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1 Introduction

Network science is a highly active research field aiming to describe and analyze net-
works. Relations between a group of entities can be naturally modeled as a graph
where nodes and edges represent group members and their relations respectively,
that makes network science a discipline of numerous potential applications in prac-
tical life.

The birth of the field is usually considered to be the formulation of the famous
problem of The Seven Bridges of Königsberg by Euler in 1736. During the 20th cen-
tury, increased attention has been devoted to graph theory. From a theoretical point
of view, notable contributions have been made on random graphs by – among others
– Pál Erdős and Alfréd Rényi [1]. With the rapid increase in computing power, it
has become possible to collect and analyze massive networks from different walks
of life. Presently, it is widely believed that the formation of complex networks is
not faithfully modeled by completely random processes. It is a challenging task to
develop notions, which can capture important features of a real-world network.

Popular approaches often focus on the degree distribution of the nodes of a given
network, on degree-degree correlations, on the clustering of the network, and various
other measures. Networks are often labeled as belonging to loosely defined classes,
e.g. networks can be ’scale-free’ if their degree distribution follows power-law or
’small-world’ if the average distance between two nodes grows with the logarithm
of the number of nodes [2]. As it is apparent, the concise description of a complex
network is far from trivial, so developing notions that enable one to reveal structural
properties of such networks might be of great benefit.

One of the network groups is the class of fractal networks, introduced by Song,
Havlin, and Makse [3]. The criterion of being fractal needs more explanation than
the ones before, so it will be elaborated in the successive sections. To give a short
idea, the notion of fractal networks is more or less the generalization of the notion
of fractals from geometry. It is suggested that fractal networks have interesting
properties that are mirrored in their robustness against external effects [6]. It is
proposed in the literature that fractal networks are relatively robust against inten-
tional attacks, which may provide an explanation why – for instance – numerous
biological networks evolve towards fractal behavior [6].

In this paper, we review numerous algorithms that have been developed to an-
alyze fractal networks. Particularly, to perform the so-called box-covering of the
network, introduced later. We collected methods known from the literature, im-
plemented them, and compared their performance on various real-world networks
and theoretical network models. We think that the main contribution of this is the
systematical comparison of many algorithms on numerous networks. In addition,
we plan to release our code as an open-source Python package on GitHub, so our
results may be reproduced and fellow researchers may leverage our collection of box-
covering algorithms.

The rest of the paper is organized as follows: we first review the concept of
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Figure 1: The Sierpinsky triangle [7] of fractal dimension ≈ 1.59 [8]

fractalness in complex networks, then in section 2, we introduce the algorithms
we tested. Section 3 is devoted to the networks on which the algorithms have been
tested. Section 4 contains our methods and results with conclusions drawn in section
5.

1.1 Fractality in general

The term fractal comes from the geometry of Euclidean spaces. Objects we usu-
ally consider in a d dimensional space (IRd) have a well-defined volume that could
be evaluated in the following manner: we cover the whole space with a uniform
grid of size l and count the total volume of hypercubes contained in our object.
For example for a circle in two dimensions, we draw a grid consisting of squares of
edge length l and count the number of squares inside the circle, then multiply with
l2. When one takes the l→ 0 limit, our results converge to the volume of the object.

If we consider the number of boxes that contain at least one point of the object,
we usually find that asymptotically, this N number behaves as N ∝ l−d, where d is
the dimension of the space. Now fractals are more ’complicated’ in the sense that
even though they live in IRd, if we perform the above-detailed procedure, we find
that N ∝ l−dB , where dB is the fractal dimension of the objects, generally not equal
to d and not a natural number. A prominent example of fractals, the Sierpinsky
triangle, is shown in Figure 1 .

1.2 Fractality of networks

The notion of fractal networks is quite reminiscent of ordinary fractals. To see the
similarity, we recall the method by which the fractal dimension of networks can be
measured: box-covering [3]
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1. We say that a group of nodes fit into a box of size lB, if for any pair of these
nodes, their shortest distance is less than lB.1

2. A network is covered by boxes of size lB if its nodes are partitioned such that
every group fits into one box of size lB.

3. As the number of possible coverings is finite, there is a minimal number of
boxes to cover the network with lB sized boxes. This is what we denote by
Nmin
B (lB).

