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1. Introduction and main results

1.1. Introduction to random graphs and networks. Technology and ap-

plication of arbitrary graph studies reached the phase of turning to the study

of large real-life networks. The empirical results are surprising, they found that

many real-life networks show some sort of universality by sharing important

properties. (For an overview on networks and random graphs see for example

[19, 21].) To start with, degree sequences of most of these networks have a

power-law tail, i.e., for k large enough, the number of vertices with degree k is

proportional to k−β, for some β ≥ 1. The second commonly shared property is

known as ”six degrees of separation” for social networks. Based on empirical

results, in the graph representing people and their acquaintances, typically two

people in the world can be connected with a chain of 6 people. This small

world phenomenon, i.e., the diameter being really small compared to the size

of the graph, also is a typical property of real-life networks.

Since these complex networks are huge and hence hard to treat globally,

local description is important. The local clustering coefficient of a vertex, i.e.,

the proportion of finished triangles and pairs of edges from the given vertex,

was found to be high in most real-life networks. For a social network, this

means that two friends of a person are likely to be friends too.

Since the structure and topology of networks affects the performance of

various processes on the network, such as the spread of information in biological

or human networks, it is an important question for sciences to understand

these in more detail. Local structure and neighborhoods depend on the local

connection rules of vertices, which are found to be probabilistic. This led to

the study of random graphs.

One of the most basic and oldest random graph model is the Erdős-Rényi

random graph [20], where there is a fixed number of vertices and each possible

edge is added independently with probability p. This model was studied

rigorously, however, in some aspects, it does not behave like real-life networks.

As a generalization to overcome these aspects, the inhomogeneous graph model

was introduced, its most general form befined by Bollobás, Janson and Riordan
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[16]. Given the vertices having some types from a (not necessarily finite) type-

set, the probability of any edge being added is independent from everything

else and depends on the types of the two vertices given by a kernel function κ.

Some random graphs were directly created to model real-life networks, based

on the observed properties of the real-life networks under consideration. Pref-

erential attachment models [5, 15] were created to model the time development

of internet-related networks. At each time step, a new vertex is added to

the network and connects to old vertices independently, with a probability

proportional to their degrees. There is a modification that adds new edges in

two steps: the first step is the method described above, then we connect the

new vertex to the neighbors of its neighbors with a higher probability, to raise

more triangles. A possible generalization is a model where vertices and edges

can also disappear, or where vertices have some kind of ‘fitness’ parameter

increasing or decreasing the likelihood of getting new edges.

Another different approach is based on the often observed hierarchic structure

of networks. Initiated by Barabási, Ravasz and Vicsek [6], hierarchic graph

models were created. These models are deterministic, fractal-like graphs with

hierarchic structure, where the degree distribution has a power-law tail, and

the small world phenomenon is also valid.

When we study processes on networks that move faster than the development

of the network itself, we can use static random graph models. (More about

those observed processes later.) One commonly used model for this is the

configuration model (see in e.g. [14] or [21]). We take n independent copies of a

positive, integer-valued random variable to be the degree sequence of the graph

and give each vertex as many half edges as its degree is supposed to be. To

form edges, we sequentially take a half edge and choose its pair uniformly over

the not-yet-used half-edges, (thus we choose a higher-degree vertex with larger

probability). We repeat this until all half edges are paired. If the total number

of half edges is odd, we delete the last unpaired one. Its popularity comes

from the fact that conditioning on the graph being simple leads to uniform

distribution among the simple graphs with the given degree sequence.
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Another static model is the Watts-Strogatz [33] or Newman-Watts [27] small

world model, which we shall introduce later and more rigorously, as it is the

center of our attention.

1.2. First passage percolation. First passage percolation was first intro-

duced to study spreading dynamics on lattices, in particular on Zd, d ≥ 2.

The intuitive idea behind the method is that one imagines water flowing at a

constant rate through the (random) medium, the waterfront representing the

spread. The model turned out to be able to capture the core idea of several

other processes as well, applications include studying graph distances and

epidemic spreads.

Note: an epidemic spread is a process on a network. We start the epidemic

from a given root (or several ones), which is infected and contagious. The

contagious period can be constant, random or infinite. The edge weights

correspond to the time needed for the infection to pass through, with finite

contagious periods, the neighbors might remain uninfected. It also leads to

different models whether we allow vertices to recover. The most simple model,

which directly corresponds to the water spread, is when vertices once infected

remain so and the contagious period is infinite. Then the epidemic spreads

the whole component. We will refer to this easy model later when we write

epidemic spread.

Among the first applications of first passage percolation, Janson [22] investi-

gated typical distances and the corresponding hopcount, i.e., the number of

edges along the shortest weight path, flooding times as well as diameter on the

complete graph. Evidently, without edge weights, all these quantities equal to

1. A strange phenomenon arises though, as adding random exponential edge

weights, shortest weight paths drop to order log n/n. Specifically, the shortest

weight path, the flooding time and diameter converge to 1, 2, and 3 times

log n/n, respectively, and the hopcount jumps up to order log n.

In a sequence of papers (e.g. [10, 11, 12, 32]) van der Hofstad et al started

to investigate typical distances in random graphs, leading to a large body

of first passage percolation on random graphs literature. Their aim was to

determine universality classes for the random metric spaces that are given
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by the shortest path metric when adding some random edge weights to a

random graph. They showed (in a sequence of papers) that for random graphs

that have no geometry (e.g. the supercritical Erdős-Rényi random graph, the

configuration model, or the rank-1 inhomogeneous random graphs), where

the degree distribution has finite asymptotic variance, and the edge weights

are continuous on [0,∞), typical distances scale as log n. On the other hand,

having power-law degrees with infinite asymptotic variance drastically changes

the metric and there are several universality classes. (For instance, for unit

edge-weights, the graph is ultra small, i.e., distances scale as log log n, while for

exponential edge-weights, distances are tight [11].) However, for finite means

[12](in case of the configuration model) the hopcount remains of order log n.

Recently, Kolossváry and Komjáthy [25] used first passage percolation to

determine distances on the inhomogeneous random graph model mentioned

above with exponential edge weights, for finite asymptotic mean of degrees.

The results are of order log n: the shortest weight path centered with a constant

multiple of log n converges to a non-degenerate random variable, while the

hopcount satisfies a central limit theorem with expected value and variance

both constant multiples of log n.

In [13] Bhamidi, van der Hofstad and Komjáthy studied epidemic spread

on the configuration model with exponential edge weights. They pointed out

the connection between first passage times and the epidemic curve, i.e., the

asymptotic proportion of infected individuals as a function of time, for a SIR

(susceptible-infected-removed) epidemic on the configuration model. After

proving our main theorem about typical distances, the same idea yields us the

epidemic curve for the Newman-Watts model with exponential edge weights.

Earlier, [9] Barbour and Reinert also concerned themselves with epidemic

spreads on the Erdős-Rényi random graph and on the configuration model

(with bounded degrees), aiming for results that would apply to a wider class of

random graphs.

In [2, 18] the competition of two first passage percolations, running on the

same graph is investigated. This can be considered a competition between

two epidemics, as well as the marketing of two similar products. The results
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show that the graph structure has a significant effect on the outcome, as in

small worlds, one competitor only gets a negligible part of the vertices, while

on regular lattices with linear distances both floods occupy a linear fraction of

vertices.

1.3. The Newman-Watts model. The Newman-Watts small world model,

often referred to as ”small world” in short, is one of the first random graphs,

created to model real-life networks. It was first introduced by Watts and

Strogatz [33], a simplifying modification made by Newman and Watts [27]

later. The Watts and Strogatz model starts with a ring of n vertices, each

connected to the k ≥ 1 nearest vertices, then to create shortcuts, each edge

is independently rewired to a uniformly chosen other vertex with probability

p. This makes the model ”tunable” in the sense that the degree of disorder

can be manipulated, the graph ranging from completely regular to completely

stochastic. Disorder comes with low clustering as well as short distances, while

regularity means high clustering, but distances linear in n. However, if p

is small but positive, high clustering remains while even comparatively few

shortcuts make distances drop significantly, to order log n, hence the small

world.

Newman and Watts made the modification that instead of rewiring, all edges

of the ring are kept and new shortcut edges are added. The method is similar

to the creation of the Erdős-Rényi graph, for each pair of not yet connected

vertices, we connect them independently with probability r. It is proved that

these models are asymptotically equivalent as n tends to infinity (with the

right choice of k, p, r), but the Newman-Watts model is easier to handle since

it is always connected. (In this paper, we will pursue our investigations on the

Newman-Watts model with k = 1.)

The model has been studied from different aspects. Newman et al studied

distances [28, 29] with simulations and mean-field approximation, as well as

the spread of non-deterministic epidemics [26]. The aim was to determine the

threshold infection transmitting probability which suffices for a large outbreak

of the epidemic.
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Aside from the properties of the model that make it similar to real-life

networks, the mixing time of a symmetric random walk on the Newman-Watts

graph was studied. To define the mixing time, consider the symmetric random

walk on the graph as a Markov chain, started with an initial distribution. In

each step, the current state of the chain specifies a distribution, that is known

to converge to the stationary distribution. The time when the total variation

distance of these two drop below 1/4 is called the mixing time. Durrett [19]

conjectured that the mixing time is between order of (log n)2 and (log n)3, later

on Addario-Berry and Lei [1] proved that it is indeed of order (log n)2.

Barbour and Reinert also investigated typical distances on the Newman-

Watts model with first passage percolation. In the first paper [7] they carried

through investigations on a continuous circle with circumference L instead of

L many vertices, and added Poi(Lρ/2) many shortcuts at locations chosen

according to uniform measure on the circle. Distances are measured by the

usual arc measure along the circle, while shortcuts are given length 0. In the

second paper [8] they considered a discrete model, with unit edge weights

on the cycle as well as the shortcuts, thus the metric was exactly the graph

distance. Their results are - not surprisingly - of order log n.

1.4. Precise model and main results. We will work on the Newman-Watts

small world model [27] with independent random edge weights. We can

construct the most convenient version of the model as follows: we take a cycle

Cn on n vertices. Then independently for each pair i, j ∈ [n] := {1, 2, . . . , n},
where |i− j| 6= 1 mod n, we add the edge (i, j) with probability ρ/n to form

shortcuts. Here, ρ is the parameter of the Newman-Watts graph, corresponding

to the asymptotic average number of shortcuts from a vertex. Conditioned on

the edges of the resulting graph, we assign i.i.d. exponential random variables

with parameter 1, in short, Exp(1) edge weights to each edge. We denote the

length of edge e by Xe. We write NWn(ρ) for a realization of this weighed

random graph.

The additional edge weights can represent the time of transmission from one

vertex to the other, or the cost along a given edge. We can also think of the

graph with the edge weights as a random metric space, where the distance
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between any two vertices is the sum of weights along the shortest weight

path. Hence, this graph model is a (non-euclidean) random metric space. The

distance between two vertices in this metric then can for instance correspond to

time of information spread on the network, or can model cost of transmission

between the vertices. More precisely, we can model the spread of information

from a uniformly chosen vertex, U ∈ [n], as follows:

We can assume that once a vertex v receives the information at time t, it

starts transmitting the information towards all its neighbors at rate 1. Let

us denote the vertices that are connected to v by an edge by H(v), then, for

each w ∈ H(v), w receives the information at time t+X(v,w). We assume that

vertices transmit information only once to each neighbor, even if they receive it

more than once, and that there is no time limit for that transmission. (Hence,

we can look at this model as a susceptible-infected model for spread of diseases:

vertices cannot recover and the infectious period is infinite.)

We say that an event En happens (on NWn(ρ)) with high probability (w.h.p.)

if limn→∞ P(En) = 1, that is, the probability that the event holds tends to 1

as the size of the graph tends to infinity. We write shortly Bin and Poi for

Binomial and Poisson and distributions, respectively.

In this paper, we investigate typical distances, i.e., the weight of the shortest-

weight path between two uniformly chosen vertices U and V . Let ΓUV denote

the set of all paths γ in NWn(ρ) between U and V . Then the weight of the

shortest weight path is defined by

(1.1) Pn(U, V ) := min
γ∈ΓUV

∑
e∈γ

Xe.

Theorem 1.1 (Typical distances). Let U, V be two uniformly chosen vertices

in [n]. Then, the distance Pn(U, V ) in NWn(ρ) with i.i.d Exp(1) edge weights

satisfies w.h.p.

Pn(U, V )− 1

λ
log n

d−→ −1

λ
(logWUW V + Λ + c),

where λ is the largest root of the polynomial λ2 + (1− ρ)λ− 2ρ, Λ is a standard

Gumbel random variable, the random variables WU ,W V are independent copies

of the martingale limit of the multi-type branching process defined below in
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Subsection 2.3, and c = log(1 − π2
R/2) − log(λ(λ + 1)), furthermore π is the

stationary type-distribution for the same branching process.

