and maintains this Bluetooth connection, as well as per-
forms all tasks related to communication. To achieve an encapsulated implementation of
these functionalities, I implemented all communication-related parts of the program in one
class, called Communication.
After the connection is established, it sends configuration commands to the evaluation
system, with which I set several parameters that significantly affect the measurement.
Among other things, these are the most remarkable adjustment according to ECG:

• IA Gain (Instrumentation Amplifier Gain) = 9.5 mV/mV , which adjusts the gain
of the differential input chopping instrumentation amplifier

• PGA (Programmable Gain Amplifier) ECG Gain = 8 mV/mV

• Sample Rate = 200 Hz, which is the output data rate of the delta-sigma ADC

• Adaptive filter: ON, which enables an adaptive hybrid-time-domain software filter

• Notch Freq = 50/60 Hz, which sets the software notch filter

• Cutoff Freq = 50 Hz, which can set the cutoff frequency in the software low-pass
filter

The most relevant PPG settings are the following:

• AGC (Automatic Gain Control): ON, which enables automatic gain control, which
allows the evaluation system software to dynamically adjust LED currents and ADC
range

• IR PA (Pulse Amplitude) = 10 mA, which sets the amplitude of the infrared LED
current

• ADC Range = 32768 nA, which sets the full-scale range of the photodiode

• ALC + FDM: ON, which provides ambient light cancellation

• Pulse Width = 400 µs, which sets the pulse width of the LED current
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• IR Range = 51 mA, which sets the infrared LED current range

• The FIFO, which contains the sampled data, can also be parameterized

The above-mentioned parameter set was selected according to the recommendations of the
datasheet [4].
As soon as the measurement starts via the graphic interface, it sends a command to the
sensor card so that it can start sending data. After that, the program continuously reads
the incoming data on a separate thread. The data frame received from the evaluation
system is in Figure 5.7.

Figure 5.7: Data frame received from MAX86150EVSYS

In this frame, the start byte is an especially helpful section, because it indices the start
of the frame. Therefore, its arrival is continuously monitored by the component after the
beginning of the measurement. After the program finds this byte among the incoming
data, the physiological signal-related sections will be collected. So only the filtered ECG
and IR are needed because they need to be displayed and used by other components to
calculate the HR and the blood pressure. After selecting these values, using the procedures
presented in Section 4.1.1, I converted the obtained values to the appropriate format and
unit.
Following that, the received values are stored in two 1600 elements long Numpy array
[15], which means eight seconds of stored data because the sampling rate is 200 Hz. These
arrays read later by the components managing the graphical interface and the neural
network and heart rate calculation.
As soon as the measurement stops, this component sends a command to stop receiving
data via Bluetooth. If the application shuts down, it breaks the Bluetooth connection
with the MAX86150EVSYS device before the program ends.

5.4.5 Heart rate computation

The class implements this component contains an essential function. This function is called
in the thread in which the blood pressure values are estimated. Similar to the neural
network evaluation method, this function has two inputs, the ECG and PPG signals.
Using these inputs, it performs two tasks. One is to evaluate the heart rate (HR), and the
other is to judge the adequacy of the input data.
To determine the heart rate, the input signals are pre-processed using the methods de-
scribed in Section 4.1.3. After performing these transformations, the R-peaks can be easily
detected in the resulting ECG signal. Based on this information, the heart rate can be
produced. I calculated it by dividing the difference between the indices indicating the
position of the first and last found peak of the given frame by the number of sections
between these peaks, which quantity is one less than the number of these peaks, so I get
the average distance between the neighboring ones. For a better understanding, Equation
5.1 represents the above-mentioned operation.
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ECGinterval = Peaklast − Peakf irst

NumberOfPeaks − 1 (5.1)

The result can be calculated in time units by multiplying the result obtained in the number
of indexes by the sampling time. Then, divide 60 by the average time between R-peaks
obtained earlier for the input time frame, which gives the desired heart rate in bpm.
Equation 5.2 represents this operation.