4. If Nmin
B (lB) ∝ l−dBB , the network is fractal with fractal dimension dB.

Needless to say, this definition cannot strictly hold for finite networks. In prac-
tice, one calculates many NB(lB) datapoints and then inspects them on a log-log
plot to see if the dependence is power-law to a good approximation. What one can
do is detailed in the next section, but we call attention to the fact that Nmin

B can
only be approximated in practice.

Obviously, fractality could be defined for weighted networks too, but in the
following discussion, we only focus on unweighted networks.

1This is the usual convention, but for the algorithms, we will use a slightly different one. The
reader shall behold this fact.
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2 Algorithms

The box-covering of a network is known to be NP-hard, since it can be mapped to
the famous vertex coloring problem that is indeed NP-hard [4]. Hence to have an
algorithm of practically acceptable complexity, one must use approximating meth-
ods. As it is usual for semi-empirical methods, there are a good number of different
proposals for the task.

To give some intuitive summary, we can say that most algorithms follow a greedy
strategy where the distinction between algorithms is drawn by the actual greedy de-
cision method. However, we present a number of approaches beyond the greedy
paradigm.

It is also interesting to note that many algorithms use the notion of ’centres’,
which means that each box is assigned to a special, ’central’ node. While this idea
is natural (and indeed true) in IRn, it may be misleading for a graph since the edges
between vertices generally cannot be embedded into a Euclidean space. Just imagine
a box containing a cyclic subgraph - no vertex is special by any means.

In the following part, we describe implemented algorithms in detail and our com-
ments on them. Throughout the discussion, we denote the box size by lB, the box
radius (if applies) by rB.

Before starting the discussion, we must precisely define what we mean by box
sizes. Unfortunately, it sometimes happens in renowned papers too that their treat-
ment of this question is inconsistent [4].

In our implementation, we define boxes such that for box-size lB the distance
between two nodes of the same box can be less than or equal to to lB. For boxes
defined by rB radius, all nodes have a distance less than or equal to from the central
node.

In the evaluation part, we converted these values to the widely used convention:
that one should have strictly less for lB. This means that the ’equivalent box-size’
is l̃B = lB + 1 and l̃B = 2rB + 1, where the rhs. contains values introduced in the
above paragraph.

In this section, we use the less than or equal to (’implementation’) convention
for the algorithms.

2.1 Greedy coloring

This family of algorithms maps the boxing problem to the famous graph coloring
problem. The idea is the following: let us consider the dual graph of our original
network: this graph consists of the same vertices and ’dual edges’ [4]. This means
that two vertices are connected by an edge in the dual graph if and only if their
distance in the original network is greater than lB. The idea is illustrated in Figure
2 with lB = 2.

After these preliminaries, we aim to color the vertices of the dual graph such
that i) neighbouring vertices cannot have the same colour ii) we seek to use the
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Figure 2: A graph (left) and its dual (right). We also show a valid coloring of the
dual graph. (We used lB=2.)

least colours. This problem is equivalent to the box-covering of the original network
when we identify vertices of the same ’dual’ colour as belonging into one box in the
original network.

Unfortunately, graph colouring is NP-hard. A well known approximating algo-
rithm is greedy coloring. This algorithm consists of two main steps:

1. Order the nodes by some method

2. Iterate over the above sequence: assign the smallest possible colour ID to every
node

The algorithm is given completely if the ordering method is specified. In our
sample results, we used a random sequence. Even though more advanced methods
exist, we think that this naive approach is a sensible baseline for other algorithms.

It must be noted that the implementation relies on the implementation of greedy
colouring in the networkx package [9], so one could have easily selected any other
built-in strategy.

2.2 Random sequential

This is our first algorithm that uses the idea of burning, meaning that once some
nodes have fit into one box, they are allocated to that box, are ’burned out’.

The original idea for the random sequential algorithm came from [12]. In every
step, an unburned node is randomly chosen2 and we sort unburned nodes to this
center that are not farther than rB. These nodes together form a box.

2.3 Compact Box Burning (CBB)

This algorithm also uses the concept of burning nodes. The original idea was pre-
sented in [4]. The main point is to grow boxes such that we pick new nodes randomly
from a set that contains all nodes that are not farther than lB from any node already
in the box. This guarantees that the box is compact3 in the sense of the authors.

2Note that in the original paper, all the nodes participated in the random selection! The authors
argue that in some cases, that was necessary to obtain the desired behavior.

