

True Random Number Generation Using
Barkhausen Noise

BY: BIEBEL, BOTOND; BILSZKY, MÁRK

CONSULTANT: DR. NAGY, KATALIN

2023

1

Tab le of Content s

Abstract .. 2

1 Introduction .. 3

2 Methodology .. 3

2.1 Barkhausen Measurement .. 3

2.1.1 Introduction to Barkhausen Noise .. 3

2.1.2 Barkhausen Noise Measurement Instrument (Barkhausenmeter) 4

2.2 Data Processing ... 4

2.2.1 Nature of the Data Set .. 4

2.2.2 Fast Fourier Transform ... 5

2.2.3 Creating a Binary Dataset .. 7

3 Randomness Testing .. 7

3.1 Introduction to Randomness Testing ... 7

3.2 Randomness Testing Methods ... 8

3.2.1 Frequency (Monobit) Test .. 8

3.2.2 Frequency Test within a Block ... 8

3.2.3 Runs Test .. 9

3.2.4 Test for the Longest Run of Ones in a Block ... 10

3.2.5 Binary Matrix Rank Test .. 11

3.2.6 Discrete Fourier Transform (Spectral) Test ... 11

3.2.7 Non-overlapping Template Matching Test .. 12

3.2.8 Overlapping Template Matching Test .. 14

3.2.9 Linear Complexity Test .. 15

3.2.10 Serial Test ... 16

3.2.11 Approximate Entropy Test ... 17

3.2.12 Cumulative Sums (Cusum) Test .. 18

3.2.13 Random Excursions Test .. 19

3.2.14 Random Excursions Variant Test ... 19

3.3 Results of Tests .. 22

4 Conclusion .. 23

5 References .. 23

2

Abst rac t

Barkhausen Noise emerges as a promising avenue for generating random numbers, offering inher-
ent unpredictability and sensitivity to external influences. In this study, we explore the feasibility
of utilizing Barkhausen Noise as a source for random number generation. Through meticulous
measurements and in-depth analysis, our research demonstrates the viability of Barkhausen Noise
in producing random numbers. However, we also investigated the limitations, indicating that while
Barkhausen Noise provides a viable method for generating random numbers, it falls short of meet-
ing the stringent requirements of high-security applications. This research sheds light on the po-
tentials and limitations of Barkhausen Noise in the realm of random number generation, paving the
way for further investigations into its practical applications.

Keywords: cryptography, true random numbers, Barkhausen Noise

3

1 In t roduct ion

Random numbers play a crucial role in various fields, especially in cryptography, where they form
the foundation of secure algorithms and communication protocols. In the realm of random number
generation, two distinct categories are recognized: pseudo random numbers, generated by algo-
rithms which are inherently deterministic, and true random numbers, characterized by unpredicta-
ble, non-repeating sequences. While pseudo random numbers have many use cases, certain appli-
cations however, particularly in cryptographic algorithms, demand a higher level of unpredictabil-
ity that only true random numbers can provide. Hence true random numbers are vital for applica-
tions where the integrity and confidentiality of information are paramount, such as in secure com-
munications, digital signatures, gambling, scientific research, and encryption.

Despite the advancements in random number generation techniques, efficiently and reliably gen-
erating true random numbers remains an ongoing challenge.

In this study, we explore Barkhausen Noise measurements as a potential avenue for generating true
random numbers. Barkhausen Noise, arising from the movement of magnetic domain walls in fer-
romagnetic materials, exhibits inherent randomness due to its complex underlying physical pro-
cesses. The question we seek to answer is whether these naturally occurring phenomena can be
harnessed to create a reliable source of true random numbers.

Through stringent analysis of Barkhausen Noise measurements, this study delves into the intrica-
cies of this phenomenon, assessing its potential as a robust source of true randomness. By scruti-
nizing the data obtained from these measurements and subjecting it to rigorous randomness tests,
we look to assess the practicality and effectiveness of Barkhausen Noise as a true random number
generator. Our findings could pave the way for novel applications in cryptography and other do-
mains that demand unparalleled levels of randomness and security.

2 Methodo logy

2.1 Barkhausen Measurement
2.1.1 Introduction to Barkhausen Noise

Barkhausen Noise stands out as a pivotal non-destructive magnetic measurement technique with
widespread industrial applications, rendering it indispensable for quality control and precise pro-
cess validation. Its versatility is exemplified in various contexts, such as the in-depth analysis of
grinding burn effects on diverse ground components and meticulous surface inspections conducted
after a range of heat treatments.

The genesis of Barkhausen Noise unfolds within ferromagnetic metals during the magnetization
process, where the movement of domain walls within the material mirrors an intricate avalanche-
like phenomenon, culminating in the generation of Barkhausen noise. This unique acoustic signal
is not only a testament to the material's magnetic state but also possesses exceptional sensitivity to
external influences and inherent unpredictability.

4

In the realm of our study, these characteristics of Barkhausen Noise become particularly intriguing.
The sensitivity to external factors and the inherent unpredictability of this source raises the possi-
bility of its suitability for random number generation, a fact that we explore in depth as part of our
research.