For the γ path that minimalizes the distance, we call Hn(U, V ) = |γ| =
∑

e∈γ 1

the hopcount, i.e., the number of edges along the shortest-weight path.

Theorem 1.2 (Central limit theorem for the hopcount).

Hn(U, V )− λ+1
λ

log n√
λ+1
λ

log n

d−→ X w.h.p. as n→∞

Where X is a standard normal random variable and
d−→ means convergence in

distribution.

We consider an epidemic spread on the network as well, with a single source U ,

all other vertices are susceptible. Once a vertex becomes infected, it remains so,

and infects all its neighbors some time later, these transmission times are i.i.d.

exponential r.v.’s. (The epidemic occupies the graph in the exact same way the

waterflow does, if the edges are pipes with length given by the edge weight.)

On NWn(ρ), we denote by In(t, U) := 1
n

∑
i∈[n] 1{i is infected by time t}, the

fraction of infected vertices among all vertices at time t, in the epidemic started

from the vertex U .

Theorem 1.3 (Epidemic curve). Define the function f(t) = 1−MWV
(x(t)),

where MWV
is the moment generating function of WV , and x(t) =

(
1− 1

2
π2
R

)
1

λ(λ+1)
eλt.

Then In(t+ 1
λ

log n, U) converges to f(t+ 1
λ

logWU) in probability.

WU , as in Theorem 1.1, is the martingale limit random variable of the

branching process defined in 2.3, started from U .

Remark 1.4. Note that f is a deterministic function with a random shift

given by 1
λ

logWU . This means that throughout the epidemic, the fraction

of infected individuals follows a deterministic curve, only the starting time

is random. This phenomenon has been observed in real-life epidemics, see

e.g. this link or [31]. The time shift depends on WU , which describes the

neighborhood of U . The result corresponds to the heuristics: a bigger value of

WU means the neighborhood of U is ”dense”, the spread is quick in the initial

http://phprimer.afmc.ca/Part2-MethodsStudyingHealth/Chapter7ApplicationsOfResearchMethodsInSurveillanceAndProgrammeEvaluation/Patternsofdiseasedevelopmentinapopulationtheepidemiccurve
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stages, hence can infect the whole graph quickly. Indeed, a bigger value of

WU shifts the function more to the left, causing it to take bigger values earlier.

It is also just natural that we observe times in the form of t+ 1
λ

log n, where

t is a real parameter that can take even negative values. As 2tn = 1
λ

log n is

the typical distance, we expect most individuals to be infected in a small time

frame around time 2tn, hence the fraction of infected individuals is expected

to change significantly in the same time frame.

Remark 1.5. To make the distinguishing between shortcut- and cycle-edges

easier, let us color the cycle-edges red and the shortcut-edges blue. In this

respect, each vertex has two red neighbours, and since there are Bin(n−3, ρ/n)

many blue outgoing edges from the vertex, each vertex has asymptotically

Poi(ρ) many blue neighbours.

1.4.1. Comparison to related literature and context.

Erdős-Rényi graph. The subgraph formed by the blue edges is approximately

an Erdős-Rényi graph, with the difference that the cycle always makes NWn(ρ)

connected, hence there is a single giant component containing all vertices.

It is well-known [21] that typical distances in the giant component of the

supercritical Erdős Rényi random graph are of order log n, and this is also

true [8] for the Newman-Watts model (without the edge weights) for any

ρ > 0. Hence, adding the cycle-edges makes the graph somewhat similar to the

supercritical regime of the Erdős Rényi random graph. On the other hand, the

cycle edges add a geometry to the graph, which plays a crucial role throughout

the investigation.

Let β = 1/(ρ − 1), then with our notations, the typical distance on the

Erdős-Rényi graph with Exp(1) edge weights, conditioned on U and V being

connected:

Pn(U, V )− β log n
d−→ −β (log(βW ) + log(βW ′) + Λ)

Where W and W ′ are independent copies of (W0|W0 > 0), with W0 being

the branching process limiting random variable and Λ is a standard Gumbel

random variable. Note that ρ− 1 is the expected offspring-1 in the branching

process, corresponding to λ, the Malthusian growth parameter in our model.
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Hence the difference between typical distances on the Erdős-Rényi random

graph model and on the Newman-Watts model is in the constant.

Inhomogeneous random graphs . Recall the inhomogeneous random graph model

mentioned above in subsection 1.1. Vertices have types s from a type space S,

equipped with a probability measure µ, and conditioned on the types of the

vertices, edges are present independently with probabilities that depend on

the types. These probabilities are given by a so-called kernel κ. We will see

that the exploration process on the NWn(ρ) model is similar to the exploration

process on inhomogeneous random graphs with exponential edge weights [25]

- that is, both of them can be modelled using a continuous time multi-type

branching process. It would be natural to guess that typical distances are then

the same in these two models for an appropriately chosen κ. It turns out, that

this is almost the case: the first order term λ−1 log n, and the random variables

are the same, but the additive constant c in Theorem 1.1 is not: the geometry

of the Newman-Watts model modifies how the branching processes can connect

to each other, which modifies the constant. Writing their result in the same

form as ours, cinhom = − log
(
λ(λ+ 1)/

∑
s∈S π(s)2/µ(s)

)
.

Other results about the Newman-Watts small world model . As mentioned before,

Barbour and Reinert investigated typical distances in related models rigorously.

In [7] they treated a continuous version of the model. Their result is implicit,

but shows the distance is logarithmic function of L:

P(PL(U, V ) > (log(Lρ)/2 + x)/ρ)
d−→
∫ ∞

0

e−ydy

1 + y(2e2x)

In a subsequent paper [8] they treated the discrete model NWn(ρ(n)) with

unit edge weights. They gave complete characterisation of typical distances in

terms of the parameter ρ(n) that might also tend to infinity with n. In particular,

they showed that the earlier continuous model is a good approximation only if

ρ(n)→ ρ: in this case the distances are logarithmic, given by a similar implicit

relation.

1.5. Sketch of the paper. In what follows, we prove Theorems 1.1, 1.2 and

1.3. The brief idea of the proof is the following: we pick two vertices uniformly,

then we start the neighbourhoods of these vertices in the graph in the order that
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is the distance from these vertices (Section 2). We show that this procedure

w.h.p. results in shortest weight trees (SWT’s) from the two vertices that

can be coupled to two independent copies of a certain branching process, that

will be a continuous time multi-type branching process. We then handle the

connection between these two branching processes in Section 3 with the help of

a Poisson-approximation. After the detailed analysis of the connection process,

the proof of Theorem 1.1 follows by noting that the first connection of the

two explored clusters provides a shortest weight path, that can be described

uniquely in the Poisson point process. We also heuristically compute the

epidemic curve from this, then make it rigorous in 4. Finally we prove the

central limit theorem for the hopcount (5).

2. Exploration process

To explore the neighborhood of a vertex, we use a modification of the Dijkstra

algorithm. Along the lines of first passage percolation, the intuitive picture

is that the edges represent pipes with length given by the edge weight, and

water flows through the graph from the source at a unit rate. At any time t,

the explored vertices are the wet ones while the actives mean those vertices

that compete to become explored (are the end of an edge through which water

is currently flowing).

Introduce the following notations: N (t), A(t), U(t) denote the set of explored,

active and unexplored vertices at time t, respectively.

R{A(t)}(t) denotes the remaining lifetime of the currently active vertices, indexed

by the vertices; Rw(t) meaning the remaining lifetime of some vertex w ∈ A(t)

at time t. We write N(t), A(t) for the sizes of explored and active sets at time

t. As before, H(v) denotes the neighbors of a vertex v. Adding the subscript R

or B to any quantity corresponds to the same quantity restricted to only the

red or blue vertices, respectively. Colors will be given according to the color of

the edge we reach the vertex through.

2.1. The exploration algorithm on an arbitrary weighted graph. Let

i = 1. The vertex from which we start the exploration process is denoted by
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v1. We color v1 blue and set the time as t = T1 = 0. Evidently, we take

N (0) = {v1}

A(0) = H(v1)

U(0) = [n] \ ({v1} ∪ H(v1))

The remaining lifetimes are determined by the edge weights, that is

R{A(0)}(0) = {Rw(0) = X(v1,w) for all w ∈ H(v1)}.

We color the active vertices w ∈ H(v1) to have the same color as the edge

(v1, w).

We work with induction from now on. In each step, we increase i by 1. We

can construct the continuous time process in steps, namely, at the random

times when we explore a new vertex.

Let τi = min
(
R{A(Ti−1)}(Ti−1)

)
, the minimum of remaining lifetimes. Then

define Ti := Ti−1 + τi, the time when we explore the next vertex. Clearly, the

sets do not change until Ti. Formally, for any t s.t. Ti−1 ≤ t < Ti:

N (t) := N (Ti−1)

A(t) := A(Ti−1)

U(t) := U(Ti−1).

From all the remaining lifetimes, we subtract the time passed: for some

0 ≤ s ≤ τi,

R{A(Ti−1)}(Ti−1 + s) := R{A(Ti−1)}(Ti−1)− s, subtracted element-wise.

Note that we define only R{A(Ti−1)}(t) it for t = Ti too, which will make the

included remaining lifetimes continuous. The other sets are defined up to Ti,

excluding Ti, which leads to the quantities A(t) and N(t) being right-continuous.

(So that A(Ti) means the number of active vertices after the ith split.)

At time Ti, the vertex vi of which the remaining lifetime equals to 0, becomes

explored and its neighbors become active. We shall refer to vi as the ith explored
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vertex.
N (Ti) := N (Ti−1) ∪ {vi}

A(Ti) := A(Ti−1) \ {vi} ∪ H(vi)

U(Ti) := U(Ti−1) \ H(vi)

Only the change of the remaining lifetimes set is not trivial.

R{A(Ti)}(Ti) := R{A(Ti−1)}(Ti) \ {Rvi(Ti)} ∪ {Rx(Ti) : x ∈ H(vi)}

where Rx(Ti) = X(vi,x), the edge weight of (vi, x), and x also gets the color of

(vi, x).

On an arbitrary connected weighted graph, the exploration process can be

continued until all vertices become explored.

Note that this algorithm builds the shortest weight tree SWT from the

starting vertex. This tree will be modeled with the branching process.

Remark 2.1. The ”set” of actives might contain several occurrences of a

vertex, in case at least two neighbors of a vertex are explored already. (The

water is approaching the same vertex through several edges at the same time.)

We do have to keep them until one of them becomes explored so that we know

which one gives the shortest weight path to the vertex from the source. We do

not delete other occurrences right away, they will be ”thinned” (see later in

2.4.1) when they are supposed to become explored. Hence the coloring might

not be well-defined for active vertices, as the colors of the different occurrences

can be different, but the coloring is well-defined on explored vertices.

2.2. Exploration on the weighted Newman-Watts random graph. Though

we consider NWn(ρ) as a realization of a random graph, to determine the char-

acteristics of the exploration process on NWn(ρ), we can not handle it as an

arbitrary graph. We have to consider Ti, τi, N(t) and A(t) as random variables,

such as N (t), A(t), U(t) and R{A(t)}(t) are random sets, and the next explored

vertex is chosen randomly.

Lemma 2.2 (Children). Suppose the vertex v is being explored for the first

time (i.e., not ”double-explored”). If v is red, one new red and Binomial(n−
3, ρ

n
) many new blue active vertices are born. If v is blue, two new red and
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Binomial(n− 4, ρ
n
) many new blue active vertices are born. The number of new

blue active vertices is asymptotically Poi(ρ) in both cases.

Proof. The statement is obvious from Remark 1.5, using the fact that the color

of the vertex is determined by the color of the edge it is reached through. �

Lemma 2.3 (Remaining lifetimes). At any time t, any element of R{A(t)}(t)

is an Exp(1) random variable.

Proof. Since the edges are weighed with i.i.d. exponential random variables, this

follows easily from the memoryless property of exponential distribution. �

Corollary 2.4 (Next explored). The minimum of the remaining lifetimes is

unique with probability 1 and the next explored vertex is chosen uniformly over

the set of actives.

Proof. To see the first part, we only have to recall that two out of finite many

absolutely continuous random variables are equal with probability zero. The

algorithm takes the minimum of independent, identically distributed random

variables, which is uniform over the indeces. Since the next explored vertex

is the one with the least remaining lifetime, the second part of the statement

also holds. �

2.3. Multi-type branching processes. We define the following multi-type

continuous time branching process that corresponds to the initial stages of the

exploration process.