HR = 60
ECGinterval · 1

200
[bpm] (5.2)

For the second task of the function, the input signals are first pre-processed according
to the methods presented in Section 4.1.4, as a result of which the main peaks of the
input data can be easily detected and counted. Based on these information, the function
can decide whether the input data is correct. This information is needed because the
MAX86150EVSYS does not provide information about whether a particular sensor is
being used properly, so I had to solve this task myself. Therefore, the other value that
this function returns is the suitability of the inputs for further computations. From this
point of view, three possible outcomes can occur, which are detailed in the following list:

1. The first is that both inputs are suitable for calculating HR and blood pressure (BP).
In this case, ECG is suitable if the heart rate calculated from its peaks is between
30 and 225 bpm. And PPG is appropriate if the difference between the number of
ECG and PPG peaks is less than or equal to one, according to the fact that every
ECG peak is accompanied by a PPG peak.

2. The second indicates that, according to the previously-mentioned interval, the ECG
is correct, so the heart rate is computable. However, if the number of peaks in
the two signals differs by more than one, and the number of ECG peaks gives a
reasonable HR value, I assume that the PPG sensor is not being used properly.
Therefore, blood pressure values are not producible from the input data without the
correct PPG.

3. Finally, I also distinguish the case when the ECG signal is incorrect, according to
the previously-mentioned interval. In this case, the user is probably not touching the
ECG electrodes properly, so neither heart rate nor blood pressure can be evaluated.

So the output is a two-element array, the first element of which indicates the quality of
the inputs, and the second is the value of the calculated heart rate.
As mentioned in the Neural network model, the thread contains a cycle that begins when
the measurement has been started and the first 8 seconds of data has arrived. After
that, the cycle runs continuously until the measurement is stopped. In the body of the
cycle, the previously detailed function that calculates the HR is called, the result of which
determines which calculations should be performed. If the HR is appropriate, I collect
the currently received values in a 5-element array, similar to what I do in terms of blood
pressure. Then I put the average of the current elements of the array into a variable that
the component, responsible for the graphical interface, reads and then displays. Also,
boolean-type variables are set during the cycle so that the graphical interface can obtain
information about which inputs are appropriate.
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Chapter 6

Experiments and results

Within the framework of this chapter, the data used in the training process and during
testing will be presented. The parameters and methods of training are also mentioned.
Furthermore, the used metrics are detailed, as well as the performance of the implemented
networks based on these metrics. However, the results of the model used in the imple-
mented system are also presented with different visualization methods.

6.1 Dataset

In this section, I present the sources from which I obtained data for training neural net-
works and evaluating their performance. Furthermore, it is described how I arranged these
data into a suitable form for operations with the neural networks.