2.1.2 Barkhausen Noise Measurement Instrument (Barkhausenmeter)

Traditional Barkhausen Noise measurement devices comprise two integral components: the mag-
netizing element and the probe, collectively unveiling the unique characteristics of materials under
study. When placed in contact with the sample to be measured, they transmit voltage data to a
computer.

At the heart of the measurement device lies the magnetizing element, typically fashioned as an
open-loop solenoid. This solenoid plays a pivotal role in magnetizing the sample under investiga-
tion, setting the stage for the Barkhausen Noise to be effectively measured. It's noteworthy that the
solenoid generates a sine magnetization signal, a fundamental aspect to bear in mind during subse-
quent data processing endeavors.

The magnetizing element consists of an open loop sole-
noid and provides magnetization for the tested sample al-
lowing for the Barkhausen Noise to be measured. This
solenoid generates a sine magenetization signal which is
important to remember when processing the data.

Complementing the magnetizing element, the probe fea-
tures a pickup coil. As the magnetizing element excites
the material, inducing magnetic responses within the
sample, voltage is generated within the pickup coil. This
induced voltage serves as a direct reflection of the mate-
rial's magnetic behavior.

The voltage values acquired from the pickup coil are transmitted to a desktop computer for further
analysis. Once received by the computer, these voltage measurements are processed and compiled
into a comprehensive .txt file. This file encapsulates the essence of the material's magnetic re-
sponse, forming the basis for in-depth examinations and subsequent data processing.

2.2 Data Processing
2.2.1 Nature of the Data Set

Upon completing the Barkhausen measurements, we obtained nine raw datasets (numbered from 1
to 9), each collected from different metals of varying hardness, structured in intervals marked by
'enters', and containing a generator signal inherent to the measurement method. Our data processing
methodology was meticulously applied to refine these raw datasets into a usable format for analy-
sis. To achieve this, we rigorously removed the generator signal and conducted thorough segmen-
tation and filtering procedures tailored to the specific characteristics of each metal. This meticulous
approach allowed us to separate genuine Barkhausen Noise signals from unwanted interference.

1. Figure (Barkhausen Noise Measurement Device)

5

The resulting datasets were transformed into binary representations, where 'ones' and 'zeros' repre-
sented specific states of the magnetic domain walls' movements. Each of these binary datasets,
derived from the nine distinct measurements conducted on metals of different hardness, served as
the foundation for our subsequent analysis. This comprehensive approach ensured that the inherent
randomness of Barkhausen Noise was accurately captured across all datasets, eliminating extrane-
ous signals and noise, and establishing a robust basis for our research.

2.2.2 Fast Fourier Transform

In our dataset, a distinct sine generator signal (as depicted in Figure 2) was present alongside the
Barkhausen noise. To extract the genuine Barkhausen noise, we employed the Fast Fourier Trans-
form (FFT), a powerful technique widely used in signal processing.

Fourier analysis allows expressing a function as a sum of periodic components, enabling the re-
covery of the original signal from these components. When both the function and its Fourier trans-
form are discretized, it becomes the Discrete Fourier Transform (DFT). The Fast Fourier Transform
(FFT) is an efficient algorithm for computing the DFT.

Using the FFT method provided by the Python library scipy.py, we processed our dataset. Specif-
ically, we utilized the Discrete Cosine Transform (DCT) and its inverse (IDCT) to achieve this
goal.

In signal processing, there are various types of DCT, each with its own definition and application.
We focused on Type I, Type II, Type III, and Type IV DCT, with Scipy implementing the first four
types. These transforms allowed us to mathematically manipulate the data, isolating the generator
signal for removal.

The definition of unnormalized Type I DCT is the following:

𝑦[𝑘] = 𝑥଴ + (−1)௞𝑥ேିଵ + 2 ෍ 𝑥[𝑛] cos ൬
𝜋𝑛𝑘

𝑁 − 1
൰ , 0 ≤ 𝑘 < 𝑁.

ேିଶ

௡ୀଵ

2. Figure (plot of data set 1, showing the nature of the dataset)

6

The definition of unnormalized Type II DCT is the following:

𝑦[𝑘] = 2 ෍ 𝑥[𝑛] cos ൬
𝜋(2𝑛 + 1)𝑘

2𝑁
൰ , 0 ≤ 𝑘 < 𝑁.

ேିଵ

௡ୀ଴

In case of the normalized Type II DCT, the DCT coefficients y[k] are multiplied by a scaling fac-
tor f:

𝑓 =

⎩
⎪
⎨

⎪
⎧

ඨ
1

4𝑁
, 𝑖𝑓 𝑘 = 0

ඨ
1

2𝑁
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The definition of unnormalized Type III DCT is the following:

𝑦[𝑘] = 𝑥଴ + 2 ෍ 𝑥[𝑛] cos ൬
𝜋𝑛(2𝑛 + 1)

2𝑁
൰ , 0 ≤ 𝑘 < 𝑁.