3Roughly speaking we cannot add any more nodes.
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Figure 3: Illustration for MEMB. The left graph shows the outcome when covered
nodes would not be allowed as centers, the right illustrates when they are. (Using
rB=1)

2.4 Maximal Excluded Mass Burning (MEMB)

This algorithm was also presented in [4]. Instead of using lB, this method uses the
notion of centered boxes: every box has a special node, a center. Boxes are con-
structed such that every member node of the box is not farther than rB from the
center. The algorithm guarantees that all the boxes are connected, two nodes of the
same box can always be connected with a path inside the box.

The algorithm may be considered as an improvement of the random sequential
method in two aspects but the analogy fails because the way burning is implemented
is different from random sequential.

• First, the next center is chosen based on the maximal excluded mass, that is
the number of uncovered nodes not farther than rB from the center4.

• Once the next center is chosen, all uncovered nodes within rB are covered, but
not yet assigned to boxes.

• Finally, after every node is covered, non-center nodes are assigned to centers
in a way that the resulting boxes are connected.

The reason why boxes are only formed in the end, not on the fly burnt can be
understood from Figure 3. The authors’ goal was to avoid ’hub-failures’ by selecting

4Including the center too if it is uncovered. It is also possible to have a covered node as the
next center.
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the first centers and then assigning the remaining nodes to them.

2.5 Ratio of Excluded Mass to Closeness Centrality (REMCC)

This algorithm can be thought as an altered version of MEMB [15]. In every step,
a new center is chosen from uncovered nodes such that the choice maximizes the ’f
point’, a novel metric in the paper, which is the excluded mass times the average
shortest path to all other nodes. All nodes in the rB ball of the center are covered
then. In this procedure, centers are selected from uncovered, as opposed to MEMB.

(In oue current implementation, no boxing scheme is introduced, only the centers
are determined.)

2.6 MCWR

This algorithm comes from [16]. In fact, it is a combination of MEMB and the
random sequential (RS) algorithm. In addition, a new way of keeping track of
excluded mass is proposed.

The core concept is that we modify MEMB such that before choosing a new
center, we toss a biased coin so that we perform the usual MEMB steps with prob-
ability p and choose a random center in the remaining cases5. After finding a new
center, the excluded masses are updated: only nodes inside the newly covered ver-
tices’ rB ball are affected. This is the ’novel scheme’ for excluded mass. The boxing
of non-center nodes is organized as in MEMB.

It is obvious that p is a hyperparameter that needs tuning. Intuitively, one could
argue that smaller p would imply the algorithm to ’be closer to random sequential’
hence be faster and less accurate.

2.7 Merge algorithm

The algorithm was proposed in [17]. This algorithm is in some sense reminiscent of
mathematical induction because for a given box size, we try to merge boxes inher-
ited from a smaller lB box size. The procedure starts from box-size 0 with all nodes
forming a box of one node.

Let C be the list of input clusters. In one step, list D is returned, which is the
merged version of C, computed as follows:

• First, a random member of C, ck is chosen

• We then check all elements of C for being able to be merged with ck (the union
of the clusters would still respect the box-size condition)

• We draw a random cluster from the ones found in the previous step. It is
merged with ck

5Here, the choice is made such that covered nodes but the ones with mex = 0 are allowed
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• The new cluster is stored in D while the parents are removed from C. Cycle
goes on until C is empty.6

Then, the box size is incremented and the whole procedure is repeated. The
number of boxes for given lB, NB(lB), is the cardinality of D after merging7.

2.8 Overlapping Box Covering Algorithm (OBCA)

This method was originally proposed in [21]. The authors suggest that instead of
burning boxes on the fly, one should only mark possible boxes while processing data
and then choose the final boxing in the end.

The algorithm proceeds by first only creating box proposals, during which pos-
sible center nodes are iterated over in an ascending order wrt. degree.

• A node is a possible center if it is uncovered.

• In a ’proposed box’, such nodes are included whose distance from one another
is at most lB. They are chosen from nodes whose distance from the center is
at most lB

• Increase the ’covering frequency’ of all nodes contained in the newly proposed
box. This means that proposed boxes can overlap, hence the name Overlapping
Box Covering Algorithm.

After this, we revisit the proposed boxes. A box is called ’redundant’ if only
contains nodes that are at least in another proposed box (so their covering frequency
is higher than 1). Redundant boxes are deleted and the covering frequency of the
just-deleted box’s nodes is decreased by 1. After the iteration is over, only non-
redundant boxes survive.

6If ck cannot be merged with any other cluster from C, then it is added to D and removed from
C.