6.1.1 Publicly available dataset

I used a publicly available dataset [55][56] for the training, validating, and testing of the
designed neural networks. This data can be found on Kaggle website, which contains
selected data from the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC)
II database, on which additional pre-filtering and validating were applied.
Measurements in MIMIC II were performed between 2001 and 2008 at Beth Israel Dea-
coness Medical Center (BIDMC) in Boston. This database contains many clinical data
and physiological waveforms. However, the required data in terms of this study were the
ECG, PPG, and blood pressure waveforms. These waveforms were collected from bed-
side monitors (Philips Intellivue MP70 Patient Monitor) at a sampling rate of 125 Hz.
It is important to emphasize that blood pressure was measured invasively, therefore the
most accurate blood pressure measurement method was used. It is also an important
information that the PPG was measured on the fingertip.
So the dataset, found on Kaggle, contains PPG, blood pressure, and the signal from the
one channel of the ECG that is least noisy and most similar to the expected waveform with
the notable waves and peaks. These data total 5.28 Gbytes, which can be downloaded in
.mat or .csv format, of which I chose the latter since I worked in Python throughout my
work.
Then I converted the database into a suitable form for training, validating, and testing.
To do this, I divided each waveform (PPG, ECG, BP) into 8-second time frames with
a 2-second shift between the first element of adjacent frames, so there is an overlap of
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6 seconds between these frames. Then I determined the systolic (SBP) and diastolic
blood pressure (DBP) values from the blood pressure (BP) waveform as the maximum
(SBP) and minimum (DBP) blood pressure values of the given time frame. Furthermore,
I deleted the frames that had outlier systolic or diastolic values or were associated with
an unrealistically low or high heart rate. After that, I put approximately 85% of the data
into the training dataset and the remaining approximately 7.5-7.5% into the validation
and testing dataset. During this sorting, I paid special attention to ensure that there was
no overlap between the individual data sets, which is why I had to leave out a few time
frames.
From such a frame containing 8 seconds of ECG, PPG, and the information of the SBP
and DBP, I received a total of 58,234 pieces, of which 48,754 belong to the training data,
4,404 to the validation data, and 5,076 to the test data. This large amount of data provides
the opportunity for proper training of neural networks.

6.1.2 Own measurement

I performed measurements using the MAX86150EVSYS device and the associated client
application. Furthermore, for validation, I used an OMRON M2 automatic blood pressure
measuring device, which can measure the systolic and diastolic blood pressure values with
an accuracy of ± 3 mmHg. This device is shown in Figure 6.1.

Figure 6.1: Omron M2 [17]

Two subjects participated in the measurements. The cuff of the validating device was
placed on the left upper arm of the subject, according to the description attached to the
device. The PPG sensor on the MAX6150EVSYS device was touched by the index finger
of the right hand, while the ECG electrodes were clamped between the middle finger and
thumb of both hands.
A measurement lasted from the beginning of cuff inflation to the end of cuff deflation,
during which the ECG and PPG waveforms were saved using MAX86150EVSYS’s client
application. The acquired waveforms of these measurements were supplemented with
the systolic and diastolic values displayed by the Omron M2 for the given measurement.
Using this method, I recorded 16 measurements, of which I kept 12, as the signals were
not properly recorded during the deleted measurements due to disturbing factors. The
following additional information were documented for all measurements:

• Subject ID
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• Start time of the measurement

• Stop time of the measurement

• Result 1: Systolic blood pressure

• Result 2: Diastolic blood pressure

• Result 3: Heart rate

• Disturbance during the measurement, which received the following values: "None",
"Minimal", and "Significant".

I also separated the signals obtained with the previously-mentioned procedure into 8-
second time windows, however, to increase the number of received frames, I did not use a
2-second shift between the frames, but 0.4 seconds, which means 50 samples at a sampling
frequency of 200 Hz. Each frame contains 8 seconds of PPG and ECG waveforms, as
well as the corresponding systolic and diastolic values. The other registered data are not
included in the frames.
I checked the appropriateness of the time frames obtained one by one and deleted those
that did not prove to be appropriate. As a result, I received a total of 1621 time frames,
of which 568 belong to one subject, while 1053 belong to the other subject.

6.2 Metrics

I evaluated the output of the prepared and trained neural networks on test data according
to several methods, with the help of which the different networks become comparable. For
the metrics, the error is interpreted as shown by Equation 6.1. However, in the case of
the first two metric (Staistical and BHS), the absolute value of this error is used.

Error = Outputtarget − Outputestimated (6.1)

Statistical In the case of this metric, the mean value and standard deviation of the
previously described absolute error are calculated. A model can be considered a strong
predictor if these two statistical values of the absolute error values are small.

British Hypertension Society (BHS) standard This metric applies the classifica-
tion system published by the British Hypertension Society (BHS) that is commonly used
to characterize the performance of blood pressure estimation algorithms. [68] In this case,
the algorithms are classified based on the proportion of the outputs that have an error
corresponding to a given interval. The requirements and rules are shown in Table 6.1,
with the cumulative percentage values.