There are two particle types, red (R) and blue (B), and their lifetime is

Exp(1), independent from everything else. Particles give birth only once upon

their death. They leave behind offspring as in Lemma 2.2: each particle has

Poi(ρ) many blue offspring, red particles have one, while blue particles have two

red children. Dead and alive particles will correspond to explored and active

vertices, respectively. With this wording, for the number of alive particles, we

define

Definition 2.5. We shall write Z(t) = (ZR(t), ZB(t)) for the number of alive

particles of each type, Z(t) meaning the total number of alive particles. Let
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N(t) = NR(t) + NB(t), where Nq(t) means the number of dead particles of type

q = R,B. We assume the above quantities to be right-continuous. Superscripts

(R), (B) refer to the process started with a single particle of the given type.

The exploration process corresponds to the process started with a single

blue-type particle, which dies immediately.

2.3.1. Literature on multi-type branching processes. Here we restate the neces-

sary theorems from [4] which we will use.

In this subsubsection, n does not refer to the number of vertices in the

Newman-Watts graph, but to the number of dead particles in the branching

process.

Definition 2.6 (Mean matrix). Let M(t) := Mr,q(t) = E[Z
(r)
q (t)], (q, r = R,B)

the mean matrix, where Z
(r)
q (t) is as defined above in Definition 2.5.

It is not hard to see that M(t) satisfies the semigroup property M(t+ s) =

M(t)M(s) and the continuity condition limt→0 M(t) = I, where I denotes the

identity matrix. As a result, we have:

Theorem 2.7 (Athreya-Ney). There exists an infinitesimal generator matrix

Q so that M(t) = eQt, where Qr,q = arE[D
(r)
q ] − δr,q. Here, ar is the rate of

dying for a particle of type r, (i.e., the parameter of its exponential lifetime),

D is the number of offspring with the same sub-end superscript conventions as

in Definition 2.5, and δr,q = 1{r=q} (i.e., δr,q = 1 if and only if r = q).

In our case,

Q =

(
0 ρ

2 ρ− 1

)
Eigenvalues and eigenvectors of the Q matrix . Using the characteristic polyno-

mial,

λ1,2 =
ρ− 1±

√
ρ2 + 6ρ+ 1

2
.

For ρ ≥ 1, the maximal eigenvalue is

(2.1) λ =
ρ− 1 +

√
ρ2 + 6ρ+ 1

2
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We shall refer to the second eigenvalue by

(2.2) λ2 =
ρ− 1−

√
ρ2 + 6ρ+ 1

2
.

The corresponding normalised left eigenvector π which satisfies πQ = λπ

gives the stationary type-distribution.

(2.3) π = (πR, πB) =

(
2

λ+ 2
,

λ

λ+ 2

)
We denote the right (column) eigenvector with u and normalize it so that

πu = 1. For later use, without computing, we denote by v2 and u2 the left

(row) and right (column) eigenvector of Q belonging to the eigenvalue λ2.

A well-known phenomenon, and the most important theorem for our purposes

is that the process grows exponentially with rate λ (the so-called Malthusian

parameter), more precisely,

Theorem 2.8 (Athreya-Ney).

lim
t→∞

Z(t)e−λt = Wπ

where W is a nonnegative random variable, the almost sure martingale limit of

Wt := Z(t)u e−λt.

Theorem 2.9 (Athreya-Ney). Define Tn, the nth split time, as the time of the

nth death in the branching process. (We assume T1 = 0 for the death of the

root.) On the event {W > 0},

(i) For each q ∈ (R,B), limn→∞Nq(Tn)/N(Tn) = limn→∞Nq(Tn)/n
a.s.
= πq

(ii) limn→∞ ne−λTn
a.s.
= 1

λ
W

For the number of dead particles,

Corollary 2.10.

N(t)e−λt
a.s.−→ 1

λ
W

Proof. From Theorem 2.8 we have Z(t)e−λt
a.s.−→ W . Let Sn = Z(Tn) = Z(Tn+),

the number of alive particles after the nth split. Expressed with the offsprings:
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Sn = 1 +
∑n

k=1(Dk − 1), Dk meaning the total offspring of vk, the kth splitting

particle. We compute

1

n
Sn =

1

n

(
1 +

n∑
k=1

(Dk − 1)

)

=
1

n
+

1

n
NR(Tn)

1

NR(Tn)

NR(Tn)∑
j=1

D
(R)
j − 1


+

1

n
NB(Tn)

1

NB(Tn)

NB(Tn)∑
j′=1

D
(B)
j′ − 1

 .

We use part (i) of Theorem 2.9 and note that the variables inside the sums are

i.i.d., hence the Law of Large numbers implies that

(2.4) lim
n→∞

1

n
Sn = πR

(
E[D(R)]− 1

)
+ πB

(
E[D(B)]− 1

)
= πQ1 = λ,

where 1 means the column vector of ones.

Note that N(t) yields n for the unique n such that Tn ≤ t < Tn+1, as well as

for such values of t, Z(t) = Z(Tn) = Sn holds, hence

SN(t) = Z(t).

Substituting this into Theorem 2.8, we have

SN(t)e
−λt = N(t)

SN(t)

N(t)
e−λt

a.s.−→ W

Since the process is supercritical, Tn →∞ a.s., thus by (2.4),

lim
t→∞

SN(t)

N(t)
= lim

n→∞

SN(Tn)

N(Tn)
= lim

n→∞
Sn/n

a.s.
= λ

follows. Substituting, we have

N(t)λe−λt
a.s.−→ W.

�

Throughout the next sections, we develop error bounds on the coupling

between the branching process and the exploration process on the graph. For
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convenience, we introduce

(2.5) tn :=
1

2λ
log n

the times we will observe the branching and exploration processes at, as well as

(2.6) W (n) := e−λtnZ(tn), with W (n) a.s.−→ W,

the approximations of the martingale limit W at the times tn.

Note that for large enough n, W (n) = W (1 + o(1)), hence we often ignore

the superscript when dealing with error terms.

2.4. Labeling, coupling, error terms. In this section we relate the branch-

ing process to the exploration process on NWn(ρ) and calculate the coupling

error.

Error bound on coupling the offspring. The branching process is defined with

Poi(ρ) blue offspring distribution, while in the exploration process a vertex

actually has Bin(n − 3, ρ/n) (or Bin(n − 4, ρ/n)) many blue children, which

we have to handle.

Let Y ∼ Poi(ρ) and X ∼ Bin(n, ρ/n). By the usual coupling of Binomial and

Poisson random variables, we get P(X 6= Y ) ≤ ρ2

n
.

First we examine the blue offspring in the case when a red vertex splits.

Now, we have to couple a different binomial, Z ∼ Bin(n− 3, ρ/n) to Y . Let

V ∼ Bin(3, ρ/n), then Z = X − V . Then

P(Z 6= Y ) ≤ P(X 6= Y ) + P(V 6= 0)

≤ ρ2

n
+ 1− P(V = 0)

=
ρ2

n
+

3ρ

n
+ o(1/n2)

In case a blue vertex splits, Ẑ ∼ Bin(n− 4, ρ/n) and V̂ ∼ Bin(4, ρ/n). Hence,

similarly as before, P(V̂ 6= 0) = 4 ρ
n

+o(1/n2), thus P(Ẑ 6= Y ) ≤ ρ2

n
+ 4ρ

n
+o(1/n2).

Claim 2.11. The probability that up to k steps, for at least one prticle the

blue offspring in the exploration process and the Poisson branching process is

different, is at most k ρ
2+4ρ
n

.
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Proof. In each step, the bound is either ρ2

n
+ 3ρ

n
and ρ2

n
+ 4ρ

n
, of which the

maximum is ρ2

n
+ 4ρ

n
. Hence, by a union bound, multiplying it by the number

of steps gives an upper bound. �

Since the red offspring is deterministic, it does not rise an error term.

2.4.1. Labeling and thinning. We label the particles of the branching process

to correspond to the exploration process. The labeling is as follows:

Note: everything should be interpreted modulo n.

(i) The root is labeled u, the source of the exploration process. u can be U ,

a uniformly chosen vertex over [n].

(ii) Every other particle gets a label when it is born.

(iii) We distinguish ”left type” and ”right type” red children. Left type red

particles have a left type red child, right type red particles have a right

type red child, blue particles have a red child of both types.

(iv) A left type red child of v gets label v − 1, a right type red child of v is

labeled v + 1.

(v) The blue children of v get a set of labels uniformly chosen from [n].

Recall from Remark 2.1 that we might have several occurrences of a vertex

(both active and explored) in the exploration process as well as in the branching

process, but at most one of them is explored. The labeling fails if two explored

vertices share the same label.

Lemma 2.12. The probability that the labeling fails at the ith split is at most

2i/n.

Proof. The labeling fails at the ith split if the splitting particle has a label that

is already taken by an explored vertex. To estimate the probability of this, we

investigate two cases.

When a blue particle splits . Since the label of a blue particle is chosen uniformly

over [n], and there are at most i− 1 dead labels already, the probability that

we choose from this set is (i− 1)/n.

When a red particle splits . Since the labeling of red particles is deterministic,

we have to investigate them differently. In this part, we have to go back to the
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underlying graph model and imagine the exploration process on the cycle. We

start with a single blue vertex, then explore its red neighbors, one by one, the

interval of red vertices around the original blue one grows, the side is always

randomly chosen. Sometimes we find a shortcut, leading to a distant blue

vertex, that has a uniform label, and around that we start exploring red vertices

in a more deterministic way - the label is given, only the time of exploration

is random. This forms a growing set of growing intervals, each having a blue

vertex as center, denoted by ck for the interval Ik. (Actually ck = vB,k, the

kth dying blue particle.) Let us write lk and rk for the number of explored

red vertices to the left and to the right of ck. (Left and right radius of the

kth interval.) Since these intervals are functions of time, we shall write Ik(Ti),

rk(Ti) and lk(Ti). Recall that Ik(Ti) means the same as Ik(Ti+), since we think

of the process as right-continuous.

In this setting, a new red vertex can coincide with an existing vertex if and

only if two intervals I and I ′ grow into each other. It is not hard to see that

this can only occur in the following setting:

There exists an a ∈ [n] such that a vertex with label a ∈ I(Ti−1) and at

the same time, the verex labeled a+ 1 ∈ I ′(Ti−1). Since a+ 1 ∈ H(a), which

is explored in I(Ti−1), a + 1 is active in I ′(Ti−1). Similarly, a is active in

I ′(Ti−1). In case at Ti, I or I ′ grows on the side towards the other, a ∈ I ′(Ti)
or a+ 1 ∈ I(Ti). Then either a or a+ 1 is double-explored.

Denote by I∗ the interval that grows at time Ti. We want to know the prob-

ability of it growing into another Ij interval in exactly this step. Conditioned

on c∗, r∗(Ti−1), l
∗(Ti−1), rj and lj, there are two possible labels of cj for this

event to happen: on the left side of I∗, at position c∗− l∗(Ti−1)− rj − 1 and on

the right side, at position c∗ + r∗(Ti−1) + lj + 1. (Both cases mean the furthest

explored red vertices were neighbors at step ti−1.)

Hence, we get that for a single interval Ij,

P(I∗(Ti−1) ∩ Ij(Ti−1) = ∅, I∗(Ti) ∩ Ij(Ti) 6= ∅) =
2

n

We have to sum this up over all possible intervals Ij 6= I∗. Note that there are

exactly as many intervals as blue explored vertices (at either Ti−1 or Ti, since
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vi is red).

Let the event Gi = {vi is red and its label is already used}.

P(Gi) ≤
NB(Ti−1)−1∑

j=1

2

n
=

2

n
(NB(Ti−1)− 1) ≤ 2i

n
,

since there are less than i blue explored vertices (NB(Ti−1) ≤ N(Ti−1) = i− 1).

Note: this proof is not limited to the case when two red dead particles meet

(a vertex is double red explored), but also applies when the new red explored

vertex coincides with a formerly explored blue one, in case lj(Ti−t) = 0 or

rj(Ti−t) = 0.

Hence, the statement of the lemma follows. �

In case the labeling fails, we can not consider the second (or any later)

occurrence of the double-explored vertex and its descendants. (We do not need

them, as we already have a shorter path to the given label, then in any paths

through the label, we can replace the part from the root to this vertex with

the shortest possible and not make the path longer. Also, the offspring of

the particle has to be well defined, but in the random construction, another

explored occurence would lead to generating a new set of offspring.) We mark

this second (or any later) occurrence thinned, and all its descendants ghosts.

To carry on with the branching process approximation, we have to bound the

proportion of ghosts among the actives.

Ancestral line. We approach the problem of ghost actives with the help of the

ancestral line. We define the ancestral line AL(v) of a vertex v as the chain of

particles leading to v from the root, including the root and v itself. Then an

alive particle is a ghost if and only if at least one of its ancestors is thinned.