ேିଵ

௡ୀ଴

The definition of normalized Type III DCT is the following:

𝑦[𝑘] =
𝑥଴

√𝑁
+

2

√𝑁
෍ 𝑥[𝑛] cos ൬

𝜋𝑛(2𝑛 + 1)

2𝑁
൰ , 0 ≤ 𝑘 < 𝑁.

ேିଵ

௡ୀ଴

The definition of unnormalized Type IV DCT is the following:

[𝑘] = 2 ෍ 𝑥[𝑛] cos ൬
𝜋(2𝑛 + 1)(2𝑘 + 1)

4𝑁
൰ , 0 ≤ 𝑘 < 𝑁.

ேିଵ

௡ୀ଴

The definition of normalized Type IV DCT is the following:

[𝑘] = ඨ
2

𝑁
෍ 𝑥[𝑛] cos ቆ

𝜋(2𝑛 + 1)(2𝑘 + 1)

4𝑁
ቇ , 0 ≤ 𝑘 < 𝑁.

ேିଵ

௡ୀ଴

7

After applying FFT, we obtained the generator function. By subtracting this function from the
original dataset, we successfully recovered our raw data, representing the pure Barkhausen noise
(as illustrated in Figure 3). This refined dataset, free from unwanted signals, formed the basis of
our subsequent analysis.

2.2.3 Creating a Binary Dataset

To convert the processed data into a binary format, a simple and effective method was employed.
First, we calculated the median of the dataset, ensuring an equal distribution of ones and zeros. For
each data point, if its value was greater than the median, we assigned it a value of zero; conversely,
if the value was less than or equal to the median, it was assigned a value of one. This binary trans-
formation created a balanced representation of the data, where 'ones' and 'zeros' accurately repre-
sented the specific states of the magnetic domain walls' movements. By employing this method,
we achieved a well-defined binary dataset, ready for further analysis.

3 Randomness Te st i ng

3.1 Introduction to Randomness Testing
Understanding true randomness is a nuanced challenge; there is no definitive source of randomness,
and even seemingly random processes can reveal patterns under scrutiny. Consider a classic exam-
ple like rolling a dice in a game of Yahtzee – seemingly random, yet influenced by various factors
like table friction and rolling technique, potentially leading to recognizable patterns over multiple
repetitions. While this might be inconsequential in the context of the game, in high-security appli-
cations where a substantial volume of numbers is required, these underlying patterns can pose sig-
nificant problems.

In our experiments, our aim was to generate a random bit sequence comprising ones and zeros. For
a bit sequence to be truly random, each flip must have a probability of ½ of being one or zero.
Independence is crucial, ensuring that previous attempts will not influence future ones. Addition-
ally, unpredictability is a necessity, in case the seed is unknown, no knowledge of previous out-
comes should not allow for someone to determine the future outcomes.

3. Figure (plot of noise on first dataset)

8

To evaluate the randomness of our generated sequences, we adhered to the guidelines outlined by
the National Institute of Standards and Technology (NIST). While these tests do not substitute for
rigorous cryptoanalysis, they serve as essential tools in assessing the viability of Barkhausen Noise
random number generation technology.

3.2 Randomness Testing Methods
3.2.1 Frequency (Monobit) Test

The test's primary focus lies in examining the ratio of zeros to ones within the entire sequence. The
objective of this test is to ascertain whether the number of ones and zeros in a sequence closely
approximates what one would expect in a truly random sequence. It evaluates how near the fraction
of ones is to 1/2, meaning that the number of ones and zeros in the sequence should be roughly
equal. All subsequent tests depend on the passing of this test. Therefore, if a sequence fails this
test, there is no need to proceed with further testing, and the sequence should be regarded as non-
random.

Test Description:

Conversion to ±1: The zeros and ones of the input sequence (ε) are converted to values of –1 and
+1 and are added together to produce Sn = X1 + X2+…+Xn , where Xi = 2εi – 1 = ±1.

Compute the test statistic:

S௢௕௦ =
|𝑆𝑛|

√𝑛

Sobs = the absolute value of the sum of the Xi in the sequence divided by the square root of the length of the sequence
n = the length of the bit string

𝑃௩௔௟௨௘ = 𝑒𝑟𝑓𝑐 ቀ
ௌ೚್ೞ

√ଶ
ቁ , where erfc1 is the complementary error function.

If the Pvalue were small (< 0.01), then this would be caused by |Sn| or |Sobs| being large. Large positive
values of Sn suggest an excess of ones, while large negative values of Sn indicate an excess of
zeros.

3.2.2 Frequency Test within a Block

The primary objective of this test is to assess the proportion of ones within M-bit blocks. Within
each block the test runs the Frequency (Monobit) Test to determine whether the frequency of ones
in an M-bit block is approximately equal to M/2, which aligns with the expectations of randomness.

Test Description:

Divide the sequence into 𝑁 = ቔ
௡

ெ
ቕ equal, non-overlapping blocks, discarding any unused bits.

