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Abstract

The two main causes of mortgage payment difficulties are rising house
prices and a temporary loss of household income. Currently available bank
products handle these problems only when the mortgage is already delin-
quent (usually for a long time). The so-called workout process that starts
at this point usually results in either loan restructuring or termination. A
number of ideas and initiatives are present in the literature which brings
this expensive workout process earlier and in an automatic fashion, thereby
making it more predictable and less expensive for both sides. By using an
embedded optionality in the mortgage product it is possible to reduce sched-
uled payments or the balance itself with the decline of the value of the prop-
erty offered as collateral. The paper aims to create a theoretical model and
its simulations on mortgage products with an above mentioned embedded
optionality and to propose a fair pricing method.



1 Introduction

1.1 Mortgages

Mortgages are debt instruments secured by a collateral which is in most cases a
real estate property. Mortgages are used by both individuals and businesses to
purchase real estate without having the full capital needed for the transaction. A
mortgage is a contract between the lender and the borrower in which they state
that the borrower is obliged to repay the borrowed amount named principal plus
interest.

Usual mortgages have a 10-30 years scheduled life span named maturity and
payments are usually scheduled monthly. If the borrower fails to make the pay-
ments the bank has a claim on the property therefore payment delinquencies usu-
ally result in a long and costly foreclosure procedure. This procedure is not fa-
vored by either of the parties because it tends to result in equity loss for both the
lender and the borrower. Over the last few years much attention has been drawn
to the complex nature of mortgage defaults and its drivers.

1.2 The U.S. housing boom and the following crisis

In the early years of the past decade a rapid expansion took place in the U.S. hous-
ing market. Housing prices were on an evident upwards trend and the general
public opinion was that it will continue going up in the future. The ever accel-
erating housing price increase was examined by many papers and books. Robert
Shiller first released his book[1] on overvalued stocks while in the middle of the
dot-com bubble.

Later in 2004 Shiller worked on papers[2] examining the housing market at the
time drawing attention to the fundamentals that may indicate a developing bub-
ble. In the 2nd edition of his book[3] he wrote that the real estate bubble may soon
burst. Figure (1) from the 2nd edition of the book shows how the growth in pop-
ulation does not indicate the rapid change in the supply and demand equilibrium
which took place.

A strong indication of a fundamental driver behind housing appreciation is the
evolution of mortgage interest rates which were declining for more than 15 years
as seen in Figure (2).

It has been clear that two of many contributors of the boom were ever lower
interest rates and and ever lower mortgage standards which made financing easier.
It is important to note that although easier financing makes housing more acces-
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Figure 1: The rapid housing price appreciation was not due to a population
increase[3]

sible it does not make it more affordable since easy financing raises the demand
for housing creating a new equilibrium with higher house prices and thus making
it more and more expensive.

Housing prices peaked in early 2006 and started a rapid decline in between
2006 and 2008. In 2008 the Case-Shiller composite home price index reported its
largest drop in its history. Mortgage delinquencies were high in the previous years
and continued to be ever higher in the coming years resulting in the credit crisis
of the late 2000’s. This was followed by the huge institutions reporting serious
losses and some of them going bankrupt even though considered to be “too big to
fail”. The resulting credit crunch was the cause of a lack of liquidity which made
financing hard for businesses and resulted in the 2007-2009 recession in the U.S.
The causes and the results were examined in more detail by many papers in the
literature[4, 5].

1.3 Mortgage defaults

The problem of mortgage defaults was not new before the credit crisis and both
risk management methods and regulations were trying to make sure that banks
would not take bigger risks than they can handle. International standards like the
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Basel II[11], the second of the Basel Accords were formulating recommendations
on risk management and its implementation and were accepted and used by most
banks and were also enforced by many European authorities.

These standards have in their main scope some sensitive methods for calcu-
lating credit risk capital requirements, default probabilities and how to estimate
them, but they contain little information on the the interaction between macroeco-
nomic processes and mortgage defaults.

Many new models have emerged in trying to describe these interactions with
more information than just historical default rates of clusters of borrowers. De-
faults also resulted in many suggestions on how loans should be modified to mit-
igate risk exposure. Some of these are called Auto-Workout Mortgages which
I will present in detail in the following chapter after first presenting traditional
mortgage constructions.



2 Traditional mortgages

The standard for most mortgages is that the borrower gets the loan amount after
origination and agrees with the lender in a starting date for scheduled payments of
which the most common are monthly versions. The time between origination and
the first scheduled payment varies from a months to even years, however most of
them have their first scheduled payments within 5 months after origination.

The maturity of the mortgage does not necessarily mean the time when there
is only one final small payment left. Some mortgages have most of its repayable
amount scheduled at maturity, called a balloon payment which usually gets refi-
nanced to continue with a new contract and thus new maturity date. This differ-
ence between mortgages is called difference in amortization which can vary on a
wide spectrum from interest only mortgages, where monthly payments cover only
interests and have the full principal amount scheduled at maturity to fully amortiz-
ing mortgages which distribute payments evenly to cover both interest payments
and a part of the principal. Most mortgages with a big payment scheduled at ma-
turity are more popular as commercial mortgages originated for businesses who
choose to own their own property instead of renting but need most of their capital
for running projects.

The most popular residential mortgage constructions are fully amortizing mort-
gages. Most of these have a fix scheduled payment every month which does not
follow inflation. The advantage of this is their simplicity and predictability for the
public.

The two main types of residential mortgages differ in how their interest rate
is given, namely fixed-rate mortgages (FRM), where the borrower’s payments do
not change and adjustable rate mortgages (ARM) where the interest rate is fixed
to some market variable and varies across the lifespan of the loan. Most long
term, 15- or 30-year mortgages in the U.S. were originated with a fixed rate which
was popular among the public because of not having to deal with interest rate
risk no matter how market interest rates changed in the future. Most adjustable
rate mortgages have a so called teaser period when the interest rate is initially
fixed at a usually low level below market rates but then it fluctuates with market
interest rates. In many cases this results in loans that are both unpredictable and
less affordable than they seem.

The most common U.S. mortgage construction is a 30 year FRM but usually
this does not mean that borrowers are sure to stay for the full 30 years of the lifes-
pan. Aside from defaulting, many borrowers choose to repay the owed amount to
the bank prior to maturity, called prepayment. In these cases the borrower pays



the full amount of its remaining balance, which is the remaining principal amount,
without further interest payments. In fact most prepayments are made not because
the borrower accumulated enough wealth to easily repay the mortgage ahead of
time but because they have found another mortgage with better terms usually at a
lower interest rate. Interest rates getting ever lower as seen in figure (2) made pre-
payments very common as it was easy to find a new mortgage on the market with
lower rates. As it’s not the paper’s main focus, I will avoid handling prepayments
as possible, with the exception of validating models on real data.