The ancestral line was introduced by Bühler in [17] with the following approach:

for each time interval [Tk, Tk+1) we can allocate a unique particle on the

ancestral line that was active in the interval [Tk, Tk+1). Hence we can look at

the ancestral line as a time process too.

Since we do not remove the descendants of thinned particles, only mark them

ghosts, there might be particles that are thinned because of ghosts, creating
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more ghosts then necessary. This only means that the bound we achieve isn’t

sharp, however, it suffices.

Bühler introduced the ancestral line to use it in discussing the generation of

a randomly chosen alive particle, as well as the degree of relationship of two

randomly chosen alive particles. Our aim is different, so we make use only of

the indicator decomposition of the generation. For the following observations,

we condition on {Di, i = 1, ..., k}, where Di is the total number of offspring of

the ith dying particle. Denote by Gk the generation of a uniformly chosen alive

particle V after the kth split. Then Gk = L1 +L2 + ...+Lk, where the indicators

Li are conditionally independent and Li = 1 if and only if the ancestor of V

that was alive in the time interval [Ti, Ti+1) was newborn (born at Ti).

Since the ancestors are chosen uniformly, in the interval [Ti, Ti+1), Di many

particles are newborn, and Si many are alive, which yields the probability

P(Li = 1) = Di/Si.

Suppose that w1 and w2 ∈ AL(v), furthermore, w2 is an offspring of w1.

Then w2 is newborn at Ti if and only if w1 is the particle splitting at Ti. Hence,

if we define the indicators L′i by L′i = 1 if and only if the ith splitting particle

vi ∈ AL(v), then {L′i = 1} = {Li = 1}.

Corollary 2.13. The probability of the ith dying particle being an ancestor of

a V uniformly chosen active:

P(vi ∈ AL(V )) = P(L′i = 1) = P(Li = 1) =
Di

Si
.

Expected proportion of thinned actives. Let us combine Corollary 2.13 and

Lemma 2.12. To be able to do so, we need the following lemma.

Lemma 2.14. There exists a positive integer-valued random variable K so

that K is always finite and for every i > K, Si = iλ(1 + o(1)).

We postpone the proof for now.

Lemma 2.15. Let AG(t) = {v ∈ A(t) : v is a ghost} the set of ghost actives

at time t and AG(t) its size. The proportion AG(tn + u)/A(tn + u) tends to 0

in probability as n tends to infinity.
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Remark 2.16. The times we want to observe is tn + u, where tn = 1
2λ

log n

and u is an arbitrarily small real number (can be negative). The reason is that

eλtn =
√
n, hence at tn, the number of active vertices is of order

√
n.

Proof. The proportion AG(t)/A(t) = P(V ∈ AG(t)), where V is uniform over

A(t), i.e., uniformly chosen active individual. We can use Corollary 2.13 for

the representation of the ancestral line of V ∈ A(t), namely we can write

P(V ∈ AG(t)) = P(∃w ∈ AL(V ) that is thinned)

≤
N(t)∑
i=1

P(vi ∈ AL(V ) and vi is thinned),

where, as before, vi means the particle that dies at Ti. Since the labeling is

independent of the family tree,

(2.7) P(V ∈ AG(t)) ≤
N(t)∑
i=1

P (vi ∈ AL(V )) · P (vi is thinned) ≤
N(t)∑
i=1

Di

Si

2i

n
.

According to 2.14, we can split the sum for parts up to K and above. For

i ≤ K, we can use Di < Si.

P(V ∈ AG(t)) ≤
K∑
i=1

2i

n
+

N(t)∑
i=K+1

Di

λ(1 + o(1))n

<
K2

n
+

∑N(t)
i=K+1Di

λn(1 + o(1))
<
K2

n
+

∑N(t)
i=1 Di

λn(1 + o(1))

Then we make two sums with respect to the color of the splitting particle.

N(t)∑
i=1

Di =

NR(t)∑
i=1

D
(R)
i +

NB(t)∑
i′=1

D
(B)
i′

= NR(t)
1

NR(t)

NR(t)∑
i=1

D
(R)
i + NB(t)

1

NB(t)

NB(t)∑
i′=1

D
(B)
i′
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Having averages of i.i.d. random variables, we can apply the Law of Large

Numbers, and use that (NR(t)/N(t),NB(t)/N(t))
a.s.−→ π.

P(V ∈ AG(t))

≤ K2/n+
N(t)πRE[D(R)](1 + o(1)) + N(t)πBE[D(B)](1 + o(1))

λn(1 + o(1))

= K2/n+
N(t) (πR(ρ+ 1) + πB(ρ+ 2))

λn
(1 + o(1))

Using that π is the left eigenvector of Q with eigenvalue λ, πRρ+ πB(ρ+ 1) =

λ(πR + πB) = λ.

For large enough times, Corollary 2.10 implies N(t) = eλt 1
λ
W (1 + o(1)). Hence

AG(t)/A(t) = P(V ∈ AG(t)) ≤ K2/n+ eλt
λ+ 1

λ2n
W (1 + o(1)).

Thus for the observed time window tn + u, the proportion of the ghost actives

AG(tn + u)/A(tn + u) ≤ K2/n+
λ+ 1

λ2
eλuW

1√
n

(1 + o(1))
a.s.−→ 0.

Even though K is a random variable, associated with the deviation of the Si,

it is independent of n, so the convergence remains to hold. �

Now before moving onwards, let us return to the proof of Lemma 2.14. This

lemma follows from [3, Theorem 1, Theorem 2]. Here, we restate [3, Theorem

1] in a special case, where each eigenvalue has multiplicity 1. This is still

sufficient for our purposes and easier to handle.

Theorem 2.17 (Asmussen). Let Zn be a supercritical multitype Galton-Watson

process, with dominant eigenvalue λ, the corresponding left and right eigenvector

v and u. For any other eigenvalue ν, vν and uν denote the left and right

eigenvector belonging to ν.

Let us decompose an arbitrary vector a ∈ Rp that has the property v · a = 0 in

the basis of the eigenvectors of A and then we define

µ := sup{ν : vνa 6= 0}, σ2 := lim
n→∞

|v|Var(Zna)

λn

If µ2 < λ, then with Cn = (2σ2Znu log n)1/2

lim inf
n→∞

Zna

Cn
= −1 and lim sup

n→∞

Zna

Cn
= 1.
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We also restate [3, Theorem 2] without change.

Theorem 2.18 (Asmussen 2.). Replacing n ∈ N with t ∈ [0,∞), Theorem

2.17 remains valid for any supercritical irreducible multi-type Markov branching

process.

Proof of Lemma 2.14. Our aim is to use the previous two theorems for the

2-type branching process that corresponds to the exploration process. Since π

and v2 are linearly independent in our case, there is no such nonzero vector

that is orthogonal to both, so for any a that πa = 0, necessarily v2a 6= 0, which

implies µ = λ2, since there are no more eigenvalues. The eigenvalues of the

mean matrix M(t) are eλt and eλ2t. The condition µ2 < λ in Theorem 2.17 is

then equivalent to 2λ2 < λ which follows from the nonnegativity of ρ, through

simple algebraic computations. In our case the asymptotic variance σ2 is the

following:

σ2 = lim
t→∞

πVar(Z(t)a)

eλt

Ct = (2σ2Z(t)u log t)1/2

This implies

lim sup
t→∞

Z(t)a

Ct
= 1 and lim inf

t→∞

Z(t)a

Ct
= −1.

Let us apply this theorem for the split time Ti: we get that there is only a finite

number of indexes i such that
∣∣∣Z(Ti)a
CTi

∣∣∣ > 2. Let the maximum of these indexes

be K, a random variable. Since Ti − 1/λ log i has an almost sure limit, Ti is

normally of order log i. This implies that CTi is usually of order (i log log i)1/2,

then by Markov’s inequality, CTi is w.h.p. of at most order (i log i)1/2.

Since E[Z(t)a] = 0 if and only if πa = 0, we can apply the theorem for

the centered version Sci := Si − ESi. Then for i > K, |Sci | ≤ CTi . The

fluctuation is of smaller order then Si; itself, which means we can indeed write

Si = iλ(1 + o(1)). For more detail on this, see the proof of [23, Corollary

3.16]. �

2.4.2. The number of multiple active and active-explored labels. Recall that

in the exploration process, as well as in the branching process there might
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be multiple occurrences, see Remark 2.1, as thinning only prevents multiple

explored labels.

For the connection process, we want to use that the number of different

active labels at Ti is approximately the same as Si, i.e., there are not many

multiple occurrences. For the reasons mentioned above, we still have to deal

with labels that are multiply active, or are explored and active at the same

time. We will discuss this in the following five cases:

1. A blue active vertex has been already explored.

2. A red active vertex has been already explored.

3. A blue active vertex is also red active.

4. A vertex is double red active.

5. A vertex is double blue active.

We will denote by pα(t) the probability at time t of a uniform active vertex

falling under case α = 1, . . . , 5, which is the same as the proportion of vertices

falling under case α among all active vertices.

We observe the times tn + u with tn = 1
2λ

log n, u ∈ R, since E(A(tn)) =

W eλtn = W
√
n, and we shall see that this is the size needed for the two

branching processes connect.

Case 1. Blue active being already explored . At time t, there are at most N(t)

explored and neither thinned nor ghost labels. Under the condition that the

active vertex is blue, since its label is chosen uniformly over [n], the probability

that this label has been already explored is N(t)/n. Substitute N(tn + u) from

Corollary 2.10, then for t = tn + u = 1
2λ

log n+ u,

P(v is already explored | v is blue) = N(tn + u)/n

=

(
eλu

1

λ
W (1 + o(1))

)
/
√
n.

Thus

p1(tn + u)
a.s.
= πB

(
eλu

1

λ
W (1 + o(1))

)
/
√
n→ 0.

Case 2. Red active being already explored . We consider this case the same way

we considered the thinning of red vertices. In the picture of the growing set

of growing intervals on the cycle, a red active is explored if and only if two
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intervals are about to grow into each other: the furthest explored red vertices

in both interval are neighbors. We call these intervals neighbors. Then, for

two neighboring intervals, the active vertices at the end of each interval are

explored in the other interval. Let Ii and Ij, 1 ≤ i < j ≤ NB(t) intervals

around ci = vB,i (ith dying blue) and cj = vB,j respectively. Conditioned on

ci and all radiuses, there are two possibilities so that Ii and Ij are neighbors:

cj = ci + ri + lj + 1 or cj = ci − li − rj − 1. In other words, conditioned on the

position of one of the intervals, there are precisely two positions for the other

interval so that our event, that the intervals are neighbors, happens. Thus

for each pair of indices the probability of the intervals being neighbors is 2/n.

These are obviously not independent but note that expectation is linear even

for sums of dependent random variables. Summing up for all pair of indexes

and dividing by the number of all intervals gives the proportion of case 2 red

actives among all red actives.

p2(t) =
number of neighboring intervals

number of all intervals
=

∑
1≤i<j≤NB(t)

2/n

NB(t)

=

(
NB(t)

2

)
· 2/n

NB(t)
= (NB(t)− 1)2/n

For the time window of our interest, substituting N(t) from Corollary 2.10, and

t = tn + u, this means:

p2(tn + u)
a.s.
= πR(1 + o(1))

(
πB
√
n eλu

1

λ
W − 1

)
2/n

= πR

(
πB(1 + o(1))eλu

1

λ
W − 1

)
2/
√
n→ 0.

Case 3. Blue active being red active. Using that the labels of blue vertices are

chosen uniformly,

P(v is red active too|v is blue active) = AR(t)/n
a.s.
= πR(1 + o(1))A(t)/n

Hence p3(t)
a.s.
= πBπR(1 + o(1))A(t)/n.
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For the time window of our interest

p3(tn + u)
a.s.
= πBπR(1 + o(1))

√
n
(
eλuW (1 + o(1))

)
/n

= πBπR
(
eλuW (1 + o(1))

)
/
√
n→ 0.

Case 4. Multiple red active vertices. This case is very similar to Case 2. A

vertex v can be red active twice, if the two intervals that it belongs to are

”almost neighbors”, that is, both have v as an active vertex on one of their

ends. (v is the only vertex separating them.) The only difference is that a

multiple red label decreases the number of different labels by 1, not by 2. This

reduces the proportion to the half, hence

p4(tn + u)
a.s.
= πR

(
πB(1 + o(1))eλu

1

λ
W − 1

)
/
√
n→ 0.

Heuristically, we can say this occurs because a red cannot be double right side

active, since that would mean the label on its left is doule-explored, which

would have been thinned. (Same for left.)