Determine the proportion qi of ones in each M-bit blocks:

1 The complementary error function, erfc(x), is defined, for x ≥ 0, as. (2/Sqrt[Pi]) erfc(t) =Integrate[E^(-t)^2, {t, z,
Infinity}]

9

𝑞௜ =
∑ 𝜀(௜ିଵ)ெା௝

ெ
௝ୀଵ

𝑀

Calculate χ௢௕௦
ଶ :

χ௢௕௦
ଶ = 4𝑀 ෍(𝑞௜ − 0.5)ଶ

ெ

௜ୀଵ

𝜒௢௕௦
ଶ = a measure of how closely the actual proportion of ones within a specific M-bit block aligns with the expected

proportion (1/2)

Determine the Pvalue:

𝑃௩௔௟௨௘ = 𝑖𝑔𝑎𝑚𝑐 ቀ
ே

ଶ
,

஧೚್ೞ
మ

ଶ
ቁ, where igamc2 is the incomplete gamma function

A small Pvalue means a large deviation from the equal proportion of zeros and ones in at least one
of the blocks.

3.2.3 Runs Test

The focus of this test is the total number of uninterrupted sequences of identical bits (further re-
ferred as runs) in the whole sequence. A run of length l is characterized by a sequence of l consec-
utive bits with the same value, and it is delineated by bits with the opposite value both before and
after the run. The objective of the test is to determine whether the number of runs of ones and zeros
is as expected for a random sequence. Specifically, this test aims to assess whether the alternation
between such zeros and ones is too fast or too slow.

Test Description:

Determine the proportion q of ones in the input sequence:

𝑞 =
∑ 𝜀௝

௝

𝑛

This test fails initially if the sequence did not pass the first test (Frequency Test)

The test statistic:

𝑉௡(௢௕௦) = ෍ 𝑟(𝑘) + 1

௡ିଵ

௞ୀଵ

r(k) = 0, if εk = εk+1 and r(k) = 1 otherwise

2 The upper incomplete gamma function, igamc(x) is defined as: ∫x^∞ t^(s - 1) e^(-t) dt

10

Calculate Pvalue:

𝑃௩௔௟௨௘ = 𝑒𝑟𝑓𝑐 ቆ
𝑉௡(௢௕௦) − 2𝑛𝑞(1 − 𝑞)

2√2𝑛𝑞(1 − 𝑞)
ቇ

A large Vn(obs) value arises when the string's oscillation pattern suggests an excessive speed of os-
cillation, whereas a small value indicates an oscillation that is excessively slow. Both of these
causes Pvalue being below the pass barrier (<0.01).

3.2.4 Test for the Longest Run of Ones in a Block

The focus of the test is the longest run of ones within M-bit blocks. This test compares the length
of the longest run of ones within the tested sequence to the length of the longest run of ones that
would be expected in a random sequence. Hence in case of an irregularity in the expected length
of the longest run of ones would cause an irregularity to the longest run of zeros, there is no need
to test for both.

Test Description:

Divide the sequence into M-bit blocks.

Produce a table that categorizes the frequencies νi for the longest runs of
consecutive ones within each block into distinct categories. In each cell
of the table, display the count of runs of ones of a specific length.

This test supports only the given M sizes, thus the νi cells will be the
following:

Calculate χ௢௕௦
ଶ :

χ௢௕௦
ଶ = ෍

(ν௜ − 𝑁𝑞௜)
ଶ

𝑁𝑞௜

௄

௜ୀ଴

𝜒௢௕௦
ଶ = a measure of how well the observed longest run length within M-bit blocks matches the expected longest length

within M-bit blocks

qi = as calculated in 4.2.2

the value of K and N are determined by the following table:

Determine the Pvalue:

𝑃௩௔௟௨௘ = 𝑖𝑔𝑎𝑚𝑐 ቆ
𝐾

2
,
χ௢௕௦

ଶ

2
ቇ

11

3.2.5 Binary Matrix Rank Test

This test focuses on the rank of disjoint sub-matrices of the entire sequence. The purpose of this
test is to examine the presence of linear dependence within fixed-length substrings of the original
sequence.

Test Description:

Divide the sequence into MxQ-bit disjoint blocks sequentially. There will exist 𝑁 = ቂ
௡

ெொ
ቃ such

blocks. Make M by Q matrices of the MxQ bit segments. Each row of the matrix is filled with
successive Q-bit blocks of the original sequence.

M = the number of rows in each matrix (in this test: M=32)

Q = the number of columns in each matrix (in this test: Q=32)

Calculate the binary rank (Ri) of each matrix, where i = 1,…,N.

Determine χ௢௕௦
ଶ :

χ௢௕௦
ଶ =

(𝐹ெ − 0.2888𝑁)ଶ

0.2888𝑁
+

(𝐹ெିଵ − 0.5776𝑁)ଶ

0.5776𝑁
+

(𝑁 − 𝐹ெ − 𝐹ெିଵ − 0.1336𝑁)ଶ

0.1336𝑁

𝜒௢௕௦
ଶ = a measure of how well the observed number of ranks of various orders match the expected number of ranks

expected for randomness

FM = the number of matrices with full rank à Ri = M

FM-1 = the number of matrices with full rank – 1 à Ri = M-1

Determine the Pvalue:

𝑃௩௔௟௨௘ = 𝑒ି஧೚್ೞ
మ /ଶ

A large value of 𝜒௢௕௦
ଶ indicates a deviation of the rank distribution from what would be expected in a random sequence.