2.1 Fully amortizing Fixed Rate Mortgages

In this paper I will compare more complex mortgage products to FRMs both be-
cause they were most common in the U.S. and because they are the basic reference
point due to their simplicity. Here I present some basic equations for handling
FRMs. The first two concepts, the maturity 7" of the mortgages in years and yearly
interest rate r have already been mentioned before. Payments are scheduled using
compound interest, where the compounding time 7 is the inverse of the number
of payments per year m. The loan will stretch out on the t =0, 7,27,....T —7,T
time horizon. I will use the case when 7 = % = % The initial balance By will
be the loan amount which the borrower receives at origination. After one time
period the borrower is obliged to pay interest accountable for that period, making
the total owed amount before payment (1 + r7)By. This gives us the formula for
calculating interest payments:

Lyt =rtB; (D

At each payment date the amount scheduled Q will be composed of this in-
terest payment part /; and a principal payment part F; in the following way: Q =
I; + P;. This brings us to a recursive formula for calculating the remaining balance
after a payment as follows:

Bt+r:(1+rT)Bz—Q:Bt—Pt+r 2)

In the case of an FRM the value of each individualP; is set so that the mort-
gage will be fully amortized at maturity and the sum of all scheduled payments
Q discounted to the start date t = O with the interest rate r should give back the
original mortgage balance. This is the same concept as the Internal Rate of Return
used to compare different investments:

10



T/t 0
NPV =—-By+ ) ——— =
0 l; (I+r7)

In this case it is used to calculate the value of Q and thus the values of F; given
a desired interest rate but can also be used backwards to obtain the internal rate
of return of a cash flow given each of the individual payments. The internal rate
of return of a mortgage fully paid back and always on time will be the original
interest rate r. I will return to this formula and the concept of the Internal Rate of
Return at the final step of the mortgage pricing process. With the above mentioned
IRR condition we obtain the formula for the scheduled fix payments as

3)

rt
Q=B e X

Using the above equations we can derive a closed formula for the evolution of
the outstanding balance at time t (after payment):

1—(14r7)"T-0)/7

B; =B 5
We can also obtain a recursive formula for Q in the form
rT
Qt+r =B 1_ (6)

(1+r7)-(T-1)/7

This is mainly used to construct adjustable rate mortgages where the interest
rate r will vary monthly but it will also give a good basis for describing other types
of more complex mortgage constructions with adjustable payments.

Figure (3) illustrates the evolution of the balance over a 10 step period. We can
see that in the initial periods most of the payments make up only for paying the
interest and not much is left for paying off the principal amount and decreasing
the balance itself. At later periods as the balance decreases the interest payments
make up for less and less of the scheduled payments and thus most of the principal
payments happen later in time.

These equations will be the basis for all mortgage constructions later in the
paper modifying some of the terms present to vary periodic payments.

2.2 Mortgage related quantities

In the process of managing a bank’s risk exposure there have been industry wide
standards for quantitative measures of loan quality. Most of these indicators as-
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sess how the loan amount measures up to some other variables usually known for
most (potential) customers. These numbers help lenders in the initial phases of the
mortgage origination to decide whether or not they should lend to a certain cus-
tomer and what amount would be appropriate given his/her income and provided
collateral. These indicators are also useful to monitor the loan throughout their
lifespan as the customer’s income will almost surely change during the long lifes-
pan of a 10-30 year mortgage as well as property appreciation and depreciation
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Loan To Value ratio and Equity

The Loan-To-Value ratio (LTV) is one of the above mentioned measures and rep-
resents the ratio of the borrower’s current balance to the collateral’s value, in this
case the real estate property’s value. At a time ¢ I define the value of the LTV to
be

B¢
G
where B;_: is the value of the balance in the last time period after payment and C;
is the most up to date value of the collateral or the real estate property in our case.

In general, lenders prefer lower LTVs as a high LTV would indicate that the
contract with the borrower is riskier as he is less likely to absorb the losses of
a default. I try to avoid the confusion of referencing multiple values at a given
time ¢ by using the values of the balance B; to always represent the value after the
scheduled payment is done. Using this definition instead of the simpler looking
B’ I can include LTV values with the most up to date property price information
before the scheduled payment at time # which will be important when using it for
modeling LTV dependent default decisions.

Another way of formulating the same idea is the amount of equity E; held by
the borrower in the real estate which in this case can be expressed as E; = C; —
B;_ 7. We can immediately see that an LTV value less than 1 results in a negative
equity which means that the borrower owes more money than he is covering with
the collateral and it is assumed that he is more likely to default in such a situation.
Due to the rapid appreciation of real estate prices in the early 2000’s banks were
not very concerned about keeping this value low as both housing price trends and
the continuous payments only decreased the starting LTV value with time.

Along the simple LTV it is preferred to use the Combined Loan To Value
Ratio (CLTV) which is different from the simple LTV if more than one loan is
collateralized by the same property. As presented in [7] there was a widespread
requirement to have a 20% down payment and to have the initial LTV = 0.8.
Many borrowers lacking the amount for the down-payment could mainly chose
from 2 options. They could buy Private Mortgage Insurance which would protect
the bank in the case of a default but obliged the borrower to pay additional monthly
fees for the insurance itself. Many borrowers however used a second mortgage on
the same property dividing the loan amounts in a 80-20 fashion or in a 80-10
fashion plus a 10% down-payment. These loans were the so-called “piggyback”
loans. This phenomena leads to the simple LTV calculated by the first mortgage

LTV, =

(7

13



originator being inaccurate in the sense that it doesn’t represent correctly what
it was meant to. In [7] we can see that insured loans were found to have lower
delinquency rates than loans with additional second loans on the same property.
To address this issue we can define the Cumulative Loan to Value Ratio as

B + B,

CLTV, = =% _"t=¢
t Ct

where B and B represent the balance of the individual loans. Although some-
times the CLTV value is known we won’t have the information on scheduled pay-
ments nor amortization of the second loan. Along the paper I used CLTV values
and treated possible separate loans as if they were one big loan as it represents a
better picture on the borrower’s indebtedness as just using the simple LTV.

Estimating LTV after origination

At the time of loan origination the property given as collateral undergoes a valu-
ation process where the fair market value is given for that time. After origination
however, we do not directly observe the most up to date value of the property and
we estimate its value by using the property value at t = 0 and the most current
value of a House Price Index. The estimated value of the property at time ¢ is
given as follows:

G =-Co (8)
where H; and Hy are the House Price Index values at times ¢ and O respectively.

Foreclosure costs

After a loan is several months delinquent it is said to be defaulted and usually
ends up in a costly foreclosure process including legal fees, maintaining hazard
insurance and usually property taxes and home maintenance fees until the house
is sold. This usually results in several fees accumulating which gets billed to the
borrower and in most cases drawn from price of the real estate after sale. Most
bank sold homes are also sold below market price because the bank doesn’t want
to hold on to real estate properties for a very long time until someone offers a
decent price but wants the capital back for further investments. Estimated foreclo-
sure costs given in the literature[6] can be up to 40% of the pre-foreclosure value

14



of the property. According to Standard & Poor’s 2008 reports the costs of a typical
foreclosure are around 26% of the loan amount. I will use this value throughout
simulations. These values also warn us about the danger of high LTV values even
below the 1 threshold.

15



3 Auto Workout Mortgages

Along examining the triggers of mortgage defaults there has been much effort
done in rethinking of the conditions and the structure of mortgage products them-
selves. A key finding in the literature that while an FRM has the ability to take the
interest rate risk from the borrower and put it to the side of the lender, the appli-
cation of a similar strategy to the housing price risk was never considered before
the crisis.

A sharp downturn in housing prices can result masses of borrowers having to
face negative equity and thus challenged by the fact that not considering ruined
credit scores and other side effects it would be a financially rational decision to de-
fault. There is evidence[5, 10] that a high LTV or CLTV ratio is highly correlated
with the frequency of defaults although the side effects result that this rationality
can not be applied as directly as modeling the borrower’s behavior as making a
decision on when is it optimal to default and thus to maximize the resulting gains.
It is clear however that for this rational decision to be taken into consideration we
need a necessary condition of a negative equity.

In essence, in traditional mortgage constructions all of the house price risk is
beared by the borrower. Financial institutions however would be more economi-
cally efficient bearers of this risks and thus some or all of it should be transferred to
them. In the following subsections I will present two proposed mortgage construc-
tions from the family of Auto Workout Mortgages (AWMs) and compare them by
demonstrating their behavior under a simple scenario and I will also examine a
few of my ideas for modifying them in ways that would be interesting.

The main idea behind all AWMs is to embed some kind optionality in the
mortgage contract that would result in a positive payoff in certain cases and results
a lower balance or lower scheduled payments.