Case 5. Multiple blue active vertices. We will examine this case with an

approach different from the others, with an urn scheme. Imagine an urn with n

balls, labeled with [n]. In each step, we choose one uniformly, note its number,

then put it back in the urn. We want to know the number of different labels

noted after k steps, or rather the number of those that were chosen more than

once.

For any label l, the number of its appearances – denoted by L – in the label

sequence has a distribution L ∼ Bin(k, 1/n). The probability that l is chosen

twice:

P(L = 2) =

(
k

2

)(
1

n

)2(
n− 1

n

)k−2

<
k2

2

1

n2

Here again we need, k = AB(tn + u). Then

P(L = 2)
a.s.
<
π2
B

2
(
√
n)2 e2λuW 2/n2 =

π2
B

2
e2λuW 2/n.

For 3 ≤ i ≤ k = AB(t) = O(
√
n), for some constant Ci,

P(L = i) < Ci
ki

ni
.
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Since k = O(
√
n), there exists a constant C so that

P(L ≥ 3) = C
k3

n3
= Ĉ(W,u)/(

√
n)3(1 + o(1)).

Above is the proportion of labels among all labels that are used twice, or more

than twice for blue actives. The proportions among the blue actives are:

nP(L = 2)/AB(tn + u)
a.s.
<
πB
2

eλuW/
√
n

nP(L ≥ 3)/AB(tn + u)
a.s.
< C̃(W,u)/(

√
n)2 = o(1/

√
n).

Hence, we get that the probability of a label being used more than twice is

very small (in which case we should subtract it more than once), even smaller

order than pα, so we will neglect it from now on.

The final conclusion is that the proportion of case 5 actives among all actives

is

p5(tn + u)
a.s.
<
π2
B

2
eλuW/

√
n→ 0.

Corollary 2.19. Define Ae(t) the effective size of the active set as follows: we

subtract from A(t) the number of ghosts, already explored and multiple active

labels, to get the number of different labels in A(t). Then

Ae(tn + u)/A(tn + u)
P−→ 1.

Proof. By the previous arguments, clearly we have then

Ae(tn + u)/A(tn + u) ≥ 1−
5∑

α=1

pα(tn + u)

≥ 1− 1√
n

eλuW

(
πB
λ

+ πBπR +
3πRπB
λ

+
π2
B

2
+
λ+ 1

λ2

)
(1 + o(1))−K2/n,

where K is the finite random variable in Lemma 2.14.

(Note that implicitly, both sides are conditioned on A(t).) �

3. Connection process

Now that we have a good approximation of the shortest weight tree (SWT)

started from a vertex, it provides us a method to observe the shortest weight

path between two vertices. Let us give a raw sketch of this method before

moving into the details. To find the shortest weight path between vertices U
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and V , we grow the shortest weight trees from the two vertices (SWTU and

SWTV ) simultaneously. Since the graph is connected, these two trees must

intersect after some time. (Given enough time, even one SWT could occupy the

whole graph.) The shortest weight path is determined by the first intersection

of the explored sets.

For technical issues, we choose another way of handling.

Definition 3.1 (Collision and connection). We grow SWTU , the shortest

weight tree of U till time tn = 1
2λ

log n, and freeze it. Then we grow SWTV till

”time” tn + u. We say that a collision happens when an active vertex in the

shortest weight tree of U becomes explored in the process of V . If a collision

happens at vertex x at time tn + u, then this determines a path between U

and V with length 2tn + u +RU
x (tn), where RU

x (tn) is the remaining lifetime

of x in SWTU , and is an Exp(1) random variable. To find the length of the

minimal path – i.e., the connection time – we have to minimise the quantity

2tn + u+RU
x (tn) among all collision events.

Obviously, growing SWTV after SWTU results in more thinned vertices in

SWTV , since the labels belonging to explored vertices in SWTU can not be

used again, leading to a bigger thinning probability. Hence, we have to show

that the additional number of ghosts caused by this effect is still small. Recall

(2.7) and note that the proportion of ghosts depends simultaneously on the

thinning probability of the ith explored vertex as well as it being an ancestor

of a uniform active vertex. Hence, to determine the additional error term, we

have to reconsider the computations in Lemma 2.15 and then show that this

term also tends to 0.

Claim 3.2. If we grow SWTV after SWTU on the same graph NWn(ρ) and

aside from the usual thinning, we have to thin the vertices of SWTV that already

occurred in SWTU . Then the effective size of the active set in SWTV for times

t = tn + u is asymptotically the same as the size of the active set, that is, the

statement of Corollary 2.19 remains valid for SWTV as well.
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Note that it suffices to bound the proportion of ghosts, as the error terms

caused by vertices that are multiple active, or active as well as explored in the

same SWT, are not increased by the presence of another SWT.

Proof. We once again want an upper bound for the probability of a uniform

active being ghost, in a different setting. We use union bound and sum up for

all explored vertices the probability of being thinned and being an ancestor of

the uniform active at the same time. The arguments with the ancestral line

(see 2.4.1) remain valid without any modification, the ith splitting particle is

an ancestor of a uniform active with probability Di/Si. (The random variables

Di and Si now mean the number of offspring and alives in SWTV .) We shall

examine the change in the thinning probability.

In case the ith explored vertex is blue, its label is chosen uniformly, thus

the probability that this label coincides with a previously chosen label equals(
NU(tn) + i− 1

)
/n. In case the ith explored is red, we can use the same idea

as before: it has the same label of a vertex explored before if and only if two

intervals grow into each other with this step. We now consider the two SWTs

together, as one set of intervals. Conditioned on the interval that grows, for

any interval the probability that these two grow into each other is 2/n. The

number of intervals is now the total number of blue explored vertices in the

two SWTs. Summing it up for all intervals gives the upper bound

NUB(tn)+i∑
k=1

2/n = 2/n
(
NU
B(tn) + i

)
≤ 2/n

(
NU(tn) + i

)
.

Then the common bound for the two colors is 2/n
(
NU(tn) + i

)
.

For the probability of a uniformly chosen active in SWTV being a ghost,

similarly to (2.7), we have

(3.1)

AV
G(tn + u)/AV (tn + u) =

NV (tn+u)∑
i=1

Di

Si
· 2

n

(
NU(tn) + i

)
=

NV (tn+u)∑
i=1

Di

Si
· 2i

n
+

NV (tn+u)∑
i=1

Di

Si
· 2

n
NU(tn).
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We already know from Lemma 2.15 that the first sum tends to 0 as n tends to

∞. Let us investigate the second one.

Using the a.s. finite K value implied by Lemma 2.14, we split the sum again.

Σ1 =
2

n
NU(tn)

K∑
i=1

Di

Si
≤ 2

n
NU(tn)

K∑
i=1

1 = K
2

λ
√
n
WU(1 + o(1))

n→∞−→ 0.

For the second one,

Σ2 =
2

n
NU(tn)

NV (tn+u)∑
i=K+1

Di/Si =
2

n
NU(tn)

NV (tn+u)∑
i=K+1

Di

iλ(1 + o(1))

We compute the expected value of the sum Σ3 :=
∑NV (tn+u)

i=K+1
Di

iλ(1+o(1))
with

tower rule, and using E[Di] = λ+ 1,

E

NV (tn+u)∑
i=K+1

Di

iλ(1 + o(1))

 = E

E

NV (tn+u)∑
i=K+1

Di

iλ(1 + o(1))
|NV (tn + u)


= E

NV (tn+u)∑
i=K+1

E[Di]

iλ(1 + o(1))


=
λ+ 1

λ
(E[log NV (tn + u)]− log(K + 1))(1 + o(1))

Since logarithm is concave, we can use Jensen’s inequality to obtain

E[Σ3] ≤ λ+ 1

λ
(logE[NV (tn + u)]− log(K + 1))(1 + o(1))

=
λ+ 1

λ

(
log
[

1
λ

√
nWV eλu

]
− log(K + 1)

)
(1 + o(1))

=
λ+ 1

λ

(
λu1

2
log n log

(
1
λ
WV

)
− log(K + 1)

)
(1 + o(1))

Now we can use Markov’s inequality to bound this sum w.h.p.:

P (Σ3 ≥ EΣ3 log n) ≤ log n
n→∞−→ 0.

Then for Σ2 = 2
n
NU(tn)Σ3, the following holds with high probability

Σ2 ≤
2

n
NU(tn) log nEΣ3

≤ 2

n
NU(tn) log n

λ+ 1

λ

(
λu1

2
log n log( 1

λ
WV )− log(K + 1)

)
(1 + o(1)).
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Substitute NU(tN) from Corollary 2.10:

Σ2 ≤
2

n
(1 + o(1)) 1

λ

√
nWU log n

· λ+ 1

λ

(
λu1

2
log n log

(
1
λ
WV

)
− log(K + 1)

)
(1 + o(1))

=
log2 n√

n
(1 + o(1))

(
WU

(λ+1)u log
(

1
λ
WV

)
λ

(1 + o(1))

)
− log n√

n
(1 + o(1)) 2

λ
WU log(K + 1)

n→∞−→ 0.

And this is what we wanted to prove. �

3.1. The Poisson point process of collisions. First we show that with

respect to the parameter u in tn+u, the collision events form a non-homogeneous

Poisson point process (PPP) for each pair of colours and we compute the total

intensity measure of these PPPs. We get a two dimensional PPP by adding

the independent exponential remaining lifetimes RU
x (tn) as second coordinate.

(See [30] for this Poisson-approximation.)

It is not hard to see that the collisions indeed form Poisson point processes.

Because of the continuous lifetime distribution, the probability that two vertices

are explored at the same time in the shortest weight tree of V is 0. Each

collision event requires a vertex being explored, thus collision events occur at

the same time with probability 0. We will see next that the events are almost

independent. From the properties of the exploration process, it is obvious that

the probability of a new collision only depends on the sizes of the sets of which

we observe the intersection, thus depends on the existence of former collisions

only through their effect on the set sizes. By a collision event, the set sizes are

reduced at most by 2, the proportion of this change and the set size of order
√
n (see Corollary 2.19) is asymptotically 0, hence the almost independency.

Given that we have a non-homogenous PPP with intensity measure µ(t), t ∈
R, the number of points till time t has distribution Poi(M(t)) = Poi(

∫ t
−∞ µ(s)),

where M(t) is the mean function. Since E[Poi(M(t))] = M(t), the derivative

of E [number of points till t] gives µ(t).
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To determine the intensity measure of the collision process, we will consider

the four collision point processes for each possible pair of colours. Since

the labels of blue vertices are chosen uniformly, they can meet any color.

Considering the growing set of intervals, we see that red can meet red as well.

Let us introduce the notation for q, r ∈ {R,B}

(3.2)

Cq,r(u) := N V
q (tn + u) ∩ AUr (tn), Cq,r(u) := |Cq,r(u)|,

C(u) :=
⋃

q,r∈{R,B}

Cq,r(u), C(u) := |C(u)|

(Note that e.g. CR,B(u) denotes the set of red explored labels in SWT V that

are blue active in SWTU .)

The corresponding intensity measures are denoted by µq,r(u) and µ(u).

By Corollary 2.19, we already proved that the effective size of the active set

at times tn + u for u ∈ R is asymptotically the same as the size of the active

set, so we use this quantity instead in our computations.

We can handle the 3 cases similarly when blue vertices are involved, hence

we investigate the specific parts one by one, then we can make the conclusions

at once.

Blue-blue collision. By the definition of the set CB,B(u), we can write

CB,B(u) =
∑

x∈NVB (tn+u)

1{x ∈ AUB(tn)}.

Note that E[1x|1y] is of the same order as E[1x]: as the elements of AUB(tn)

are chosen uniformly, the success probability 1x depends only on the size of

the set. The condition 1y only reduces that size by 1, which is asymptotically

neglectable compared to the size of the set. Since the dependence is weak,

the usual Poisson approximation yields that CB,B(u) converges to a Poisson

random variable for each u ∈ R. The events {x ∈ N V
B (tn + u)}, {x ∈ AUB(tn)}

are independent by the labeling procedure for blue labels, Wald’s equation

yields

E[CB,B(u)] = E[NV
B(tn + u)] · P(x ∈ AUB(tn)).
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Blue-red collision. Similarly to the previous case,

CB,R(u) =
∑

x∈NVB (tn+u)

1{x ∈ AUR(tn)},

E[CB,R(u)] = E[NV
B(tn + u)] · P(x ∈ AUR(tn)).

Red-blue collision. This time we approach the intersection through indicators

of the explored set.

CR,B(u) = N V
R (tn + u) ∩ AUB(tn),

CR,B(u) =
∑

x∈AUB(tn)

1{x ∈ N V
R (tn + u)}.

Notice that even though the labels of AUB(tn) were chosen earlier, since this set

contains blue vertices, the labels are chosen uniformly over all possible labels.