7So then the initial condition, corresponding to box-size 0 has NB equaling to the number of
nodes.
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3 Investigated networks

We have tested the implemented algorithms on numerous real-world networks and
theoretical network models. This section introduces the employed networks.

Additionally, the size and degree distribution of the networks is compared. This
will characterize the networks to some extent.

3.1 Theoretical models

3.1.1 The UV-flower

Figure 4: The first two generations of UV21

The UV flower is indeed a well known model yielding fractal networks [10].
The structure of the network is best understood considering its creation: we

start with a circular graph of u+v nodes as the first (g=1) generation. In every
generation, we replace all existing edges, with a u and v long path each8. This
process is repeated until generation n (g=n).

We cite some essential properties of UV flowers[10]. Their degree distribution is
power-law: P (k) ∝ k−γ where P (k) is the relative frequency of nodes with degree k
and for the exponent9:

γ = 1 +
ln(u+ v)

ln 2
(1)

Moreover, the fractal-dimension of the network, for 1 < u ≤ v:

dB =
ln(u+ v)

ln(u)
(2)

For u = 1, the network is not fractal but small-world.
We have considered networks with (u,v,n)=(2,2,5) and (2,4,4). These networks

are of 684 nodes, 1024 edges, and 1038 nodes, 1296 edges respectively.
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Figure 5: The first three generations of the SHM model with m=2, x=1

3.1.2 The SHM model

Introduced by Song, Havlin, and Makse, the growth of this network is controlled by
a continuous p parameter [10]. The idea is to reverse the renormalization process
in some sense. In every generation, k ·m new nodes are linked to each previously
existing node, with k being the respective degree. Between any two linked ’parent’
nodes, the edge is removed with 1-p probability, and x new edges are formed be-
tween their ’children’ nodes. The process is repeated until the desired generation
number is reached. Generation #0 starts with two connected nodes. The evolution
starts from here, and g iterations are performed. We identify an SHM network with
(g,m,x,p) parameters.

Again, we cite relevant properties [10]. The network is pure fractal for p = 0.
For this type of network, the degree distribution P (k) ∝ k−γ, with

γ = 1 +
ln(2m+ x)

ln(m)
(3)

and the fractal-dimension:

dB =
ln(2m+ x)

ln(m)
(4)

During the investigations, we considered (g,m,x,p)=(4,2,2,0) and (5,2,1,0) net-
works. These networks have 1038 nodes, 1296 edges and 3126 nodes, 3125 edges
respectively.

3.1.3 Grid graphs

Grid graphs are another class of fractal networks. We investigated ’two-dimensional’
grid graphs where the structure can be thought of as an n × n grid, with edges
between neighbouring points.

The fractal dimension of such grid networks is obviously dB = 2.
We investigated ’two-dimensional’ networks of n=30 and 50. (With 900 nodes,

1740 edges and 2500 nodes, 4900 edges respectively.)

8So then (u+v-2) new nodes are added per edge.
9This dependence is usual with scale-free networks.
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Figure 6: An 5 × 5 grid graph

3.2 Real-world networks

3.2.1 The EColi network

This network contains the cellular metabolic data of the Escherichia Coli bacterium
[23]. We used the maximal connected component for the box-covering purposes that
had 2859 nodes and 6890 edges between them.

3.2.2 The Enzyme network

This network is a relatively small one, with a maximal connected component of
125 nodes and 141 links between them, acquired from [24] [25]. We note that we
considered the enzyme links as follows: if two enzymes were in any type of directed
connection, we considered them to be connected with an undirected edge.

3.2.3 Minnesota network

This network is an undirected, unweighted network representing Minnesota’s road
network10 [24] [25]. The maximal connected component of the network consists of
2640 nodes and 3302 edges.

Degree distribution of real networks

To have some idea about the degree distribution of real-world networks, we prepared
histograms depicting it. We can see that Minnesota and Enzyme do not have high
degree nodes. (Eg. Minnesota might be reminiscent of a grid graph or similar.) On
the contrary, EColi has some hubs of a very high degree.

10I am not convinced that this is the way one can model the road network but this usage is
promoted by the data repository of origin.
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Figure 7: The degree distribution of the EColi network. Behold the log scale.

Figure 8: The degree distribution of the Enzyme network

Figure 9: The degree distribution of Minnesota network
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4 Methods and results

In this section, we present a way to assess the performance of the implemented box-
covering algorithms. We stress at this point, that there may be no good answer to
the question: ’Which algorithm is the best?’ In general, we can only say that it
depends on the network and the desired precision.