3.1 Adjustable Balance Mortgages

The mortgage constructions proposed by Ambrose and Buttimer [9] called Ad-
justable Balance Mortgages (ABMs) which directly address the problem of a bor-
rower faced with negative equity in times of house price depreciation. It’s proposal
is that instead of relying on external frictions such as a ruined credit score and the
inconveniences of the foreclosure process to motivate borrowers not to default,
the mortgage contract itself should automatically reset the principal balance to the
minimum of the original scheduled balance or the (estimated) value of the house.

The structure of the mortgage itself is based completely of the FRM, also

16



having a fixed interest rate and is also fully amortizing. Given that no loans are
originated with an LTV value higher than 1 the ABM behaves exactly like the
FRM both at origination and up until the first time of experiencing negative equity.
The only difference between the FRM and the ABM is that the balance is capped
to the value of the house and the following scheduled payments are calculated
using the new lowered balance. After property prices climb bank the balance is
reset to the original scheduled values of that of an FRM. All payment reductions
during a time when the balance cap is active form the loss of the lender.

The estimation of the house price during the life time of the mortgage is done
as previously presented in Equation (8). I will present the equations describing
the ABM as stated in[16]. The above mentioned balance cap is given simply by
referring to the balance of the corresponding FRM:

BABM — pjn(BFRM ) 9)

The scheduled payments of an ABM is calculated with modifying the recur-
sive formula presented for the FRM at Equation (6) and is given as

rT
1—(14r7)~(T-0)/7

ABM — min(BFR*M G, ¢ (10)

where in both cases Bf® is the original scheduled balance of the corresponding
FRM seen at Equation(5). It is interesting to note that if the price of the house de-
clines more than the scheduled principal payments at the adjustment period then
the cap is fixing the balance to the same house price even after the next payment
of the borrower. This means that the balance is not reduced more than to the value
of the house at this phase while the cap is active even though adjusted payments
are still being made. The mortgage returns to the original FRM schedule after the
originally scheduled balance is less than the house price. The definition of the
ABM has references to the related FRM balance B ®M even after payment adjust-
ments are made and does not keep track of real interest and principal payments.
One consequence of this is that if balance reduction was active during the lifetime
of the mortgage then we don’t just lose interest through the payment reductions
but we also lose some of the principal.

Stepping through a 10 period version of an ABM

To demonstrate the above mentioned effect I take the adjusted balance given by
the ABM formula and calculate its interest and principal payment parts. I take

17



a fixed path of property prices which first decline to 80% of the initial value and
then to 50% of the initial value to make numbers pop out. We can see the resulting
FRM and ABM balance side by side in Figure (4) with all the values and losses
calculated. Summing up all the principal payments we see that it’s not the total
1.000.000 as with the FRM case. This is because in the ABM definition there is
no real balance sheet kept that is decreased with actual principal payments and
instead there are only references to the related FRM balance values at the partic-
ular time. Figure (4) also shows that we have a ~5% loss on both principal and
interest. We can also see how the payments, the balance and the NPV of the total
loss of the payments due to payment reductions evolve over time.
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Figure 4: The evolution of a 10 period ABM with payment reductions
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3.2 Continuous Workout Mortgages

Continuous Workout Mortgages [17] are similar to the previously discussed ABMs
but apply a somewhat more straight forward approach to the same problem. A
CWM deals with the scheduled payments directly instead of applying a balance
reset from time to time. The main idea is to have payments be directly linked to
a house price index no matter whether the borrower has a negative equity or not.
This results in payments always being reduced as long as the house price index
H; at time ¢ is less than that of its value at origination Hy. Of course they are only
linked to the movement of the house price index as long as the current value is
smaller and payments do not increase to be higher than the originally scheduled
ones if the cumulative house price index change is positive. The result is a much
higher level of protection for the borrower even at times when it is not indicated
by the LTV value. Just as with ABMs, payment reductions along the lifespan of
the loan form the loss of the lender. This of course results in a supposed interest
rate premium to be paid for the embedded optionality. Scheduled payments of a
CWM can be expressed as

rt
1—(14r7)~(T-0)/7
(11)
where QF®M is the value of the original scheduled value for FRM payments and H;
is the house price index process. The outstanding balance thus takes the following
form:

Q"M = min(1, Hy1o/Ho) QF*™ = min(1,H,/Ho)B;

BE"M — in(1,H, /Ho)BI ™M

Stepping through a 10 period version of a CWM

In Figure(5) we can see that unlike the ABM, the CWM starts applying payment
reductions the first time the property value declines. The LTV never approaches
the 1 threshold and remains to be constantly lowered even when the house price
recovers. Although the house price drop in this example is extreme on purpose
- this shows how the CWM can result in an over-protection and can take bigger
losses than needed due to payment reductions.
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CWM Domestic currency Falling house price index

FRM Adjusted FRM Adjusted NPV

End of Property LTV  Balance  Balance  Principal Interest Total Balance |Balance Total

Period price before before payment payment payment after after Loss Ht/HO
0 1000000 0 1] 1] 0 1] 0 1000000 1000000 1
1 1000000 1 1000000 1000000 69029 830000 149029 930971 930971 0.00 1
2 1000000 0.930971 930971 930971 74552 74473 149029  B56419 856419 0.00 1
3 800000 0.856419 856419 635135 64413 54811 119224 775903 620722 6.16 0.8
4 800000 0.775903 775903 620722 69566 49658 119224 688945 551156 9.23 0.8
5 500000 0.688945 688945 344473 46957 27558 74515 585032 297516 16.18 0.5
6 500000 0.595032 595032 297516 50713 23801 74515 493605 246802 20.79 0.5
7 500000 0.493605 493605 246802 54771 19744 74515 384063 192032 24.06 0.5
8 800000 0.384063 384063 307251 94644 24580 119224 265759 212607 23.68 0.8
9 800000 0.265759 265759 212607 102215 17009 119224 137930 110392 23.39 0.8
10 1100000 0.125446 137930 137990 137950 11039 143029 0 1] 21.77 11

Total 764850 382677 1147527

NPV 200114 782268

Loss

|Loss % 23.52%  18.60% 21.77%
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Figure 5: The evolution of a 10 period CWM with payment reductions

4 Ideas for modified AWMSs

In this section I present some ideas for modifications of previously presented
AWMs that seemed interesting after taking a closer look at how the balance and
the payment reductions evolve. I also use this section to give a short example on
how both originally proposed AWMs and the ones modified by myself compare
to each other on the a above used simple 10 step scenario with both originally
scheduled and actually materialized values and losses calculated.

4.1 ABM with No Principal Loss for payment reductions

Instead of always referencing to the original FRM balance we could introduce a
real balance sheet to the ABM and decrease this with the actual principal pay-
ments done in each period. This way we would only have interest loss but no
principal loss. Of course the adjusted balance would be calculated just as the
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original ABM. The equations for the ABM with real balance decreased by its own
principal payments would be the following:

rt
1—(1+r7)~T-0/7

ABMNPL — inin(BR Cy1r) (12)

B?BMNPL — mm(Bfml,Ct) (13)

Here BR¢? is the mortgage’s above mentioned real balance which is obtained
by calculating periods recursively using interest payment part I,  ; = rtmin(BR¥ C, ;)
which is basically the interest the borrower has to pay on the adjusted balance.
Subtracting this from the total payment gives us the Principal Payment part £ ; =

ABMNPL _ ], ;. Now the balance after the payment is the balance minus the

principal payment BX¢¢ = pReal _ p, . This is exactly the same process like the
recursive formulas for FRM at Equation (2) where we don’t derive closed form
equations but keep track of principal and interest payments from period to period.

Using this modified mortgage construction we still achieve the goal of keeping
the adjusted balance capped with the estimated price of the property but we have
no loss on the principal itself resulting in a ~2.2% loss instead of a ~5% loss.