Thus the probability of a blue vertex being included in any set L at any time

in the process, is proportional to the size of L. This implies

∀x ∈ AUB(tn) : P(x ∈ N V
R (tn + u)) = NV

R(tn + u)/n.

Then, like previously, using Wald’s equation we have

E[CR,B(u)] = E[AUB(tn)] · P(x ∈ N V
R (tn + u)).

Using the asymptotic results for A(t),N (t) (from Theorem 2.8 and Corollary

2.10) and the definition of W (n) 2.6, then differentiating with respect to u yields

(3.3)

µB,B(u) = π2
BW

(n)
V W

(n)
U eλu,

µR,B(u) = πBπRW
(n)
U W

(n)
V eλu,

µB,R(u) = πBπRW
(n)
V W

(n)
U eλu.

Red-red collision. We consider this in the setting of the intervals on the cycle.

Since we froze the cluster of U , we have SWTU as a fixed set of intervals,

{Ik, k = 1, ...,NU
B(tn)}, while the set of intervals in SWTV is growing (and

possibly merging) with u {Ji(u), i = 1, ...,NV
B(tn + u)}. A collision happens

when one of the intervals Ji grows into one of the intervals Ik.

Note that here we face a new technical issue. When two intervals Ji(u) and

Ik collide at time u, in principle we should stop the evolution of Ji(u), that is,

for all u′ > u we should have Ji(u
′) ≡ Ji(u). But, note that this would cause
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computational difficulties later, since we would need to condition on all the

earlier collisions. Hence, it is easier to do the following as an upper bound

on the number of red-red collisions: we let Ji(u) grow further and it might

collide with more vertices inside Ik. The error term caused by this is negligible,

since this is only part of the thinning of SWTV imposed by SWTU , which is

negligible in the sense of Claim 3.2.

Then we can easily observe all red-red collisions up to time tn + u. Not just

the outmost, but any explored red in SWTV coinciding with an active red in

SWTU means a (potentially past) collision, as long as the centre of Ji(u) is not

inside of Ik (in which case that center should have been thinned).

Then for any pair Ik and Ji(u) the probability that they had already made

a collision by time tn + u is

(3.4) P(Ji(u) ∩ Ik 6= ∅) = (lVi (u) + rVi (u))/n,

where lVi (u) and rVi (u) mean the left and right radius of Ji(u), similarly as in

paragraph 2.4.1. To see this, condition on Ik and all radiuses included. Then

the left hand side active red of Ik coinciding with any of the rVi (u) explored

right hand side reds of Ji(u) means a (potentially past) collision and each

determines the position of cVi , the centre of Ji(u). Thus the position of cVi

being among these rVi (u) many positions for on the left of Ik means a collision

between Ik and Ji(u). Similarly, there are lVi (u) many good positions on the

right. Using that cVi is chosen uniformly over [n] – since it is a blue vertex –

yields the right hand side of (3.4).

Then the expected number of red-red collisions up to time tn + u:

E[CR,R(u)] = E

NUB(tn)∑
k=1

NVB(tn+u)∑
i=1

1{Ik ∩ Ji(u) 6= ∅}


=

NUB(tn)∑
k=1

NVB(tn+u)∑
i=1

P(Ik and Ji(u) have made a collision)
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Substituting, we have

E[CR,R(u)] =

NUB(tn)∑
k=1

NVB(tn+u)∑
i=1

(lVi (u) + rVi (u))/n

=
NU
B(tn)

n
·

NVB(tn+u)∑
i=1

(lVi (u) + rVi (u))

 .
Notice that AU

R(tn) = 2NU
B(tn), since there are two red actives in each Ik. Also

the radius of an interval is the number of explored reds belonging to it, hence

the sum of all radiuses yields the number of all explored reds.

E[CR,R(u)] =
1

2
AU
R(tn)

1

n
· NV

R(tn + u)

≈ 1

2
πRW

(n)
U

√
n

1

n
πR

1

λ
W

(n)
V

√
neλu

=
1

2
π2
R

1

λ
W

(n)
U W

(n)
V eλu

Then differentiation yields

(3.5) µR,R(u) =
1

2
π2
RW

(n)
U W

(n)
V eλu

Heuristically, this factor 1
2
, that doesn’t correspond to the other 3 cases, arises

because right side reds can only meet left side reds and vice versa, hence only

2 types of red-red collision can occur out of the possible 4. This can be made

rigorous: for the half of reds that are left side reds in an interval Ik, the center

Ji(u) has to be within ri(u) steps on the cycle from the leftmost red in Ik, but

not included in Ik, for Ik and Ji(u) to determine a collision. For the right side

reds, we can say the same with li(u). In total, we have half times the sum of

right radiuses and one half times the sum of left radiuses in the intervals Ji(u),

which is one half times the number of explored reds in SWTV at time tn + u.

Theorem 3.3 (Total intensity measure of the collision PPP). The total inten-

sity measure of the collision Poisson point process is

µ(u) = W
(n)
U W

(n)
V eλu

(
π2
B + 2πBπR +

1

2
π2
R

)
= W

(n)
U W

(n)
V eλu

(
1− 1

2
π2
R

)
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Proof. We discuss that the processes are asymptotically independent. In the

collision process, we actually consider intersections of sets (explored sets of both

colors in both SWT’s). Dependencies arise from two phenomena: dependence

of the set sizes (explored sets in the same SWT), and given the set sizes, the

”competition” for colliding vertices. (E.g. for the intersections N V
B ∩N U

B and

N V
B ∩N U

R .)

Among these sets, only the pairs NU
B, NU

R and NV
B, NV

R are related, and even

these only depend weakly: they can gain a new element when an active

vertex becomes explored. Then the offspring of the explored vertex appears

in the active set, that might change the distribution of the color of the next

explored vertex, however for the times we observe, the active set is of order
√
n,

compared to this, the change of proportion that constant many new actives

cause is asymptotically neglectable. (Several steps can’t ruin it either, by the

almost sure convergence to the stationary type-distribution.)

Given the sizes of the explored sets (of both colors in both SWT’s), each

collision event in one of the processes reduces by 1 the number of possible

colliding vertices for each other process, which is neglectable compared to the

set sizes of order
√
n.

Then by the asymptotical independency, summing up the equations in (3.3)

and (3.5) yields the total intensity measure. �

3.2. Proof of Main Theorem. It is well known [30] that given a one-

dimensional (non-homogenous) Poisson point process, adding identically dis-

tributed random variables independent from each other and the PPP, as second

coordinates, we get a two-dimensional non-homogeneous Poisson point process.

Then the points (Ui, Yi), i = 1, 2, ... form a two-dimensional PPP, where the

coordinates Ui are the points in the collision PPP with intensity measure µ(u)

and the coordinates Yi are the remaining lifetimes, i.e., i.i.d. Exp(1) random

variables, independent of the Ui-s. The density of the joint intensity measure is

f(u, y) = µ(u) · e−y. Define ν(A) =
∫
A
f(u, y)dydu, then the number of points

in A has distribution Poi(ν(A)).

To get the shortest path between U and V , recall from Definition 3.1 that

we have to minimize the sum of time passed and the remaining lifetimes
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over the collision events. Mathematically, we want to minimize the quantity

Ui + Yi over all points (Ui, Yi) of the PPP defined above. Note that event

{minj Uj + Yj ≥ z} is equivalent to the event that there is no point in the

infinite triangle ∆(z) = {(x, y) : y > 0, x+ y < z} in the two-dimensional PPP

defined above. We calculate

ν(∆(z)) =

∫ z

−∞

∫ z−u

0

µ(u) · e−ydydu

=

∫ z

−∞
W

(n)
U W

(n)
V eλu

(
1− 1

2
π2
R

)
(1− e−(z−u))du

= W
(n)
U W

(n)
V

(
1− 1

2
π2
R

)
1

λ(λ+ 1)
eλz.

For short, we denote by

(3.6) W(n) = W
(n)
U W

(n)
V

(
1− 1

2
π2
R

)
1

λ(λ+ 1)
.

As well as W = WUWV

(
1− 1

2
π2
R

)
1

λ(λ+1)
. Then we can reformulate

(3.7) ν(∆(z)) =W(n)eλu

Turn our attention back to Pn(U, V ), the shortest weight path between U

and V . By the previous argument, we conclude

(3.8)
P(Pn(U, V ) ≥ z + 2tn|W(n))

= P(Poi(ν(∆(z))) = 0|W(n)) = exp{−ν(∆(z))}

Rearranging the left hand side and substituting the computed value of ν(∆(z)),

we get

P(2tn − Pn(U, V ) ≤ −z|W(n)) = exp{−W(n)eλz}

We rearrange the right hand side first.

exp{−W(n)eλz} = exp{− exp{λz + logW(n)}}

= exp{− exp{−
(
−λz − logW(n)

)
}}

We rearrange the original left hand side too, to get something similar to the

exponential instead of −z in the probability. First, note that we can write <



40

instead of ≤ since the involved distributions are continuous, and we use the

definition of tn.

P(2tn − Pn(U, V ) ≤ −z) = P
(

2
1

2λ
log n− Pn(U, V ) < −z

)
= P (log n− λPn(U, V ) < −λz)

= P
(
log n− λPn(U, V )− logW(n) < −λz − logW(n)|W(n)

)
Comparing these results,

P
(
log n− λPn(U, V )− logW(n) < −λz − logW(n)|W(n)

)
= exp{− exp{−

(
−λz − logW(n)

)
}}

We can recognize the cumulative distribution function of a standard Gumbel

random variable Λ, P(Λ < x) = exp(− exp(−x)), with x = −λz − logW(n).

That implies

(log n− λPN(U, V )− logW(n))|W(n) d−→ Λ,

where Λ has standard Gumbel distribution. Rearranging and substitutingW(n)

from (3.6), and using that the martingales (W
(n)
U ,W

(n)
V )

a.s.−→ (WU ,WV ),

Pn(U, V )− 1

λ
log n

d−→ −1

λ
Λ− 1

λ
logW

= −1

λ
Λ− 1

λ
log(WUWV )− 1

λ
log

(
1− 1

2
π2
R

)
+

1

λ
log (λ(λ+ 1))

4. Epidemic curve

Recall the definition of the epidemic curve function from 1.4. The discussion

of the epidemic curve will consist of three parts: first, we heuristically find

the function by computing the expected value of In(t, U). Then we prove the

convergence by bounding the second moment. Finally, we give a characterization

of MWV
, the moment generating function of the random variable WV , that

determines the epidemic curve function f .
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4.1. Heuristics, expected value. First, suppose U and the martingale W
(n)
U

describing its neighborhood are given. Then about the fraction of infected

individuals, we can say

E
[
In(t, U)

∣∣∣W (n)
U

]
=

1

n

∑
w∈[n]

E
[
1(w is infected by time t)

∣∣∣W (n)
U

]
=

1

n

∑
w∈[n]

P
(
w is infected by time t

∣∣∣W (n)
U

)
.

We take the average of the probability of being infected over all vertices, this

is the same as the probability that a uniform vertex is infected. Then

E
[
In(t, U)

∣∣∣W (n)
U

]
= P

(
V uniform vertex is infected by time t

∣∣∣W (n)
U

)
= P

(
Pn(U, V ) ≤ t

∣∣∣W (n)
U

)
.

The distribution of Pn(U, V ) is known conditioned on WU and WV . Since only

U is given and V is our variable, we use total law of expectation with respect

to V . Finally we have

E
[
In(t, U)|W (n)

U

]
= E

[
P
(
Pn(U, V ) ≤ t|W (n)

V ,W
(n)
U

) ∣∣∣W (n)
U

]
We already know from 3.2 that

(4.1)

P (Pn(U, V ) ≥ z + 2tn|W (n)
U ,W

(n)
V

)
= P

(
Pn(U, V ) ≥ z + 1

λ
log n

∣∣W (n)
U ,W

(n)
V

)
= exp

{
−W (n)

U W
(n)
V

(
1− 1

2
π2
R

)
1

λ(λ+1)
eλz
}
.

We use the transform z = t− 1
λ

logW
(n)
U and take the complement event. (Note

that Pn(U, V ) = t has 0 probability.)

P
(
Pn(U, V ) ≤ t− 1

λ
logW (n)

u + 1
λ

log n
∣∣∣W (n)

V ,W
(n)
U

)
= 1− exp

{
−W (n)

U W
(n)
V

(
1− 1

2
π2
R

) 1

λ(λ+ 1)
eλt

1

W
(n)
U

}

= 1− exp

{
−W (n)

V

(
1− 1

2
π2
R

) 1

λ(λ+ 1)
eλt
}
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Then substituting this into (4.1),

E
[
In(t− 1

λ
logW

(n)
U + 1

λ
log n, U)|W (n)

U

]
= E

[
1− exp

{
−W (n)

V

(
1− 1

2
π2
R

)
1

λ(λ+1)
eλt
}∣∣∣W (n)

U

]
= 1− E exp

{
−W (n)

V

(
1− 1

2
π2
R

)
1

λ(λ+1)
eλt
}
.