3.2.6 Discrete Fourier Transform (Spectral) Test

This test focuses on the peak heights in the Discrete Fourier Transform of the sequence. It aims to
detect periodic features (repetitive patterns
that are near each other for instance) in the
tested sequence. These would indicate a de-
viation from the assumption of randomness.
The intention is to determine if the quantity
of peaks surpassing the 95% threshold sig-
nificantly differs from the expected 5%.

Test Description:

Conversion to ±1: The zeros and ones of the input sequence (ε) are converted to values of –1 and
+1 and are added together to produce X= x1 + x2+…+xn , where xi = 2εi – 1 = ±1.

12

Apply a Discrete Fourier transform (DFT) on X to produce: S = DFT(X). It produces a sequence
of complex variables which represents periodic components of bits of the sequence at different
frequencies.

Determine M:

M = modulus(S’) = |S*|

S’= the substring including the first n/2 elements of S à peak heights are being produced by the modulus function

Calculate T:

𝑇 = ඨ൬𝑙𝑜𝑔
1

0.05
൰ 𝑛

T = the 95% peak height threshold value

Calculate N0:

N0 = .95/2.

N0 = the expected theoretical (95%) number of peaks that are less than T

Calculate N1; the count of observed peaks in M that are less than T

Determine d:

𝑑 =
(𝑁ଵ − 𝑁଴)

ඥ𝑛(.95)(.05)/4

d = the normalized difference between the observed and the expected number of frequency components exceeding the
95% threshold

Calculate Pvalue:

𝑃௩௔௟௨௘ = 𝑒𝑟𝑓𝑐 ൬
|𝑑|

2
൰

A small d value indicates that there were not enough peaks(<95%) below T, and too many peaks
above T (more than 5%), thus a sequence should fail.

3.2.7 Non-overlapping Template Matching Test

This test searches through the entire sequence, looking for the number of occurrences of predefined
target strings. It aims to detect if there are any aperiodic patterns occurring too many times. An m-
bit window is used to search for a specific m-bit pattern both in this, and the next test (Overlapping
Template Matching test). The window slides one bit position if the pattern is not found. Upon
discovering the pattern, the search process continues by resetting the window to the bit immediately
following the identified pattern.

13

Test Description:

Separate the sequence into N independent blocks, each of length M.

N is set to 8 in our test

The number of times that B (the template) occurs within the block j:= Wj, where j=1,…,N

B = the m-bit template to be matched, which is a predefined sequence of ones and zeros

To look for matches, an m-bit window is positioned on the sequence, and the bits within this win-
dow are compared to the template. If no match is detected, the window moves forward by one bit.
If there is a match, the window slides over m bits.

Calculate the theoretical mean µ and variance σ2 under the assumption of randomness:

µ =
(ெି௠ାଵ)

ଶ೘ σଶ = 𝑀 ቀ
ଵ

ଶ೘ −
ଶ௠ିଵ

ଶమ೘ ቁ

m = the length in bits of each template

M = the length in bits of the substring of ε to be tested

Determine χ௢௕௦
ଶ

χ௢௕௦
ଶ = ෍

൫W௝ − µ൯
ଶ

σଶ

ே

௝ୀଵ

𝜒௢௕௦
ଶ = An indicator of the degree to which the actual count of template "hits" corresponds to the anticipated count of

template "hits" (under the assumption of randomness)

Calculate the Pvalue:

𝑃௩௔௟௨௘ = 𝑖𝑔𝑎𝑚𝑐 ቆ
𝑁

2
,
χ௢௕௦

ଶ

2
ቇ

If the P-value is extremely low(<0.01), it indicates that the sequence exhibits irregular instances of potential template
patterns.

14

3.2.8 Overlapping Template Matching Test

This test searches through the entire sequence, looking for the number of occurrences of predefined
target strings. It aims to detect if there are any aperiodic patterns occurring too many times. An m-
bit window is used to search for a specific m-bit pattern both in this, and the previous test (Non-
overlapping Template Matching test). The window slides one bit position if the pattern is not found.
The difference between this test and the previous test (Non-overlapping Template Matching test)
is that when the pattern is found, the window slides only one bit before resuming the search.

Test Description:

Separate the sequence into N independent blocks, each of length M.

N is set to 968 in our test

Determine the number of occurrences of B within each of the N blocks. The search for matches
involves the establishment of an m-bit window on the sequence, where the bits contained within
this window are compared to B, and a counter is incremented upon finding a match. After each
examination the window slides over one bit. Maintain a record of the occurrences of B in each
block by updating an array qi (where i ranges from 0 to 5). Specifically, increment q0 when there
are no B occurrences in a substring, q1 when there is one occurrence of B, and q5 when there are
five or more occurrences of B.