We can see that the side effect of this is that in the last quarter of the total time
we have elevated payment levels. What this modification does beyond the original
ABM is that it restructures some of the principal lost at initial payment reductions

to the end.

4.2 CWM with payment reductions activated only when LTV>1

As mentioned before, we can see that the CWM has an over-protection as its pay-
ment reductions are activated instantly as the property price decreases below the
initial value. An idea to correct this over-protection would be to use the LTV itself
as the activator of the payment reductions instead of the property price declines.
The resulting equations for a CWM with LTV adjusted payments are

CWM/LTV . FRM
O iz = min (laLTVH_T) Ot

This will differ from the original CWM only in one thing: it activates the
payment reductions only at the point when the LTV reaches one. After a closer

look and some algebraic manipulations however we can see that in this case

B,CWM/ MV BABM and QtCJf[;M/ MV OMBM 5o the LTV activated CWM is ex-

actly the same as the ABM. I moved the proof of the two constructions being
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ABM NPL Domestic currency Falling house price index
Real Adjusted Real Adjusted NPV
End of Property LTV Balance  Balance  Principal Interest Total Balance |Balance Total
Period price before before payment payment payment after after Loss
0 1000000 ] 0 0 ] ] 0 1000000 1000000
1 1000000 1 1000000 1000000 69029 80000 148023 930971 530971 0.00
2 1000000 0.930971 930971 930971 74552 74478 149029 856419 856419 0.00
E 200000 1 856415 200000 75212 64000 139212 781207 781207 2.03
4 800000 0.976509 781207 781207 87552 62497 150048 693655 693655 1.43
3 500000 1 693655 500000 68158 40000 108158 625457 500000 5.86
6 500000 1 625497 500000 85228 40000 125228 540269 500000 7.24
7 500000 1 540269 500000 110960 40000 150960 429309 429309 6.28
8 800000 0.536636 429309 429309 132241 34345 166586 297067 297067 4.58
9 800000 0.371334 297067 297067 142821 23765 166586 154246 154246 3.27
10 1100000 0.140224 154246 154246 154246 12340 166586 0 0 2.23
Total 1000000 471424 1471424
NPV 346598 977667
Loss
Loss % 0.00% 3.95% 2.23%
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Figure 6: The evolution of 10 period modified ABM with payment reductions

equal from this part of the paper to Appendix (B) to preserve fluency and relocate
longer mathematical derivations.

Although with this idea of modifying the CWM I did not end up with an
entirely new model it is even more interesting to see that we can view the CWM
and the ABM as close but different versions of each other in fact we can view the
ABM as an LTV activated CWM.

4.3 Comparing the three models

Because the above result, I only have to compare one extra model to the original
two AWM s instead of two. Using the simple scenario from the above examples
we can see how each of the model’s cumulative NPV of payment losses compare

to each other.
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Cumulative NPV Total Loss 30.00
CWM  ABM ABM NpL | 2500
0.00 0.00 0.00 /\
0.00 0.00 0.00| 290 /
6.16 2.03 203| o —_—C
9.23 1.58 1.43 / s
16.18 5.98 5.96
10.00
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Figure 7: Comparing the three different AWMs

We can see that the two ABM versions are providing decent amounts of pay-
ment reductions and keeping the LTV value sub one as seen in the previous tables.
The CWM however does end up in overshooting the goal although this example
presented is both artificial and extreme on purpose.
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S Quantifying mortgage default risk

The authors proposing the above described two AWMSs have made[9, 17] initial
proposals for a pricing formula for some of the parameters and have presented
sample results in loan valuation. The valuation techniques presented were based
on a purely option theoretic approach where the price of embedded options are
estimated given the assumption that all borrowers aim to always maximize their
expected payoffs of those options. These are the rational prices of the embedded
options which are useful in understanding and comparing the differences in the
products. It would be interesting to estimate how expected losses would develop
given the suboptimal nature of borrower behavior in exercising any embedded
option. It is clear that a mortgage is not entered by a borrower just for the sake
of searching for optimal times of default and the realized payoffs an average will
differ from the optimal as these are not stock options which are traded purely on
an expected payoff decision.

The goal of the paper is to take empirical evidence of borrower behavior to
build a general mortgage valuation framework that could be used for comparing
different kinds of products. For achieving this goal the modeling process was
broken down into two important steps:

1. The first step is to create a mathematical model that could explain most
of the variation in mortgage default rates seen over the past decade and
could re-create most of what has happened just from having given borrower
behavior information and the house price index.

2. If the theoretical model developed in the first step does seem to explain most
variation in default rates then I can use the model to estimate expected losses
of different mortgage constructions and thus proposing a general mortgage
valuation framework given empirical evidence of borrower behavior.

5.1 High LTV loss as put option to default

The previously mentioned rationality behind a default can be viewed as the bor-
rower having a put option on its equity which turns in-the-money as LTV > 1. A
short introduction on options and option pricing can be found in Appendix (A).
We can see that by the nature of this optionality we can model this to be similar
to an American put option on the house price index.
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Why it is similar to an American put option

We could view the default decision as a put option on the equity which can be
exercised at any times desired and thus could write the option’s payoff function in
the form of

fi=0-(C~B))" (14)
Equity
so we could use the difference of two stochastic processes to transform it to a
payoff function on equity level reaching 0. The value of this default optionality
already present in an FRM can then be expressed as an American option as

Py = sup Eqlf:(St)] = Eg[fe (Se+)]
7€{0..T}
= sup Eq[(B: —Co)t] = Eq[(B+ ~Cp)7] (15)
7€{0..T}

*

where 7* is the optimal stopping time and Q is the Equivalent Martingale
Measure. See Appendix (A) for details on option pricing.

We can see that the value of this put option is the expected high LTV induced
loss of the lender - more precisely the expected principal loss. By calculating the
value of this put option we have the estimate for the high LTV branch of equation
(29), namely the value of P(LTV > 1)P(D|LTV > 1)E[Lossp|LTV > 1,D]. The
value of the option could be calculated using American option pricing methods
(e.g. Longstaff-Schwartz) which require a good model for the house price index
process H; or using purely empirical pricing methods with historical values of a
given house price index.

Why it is different from an American put option

The previous argument would give us the price of such an option by itself but as
mentioned in the beginning of this chapter this will not give us the expected losses
as this would need a behavior from borrowers to constantly search for the optimal
time 7* of defaulting to maximize the expected loss of the bank and maximize
their payoff function of the default. As mentioned at the beginning of the chapter
- I aim to create a mortgage valuation framework that would incorporate user
behavior affected by macroeconomical processes and to measure the expected
loss given the suboptimal exercise of default options. In the next sections I will
give more detail on how to bring suboptimal lender behavior and options together.
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5.2 Types of risks involved in mortgage products

To compare risks in different mortgage products I take the baseline to be a tradi-
tional (FRM) mortgage with the best scenario possible, namely payments happen-
ing regularly according to contract and no types of the following risks are being
realized: no default (no principal loss and no missed further interest payments), no
prepayments. I will deal with all of the risks previously listed except prepayments.

More complex mortgage products that try to minimize default risk have some
kind of payment reduction built in that forms the loss of the lender when active. I
will deal with all types of risks separately and call ‘“Total Cost of Realized Risks”
the total cost of suboptimal events, which might be either losses or unrealized
profits, namely the cost of all negative events compared to the optimal scenario.
The importance of adding up the costs of all realized risks is to get an “expected
difference from the optima” comparison of different types of mortgages. The
structure of Total Cost of Realized Risks is:

e default induced events

— principal loss (Loss)

— missed further interest payments after default (Z,,550q)

e payment reduction cost (PRC)

I want to focus on default related risks in the paper and to omit prepayment as
possible which is possible in this case given that I assume the bank is effective
in reallocating capital and can reallocate the prepaid capital to initiate new mort-
gages and thus the future interest payments are not yet lost but will have to come
from new loans and different borrowers serviced by the capital received back as
prepayments. This efficiency assumption helps to avoid modeling prepayments in
default related risks.