We recognize that the second term is the moment generating function of W
(n)
V ,

M
W

(n)
V

(x) , at x(t) = −
(
1− 1

2
π2
R

)
1

λ(λ+1)
eλt.

Then E
[
In(t− 1

λ
logW

(n)
U + 1

λ
log n, U)

]
= 1−M

W
(n)
V

(x(t)), which is equivalent

to

E[In(t+ 1
λ

log n, U)] = 1−M
W

(n)
V

(
x(t+ 1

λ
logW

(n)
U )
)
.

Note that W
(n)
U converges to WU almost surely, which implies convergence

in probability of their moment generating functions. Then it’s natural to

conjecture the epidemic curve function to be f(t) = 1−MWV
(x(t)).

4.2. Rigorous proof. The heuristics above showed that the expected value

of In(t, U) indeed converges in probability to the defined f function at the

given place. We prove the theorem by showing that the variation of In(t, U)

converges to 0, then Chebyshev’s inequality yields that In(t, U) converges to

its expected value in probability.

Denote by 1i = 1{i is infected}. Let us calculate

Var

 1

n

∑
i∈[n]

1i


=

1

n2

∑
i∈[n]

Var1i +
2

n2

∑
i<j∈[n]

Cov[1i,1j]

Since 1i is an indicator, Var1i ≤ 1, hence 1
n2

∑
i∈[n] Var1i ≤ 1

n
.

Cov[1i,1j] = E[1i1j|W (n)
U ]− E[1i|W (n)

U ]E[1j|W (n)
U ]

= P(i and j are both are infected|W (n)
U )− P(i is infected|W (n)

U )P(j is infected|W (n)
U )

Imagine now three exploration processes on NWn, one from U , one from i and

one from j. We want a connection simultaneously between SWTU and SWTi
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as well as between SWTU and SWTj. Recall the coupling between the graph

and the branching process, as well as the thinning inside one tree and between

the trees, all have error terms of order 1/ log n. This also applies if there are

three SWT’s, the error terms increase by constant multiples. These connection

processes between SWTU and the other two are related only through the

intersection of SWTi and SWTj, which is of order 1/ log n, which means they

are asymptotically independent. Then P(i and j are both are infected|W (n)
U )

is close to P(i is infected|W (n)
U )P(j is infected|W (n)

U ), the error term, which is

the covariance, is of order 1/ log n.

This works if i and j are fairly apart, say (i− j) modn > log n. The number

of ”bad pairs”, which are close is n log n/2, compared to the number of all

pairs
(
n
2

)
, the fraction goes to 0. Even for these, the covariance is bounded by

1. Then the sum divided by n2 goes to 0.

With that, we have bounded the variance by a term that goes to 0, which

finishes the proof.

4.3. Characterization of the epidemic curve function. We start with the

well-known recursion formula for the number of alive particles in the branching

process arising from the branching property:

Z(B)(t) =

D
(B)
R∑
i=1

1{Xi > t}+ 1{Xi < t}Z(R)(t−Xi)

+

D
(B)
B∑
j=1

1{Xj > t}+ 1{Xj < t}Z(B)(t−Xi),

and similarly for the split of a red particle. Note that the branching property

guarantees that all random variables on the right hand side are independent.

(Recall that Z(q)(t) means the vector of alive red and blue particles at time t

in the process started with a single particle of type q, D
(q)
r means the number

of r-type children of a particle with type q, and Xi is the Exp(1) lifetime of a

particle.)
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Multiplying both sides with e−λt we get

e−λtZ(B)(t) =

D
(B)
R∑
i=1

e−λt1{Xi > t}+ 1{Xi < t}e−λXie−λ(t−Xi)Z(R)(t−Xi)

+

D
(B)
B∑
j=1

e−λt1{Xj > t}+ 1{Xj < t}e−λXje−λ(t−Xj)Z(B)(t−Xi).

We then let t go to infinity. The left hand side converges to W (B). 1{Xi > t}
is bounded, hence multiplied with e−λt, it goes to 0. 1{Xi < t} goes to 1, as

Exp(1) is always finite. e−λ(t−Xj)Z(B)(t−Xi), since we subtract the same Xi,

converges to W
(B)
i , which has the same distribution as W (B). The other terms

can be handles similarly, altogether we have

W (B) d
=

D
(B)
R∑
i=1

e−λXiW
(R)
i +

D
(B)
B∑
j=1

e−λXjW
(B)
j ,

where W
(R)
i are independent copies of W (R) = limt→∞ e−λtZ(R)(t), and W

(B)
j are

independent copies of W (B) d
= WV . Denote the moment generating functions

of W (B) and W (R) respectively MW (B) , MW (R) .

To obtain functional equations for the moment generation functions, we apply

the function x 7→ E[eϑx] to both sides. Recall that a red particle has one

red child and Poi(ρ) many blue, while a blue has two red children and Poi(ρ)

many blue. From the independency, guaranteed by the branching property,

expectation factorizes.

EeϑW
(B)

=
(
E
[
exp{ϑe−λXiW (R)}

])2 · E
(

exp

{
ϑ
∑D

(B)
B

j=1 e−λXjW
(B)
j

})
We use law of total expectation with respect to Xi to compute

J (R) : = E
[
exp{ϑe−λXiW (R)}

]
=

∫ ∞
0

E
[
exp{ϑe−λxW (R)}

]
e−xdx

=

∫ ∞
0

MW (R)(ϑe−λx)e−xdx

Let J (B) defined similarly with MW (B) .
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We apply tower rule for the last term:

(4.2)

E
(

exp

{
ϑ
∑D

(B)
B

j=1 e−λXjW
(B)
j

})
= E

(
E
[

exp

{
ϑ
∑D

(B)
B

j=1 e−λXjW
(B)
j

}∣∣∣∣D(B)
B

])
The moment generating function of a non-random sum of independent random

variables is the product of the moment generating functions.

E
[

exp

{
ϑ
∑D

(B)
B

j=1 e−λXjW
(B)
j

}∣∣∣∣D(B)
B

]
=
∏D

(B)
B

j=1 E
[
exp{ϑe−λXjW

(B)
j }

]
=
∏D

(B)
B

j=1 J (B)

=
(
J (B)

)D(B)
B .

Substitute into (4.2):

E
[
exp

{
ϑ
∑D

(B)
B

j=1 e−λXjW
(B)
j

}]
= E

[(
J (B)

)D(B)
B

]
.

Above is the probability generating function of D
(B)
B

d
= Poi(ρ), hence

E
[
exp

{
ϑ
∑D

(B)
B

j=1 e−λXjW
(B)
j

}]
= exp

{
ρ
(
J (B) − 1

)}
We can rewrite this as

J (B) − 1 =

∫ ∞
0

MW (R)(ϑe−λx)e−xdx− 1

=

∫ ∞
0

MW (R)(ϑe−λx)e−xdx−
∫ ∞

0

e−xdx

=

∫ ∞
0

(
MW (R)(ϑe−λx)− 1

)
e−xdx

We can now conclude

MW (B)(ϑ)

=

(∫ ∞
0

MW (R)(ϑe−λx)e−xdx

)2

· exp

{
ρ

(∫ ∞
0

(
MW (R)(ϑe−λx)− 1

)
e−xdx

)}
Similarly for M

(R)
W , using that D

(R)
R = 1 and D

(R)
B

d
= Poi(ρ),

MW (R)(ϑ)

=

(∫ ∞
0

MW (R)(ϑe−λx)e−xdx

)
· exp

{
ρ

(∫ ∞
0

(
MW (R)(ϑe−λx)− 1

)
e−xdx

)}
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The moment generating functions are described by these functional equations,

and according to [4], there exist proper moment generating functions satisfying

these functional equations.

5. Central limit theorem for hopcount

Recall that the hopcount Hn(U, V ) is the number of edges along the shortest

weight path between U and V , and Theorem 1.2 claims it follows normal

distribution with mean and variance both λ+1
λ

log n.

We consider the shortest weight path in two parts: the paths from each U

and V to the vertex where the connection happens, denote it by Y . These

paths are disjoint with the exception of Y , hence if suffices to determine their

lengths. Denote by G(U)(Y ) the generation of Y in SWTU , similarly for V .

Then the required steps from the root U to Y is exactly G(U)(Y ).

Claim 5.1. The choice of Y is asymptotically independent in the two SWT’s.

Proof. Conditioned on Y being the connecting vertex, it is uniformly chosen

over the active set of SWTV . That determines its label, and it determines which

particle is chosen in SWTU through the label. Since the labeling is independent

of the structure of the family tree, aside from the thinning, the choice of Y

in SWTU is independent from its choice in SWTV . We already bounded the

fraction of ghost particles (those who have one of their ancestors thinned) by a

term that goes to 0 in 2.15, hence asymptotic independence holds. �

With these notations, Hn(U, V ) = G(U)(Y ) + G(V )(Y ), and the two terms

are independent. We reformulate the theorem using these terms:

Hn(U, V )− λ+1
λ

log n√
λ+1
λ

log n
=
G(U)(Y ) +G(V )(Y )− λ+1

λ
log n√

λ+1
la

log n

=
G(U)(Y )− λ+1

2λ
log n√

λ+1
λ

log n
+
G(V )(Y )− λ+1

2λ
log n√

λ+1
λ

log n

Considering that the terms are independent, it suffices to show that both
G(U)(Y )−λ+1

2λ
logn√

λ+1
λ

logn
and

G(V )(Y )−λ+1
2λ

logn√
λ+1
λ

logn
has normal distribution with mean 0 and
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variance 1
2

, which is equivalent to
G(U)(Y )−λ+1

2λ
logn√

λ+1
2λ

logn
and

G(V )(Y )−λ+1
2λ

logn√
λ+1
2λ

logn
having

standard normal distribution.

5.1. Generation of connecting vertex in SWTV . Since SWTV grows, the

connecting vertex is a splitting particle at some splitting time Tk, which is always

chosen uniformly over the active set. Then we can recall Bühler’s decomposition,

that we already used in 2.4.1, for Y ’s generation as Gk =
∑
−i = 1k1i, where

conditioned on the offspring variables Di, the indicators are independent and

have success probability P(1i = 1) = Di
Si

.

In our case the number of splits is a random variable. We run SWTV till

time tn+u for some u that is given with the coordinates of the connection point

in the two-dimensional PPP (see 3.2), hence there are N(tn +u) many explored

vertices. We intentionally chose tn such that N(tn) would be of order
√
n, and

u is a bounded random variable. (This can be proven by letting u → ∞ in

(3.7): the measure of the infinite triangle goes to infinity, hence the probability

that it contains no point, that is, the connection does not happen up to tn + u,

goes to 0.) Hence we will write C
√
n instead of N(tn + u). C is then a random

variable and might depend on n, but is bounded w.h.p.

We decompose

∑C
√
n

i=1 1i − λ+1
2λ

log n√
λ+1
2λ

log n
=

∑C
√
n

i=1
Di
Si
− λ+1

2λ
log n√

λ+1
2λ

log n

+

∑C
√
n

i=1 1i −
∑C

√
n

i=1
Di
Si√∑C

√
n

i=1
Di
Si

(
1− Di

Si

) ·
√∑C

√
n

i=1
Di
Si

(
1− Di

Si

)
√

λ+1
2λ

log n
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Denote by

B1 =

∑C
√
n

i=1 1i −
∑C

√
n

i=1
Di
Si√∑C

√
n

i=1
Di
Si

(
1− Di

Si

)

B2 =

√∑C
√
n

i=1
Di
Si

(
1− Di

Si

)
√

λ+1
2λ

log n

B+ =

∑C
√
n

i=1
Di
Si
− λ+1

2λ
log n√

λ+1
2λ

log n

Our aim is to show that Lindeberg’s CLT is applicable for B1, while B2

converges to 1, and B3 converges to 0.

5.1.1. Term B1. We have a sum of independent indicators, hence it is indeed

the expectation and deviation that we subtract and divide with. We only need

to check Lindeberg’s condition for the central limit theorem to hold. IN this

case, Lindeberg’s condition is

∀ε > 0 lim
n→∞

C
√
n∑

i=1

E
[
1

2
i · 1

{
|1i −Di/Si| > ε

∑c
√
n

i=1 Di/Si (1−Di/Si)
}]

<∞

Since 1i is a Bernoulli random variable, |1i −Di/Si| ≤ 1. Then∑C
√
n

i=1 Di/Si (1−Di/Si)→∞ would ensure Lindeberg’s condition, since ∀ε∃nε
such that ε ·

∑c
√
nε

i=1 Di/Si (1−Di/Si) > 1, then we have a 0 sum for all n ≥ nε,

thus the limit is 0 <∞.