Grades ≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg

Grade A 60% 85% 95%
Grade B 50% 75% 90%
Grade C 40% 65% 85%

Table 6.1: BHS Standard Minimum Requirements [68]
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Association for the Advancement of Medical Instrumentation (AAMI) stan-
dard The last metric is the standard published by the US Association for the Advance-
ment of Medical Instrumentation(AAMI). Based on this method, a measurement algorithm
is valid if the absolute value of the mean error is less than 5 mmHg and the standard de-
viation of the errors is less than 8 mmHg. [97]

6.3 Training

The labels used for the training process were the SBP and DBP values for the given time
frame according to both presented data sets.
To train the models presented in Section 4.2, I utilized the AdamW optimizer using a
Python library called Pytorch [19], which contains a function called AdamW [5]. I set
the learning rate of this optimizer to 0.0001 and left all other parameters at their default
values, which are as follows: β1 = 0.9, β2 = 0.999, ε = 10−8, and weight_decay = 0.01.
As a loss function, I operated mean square error, which is commonly used in regression
problems. I implemented this criterion with MSELoss() [14] function, which also can be
found in the Pytorch library.
Furthermore, during training, I set the batch size to 24 by tuning this hyperparameter.
I found that the network trained with this parameter gave the fewest estimation errors
evaluated on the validation and test data.
I completed the training with epochs1. After each epoch, I evaluated the network on the
validation data. If the average of the errors received after evaluating the batches was the
lowest so far, I saved the result as the best state of the network.

6.4 Network results

In this section, the performance of the neural network models, described in Section 4.2,
are evaluated on the publicly available dataset based on the metrics explained in Section
6.2. Then the chosen model (Model 2) is also evaluated on the measured dataset.

6.4.1 Result on the public dataset

Here, not only the results of the neural networks are presented, but also based on the
metrics, they are compared with the results of the procedures presented in Chapter 3.
In the case of Section 3.1, I only mention the results evaluated on the MIMIC II database
in the comparison, since the results of the other procedures were also evaluated on this.
While in the case of Section 3.2, the best-performing network result is shown only, which
was also evaluated on all the data obtained from the MIMIC II database.

Statistical Based on this metric, the neural networks presented in Section 3.1 and Sec-
tion 3.2 produced results, which can be observed in Table 6.2 alongside my results. In
Table 6.2, MAE is the average mean error and SD is the standard deviation.

1Epoch means a training cycle, during which all of the training data are used once to train our network.
The complete training of a network usually takes place over several epochs.
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Systolic Blood Pressure Diastolic Blood Pressure
Model MAE SD MAE SD

PPG-based (3.1) 3.70 3.07 2.02 1.76
Model (b) (3.2) 6.73 14.51 2.52 6.44
Model 1 (4.2) 3.11 3.43 1.74 1.93
Model 2 (4.2) 2.85 3.70 1.62 2.10
Model 3 (4.2) 2.87 3.71 1.80 2.12

Table 6.2: Evaluation with the statistical metric (units are measured in mmHg)

According to the results shown in Table 6.2, my neural network models outperform Model
(b) based on this metric. While the results of the PPG-based model are similar to mine
as this model outperforms my results in terms of standard deviation, and my models
outperform the PPG-based model in terms of mean values.
The models I have created give very similar results. While Model 1 can be called the best
in terms of the standard deviation, the other two models are ahead of it in terms of the
mean value. However, among my models, Model 2 can be considered a compromise in
terms of this metric since it is not the worst for any of the characteristics.

BHS standard Similar to the previously-presented comparison, I compared the results
of the different approaches in a table, which can be seen in Table 6.3. In this table, the
given letter in brackets denotes the class according to the given percentage, SBP denotes
the systolic blood pressure, and DBP is the diastolic blood pressure.