I will compare different mortgage products by the expected value of their Total
Cost of Realized Risks. Note that the different types of risks are not estimated
independently but realizations of risks of mortgage scenarios are broken down to
these components.

5.2.1 Principal loss caused by default

The main idea for modeling default induced losses is to break up the probability
space into regions that would suit the option theoretic nature of the underlying
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decisions. The details of how I did this was moved to Appendix (C) to preserve
fluency and to relocate this longer mathematical argument. The resulting core
building block of estimating default related losses is the following:

E[Loss)] = P(LTV <1)P(D|LTV < 1)E|[Loss|LTV < 1,D]
low LTV defaultloss
+P(LTV > 1)P(D|LTV > 1)E [Loss|LTV > 1,D]  (16)

N

highLTV defaultloss

Using this segmentation of the probability space I can start with the influence
of house price changes on the LTV. Given that it is either rational or irrational to
default I can estimate borrower behavior induced probabilities.

The low LTV branch is not omitted as it is not zero due to the fact that the
above value for loss needs to contain the part of the expensive foreclosure costs
that may not be covered fully by the collateral.

5.2.2 Missed interest payments after default

Given that a default event occurs at time ¢, the missed remaining interest payments
are

T
=Y (17)
k=t

where I is the interest payment scheduled for time k and I! is the cumulative
interest payments scheduled from time 7 of the default to maturity.

5.2.3 Payment reduction cost

The costs of offering payment reductions to the borrowers depend on both the type
of mortgage product and the type of payment reduction included. As all mortgage
products have their monthly payments specified, the cost of payment reductions
for an AWM is

T
PRC =Y Qff™ _ oM (18)
t=1
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Of course we do not know the future values of the terms QAWM as it is path
dependent (it will highly depend on the initial LTV of the borrower and the future
of the house prices).

5.3 Fitting the option theoretic model and the expected loss
model together

When pricing a conventional equity option we have the completely natural as-
sumption that the holder of the option will “act rationally” and exercise the option
when he expects to maximize the resulting return. The default optionality in a
mortgage is not the typical case of options so we need to closely examine any
assumption related to exercising. I will use notation that fits options in general
to give a clear analysis of the option itself without mortgage related concepts ap-
pearing. We can segment the probability space of the option payoffs similarly to
that of the principal loss

E[Payoff] = PUTM)E|f;|ITM]+P(OTM)E[f,|0TM)

0

where ITM means In-the-money and OTM means OQut-of-the-money. It is im-
portant to notice that we can stop here only if dealing with a conventional equity
option because of the assumption of exercising when it is most profitable which
we can formulate as an implicit P(Exercise|ITM) = 1 term being present. This
implicit assumption will change for the case of the default optionality and will
have a probability different than 1. After discarding the zero valued OTM term
the full segmentation of the probability space is as follows:

E[Payoff] = PUTM)P(E|ITM)E|f,|ITM,E)] (19)

where E denotes the event of exercising.

We can see that by just doing a regular option pricing with the conventional
assumption of always exercising when it is most worth it we would get the value
of the option but not the expected payoff, as the latter will also include a term
describing the behavior of the holder of not always taking advantage of the op-
tion. This breakdown of the expected payoff fits the model of the principal loss,
where by now it is trivial that /7TM will be the case of LTV > 1 and exercising
is the event of the default. Figure (8) explains visually how the two models fit
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together. The expected payoff and the top branches of the expected losses still
differ since the expected payoff does not include foreclosure costs. Losses due
to foreclosure costs will be present on the lower branches where LTV < 1. Af-
ter taking into account both borrower behavior specific exercise probabilities and
adding foreclosures we have fully covered all possible losses.

P(D|LTV=1) E[Loss| ... ] &-=m—u=x > E[f|...]P(E|ITM}

PLTV>1) , Py
=0

P(~D|LTV>1) E[LoSS]| ... ] €-===-=-3 E[f| ... ] P(~E|ITM)

E[Loss] |+ + Expected payoff = E[f]
P(D|LTV=1) E[Loss| ... ]

P(LTV=1) 0= E[f]...]P(OTM)
o

P(-D|LTV<1) E[Loss| ... ] =0

Figure 8: Fitting the default option model to the expected loss model

5.4 More sophisticated versions

After presenting the main structure of capturing losses driven by borrower be-
havior I have to note that these branches further expand at every time step and
house price values together with borrower decisions will choose a certain path
along a longer probability tree as seen in Figure (9). Every time step consists of
two events. In the first event the house price and the previous balance determines
the actual LTV independently of the borrower. The borrower’s probability of de-
fault in a month is determined by the conditional distribution P(D|LTV; = x) after
observing this LTV value.

Given a good dataset containing LTV information it is possible to estimate a
joint distribution of the defaults and the LTV values. Of course the distribution
of the LTV would not be representative for a general case as house prices have
many year long trends and a data set would capture only realizations of an inter-
val of time but I assume the conditional probabilities P(D|LTV; = x) to be fairly
stable as they capture the essence of the behavior and are the primary interest
for my model as shown in figure (9). To estimate these conditional probabilities
used binning/discretization of the distribution and measured bands of the form
P(D|x; < LTV; < x2) where I took the bands to be 0.1 wide and estimated 20
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conditional probabilities in the LTV range of [0,2]. Every active month of a loan
contributes to an example of being active at that particular LTV and a default triv-
ially equals an example of a default decision at that LTV. From this we can use
simple relative frequencies to estimate the conditional probabilities.

Figure 9: Sketch of D and LTV joint distribution along with the evolution of a
loan

In this model I view defaults as the first arrival in a more complex Bernoulli
process where we have conditional probabilities for the Bernoulli that are driven
by the realizations of the most current LTV. This was also the basis for running
simulations.

5.5 Comparison of mortgage products using the above model

Having calculated the expected costs of different types of risks involved in differ-
ent mortgage products I take the Total Cost of Realized Risks to be the sum the
costs of individual risk types

TCRR = Loss + Lyjsseq + PRC (20)

This represents the total difference compared to having an FRM mortgage un-
der an optimal scenario of no defaults or any other kind of risk realized. If two
mortgage products have the same E[TCRR] value then they could be priced to have
the same interest rates. Given a complicated mortgage product with built in pay-
ment reductions we would need to price an interest rate premium on the difference
of expected ‘““costs” involved so the interest rate premium on top of a traditional
FRM interest rate will be based on the E[TCRR(AWM )| — E[TCRR(FRM)]| value.
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6 Simulation and results

This section presents the data used to test the model developed in the previous
section along with some measurements, model validation and mortgage pricing
simulation results.

6.1 Data used for statistics and simulation
Loan level data

The dataset I used for initial statistics and simulations was the loan-level credit
performance data released by Freddie Mac called Single Family Loan-Level Dataset.
The dataset includes loan-level origination and monthly loan performance data on
a portion of the fully amortizing 30-year fixed-rate single-family mortgages ac-
quired by Freddie Mac. Only those loans were put in the dataset which were
labeled as “full documentation”. After short research on historical default rates I
chose to work with all loans provided which were originated in Florida from 2000
to 2010 as it had one of the highest default rates and highest variation or default
rates between years and was perfect for further analysis.