To elaborate on a practically more useful answer, we have chosen a particular
method to quantify the performances of algorithms that seem to be reasonable for
us. In this contribution, we decided to focus on the returned box-number of the
algorithms. It is a natural choice since the goal of any algorithm is to find the min-
imal number of boxes to cover the network.11

To do so, we first defined a goodness-score that describes how good a given
algorithm on a particular network with fixed box-size performs. After this, we
aggregate these scores such that box-sizes with too few boxes are left out. Finally,
the performance is judged by these derived quantities over all considered networks.
This last step is somewhat subjective but we felt that it may be more useful to any
reader to establish some ’bigger-picture’ than to present a massive block of data
with some heuristic metric.

4.1 Data for a given algorithm

In this part, we describe what type of data is assembled for a given algorithm and
network.

4.1.1 Box-numbers

While performing measurements with the implemented algorithms, we aim to get a
picture of how the algorithm performs with a given box size. Because most of the
algorithms are non-deterministic, we need to run the algorithm multiple times and
then proceed with the empirical distribution of these values.

In our study, we ran every algorithm with a given box-size 15 times.

4.1.2 Box-sizes

The previous procedure is repeated for every box-size. Box sizes are chosen such
that when it comes to comparison of results of different algorithms, we have equiv-
alent sizes. Behind this obscure statement stays the fact that some algorithms are
parametrized by a box-radius, others by a box-size. These values need to be brought
into alignment.

11Another sensible option would be the fractal dimension determined by box-numbers for a
multiple number of box-sizes. In addition to this method being ill-defined because of outliers and
possibly imperfect fractality, we could not proceed with this approach because of what follows. To
our surprise, the measured fractal dimensions of theoretical graph models are quite far from the
’ground truth’ value. We conjecture that this may be the effect of the finite size of investigated
networks. Needless to say, this problem needs further considerations.
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The particular values of box-sizes were chosen such that we had measurements
for box-sizes distributed from small values to approximately the diameter of the
network.12

4.1.3 Measurement of execution times

For a whole iteration with one algorithm and all box sizes, the execution time is
measured. It must be noted that because of the differences in the algorithms, they
do not necessarily need the same (equivalent) box sizes. It is simply because the
methods differ in the efficiency of covering the network. To account for this, we have
implemented a stopping criterion as follows: if there is a point while the iteration
that the number of boxes is 1 for all 15 times, then no bigger box-sizes are inves-
tigated and the measurements with the algorithm finish. (Due to the details in its
nature, this cannot be done in the merge algorithm but this turns out to have no
real consequences then merge is the fastest anyway. )

We note that the time of ’preparatory’ operations i.e. computing shortest path
data for the graph is only measured once and added to the execution time of 15
iterations of the given algorithm.

At this point, we note that the measurement of execution times was not per-
formed under strictly regularized conditions. Such an arrangement would have been
achieved when carefully controlling all miscellaneous processes on the host device,
that was in fact my notebook13. Henceforth, the values of execution times shall be
considered only as tentative values from whose one can determine if an algorithm is
’relatively slow’, ’moderate’, or ’relatively fast’.14

4.2 Aggregation methods

To gain insights, we need to process the raw data that we acquired in the manner
described in the previous section.

4.2.1 Benchmark

To start the investigations, we defined a benchmark value for every (network, box-
size) pair. This value is an estimation that ’a reasonable algorithm’ should perform
like this. We have chosen it to be the minimal box-number that has been achieved
with the greedy algorithm, which is a standard approximating algorithm for the
graph coloring problem.

4.2.2 Goodness score

Next, we defined the goodness score of a given box-number: gij = (bij − Bi)/Bi

where bij is the box number for the ith box-size computed in the j = 1, 2, ..., 15
iteration, and Bi is the respective benchmark value. (Of course, it also depends on

12Usually with logarithmical spacing.
13Processor: Intel Core i7-6700Q, RAM allocated to boxing: 4-5 GB
14This seems to be a flaw at this point but later, since we want to establish some general remarks

on the algorithms across all networks, merely this is what we need.
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Figure 10: Illustration of outliers with gij goodness scores averaged in index j. The
OBCA algorithm has one at box-size 11 clearly. (Data for the grid50 graph.)

the network.) Note that this measure is indeed ’dimensionless’ since it gives the
relative difference from the benchmark. Thus, it makes sense to aggregate these
scores.

4.2.3 Aggregation, cutoff in box-size

We employed two different kinds of aggregation.