Model Signal ≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg

PPG-based (3.1) SBP 77%(A) 92%(A) 96%(A)
DBP 93%(A) 97%(A) 99%(A)

Model (b) (3.2) SBP 59.46%(B) 79.97%(B) 88.45%(B)
DBP 76.95%(A) 95.72%(A) 99.97%(A)

Model 1 (4.2) SBP 83.65%(A) 95.69%(A) 98.61%(A)
DBP 94.48%(A) 99.02%(A) 99.89%(A)

Model 2 (4.2) SBP 87.21%(A) 95.78%(A) 98.52%(A)
DBP 95.00%(A) 98.75%(A) 99.68%(A)

Model 3 (4.2) SBP 86.12%(A) 96.07%(A) 98.34%(A)
DBP 93.21%(A) 98.66%(A) 99.77%(A)

Table 6.3: Performance according to British Hypertension Society classification

As Table 6.3 shows, in terms of the systolic blood pressure value, based on this metric,
the results of my models outperform the other approaches. However, in the case of the
diastolic values, looking at the largest interval, the results are very similar, however,
Model (b) slightly exceeds my results. In the case of the PPG-based model, this result
is not known precisely enough to determine how it relates to the other results. However,
examining the other diastolic intervals, my approaches outperforms the other models.
Examining the models I created, it can be noticed that they show very similar results for
the two larger intervals. While for the smallest interval, Model 2 shows the best results,
both for SBP and DBP.

AAMI standard According to this metric, I compared the results of the different ap-
proaches in Table 6.4, in which ME means the mean error and SD means the standard
deviation.
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Systolic Blood Pressure Diastolic Blood Pressure
Model |ME| SD |ME| SD

PPG-based (3.1) 0.21 6.27 0.24 3.40
Model (b) (3.2) 4.64 14.51 3.16 6.44
Model 1 (4.2) 0.30 4.63 0.17 2.58
Model 2 (4.2) 0.14 4.66 0.12 2.65
Model 3 (4.2) 0.09 4.69 0.70 2.69

Table 6.4: Evaluation with AAMI metric (units are measured in mmHg)

It is clear from Table 6.4 that the PPG-based model and my models fulfill the AAMI
criteria for all values. However, in the case of Model (b), the standard deviation of the
systolic blood pressure value is greater than 8, so it does not meet this criterion.
Furthermore, the PPG-based model is worse than my models in terms of standard devi-
ation but exceeds some models in terms of the mean value. The models I made are very
similar in terms of standard deviation. However, in terms of mean value, Model 2 and
Model 3 are outstanding. Furthermore, it is worth mentioning that Model 2 exceeds the
PPG-based approach in terms of all characteristics.

Visualization of the results The results of the selected model (Model 2), evaluated
on the test data, can be visualized in several ways. In the following, the results obtained
with these methods are presented.

Figure 6.2: Comparison of estimated and real BP values

In Figure 6.2, the estimated values are visually compared with the genuine values presented
on 25 adjacent time frames of the test dataset. On the left side, information according to
the systolic blood pressure value (SBP) can be observed, while on the right, information is
about the diastolic blood pressure values (DBP). In the upper plot, the real and estimated
values are displayed at the same time, while in the lower plot, the error values, calculated
from the difference between the real and estimated values, are shown. Each value refers
to a specific time frame in the test data set.

48



The following visualization tool is the histogram, which approximates the distribution of
the errors. Figure 6.3 was constructed based on the estimation error of systolic (SBP)
and diastolic blood pressure (DBP), which I calculated as the difference between the true
blood pressure value and the estimated blood pressure value.

Figure 6.3: Histogram of blood pressure estimation errors

Figure 6.3 shows that both histograms approximate a normal distribution with zero mean
value, which is 0.14 mmHg for SBP and -0.12 mmHg for DBP. The variance of this
distribution can also be determined, which is 21.73 mmHg2 for SBP and 7.04 mmHg2 for
DBP.