The term “Default” used throughout the paper was used as a general term
for a variety of loan early termination categories. The loans that were labeled as
defaulted loans as seen in Figure (10) ended either in a Foreclosure procedure, a
Short sale in which the property is sold by a financially distressed borrower for
less than the loan amount, a Deeds-in-lieu in which the borrower also decided
to walk away from the loan and gave back the house to the bank, or seriously
delinquent loans that were sold with loss by the bank to third parties. Figure (11)
shows that defaults were not happening with the same number of months after
origination in different years but most of them happened withing the same 3 year
period if there were enough active at that time no matter the origination date.

House Price Index and price distribution

For the change in house prices I used the state level Freddie Mac House Price In-
dex (FMHPI) along with the Federal Housing Finance Agency’s state level mea-
surements on housing price volatility around the aggregate mean. The advantages
for using the FMHPI instead of the more widely used S&P Case-Shiller Home
Price index is that the FMHPI provides monthly index values from 1975 instead
of just quarterly ones like the previous. To generate a realistic real estate price
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Figure 10: Early terminations and my definition of the default
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Figure 11: Defaulted loans from different origination years

distribution I used the FHFA’s proposal of parameters to generate a Geometric
Brownian Motion around the aggregate mean house price index to model individ-
ual house price movements as shown in Figure (12). Each house is a separate tra-
jectory and all calculations of the model and the simulations were made to reflect
reality as much as possible: mortgage products all used the estimated house price
value by just observing the initial house value and the house price index while
individual borrowers knew more about their houses and were assumed to always
know the real market price of their property. Of course all of the house’s random
movements around the mean index start at their own respective mortgage’s origi-
nation date and property value as known precisely due to the mandatory appraisal
and so Figure (12) is just an illustrative example for the possible paths for one
home. Volatilities were scaled up just for the sake of creating these sample plots.



Example of house price diffusion (not real volatility)
. ' . .

House Price
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Figure 12: House price index and trajectories of individual houses

6.2 Statistics and measurements for the model’s parameters

I examined the data grouped by the loan’s age of origination. As Figure (13)
shows, there is a huge variation in Cumulative Default Rates (CDR) after origi-
nation among loan cohorts of different origination age. After 2003 default rates
started rising every year until its peak of 2007. An interesting observation is that
the CDR of year 2008 starts growing faster but ends up slowing down in the con-
secutive months and CDRs after and including 2009 are back to the pre-2003
years.

Cumulative default rates after loan oritionation
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Figure 13: Cumulative default rates, months after origination
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LTV dependence of Monthly Default Probability
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Figure 14: Monthly probability of default for LTV values

To assess this behavior I calculated statistics for the conditional probabilities
P(D|LTV = x) discretized in 10% LTV bands. As expected, LTV dependent de-
fault probabilities remain fairly stable throughout the years with more error on
regions where less data was available. Aside from some small variances at low
sample size areas, the P(D|LTV = x) seems like a monotonically increasing func-
tion of the LTV and quite stable given the huge variations in yearly default be-
havior between 2000 and 2010. It is interesting to note that up until 2004 these
conditional probabilities were lower just under the LTV = 1 threshold and the
biggest variation can be seen at this point. We can also note that default probabil-
ities around LTV ~ 1 were slightly increasing over time and were more stable in
areas either much below or much above one but we can also see some determinis-
tic movements.

After looking at unemployment rates between 2000 and 2009 as seen in Figure(15)

I concluded that incorporating it would not explain small changed in default prob-
abilities as unemployment rates were declining until 2007 whereas the increase of
default probabilities around LTV =~ 1 started to increase much before that.
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Figure 15: Unemployment rate, Florida[20]

6.3 Backtesting the model on real data

At the beginning of chapter (5) I stated that it is important to test whether or not
the constructed model can explain most of the variation in default rates in the data
so that it could be used to price mortgages constructions.

I used the following approach. Given the model constructed in the previous
chapter with estimated conditional probabilities and a house price index trajectory,
the model should give cumulative default rates close to that of the real data by
simulating a 30 year FRM mortgage on the the historical house price index. For
this of course it would mean nothing if for each year I would use the conditional
probabilities estimated from that year because I would just reproduce the same
thing that I estimated on. To test how well the model captures the borrower’s
behavior I used only one single set of conditional probabilities for reproducing
cumulative default rates of all years between 2000 and 2010.

After this initial test run I got close results to that of Schelkle’s second exam-
ined model[8]. He presented models different than the one than I have developed
so I will give a short summary of them for the sake of comparison. The first of
the models presented was a purely option theoretic threshold model where bor-
rowers defaulted when reaching a given LTV threshold with the parameter needed
to be estimated via grid search for best fit instead of measuring probabilities that
drive behavior. He concluded that the model did not fit the data well at all. The
second model he presented was a so called “double trigger” model in which bor-
rowers with LTV < 1 could not default and borrowers with LTV > 1defaulted
each month with a given fixed probability that also needed to be estimated for
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best fit. He concluded that this model is successful in explaining most of the vari-
ance in cumulative default rates of individual year. My first results of my model
were similar to that of his.

To further improve the accuracy of the model, after concluding that unemploy-
ment rate would not be related to the slight probability shifts early on, I added a
trend anticipating effect to the model where the borrowers would scale their like-
lihood of defaulting with anticipating a trend in the housing market given by the

for long term look- back did not require sophlstlcated optimization algorithms as
there was only a few discrete number of values to check and hence the best fit
could be done in a grid search fashion. The best fit for trend anticipation was
n = 14 which assumes a trend anticipation with around a one year look-back (plus
the lag or probably viewing only a quarterly released house price index).

Real default rates vs. Model output

Cumulative default rate

Months since origination

Figure 16: Cumulative default rates, original vs simulated given House Price In-
dex

After incorporating a trend anticipation in user behavior the model got promis-
ing results for reproducing the changes in default rates between years 2000-2010
as seen in Figure (16). I conclude that the model explains most of the change in
default rates in the given years and managed to fit reality even better than results
in [8].
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6.4 Comparison and pricing

For pricing AWMSs I compared their Total Cost of Realized Risks as presented
at section (5.5). I will use the concept of the Internal Rate of Return to calcu-
late what effective returns does the expected cash flow result for each mortgage
construction. In general, the price of such a mortgage should be a function of
the borrower’s starting LTV and the house price index model we assume to drive
property prices.

Modeling house price indices is a complicated and yet unsolved problem.
Many papers in the literature use a simple Geometric Brownian Motion with es-
timated drift and volatility parameters as there’s no de facto standard for a house
price index model to use for Monte Carlo simulation. The problem of the model
is really due to the fact that volatility itself doesn’t contribute too much in the
house price process but instead it’s clear that we have trends that stick for a num-
ber of years and change whenever something in the fundamentals change. What
makes house price processes more complicated is that these trends are mostly
due to current government plans for loan regulations, interest rates and many
other factors. Just to see the results I also checked whether or not the log dit-
ferences of the house price index process are a normally distributed. The one
sample Kolmogorov-Smirnov test gave significance 0.000 and thus rejected the
hypothesis of the distribution being normal as seen on Figure (17).

Hypothesis Test Summary

Null Hypothesis Test Sig. Decision
The distribution of DIFF(log_fl_2012, Cne-Sample Reject the
1 1) is normal with mean 0.00 and Kaolmogaorow- .000 | null
standard deviation 0.01. Smirnov Test hypothesis.

Asymptotic significances are displayed. The significance level is .05.

Figure 17: Testing normality of the log house price increments

To use a realistic house price distribution I used bootstrap sampling from the
house price indices provided from all 381 Metropolitan Statistical Areas and thus
using a fully empirical approach for the house price process. After running a
simulation for different parameter values I obtain expected values of the cash flow
on the full mortgage time horizon and solve the following equation for IRR to get
the Internal Rate of Return of the expected cash flow:

T/t
B Q—E(TCRR;)
BOJFI; (It IRRT) O @)
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I did the same procedure with all four mortgage constructions with exactly the
same parameters. In general, for given common mortgage parameters (foreclo-
sure cost fc, starting loan-to-value ratio LT Vjy,reference interest rate r, maturity
T, compounding period 7) I give the resulting internal rates or return for each
mortgage construction

v(fe,LTVy,r,T,T) = {IRRFrrm , IRRcwm , IRRABM , IRRABM NPL}

which are directly comparable. It is interesting by itself how much lower the actual
IRR of a mortgage construction is of its reference interest rate but it is much more
interesting to see how they compare to each other.