First, we only averaged the gij scores for a given box-size. (So in index j.) This
was primarily done to inspect the course of these values evolving with the box-size.
This type of analysis is capable to point to outliers as follows: it may be possible
that due to the interplay between the network structure and the algorithm, an oth-
erwise decent algorithm produces a very high box-number at a given box-size. This
is illustrated in Figure 10. We will not directly use this data but it is good to have
it at hand to perform a deeper analysis.

Cutoff
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Secondly, we realize that computing goodness scores at low box numbers may
not be very useful because, at low box-numbers, only one box difference causes a
substantial difference in the goodness score. Moreover, the fractality of complex
networks tends to break down towards small box-numbers (big box-sizes) so these
points might be discarded when computing the fractal dimension anyway.

Motivated by this, we will only consider such goodness scores in the further in-
vestigation, that correspond to a benchmark box-number greater or equal than a
given cutoff-size. This cutoff was chosen to be 10 in most cases but for small net-
works, it had to be chosen smaller to consider a meaningful number of boxes. Table
1 shows the cutoff values and the number of box-sizes greater or equal than it per
network.

ecoli enzyme shm4220 shm5210 uv225 uv244 minnesota grid30 grid50
cutoff 10 5 10 10 5 10 10 5 10

box no. 4 4 9 10 4 4 10 6 9

Table 1: Cutoff values of the analyzed networks. The box number refers to the
number of box sizes that are greater or equal than the cutoff value.

Aggregation

With these preliminaries, it is very easy to understand the final aggregation: for
a given (network, algorithm) pair, we consider all gij values that correspond to a
box-size allowed by the cutoff. Their mean and standard deviation is computed.

This means that we can describe the performance of an algorithm on a given
network with the (mean goodness, standard deviation of goodness, execution time)
triad. These values can be visualized in multiple ways. Here we present an approach
we think to be fruitful: every algorithm is represented by a patch in the (mean good-
ness, execution time) plane and the area of the patch is proportional to the variance
(square of the standard deviation). Such a graph is presented as an illustration in
figure 11. We found this representation helpful in comparing the performance of
algorithms.
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Figure 11: Sample figure illustrating our novel scheme for gaining insights

4.3 Results

After generating the above plots, we may turn to the final – more subjective – part
of the analysis: using the measurements to assess overall performance. Here we
mainly worked by the inspection of the above-generated graphs. In each plot, we
analyzed if a given algorithm is relatively accurate, low variance, and fast.

To support our conclusions, we present the mean (aggregated) goodness scores,
their standard deviation, and the respective execution times as heatmaps and in
tabular format.
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Figure 12: The mean goodness scores for each (network, algorithm pair)

ecoli enzyme grid30 grid50 minnesota shm4220 shm5210 uv225 uv244
cbb 0.06 0.10 0.12 0.06 0.08 0.10 0.06 0.12 0.09
greedy 0.05 0.11 0.14 0.06 0.07 0.12 0.06 0.12 0.09
mcwr 0.25 0.51 0.37 0.46 0.35 0.46 0.53 0.40 0.33 0.52
mcwr 0.5 0.26 0.22 0.26 0.17 0.24 0.33 0.19 0.21 0.27
mcwr 0.75 0.13 0.09 0.09 0.02 0.10 0.19 0.05 0.14 0.09
memb 0.06 0.02 -0.05 -0.13 -0.01 0.09 -0.06 0.11 -0.05
merge 1.63 0.16 0.24 0.35 0.12 0.46 0.21 0.42 0.31
obca -0.03 -0.03 0.02 0.16 -0.12 0.02 -0.14 -0.04 -0.01
random sequential 3.18 0.31 0.24 0.19 0.38 0.58 0.66 0.78 0.85
remcc 2.74 0.04 0.12 -0.04 0.07 0.09 -0.05 0.11 0.06

Table 2: Mean goodness scores for all (network, algorithm) pairs

From the mean goodness scores, MEMB and OBCA seem to be stand out from
the others. Algorithms merge, random sequential and MCWR 0.25 seem to be bad,
random sequential particularly.

It is interesting to observe that on networks Enzyme, Grid30, Grid50 and Min-
nesota, the ’fast-but-inaccurate’ algorithms (merge, random sequential) perform gen-
erally better than on other networks. This could be easily thought of as a conse-
quence of these graphs having only low-degree nodes. Explaining in a speculative
manner, there might be no ’special’ nodes (eg. hubs), so merge and especially ran-
dom sequential improve their performance because randomizing box formation does
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not imply too much drop in accuracy. (And indeed, it really speeds up box-covering.)
This trend is not observed for other algorithms.