B = the m-bit template to be matched

Calculate values for λ and η that will be used to determine the theoretical probabilities πi corre-
sponding to the classes of v0:

λ =
(ெି௠ାଵ)

ଶ೘ η = λ/2

m = the length in bits of the template, here it is the length of the run of ones

M = the length in bits of a substring ε to be tested, in this test it has been set to 1032

Determine χ௢௕௦
ଶ :

χ௢௕௦
ଶ = ෍

(q௜ − 𝑁𝑞௜)ଶ

𝑁𝑞௜

ହ

௜ୀ଴

χ୭ୠୱ
ଶ = An indicator of the degree to which the actual count of template "hits" corresponds to the anticipated count of

template "hits" (under the assumption of randomness).

15

Calculate the Pvalue:

𝑃௩௔௟௨௘ = 𝑖𝑔𝑎𝑚𝑐 ቆ
5

2
,
χ௢௕௦

ଶ

2
ቇ

For the 2-bit template (B = 11), if the entire sequence had too many 2-bit runs of ones, then: ν5 would have been too
large, the test statistic would be too large, the P-value would have been small (< 0.01) and a conclusion of non-
randomness would have resulted.

3.2.9 Linear Complexity Test

The test primarily assesses the length of a linear feedback shift register (LFSR) to determine
whether or not the sequence exhibits the requisite complexity to be classified random. Longer
LFSRs characterize random sequences, while a too short LFSR implies non-randomness.

Test Description:

Separate the n-bit sequence into N distinct blocks, each consisting of M bits, such that n = MN.

With the help of the Berlekamp-Massey algorithm3, calculate the linear complexity Li of each of
the N blocks (i = 1, 2,…,N). Li represents the minimum length of a linear feedback shift register
sequence required to generate all the bits within block i. In any sequence of Li bits, there exists a
particular combination of those bits such that, when summed modulo 2, it generates the next bit in
the sequence, denoted as bit Li + 1.

Under the assumption of randomness, calculate the theoretical mean µ:

µ =
𝑀

2
+

(9 + (−1)ெାଵ)

36
−

ቀ
𝑀
3

+
2
9ቁ

2ெ

M = the length in bits of a block

Determine the value of Ti for each substring:

𝑇௜ = (−1)ெ • (𝐿௜ − µ) +
2

9

Record the Ti values in q0,…,q6 as follows:

 If:

3 Defined in The Handbook of Applied Cryptography; A. Menezes, P. Van Oorschot and S. Vanstone; CRC Press,
1997.

16

Determine χ௢௕௦
ଶ :

χ௢௕௦
ଶ = ෍

(q௜ − 𝑁π௜)ଶ

𝑁π௜

௄

௜ୀ଴

π0 = 0.010417, π1 = 0.03125, π2 = 0.125, π3 = 0.5, π4 = 0.25, π5 = 0.0625, π6 = 0.020833 are predefined probabilities

K = the number of degrees of freedom, which is set to 6 in this test

χ௢௕௦
ଶ = a measure of the degree to which the observed number of fixed-length LFSR occurrences aligns with the ex-

pected number of occurrences based on the assumption of randomness.

Calculate the Pvalue:

𝑃௩௔௟௨௘ = 𝑖𝑔𝑎𝑚𝑐 ቆ
𝐾

2
,
χ௢௕௦

ଶ

2
ቇ

If the P-value were less than 0.01, it would imply that the observed frequency counts of Ti stored in the qi bins deviate
from the expected values. The expectation is that the distribution of Ti frequencies within the qi bins should be in
proportion to the computed πi.

3.2.10 Serial Test

The central objective of this test is to analyze the frequency of all possible overlapping m-bit pat-
terns throughout the entire sequence. The aim is to assess whether the observed number of occur-
rences of these 2m m-bit overlapping patterns closely matches what would be expected in a random
sequence. In random sequences, there is a uniform distribution, meaning that every m-bit pattern
has an equal likelihood of appearing compared to every other m-bit pattern. It's worth noting that
when m equals 1, the Serial test is equivalent to the Frequency test.

Test Description:

Create an augmented sequence ε′, by extending the original sequence. This extension involves add-
ing the first m-1 bits to the end of the sequence, and this process is repeated for different values of
n.

m = the length in bits of each block

n = the length in bits of the bit string

Calculate the occurrence frequency of all potential overlapping m-bit, (m-1)-bit, and (m-2)-bit
blocks. Let 𝑞௜೗...௜೘

 denote the frequency of the m-bit pattern il…im; let 𝑞௜೗...௜೘షభ
 denote the frequency

of the (m-1)-bit pattern il…im-1; let 𝑞௜೗...௜೘షమ
 denote the frequency of the (m-2)-bit pattern il…im-2.