6.4.1 Sensitivity to starting LTV

LTV depencence of Cumulative default rates
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Figure 18: Cumulative default rates for different LTV's

We can see in Figure(18) that the FRM is most sensitive on different starting LTV
values for cumulative default rates while all AWMs gave very similar results.

The dependence of the principal loss on the starting LTV in Figure(19) shows
similar results to that of the default rates but we can see the modified ABM NPL
to recover some of its loss in later periods.
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The Interest shortfall in Figure(20) shows that the FRM is the most LTV sen-
sitive however CWMs underperform almost everything under L7V < 0.85 due to
lowering scheduled payments even when it is not motivated by a high LTV.

LTV depencence of Cumulative losses
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Figure 19: Cumulative principal losses for different LTVs
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LTV depencence of Cumulative interest shortfalls
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Figure 20: Cumulative interest shortfalls for different LTVs
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Figure 21: Average default option payoff function for different LTVs

What is most interesting to see is the average option payoff functions in Fig-
ures (21,22). The default option of the FRM is in-the-money on the average and
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it is very LTV sensitive in the first third of the contract, in this case for approxi-
mately the first 10 years. The two types of ABMs have identical payoff functions
and are by two magnitudes lower on average and also decreasing rapidly. This can
be seen best on Figure(22) as it presents the different mortgage types on the same
plot zoomed in. The CWM'’s default option can almost never be in the money ex-
cept when we start the loan from an LTV = 1 critical value. It is important to note
that the only reason AWMs here can have positive default option value is due to
simulating a realistic house price distribution around the mean with the diffusion
of individual house prices. This results that as we expect, the bank’s estimate of
the LTV is very accurate but not perfect and hence some loans will have bigger or
smaller real LTV values than estimated.

<10 LTV depencence of Average default option payoff function (zoom)
T T T
— FRM
ABM NPL

Payoff of a default decision

s | |
0 50 100 150 200 250 300 350 400
Months after origination

Figure 22: Default option value(zoom)
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LTV depencence of Internal rate of return
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Figure 23: Internal return rates for different LT Vs

As anticipated, the FRM is very sensitive to starting LTV values and this af-
fects all aspects of the loan from default rates, principal losses, interest shortfalls
and In-The-Money default option prices. All of these of course will result that its
internal rate of return will be one of the lowest. As seen in Figure(23) ABMs give a
better return on the same capital and are considered better investments both in low
and in high starting LTV situations. The CWM however is prone to overprotection
and is not wort using under LTV < 0.85 as it underperforms all constructions. My
proposed idea of a modified ABM with no principal losses due to payment re-
duction slightly outperforms the simple ABM but the small difference might not
be worth the hassle of slightly rising scheduled payments after the 20 year mark
although I checked that the slightly elevated scheduled payments would mostly
remain lower than starting values if adjusted by inflation. It might be surprising
that realizing the FRM also has a “built in” option on top of the FRM interest rate
because the ABM will outperform the FRM. As seen in the above examples, the
ABM'’s payment reductions could be a small price to pay for much bigger gains.
The origination of a CWM however is not so simple as it underperforms the FRM
in lower LTVs than 0.85 and thus needs to be charged the difference in expected
return.
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Direct comparison of different mortgage constructions
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Figure 24: Direct comparison of AWMs

A direct comparison of different constructions is available in Figure(24). We
can see that on average, AWM s result in less defaults, losses and interest payments
and the biggest difference is not which AWM we use but whether or not we use
one or stick to the FRM.

6.4.2 Performance of AWMs on the 2000-2010 house price index

We’ve already seen that AWMs work well in expectation when sharp house price
turns are relatively rare. Because the goal of these constructions are to work even
in more extreme cases I also check the performance of the different types of con-
structions on the house price index and starting CLTV values from the Freddie
Mac dataset to see how we would expect them to behave under similar extreme
circumstances. Figure (25) shows that although we do see some increase of cu-
mulative default rates (note that defaults increased even in low LTV cases in the
data) AWMs would seem to do their job at keeping defaults at the minimum even
in “worst case” situations.
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Comparison of different mortgage products on 2000-2010 data

Real cumulative default rates Possible cumulative default rates of a CWM
— R2002 — R2002
— R2003 | 025+ e R2003 ||
— 20004 ® — 2004
R2005 e R2005
— R2006 | 5 0 — R2006 [|
— R2007 § — 22007
— R2008 [ 9015’ — R2008 [
e R2009 £ e R2009
— R2010 || 3 o1l — R2010 ||
3
1 0051 1
n L L 0 n n L L
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Months since origination Months since origination
Possible cumulative default rates of an ABM Possible cumulative default rates of an ABM NPL
— R2002 — R2002
025+ — R2003 || 025+ — R2003 | |
— 20004 ® — 2004
R2005 s R2005
02r — R2005 [| 5 02 — R2006 [|
— R2007 § — 22007
0151 — R2008 H 90157 — R2008
e R2009 £ e R2009
o1k — R2010 || 2 o1t — R2010 ||
3
0.05+ 9 005+ / |
0 20 40 6 80 100 120 140 0 20 40 60 80 101 120 140
Months since origination Months since origination

Figure 25: AWMs estimated default rates under real HPI and CLTV data

Comparison of different mortgage products on 2000-2010 data
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Figure 26: AWMs estimated principal losses under real HPI and CLTV data
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Comparison of different mortgage products on 2000-2010 data
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Figure 27: AWMs estimated interest shortfalls under real HPI and CLTV data

Keeping cumulative default rates low is a good result but they have to pay a
price for it. Figure (26) shows that average principal losses were quite substantial
but still much lower than in the FRM case. Figure (27) shows that the biggest price
they paid was sacrificing most of the interest payments which were even more
than the FRM in the case of the CWM but much lower in the cases of the ABMs.
Although nothing’s for free, the performance of AWMs are quite impressive in
these extreme circumstances but not because of keeping default rates low - they
were designed for that specific purpose - but instead that they do that with much
less overall losses than the FRM had to go under.

6.5 Possible direction to continue

Although most tests for most years fit well on the data; 2005 being somewhat of
a tipping point in behavioral probability changes and was less accurate as well as
2008 where unemployments really first struck the masses and was also the point
of the mortgage market crisis becoming a global financial one. A possible further
step would be to incorporate unemployment rates into the model as a probability
of losing liquidity.
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7 Conclusion

Proposing new or innovative ideas in periods of financial crisis is not uncommon.
In fact before we are hit by something unexpected we don’t yet know that we need
protection from it. The 30-year old fixed rate mortgage that we now call traditional
was the result of the efforts of the Federal Housing Administration after the Great
Depression. Such events remind us that the need for financial innovation is not
less after a crisis but instead higher than than ever.

In the previous decades we have seen the completely legal approaches for han-
dling defaults and to make the choice of the financially rational decision under a
negative equity costly and painful in order to reduce their frequencies as much as
possible. A global financial crisis could often lead to stop and rethink some of
the ideas that were previously enforced without analyzing whether or not there
is a better option. The new approaches in constructing mortgage products look
irrational at first glance because of their willingness to forgive parts of payments
automatically, built into the contract. As there were many proposals on how to
treat troubled macroeconomic situations with innovative mortgage products and
how to value the rational exercise of their possibilities; I have yet to discover a
paper developing a general framework for incorporating empirical evidence of
sub-rational behavior to price such products against each other instead of an ab-
stract unreachable reference value. In my attempt to create such a framework I
was also surprised how effective these mortgage products can be.
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A Options and option pricing

I will give a short introduction to financial options below to make the concept of
embedded optionalities in the mortgage contract clearer and to later highlight the
slight differences between pricing regular stock options and the mortgage valua-
tion model I propose.