Figure 13: The standard deviation of the goodness scores for each (network, algo-
rithm) pair

ecoli enzyme grid30 grid50 minnesota shm4220 shm5210 uv225 uv244
cbb 0.06 0.13 0.13 0.06 0.07 0.08 0.07 0.13 0.10
greedy 0.06 0.08 0.13 0.06 0.07 0.09 0.06 0.14 0.11
mcwr 0.25 0.31 0.18 0.25 0.12 0.16 0.25 0.28 0.25 0.26
mcwr 0.5 0.14 0.17 0.21 0.08 0.13 0.21 0.13 0.17 0.16
mcwr 0.75 0.09 0.11 0.16 0.06 0.09 0.24 0.08 0.13 0.11
memb 0.05 0.07 0.11 0.08 0.05 0.29 0.10 0.13 0.15
merge 0.46 0.13 0.15 0.08 0.08 0.38 0.39 0.22 0.06
obca 0.02 0.07 0.19 0.37 0.06 0.10 0.09 0.09 0.07
random sequential 1.48 0.12 0.12 0.07 0.11 0.42 0.67 0.57 0.26
remcc 1.78 0.06 0.07 0.08 0.08 0.29 0.11 0.13 0.22

Table 3: Standard deviation of goodness scores for all (network, algorithm) pairs

Standard deviations also point to the inaccuracy of merge and random sequential
and MCWR 0.25, MCWR 0.5. It is not so apparent from the figure but more de-
tailed analysis reveals (with figures like fig. 10) that the performance of the OBCA
algorithm is quite versatile for grid networks. (Depending on box size, the mean
goodness scores vary much - see the outlier for grid50 on fig. 10 for example.)
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Without completeness, such ’outliery’ behaviour was observed for most algo-
rithms on network SHM4220. Again, we observe that merge and random sequential
perform much better in terms of variance on the ’no-hub’ networks mentioned before.

Figure 14: The natural logarithm of execution times in seconds, for each (network,
algorithm) pair

ecoli enzyme grid30 grid50 minnesota shm4220 shm5210 uv225 uv244
cbb 78.5 8.7 24.4 369.6 459.0 76.4 2805.5 16.3 27.4
greedy 287.3 9.2 61.6 1340.5 1479.5 206.0 2388.4 42.9 96.3
mcwr 0.25 250.8 15.4 48.2 100.9 117.7 53.1 355.3 9.7 54.2
mcwr 0.5 232.9 14.5 49.0 101.3 118.2 53.0 351.5 9.7 54.2
mcwr 0.75 250.7 14.9 43.9 85.8 116.1 52.5 351.3 9.7 56.0
memb 283.8 8.8 33.7 338.8 514.6 111.9 748.8 12.3 54.7
merge 49.3 1.0 4.7 36.6 55.7 6.0 60.0 3.3 5.5
obca 478.9 8.8 48.2 429.1 496.3 85.4 713.4 30.2 57.4
random sequential 73.8 14.9 25.2 8.7 9.5 31.1 157.6 1.0 26.9
remcc 365.6 15.4 59.6 314.0 375.4 94.5 664.8 15.2 69.7

Table 4: Execution times in seconds for all (network, algorithm) pairs

As we mentioned before, execution times shall only be thought of as tentative
values, nonetheless, we can make out clear trends. As a rule of thumb, precision
and speed are in negative correlation.

The standard method, greedy, is very slow compared to others. On the other
end of the spectrum, merge is probably the fastest even though it calculates box
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numbers for all box-sizes up to the maximal. Surprisingly, random sequential shows
volatile performance over our networks as CBB does too. Algorithms MEMB and
OBCA show moderately high times.

The case of MCWR deserves particular attention. It was claimed that this
method essentially speeds up MEMB because, in every step, we randomly choose
between a random- and a maximal excluded mass driven center nomination method.
Surprisingly enough, despite execution times usually being smaller than for MEMB
(extent depending on the network), we have almost the same execution times for
all p values. This implies that the algorithm shall be revisited. I suppose that at
the center nomination in the random branch, one shall exclude covered, non-center
nodes. (They may spoil speed at the end when almost every node is covered.) The
administration of excluded masses may be improved too.
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5 Conclusion, closing remarks

In this summarizing section, we shall distill some general conclusion from all pre-
sented data. Needless to say, it is less exact and prone to reflect the particular
ideas we have about the presented methods. Hence the reader is encouraged to form
his/her own opinion based on our results.