17

Calculate:

ψ௠
ଶ =

2௠

𝑛
෍ ቀ𝑞௜೗…௜೘

−
𝑛

2௠
ቁ

ଶ

௜೗…௜೘

ψ௠ିଵ
ଶ =

2௠ିଵ

𝑛
෍ ቀ𝑞௜೗…௜೘షభ

−
𝑛

2௠ିଵ
ቁ

ଶ

௜೗…௜೘షభ

ψ௠ିଶ
ଶ =

2௠ିଶ

𝑛
෍ ቀ𝑞௜೗…௜೘షమ

−
𝑛

2௠ିଶ
ቁ

ଶ

௜೗…௜೘షమ

Calculate the test statistic:

∇ψ௠
ଶ = ψ௠

ଶ − ψ௠ିଵ
ଶ

∇ଶψ௠
ଶ = ψ௠

ଶ − 2ψ௠ିଵ
ଶ + ψ௠ିଶ

ଶ

∇ψ௠
ଶ and ∇ଶψ௠

ଶ = a measure of how well the observed frequencies of m-bit patterns match the expected frequencies
of the m-bit patterns

Calculate the Pvalue-s:

𝑃௩௔௟௨௘ = 𝑖𝑔𝑎𝑚𝑐(2௠ିଶ, ∇ψ௠
ଶ)

𝑃௩௔௟௨௘ଶ = 𝑖𝑔𝑎𝑚𝑐(2௠ିଷ, ∇ଶψ௠
ଶ)

Large ∇ψ௠
ଶ and ∇ଶψ௠

ଶ values indicates non-uniformity of the m-bit blocks.

3.2.11 Approximate Entropy Test

Much like the Serial test discussed previously, this test primarily examines the frequency of all
conceivable overlapping m-bit patterns throughout the sequence. The objective of the test is to
evaluate how the frequency of overlapping blocks with two consecutive or adjacent lengths (m and
m+1) compares to the expected frequencies for a random sequence.

Test Description:

Create an augmented sequence ε′, by extending the original sequence. This extension involves add-
ing the first m-1 bits to the end of the sequence.

m = the length of each block

n = the length of the entire bitsequence

Create a frequency count of the n overlapping blocks. Represent the count of the possible m-bit
((m-1)-bit) values as 𝐶௜

௠.

i = the m-bit value

18

Calculate for each value of i:

𝐶௜
௠ =

#𝑖

𝑛

Determine ϕ(m):

𝑗 = 𝑙𝑜𝑔ଶ𝑖

𝑞௜ = 𝐶௝
ଷ

ϕ(௠) = ෍ 𝑞௜𝑙𝑜𝑔(𝑞௜)

ଶ೘ିଵ

௜ୀ଴

Repeat that process sated above replacing m by m+1

Calculate the test statistics:

χ௢௕௦
ଶ = 2𝑛[𝑙𝑜𝑔2 − 𝐴𝑝𝐸𝑛(𝑚)]

ApEn(m)= ϕ(m)- ϕ(m-1)

χ௢௕௦
ଶ = a measure of how well the observed ApEn(m) matches the expected value

Calculate the Pvalue:

𝑃௩௔௟௨௘ = 𝑖𝑔𝑎𝑚𝑐 ቆ2௠ିଵ,
χ௢௕௦

ଶ

2
ቇ

If the value of ApEn(m) is small, it implies strong regularity. Large values would imply substantial fluctuation or
irregularity.

3.2.12 Cumulative Sums (Cusum) Test

This test focuses on the maximum deviation (from zero) in the random walk formed by the cumu-
lative sum of adjusted (-1, +1) digits in the sequence. Its purpose is to assess whether the cumulative
sum of partial sequences within the tested sequence deviates significantly from the expected be-
havior of such a sum in random sequences. This cumulative sum can be likened to a random walk.
In truly random sequences, the deviations of this random walk from zero should be minimal. How-
ever, in specific types of non-random sequences, these deviations can be substantial.

19

Test description:

Create the normalized sequence (consisting of -1, +1) named X, by converting the input 1 and 0
values of the input sequence (ε) to values of -1 and +1. this conversion is performed according to
the following formula:

X=X1, X2, …, Xn, where Xi = 2εi – 1

Calculate partial sums Si for increasingly larger subsequences, initiating each subsequence with X1
(if mode = 0) or Xn (if mode = 1):

Mode = 0 (forward) Mode = 1 (backward)
S1 = X1
S2 = X1 + X2
S3 = X1 + X2 + X3
.
.
.
Sn = X1 + X2 + X3 + … + Xn

S1 = Xn
S2 = Xn + Xn-1

S3 = Xn + Xn-1 + Xn-2

.

.

.
Sn = Xn + Xn-1 + Xn-2 + … + X1

Calculate the test statistic z = max1≤n|Sk|, where max1≤n|Sk| represents the largest absolute value
among the partial sums Sk.

Calculate Pvalue:

𝑃௩௔௟௨௘ = 1 − ෍ ቈ𝛷 ቆ
(4𝑘 + 1)𝑧

√𝑛
ቇ − 𝛷 ቆ

(4𝑘 − 1)𝑧

√𝑛
ቇ቉

ቀ
௡
௭

ିଵቁ

ସ

௞ ୀ
ቀ

ି௡
௭

ାଵቁ

ସ

+ ෍ ቈ𝛷 ቆ
(4𝑘 + 3)𝑧

√𝑛
ቇ − 𝛷 ቆ

(4𝑘 + 1)𝑧

√𝑛
ቇ቉ 4

ቀ
௡
௭

ିଵቁ

ସ

௞ ୀ
ቀ

ି௡
௭

ାଵቁ

ସ

If the P-value < 0.01, then the sequence is concluded to be non-random, in every other case it is considered random.