Options are derivatives of the underlying asset that promise some payoff spec-
ified as a function of the asset. There are many types of options but in this short
introduction I will only cover option types that are useful in understanding the
option theoretic model developed for pricing mortgages.

Before going further I'll define a useful notation that is commonly used while
working with options:

x+:{x ifx>0 22)
0 ifx<O

A.1 European options

One of the most common and most simple types of financial options are Euro-
pean style options. I will present the European Put option which has the payoff
function:

f@) = (K =Sr(w))” (23)
where St is the price of the underlying asset at time 7 and K is the strike price
we agree on. If the price of the asset at the expiration is more than K then the
option is worthless and pays no money. On the other hand if the price of the asset
at expiration is less than K the option pays the difference, whatever the price of
the stock may be. The value of the option at maturity can be viewed on Figure
(28). The option is called In-The-Money (ITM) if having a payoff greater than
zero, Out-of-The-Money (OTM) on the opposite side resulting in zero payoff and
At-The-Money (ATM) at the strike price.

The price of this option can be given by a function of the form P(Sy,K,T,r, o)
with the following parameters:

e §p - the current price of the asset
e K - strike price

e T - expiration of the option
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Figure 28: European Put option payoff function[12]

e O - volatility
e 7 - interest rate

It is important to note that the European option types can not be exercised before
its expiration time 7.

A.2 American style options

The only difference between a European option and its American counterpart is
that the latter can be exercised at any time desired on the full 0..7 time horizon
and pays the value given by the option payoff function that that time and thus for
a simple American put option we have a payoff function

fi=(K—=8)",1€(0,T] (24)

A.3 Option pricing
European options

The price of an option in general is the expectation of the discounted claim on the
payoff function with respect to a distribution Q that makes the underlying process
fulfill the martingale property and is named the Equivalent Martingale Measure
(EMM) The value of a European Put option can be expressed as:

50



Py=Eq e f(S)] =Eq e (K—Sr)"] (25)

The price of European options can be given with a closed formula[13].

American options

Because these options can be exercised at any time up to expiration the above
equation for pricing a European Put option will be modified as

Py = Eq[fr (Se+)] (26)

where 7*is called the optimal stopping time. The rationality behind such an option
therefore is to maximize the expected payoff by exercising when we expect it to
take on its highest value. The valuation of such an option is complicated and
a closed formula for pricing does not exist although there are several numerical
algorithms that can be used[14, 15].
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B Proof, the proposed CWM/LTY is the same as the
ABM

Proof.

cCWM/LTV .
oMY = min

B r rt

= min (Bl ,Ct+r) 1 (1_|_r,L.)—(T—t)/T
. BM

= Y17

gewmery () 1 pFRM
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C Details in the steps of developing the model for
default loss

In this section I present the different approaches I tried to model default related
losses. I present the initial version also because it directly compares to the model
used in the Basel II framework.

The idea of the Basel II framework

The default loss on a traditional fully amortizing Fixed interest Rate Mortgage
(FRM) can be approximated by finding estimates of the terms Probability of De-
fault (PD), Loss Given Default (LGD) and Exposure At Default

Loss"®™ — PD « LGD x EAD (27)

This simple and straightforward model of course has its limitations. Although
many times these terms are estimated separately, we can agree that these terms
are not independent of each other and the dependence between them may even
be nonlinear leaving the measurement of simple correlations to be insufficient. I
first take this basic model as a basis to analyze the problem and point out some
interesting observations that can made and could lead to more detailed modeling
that better fits the problems that can be seen on the mortgage market.

Expanding the Basel II idea and presenting its limitations

I expand these terms with more detail by breaking it up further on cases of the
Loan To Value (LTV) ratio using the Total Expectation Theorem:

E[Loss] = P(D)E[Loss|D]
P(D) (P(LTV < 1|D)E[Loss|D,LTV < 1]+ P(LTV > 1|D)E[Loss|D,LTV > 1])

Handling these situations separately is promising because the expected losses
are far different in these two basic LTV situations, taking in consideration whether
or not there is enough collateral.

To add further details in the model let’s note that a default event triggers a
substantial workout cost that is usually added to the losses of the bank unless
the value of the collateral is enough to cover both the remaining balance and the
workout costs. Taking this extra cost into consideration we could replace the
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splitting point of the LTV values to separate the two scenarios in which there is
either enough collateral so that the bank only suffers the interest payments losses
resulting in a similar situation to a prepayment or the other scenario of not having
enough collateral to cover remaining balance and extra costs. I'll represent the
workout cost (c,,) as a percentage of the collateral assuming that this could be
accurately estimated initially. After the new split the equations look like:

E[Loss] = P(D)P(LTV <1—c¢y|D)E[Loss|D,LTV <1—c¢,]+
P(D)P(LTV > 1 —cy|D)E[Loss|D,LTV > 1 —c,)] (28)

We still can’t omit the LTV < 1 — ¢, scenario from the equations and assume
its value to be zero as we have to consider remaining interest payment losses
instead of just loss on the principal itself and we can only have an estimate of
possible workout costs which is definitely not a fixed value.

We can see that adding more detail to the model using this path of thought
has its limitations because of using splitting points that will have big variances
and so makes using the splits pointless. The problem may be that using equa-
tion (27) as a starting point and trying to further segment the probability space to
give more detailed models we may approach the problem from the wrong starting
point, namely starting with concentrating on the probability of default initially.
We can also say that the resulting branches like the term P(LTV > 1 —¢,|D) is
very counter intuitive and we might miss a hidden cause and effect relationship.

Taking a fresh start on segmenting the probability space

We could more easily find a good business interpretation of a reversed form like
P(D|LTV > 1—c,,) as the probability of a high LTV induced default where the
borrower might have been able to continue payments but chose not to because the
collateral is worth less than he owes the bank. By taking the LTV value to be the
first branch we get the equation:
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E[Loss] = P(LTV <1)P(DILTV < 1)E[Loss|LTV < 1,D]
+P(LTV < 1)P(~D|LTV < 1)E[Loss|LTV < 1,~D]

N /
-

=0
+P(LTV > 1)P(D|LTV > 1)E [Loss|LTV > 1,D]

+P(LTV > 1) P(=D|LTV > 1)E[Loss|LTV > 1,-D]

=0
= P(LTV < 1)P(D|LTV < 1)E[Loss|LTV < 1,D]

[ /

lowLTV c?erfault loss
+P(LTV > 1)P(D|LTV > 1)E [Loss|LTV > 1,D] (29)

N

high LTV de faultloss

The first approach was based on segmenting the probability space from the
bank’s perspective to identify scenarios where there is enough collateral and where
isn’t. Reversing the questions and the conditions leads to a totally new perspec-
tive, namely segmenting the probability space from the customer’s perspective
to model his behavior and so identify scenarios when it is a rational decision to
choose to default and refuse paying or when it is not a rational decision to default
(and so it is not worth it) but the borrower has no other option. By using this mod-
eling approach we don’t omit the nonlinear dependence of the default probability
on the LTV and the hidden cause and effect relationship if the LTV > 1 event oc-
curs. I would expect P(D|LTV < 1) to be less then P(D|LTV > 1) and if empirical
evidence would suggest that then the model should give decent results as this will
break down defaults to two completely different cases that would now incorporate
rational decisions. Results are presented in later chapters with measurements on
data.
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