5.1 Conclusion based on our investigations

• We primarily assess performance by the mean goodness score since it reflects
how well an algorithm performs. In this aspect, MEMB and OBCA might
be the best. They both operate with moderately large execution times and
usually tolerable variation. We note that the former might outperform the
latter in speed (at least for our networks). Nonetheless, both methods shall
be kept in mind since they operate on fairly different principles, so in a new
scenario trying both may be of help.

• When pulling execution times into consideration, one should also consider
MCWR which is in fact a crossover between MEMB and random sequen-
tial with the promise of elevated speed. I feel that this direction should be
considered in a deeper analysis in the future. Particularly, one shall make up
for having execution times almost insensible to the p value. This might be
achieved by optimizing the random choice. If this could be done, then MCWR
would be a decent method to choose when MEMB and OBCA are too slow.
In addition to this, it would be interesting to modify the algorithm such that
the probability of choosing between branches is not constant, but employing
lower p values when only low-excluded mass nodes are left. (Thus it may not
matter much which to choose as the next center.)

• Analysing results, merge algorithm stands out in terms of speed. Goodness
scores are far from optimal but mostly acceptable and merge is an acceptable
method if our network is so big that other methods require intolerably much
time. It is stressed that in the current version of the algorithm, there is a
caveat that must be addressed to have more reliable results. It is that when
two clusters are merged, they are ’thrown away’ in the sense that for their
union (the new cluster) it is not considered if it could be merged with another
cluster. Consequences are especially dire when one has a network of relatively
small diameter. (Besides this, finding a mergeable pair could be done much
more efficiently - this is not an algorithm but rather a code issue.)

• The remaining methods, CBB, greedy, REMCC and random sequential
cannot be recommended based on our results. Despite being an established
algorithm, greedy with random colouring sequence is too slow to be practical.
We do not ’denounce’ the greedy paradigm in general, since our results only
applied to the random sequence strategy. But I am not sure if selecting a dif-
ferent strategy would considerably speed up matters. For CBB and REMCC,
they both seem to be inferior to MEMB. Finally, random sequential showed
low accuracy and volatile speed so it is clearly inferior to merge.
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• The choice of the employed algorithm may also depend on the network struc-
ture besides network size. We found on a limited number of networks that fast
and straightforward methods (merge and random sequential) tend to perform
considerably better on no-hub networks with nodes only of small degree. Such
a clear trend cannot be made out for other algorithms.

5.2 Possible improvements, further directions

We finish our contribution by listing a few possible research directions for the future:

• The implemented algorithms should be compared on more networks. This
should be only a matter of time and computational resources. During this
effort:

• The resource-intensiveness of algorithms will have to be reduced. Recently,
we have run into the issue that our current implementation uses too much
memory to run on our local device with approximately 4 GB RAM allocated
to running box covering. I believe that a key issue will be the efficient storage of
the shortest-path data of the nodes. (This data is indeed non-sparse so maybe,
it should be calculated on the fly so to avoid the unnecessary computations
and memory allocation for nodes that are too distant to fit into one box.)

• When considering more networks, it could be investigated if the performance
of algorithms correlates with well-known network features. In our work, we
only analysed the relative advantage of randomized algorithms (merge, random
sequential) on ’no-hub’ networks. These observations may help in selecting an
appropriate algorithm for a given network.

• In addition to the implemented algorithms we tried out, one might want to
modify merge and MCWR algorithms slightly for better performance, as
detailed in the preceding section. More strategies of greedy should be tried
out too.

• If scaling to larger networks is achieved, one should turn attention towards
theoretical network models with known fractal-dimension. It would be a very
natural and sensible method to assess the performance of box-covering algo-
rithms to compare the measured fractal-dimension to the ground-truth value.
Lately, we have performed such analysis on a limited number of network mod-
els (size was constrained by our architecture). We found a surprisingly big
discrepancy between measured and theoretical values. Investigations support
the idea that the ground truth fractal-dimension is only attained asymptoti-
cally with increasing network size. This issue must be dealt with in the long
run.

• Testing more algorithms. In fact, we did not include all algorithms we im-
plemented because some of them were too slow or included too many hyper-
parameters (e.g. simulated annealing, differential evolution, particle swarm
optimization).
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bert, Zoltán N. Oltvai and Albert-László Barabási: The large-scale organization
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