We give a lower bound for the sum of variances.

σ2
n =

C
√
n∑

i=1

Di/Si (1−Di/Si) =

C
√
n∑

i=1

Di/Si −
C
√
n∑

i=1

D2
i /S

2
i .
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Recall (future citation: lemma about Si), and split the sum according to the

random variable K. Each vertex has at least least on red child, Di ≥ 1. Then

C
√
n∑

i=1

Di/Si =
K∑
i=1

Di/Si +

C
√
n∑

i=K+1

Di/Si

≥
K∑
i=1

Di/Si +

C
√
n∑

i=K+1

1

iλ(1 + oi(1))
.

Since K is a.s. finite, the first term is finite. By Janson (.....), oi(1) ≤ i−1/2,

we have i(1 + oi(1)) ≤ i +
√
i < 2i, which implies that 1

i(1+oi(1))
≥ 1

2i
, and

thus the second term tends to infinity with order at least log n. Observe

now
∑C

√
n

i=1 D2
i /S

2
i , that is the second term in σ2

n. Since Di = Poi(ρ) + 1 +

1{ith explored is blue}, and the terms are independent, VarDi ≤ ρ+0+1 <∞,

then Di has finite second moment which we denote by M2.

C
√
n∑

i=1

D2
i /S

2
i =

K∑
i=1

D2
i /S

2
i +

C
√
n∑

i=K+1

D2
i /S

2
i

=
K∑
i=1

D2
i /S

2
i +

C
√
n∑

i=K+1

D2
i /
(
i2λ2(1 + o(1))2

)
.

The first term is a.s. finite. For the second one, we apply Markov’s inequality,

also using that the expectation is linear.

P

 C
√
n∑

i=K+1

D2
i /
(
i2λ2(1 + o(1))2

)
≥

C
√
n∑

i=K+1

M2/
(
i2λ2(1 + o(1))2

)
· log log n


≤ 1/ log log n,

which tends to 0 as n does to infinity. Hence with high probability,

C
√
n∑

i=K+1

D2
i /
(
i2λ2(1 + o(1))2

)
≤ π2

6

1

λ2
M2 log log n.

This means we subtract something which is w.h.p a much smaller term, then

σ2
n goes to infinity w.h.p.
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5.1.2. Term B2.∑C
√
n

i=1 Di/Si(1−Di/Si)
λ+1
2λ

log n

=

∑K
i=1Di/Si(1−Di/Si)

λ+1
2λ

log n
+

∑C
√
n

i=K+1 Di/Si
λ+1
2λ

log n
−
∑C

√
n

i=1 D2
i /S

2
i

λ+1
2λ

log n
.

The first fraction tends to 0, as the numerator is a.s. finite and the denominator

tends to infinity. We showed in the previous subsubsection that the nominator

of the third fraction is w.h.p. of order log log n, which devided by log n goes to

0. We have yet to show that the second term goes to 1. Let Fn = σ(D1, ..., Dn)

the filtration generated by the random variables Di. Then∑C
√
n

i=K+1Di/Si
λ+1
2λ

log n
=

∑C
√
n

i=K+1
Di

iλ(1+o(1))
− E[Di|Fi−1]

iλ(1+o(1))

λ+1
2λ

log n
+

∑C
√
n

i=K+1
E[Di|Fi−1]
iλ(1+o(1))

λ+1
2λ

log n
.

For
∑C

√
n

i=K+1
Di

iλ(1+o(1))
− E[Di|Fi−1]

iλ(1+o(1))
, we want to use Chebyshev’s inequality. We

compute the second moment, which is the same as the variance. The expected

value, by tower rule, equals to 0.

E

 C
√
n∑

i=K+1

Di

iλ(1 + o(1))
− E[Di|Fi−1]

iλ(1 + o(1))

2
=

C
√
n∑

i,j=K+1

E [(Di − E[Di|Fi−1)(Dj − E[Dj|Fj−1)]]

λ2ij(i+ o(1))

In case j < i, by tower rule,

E [(Di − E[Di|Fi−1)(Dj − E[Dj|Fj−1)]]

= E [E [(Di − E[Di|Fi−1)(Dj − E[Dj|Fj−1)]|Fj]]

(Dj − E[Dj|Fj−1) is measurable with respect to Fj, then we have

E [(Dj − E[Dj|Fj−1)E [Di − E[Di|Fi−1]|Fj]] .

This equals to 0, since j < i implies Fj ⊆ Fi−1 and we can use tower rule

again:

E [Di − E[Di|Fi−1]|Fj] = E[Di|Fj]− E [E[Di|Fi−1]|Fj]

= E[Di|Fj]− E[Di|Fj] = 0.
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Then the sum is only the sum of conditional variances of Di’s, which is simply

the sum of variances, as the Di’s are independent. We earlier gave the bound

VarDi ≤ ρ+ 1.

E

 C
√
n∑

i=K+1

Di

iλ(1 + o(1))
− E[Di|Fi−1]

iλ(1 + o(1))

2 =

C
√
n∑

i=K+1

E[(Di − E[Di|Fi−1)2]

λ2i2(1 + o(1)))

≤ π2

6

1

λ2
(ρ+ 1)(i+ o(1)).

Then Chebyshev’s inequality yields

(5.1)

P

∣∣∣∣∣∣
C
√
n∑

i=K+1

(Di − E[Di|Fi−1)

∣∣∣∣∣∣ ≥ log log n · π
2

6

1

λ2
(ρ+ 1)(1 + o(1))


≤ 1

(log log n)2

n→∞−→ 0.

Which means
∑C

√
n

i=K+1(Di−E[Di|Fi−1) is w.h.p. o(log n) and tends to 0 devided

by log n.

Now to show that
∑C

√
n

i=K+1

E[Di|Fi−1]

iλ(1+o(1))
λ+1
2λ

logn
tends to 1, we compute

E[Di|Fi−1] = EDB
i

SBi−1

Si−1

+ EDR
i

SRi−1

Si−1

It is known that
(
SRi−1

Si−1
,
SBi−1

Si−1

)
converges to (πR, πB) and by Janson (......) the

error term is oi(1) = i−1/2. Then

E[Di|Fi−1] = (ρ+ 2)πB(1 + oi(1)) + (ρ+ 1)πR(1 + oi(1))

= (λ+ 1)(1 + oi(1))

Subsituting, we get∑C
√
n

i=K+1
E[Di|Fi−1]
iλ(1+o(1))

λ+1
2λ

log n
=

∑C
√
n

i=K+1
(λ+1)(1+oi(1))
iλ(1+o(1))

λ+1
2λ

log n

=

∑C
√
n

i=K+1
(1+oi(1))

i
1
2

log n
=

∑C
√
n

i=K+1
1
i

1
2

log n
+

∑C
√
n

i=K+1
oi(1)
i

1
2

log n
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Where, introducing a small constant error term δ from the integral approxima-

tion, ∑C
√
n

i=K+1
1
i

1
2

log n
=

log(C
√
n)− log(K + 1) + δ

1
2

log n

= 1 +
logC − log(K + 1) + δ

1
2

log n

n→∞−→ 1.

Since oi(1) is of order i−1/2, we can say for a small ε < 1
2

that oi(1) ≤ i−
1
2

+ε.

Then
∑C

√
n

i=K+1
oi(1)
i
≤
∑∞

i=0 i
−3/2+ε is summable and finite, devided by log n it

tends to 0.

5.1.3. Term B3. As usual, we split the sum:(∑C
√
n

i=1 Di/Si

)
− λ+1

2λ
log n√

λ+1
2λ

log n
=

∑K
i=1Di/Si√
λ+1
2λ

log n
+

(∑C
√
n

i=K+1Di/Si

)
− λ+1

2λ
log n√

λ+1
2λ

log n

Since Di/Si ≤ 1, the first fraction is something finite over
√

log n and tends to

0. (∑C
√
n

i=K+1Di/Si

)
− λ+1

2λ
log n√

λ+1
2λ

log n
=

(∑C
√
n

i=K+1
Di

iλ(1+o(1))

)
− λ+1

2λ
log n√

λ+1
2λ

log n

=

∑C
√
n

i=K+1
Di−E[Di|Fi−1]
iλ(1+o(1))√

λ+1
2λ

log n
+

(∑C
√
n

i=K+1
E[Di|Fi−1]
iλ(1+o(1))

)
− λ+1

2λ
log n√

λ+1
2λ

log n

The nominator
∑C

√
n

i=K+1
Di−E[Di|Fi−1]
iλ(1+o(1))

was previously proven in (5.1) to be w.h.p

of order log log n, hence devided by
√

log n it goes to 0.

We also calculated E[Di|Fi−1] = (λ+ 1)(1 + oi(1)). Then(∑C
√
n

i=K+1
E[Di|Fi−1]
iλ(1+o(1))

)
− λ+1

2λ
log n√

λ+1
2λ

log n
=
λ+ 1

λ

(∑C
√
n

i=K+1(1 + oi(1))/i
)
− 1

2
log n√

λ+1
2λ

log n

=
λ+ 1

λ

∑C
√
n

i=K+1 1/i− 1
2

log n√
λ+1
2λ

log n
+

∑C
√
n

i=K+1 oi(1)/i√
λ+1
2λ

log n


The oi(1) terms are the same as before, hence devided by i they are summable,

the second term tends to 0. Using integral approximation and introducing the
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small constant error term δ, C
√
n∑

i=K+1

1/i

− 1

2
log n =

(
δ + log(C

√
n)− log(K + 1)

)
− 1

2
log n

= δ + logC − log(K + 1)

which is indeed o(
√

log n).

5.2. Generation of connecting vertex in SWTU . For the frozen side, we

have to use a different approach, since conditioned on that the connection

happens, the choice of Y is not uniform over the actives. One can calculate (we

will omit this) by law of total probability, splitting by the type of connection

(blue-blue, red-blue, blue-red, left red-right red, right red-left red), that any

active red label in SWTU is chosen with asymptotic probability 1
A(U)(tn)

1−πR
2

1−
π2
R

2

,

while any blue label is chosen with asymptotical probability 1
A(U)(tn)

1

1−
π2
R

2

. (We

replaced the fractions
A

(V )
R (tn+u)

A(V )(tn+u)
by their limit, πR.) However,

Claim 5.2. Conditioned on the connecting vertex having a blue label in SWTU ,

asymtotically it is a uniformly chosen particle with a blue label. Same holds

for red: if the connecting vertex has red label, it is uniform over the red active

particles.

Note the difference between being a red label and a red particle: there can

be multiple active particles with the same label.

Proof. Obviously, when we calculate the probability of a blue label being chosen,

we get the same probability for any blue label. (We do not know, hence cannot

use anything specific.) It yields that the label is uniform over the possible blue

labels. Now consider different actives with the same label Vi, suppose there is

mi many of them. We call the number mi the multiplicity of the label. Out

of these mi many particles, the connecting vertex is the one with the least

remaining lifetime. The remaining lifetimes are independent Exp(1) random

variables, hence their minimum is uniformly chosen, meaning given the label,

each instance is chosen with probability 1
mi

. Then a blue particle which has
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multiplicity mi has probability 1
mi

1
A(U)(tn)

1

1−
π2
R

2

to be the connecting vertex.

We claim that asymptotically, this leads to a uniform distribution. Corollary

2.19 implies that the fraction of multiple actives tends to 0 (at time tn + u,

as n goes to infinity). Hence if we pick an active vertex, it has multiplicity 1

w.h.p., including red and blue instances. (This also implies that asymptotically,

the label has a well defined color and if it is blue, its possible red instances

will not add up to its probability.) Hence asymptotically, we have a uniform

distribution.

The argument is very similar in the case of red. �

We define the color sets CS1 = {R} and CS2 = {B}. For a color set CS,

let ACS = ∪q∈CSAq the set of actives with any color from the color set. The

previous claim can be reformalized like this: for both of these sets CS1 and CS2,

conditioned on a particle being in ACSi , the particle is asymptotically uniform

over ACSi . Then we can apply Khralamov’s [24] results. He proves that if an

active particle is uniform over ACS for some color set CS, the generation of

that particle admits a central limit theorem. Also the mean and variance in

this CLT does not depend on the given color set, implying it is the same for

all such color sets.

Note that when we discussed G(V )(Y ), we already proved a CLT for the

same branching process, when the particle is uniformly chosen over A{R,B},
with mean and variance both λ+1

2λ
log n. Which means that whether Y is red

or blue in SWTU , its generation G(U)(Y ) admits a central limit theorem with

mean and variance λ+1
2λ

log n. This completes the proof.
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