6.4.2 Results on self-measured dataset

The selected model (Model 2) was evaluated on the dataset obtained by my measurements.
During this process, I used the same metrics and visualization tools as in the case of the
evaluation of the publicly available dataset.
The results presented here were achieved with the help of transfer learning, during which
I continued the training process with my self-measured data on the model pre-trained on
the public dataset.
I performed the training using two types of training, validation, and test datasets. In
the first case, which is called in the following the Normal dataset, I used 80% of each
time frame in the training dataset, and 10-10% in the validation and test dataset. In the
case of this extraction, I paid attention to ensuring that there was no overlap between
the datasets. As a result, 925 time frames were included in the training dataset, 131 in
the validation dataset, and 125 in the test dataset. So, in the case of these datasets, the
data of both subjects can be found in each dataset. In the other case, I performed a
so-called cross-validation, during which the training and validation dataset includes the
frames that belong to the subject, who has more (1053) frames. And I perform the test on
all the time frames belonging to the subject with 568 time frames. With this method, the
training process is completely separated from testing, thus it provides useful information
about the generalization ability of the resulting network. As a result, the training dataset
contains 847, the validation dataset 206, and the test dataset 568 frames. In the case of
this procedure, no overlapping can occur between the test and the other data sets, but it
is possible between the training and validation datasets. To prevent data loss due to the
overlap between frames, a completely separate measurement was added to the validation
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dataset, while the results of all the other measurements on the same subject were added
to the training dataset.

Statistical Here, the results of the selected model using the two types of datasets ac-
cording to this metric are presented. This evaluation can be observed in Table 6.5, where
MAE is the average mean error, and SD is the standard deviation.

Systolic Blood Pressure Diastolic Blood Pressure
Model MAE SD MAE SD

Model 2 trained on Normal dataset 1.72 1.37 1.85 2.41
Model 2 trained with cross-validation 3.66 1.80 4.99 3.93

Table 6.5: Evaluation with the statistical metric (units are measured in mmHg)

As expected, the results obtained from the Normal dataset exceed the results of the cross-
validation. In the case of several characteristics, these results exceed the results of the
models evaluated on the public dataset. A significant cause of this is that I worked with
orders of magnitude less data in the case of these evaluations.

BHS standard Here, similarly to the previous metric, I evaluate the model trained on
the two types of data sets based on the standard defined by BHS. Table 6.6 shows the
results of this evaluation, in which the given letter in brackets denotes the class according
to the given percentage, SBP is the systolic blood pressure, and DBP is the diastolic blood
pressure.

Model Signal ≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg

Model 2 trained on Normal dataset SBP 97.60%(A) 100.00%(A) 100.00%(A)
DBP 92.80%(A) 100.00%(A) 100.00%(A)

Model 2 trained with cross-validation SBP 70.07%(A) 100.00%(A) 100.00%(A)
DBP 51.58%(B) 80.11%(B) 100.00%(A)

Table 6.6: Performance according to British Hypertension Society classification

As Table 6.6 shows, in the case of the Normal dataset, the obtained results significantly
exceed the minimum limits of the best (A) category according to all intervals. In the case
of cross-validation, the results for the systolic values and the largest interval of DBP reach
grade A, but the other two intervals of diastolic values can only satisfy the requirements
for grade B.
In terms of this metric, it is also worth mentioning that the high results obtained are
significantly caused by the small amount of data.

AAMI standard Similar to the previously detailed metrics, I present the results of the
chosen model on different datasets based on this metric, which can be seen in Table 6.7,
where ME is the mean error and SD represents the standard deviation.
Based on the values shown in Table 6.7, the criteria of this metric are met by both
approaches, since each absolute value of the mean error is less than 5 mmHg and each
standard deviation of the errors is less than 8 mmHg. Although it is worth mentioning that
while the result according to the Normal dataset significantly exceeds these requirements,
in the case of cross-validation the results are close to the limits.
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Systolic Blood Pressure Diastolic Blood Pressure
Model |ME| SD |ME| SD

Model 2 trained on Normal dataset 0.58 2.12 0.66 2.96
Model 2 trained with cross-validation 3.65 1.81 4.96 3.96

Table 6.7: Evaluation with AAMI metric (units are measured in mmHg)

Visualization of the results of Model 2 trained on the Normal dataset First,
I visually compare the estimated and real blood pressure values and show the estimation
error according to these values, as I did during the evaluation of the public dataset.

Figure 6.4: Comparison of estimated and real BP values

Figure 6.4 shows this visualization, which contains the estimated values for each time
frame in the test dataset due to the small amount of data.

Figure 6.5: Histogram of blood pressure estimation errors

The following visualization tool is the histogram, based on the estimation error of systolic
(SBP) and diastolic blood pressure (DBP), which are calculated as the difference between
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the true blood pressure value and the estimated blood pressure value. The histograms are
shown in Figure 6.5.
It is clear from this histogram that for such a small amount of data, it does not yet
approximate the normal distribution as it did in the case of the public database.

Visualization of the results of Model 2 trained with cross-validation Here, the
same visualization tools were used as in the case of Model 2, which was trained on the
Normal dataset. Figure 6.6 shows the comparison of the real and the estimated blood
pressure values for the time frames in the total test data set since the number of our data
is small.

Figure 6.6: Comparison of estimated and real BP values

The following visualization method is the histogram, shown in Figure 6.7, which presents
the distribution of the estimation errors.

Figure 6.7: Histogram of blood pressure estimation errors

It is worth mentioning that according to both visualization methods, the means of the
errors are far from zero and most of the errors are positive, so this model underestimates
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the true values in general. This information matches the mean values presented in the
table of the AAMI standard.

Conclusion Based on the previously presented information, the applicability of Model
2 can be evaluated in the case of my measurements. The selected model proved to be
adequate for the Normal dataset, however, the results for cross-validation are also out-
standing. Although in the latter case the model was not able to reach the limits of the
best class in terms of all the intervals according to the BHS standard. However, the model
was able to acquire a significant generalization ability, with the help of which in some
cases it was able to determine the blood pressure of a completely unknown person with a
sufficiently small estimation error, and in the worst case, it did not make an error of more
than 15 mmHg.
Considering this information, I concluded that the version of Model 2 pre-trained on
the public dataset and then further trained on the Normal dataset should be included
in the implemented system. The strengths of this model are that thanks to the public
dataset, it has a significant generalization ability, and thanks to transfer learning and my
measurements, it was able to learn the characteristics of the measuring device. Therefore,
this model can estimate the blood pressure values with a small estimation error from the
pre-processed version of the data sent by MAX81650EVSYS.

6.5 Real-time results and limitations

This section presents the final state of the implemented system. Furthermore, it details
the performance of the most critical part of the system and how it behaves in the case of
significantly different inputs from the previously used dataset.

Real-time results The runtime of a neural network is always critical, especially in the
present case, since the model used in the implemented system runs on the CPU of an
embedded system, while these algorithms usually run on high-performance GPUs. So, it
is worth examining how much time my neural network needs to produce an output for a
given input on the central unit of the implemented system, which is the Raspberry Pi 4
Model B.
To investigate this, I measured the runtime of the network in the final state of the system
in 133 cases. The slowest run was 712 ms, while the fastest was 219 ms. The average
value of the measurements was 444 ms, while the standard deviation was 114 ms.

Limitations The subjects were at rest during the measurement of the data, which forms
the Normal dataset. Therefore, I wanted to investigate how the network would perform
on high blood pressure data, by which I mean a value of around 150 mmHg or higher
for SBP. The obtained results showed that the chosen model is unable to estimate these
values with sufficiently small estimation errors. However, if I further train the network
with these data, then the BHS standard’s criteria for class A can be met. Therefore, this
problem could be solved if more data were available that were measured with the given
measuring device.
Furthermore, in the case of very high pressure and heart rate, due to the design of the
MAX86150EVSYS, it is difficult to record proper waveforms since the PPG sensor is
very sensitive and in this physiological state, the subjects cannot touch the sensor in an
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appropriate stable way because of their increased breathing. This problem could be solved
by making a device that provides stable contact with the sensors.

Final state of the implemented system The use of the implemented system is shown
in Figure 6.8, on which the Omron M2 blood pressure measuring device used for validation
can be observed, and the cuff of which was placed on my left upper arm when the picture
was taken. On the right side of Omron M2 is the Raspberry Pi 4 Model B in a black case
connected to the monitor with the white HDMI cable shown in the picture. To the right
of the Raspberry is the MAX86150EVSYS, which clearly shows the use of the soldered
electrodes and the PPG sensor with my right index finger.

Figure 6.8: Usage of the implemented system

An enlarged and sharpened version of the GUI is displayed in the upper right corner of
Figure 6.8 for better visibility. Based on this image, the results of Omron can be compared
with my results.
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Chapter 7

Conclusions and future work

Blood pressure is one of the vital signals, the measurement of which is essential because
an inadequate value of this signal can cause serious consequences. Nowadays, it is most
often measured using a cuff, which has significant disadvantages, e.g., that it is uncom-
fortable, it cannot measure continuously, because of this temporary hypertension can be
unrecognized, and the results of which can be influenced by psychological effects. If an
accurate and continuous measurement is required, invasive blood pressure measurement
is used, however, this method can only be performed under medical supervision.
Within the framework of this study, I presented a novel deep learning based method
utilizing ECG and PPG signals for measuring blood pressure. This method offers the
possibility of continuous and convenient measurement with sufficiently small estimation
errors. To implement this task, I created a complete framework that can sample and
display data in addition to performing calculations. I trained and tested the neural network
model, which runs on the core unit of the system, on a publicly available dataset, as well as
on my self-measured dataset. Then I evaluated the obtained results using various metrics
and visualization methods.

Conclusions This study aimed to create a system that can continuously estimate the
current systolic and diastolic blood pressure values with a small estimation error based on
externally measurable input signals. The central task of the preparation was to implement
a suitable estimation algorithm that could run efficiently on an embedded system.
The results of this study transcended my expectations, as my chosen model managed to
exceed the results of the procedures described in the presented publications according to
several respects. Furthermore, it was achieved that the algorithm runs in an embedded
environment with a proper runtime. In addition, I supplemented the given task with heart
rate computation to create a more useful and versatile system.

Future work There are several opportunities for further development of the current
work. First of all, the hyperparameters of the neural network could be further tuned,
which is an option to improve all tasks using neural networks.
The accuracy of the neural network running on the embedded system could also be in-
creased if more labeled data, measured by MAX81650, were available since the neural
network could learn more essential features from more data. I could not make more
measurements due to time constraints, but it offers an excellent opportunity for further
development.
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Furthermore, creating an own hardware unit that is more user-friendly than the
MAX86150EVSYS, would be a significant enhancement. Although, the measuring board
used in this study performed its task adequately. However, the simultaneous usability of
the ECG and PPG sensor could have been easier for the users. In addition, since the
ECG input signal filter circuit is right next to the PPG sensor, that circuit could easily be
touched with a finger due to the absence of an enclosure, which would completely spoil the
ECG waveform if touched during measurement. Therefore, with self-created hardware, it
would be possible to implement an easy-to-use or even wearable device.
The knowledge and results acquired during the work provide an excellent basis for the fur-
ther development of the task. Furthermore, the implemented system and its performance
serve as proof of the concept I aimed to implement.
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