3.2.13 Random Excursions Test

This test specifically examines the occurrences of cycles with precisely K visits in a cumulative
sum random walk. The cumulative sum random walk is constructed by summing partial values
after converting the (0,1) sequence to the corresponding (-1, +1) sequence. In this context, a cycle
represents a sequence of random steps with a unit length, starting and ending at the origin. The
purpose of this test is to determine whether the number of visits to a particular state within a cycle

4 Φ is the Standard Normal Cumulative Probability Distribution Function

20

deviates from what one would expect for a random sequence. The test comprises eight individual
assessments, each corresponding to one of the states: -4, -3, -2, -1, and +1, +2, +3, +4.

Test description:

Create the normalized sequence (consisting of -1, +1) named X, by converting the input 1 and 0
values of the input sequence (ε) to values of -1 and +1. this conversion is performed according to
the following formula:

X=X1, X2, …, Xn, where Xi = 2εi – 1

Next, we must calculate the partial sums of successively larger subsequences, each starting with
X1. The set is the following: S = {Si}.

S1 = X1

S2 = X1 + X2

S3 = X1 + X2 + X3

.

.

.

Sn = X1 + X2 + X3 + … + Xn

Let J represent the total count of zero crossings in S', where a zero crossing means a transition from
a non-zero value to zero in S'. J also corresponds to the number of cycles in S', where a cycle in S'
is defined as a subsequence containing an initial zero, followed by non-zero values, and concluding
with another zero. The ending zero in one cycle can serve as the beginning zero in another cycle.
The quantity of cycles in S' is directly equated to the count of zero crossings. If the value of J is
less than 500, the test should be discontinued.

Calculate the occurrence frequency of each non-zero state value x, where -4 ≤ x ≤ -1 and 1 ≤ x ≤
4, within every cycle.

Calculate νk(x) for each of the eight states of x, representing the total number of cycles in which
state x occurs exactly k times across all cycles, where k ranges from 0 to 5 (for k = 5, store all
frequencies ≥ 5 in ν5(x)).

Now we compute for each of the eight state of the test statistic:

χ2(ops) = ෍
(𝑣௞(𝑥) − 𝐽𝜋௞(𝑥))ଶ

𝐽𝜋௞(𝑥)

ହ

௞ୀ଴

where πk(x) is the probability that the state x occurs k times in a random distribution

21

For each of the eight state of x, we calculate the Pvalue-s according to the following equation:

𝑃௩௔௟௨௘ = 𝑖𝑔𝑎𝑚𝑐 ቆ
5

2
,
χ2(obs)

2
ቇ

If the P-value < 0.01, then the sequence is concluded to be non-random, in every other case it is considered random.

3.2.14 Random Excursions Variant Test

The test aims to assess the frequency of encountering a particular state during various walks. Its
purpose is to detect any deviations from the expected visits that would occur in a random walk
scenario. The test comprises eighteen subtests, each corresponding to a specific state: -9, -8, … -1,
and +1, +2,…, +9.

Test description:

Create the normalized sequence (consisting of -1, +1) named X, by converting the input 1 and 0
values of the input sequence (ε) to values of -1 and +1. this conversion is performed according to
the following formula:

X=X1, X2, …, Xn, where Xi = 2εi – 1

Next we must calculate the partial sums of successively larger subsequences, each starting with X1.
The set is the following: S = {Si}.

S1 = X1

S2 = X1 + X2

S3 = X1 + X2 + X3

.

.

.

Sn = X1 + X2 + X3 + … + Xn

Now we generate the modified sequence S’, by adding zeros before and after the original set S. In
other words, S’ is constructed as: S’ = 0, S1, S2, … , Sn, 0.

For each of the eighteen non-zero states of X, ξ(x)5 must be computed.

For each ξ(x) we must compute the Pvalue (for all eighteen states) as:

𝑃௩௔௟௨௘ = 𝑒𝑟𝑓𝑐 ቆ
|ξ(x) − J|

ඥ2𝐽(4|𝑥| − 2)
ቇ

If the P-value < 0.01, then the sequence is concluded to be non-random, in every other case it is considered random.

5 The number of times state X occurred across the J cycle

22

3.3 Results of Tests

In the table below, we present a summary of our testing results for each data set6:

File

1
File

2
File

3
File

4
File

5
File

6
File

7
 File

8
File

9
Test 1 ✓ ✓ ✓ ✓ ✓ ✓
Test 2
Test 3
Test 4
Test 5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Test 6 ✓ ✓ ✓ ✓
Test 7
Test 8
Test 9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Test 10
Test 11
Test 12a ✓ ✓ ✓ ✓ ✓ ✓
Test 12b ✓ ✓ ✓ ✓ ✓ ✓

Test 13 / 8 7✓ 8✓ 6✓ 7✓ 6✓ 8✓ 8✓ 8✓ 6✓
Test 14 / 18 18✓ 18✓ 18✓ 18✓ 18✓ 18✓ 18✓ 18✓ 18✓

Failed tests: 9 7 12 9 10 12 11 7 9
Is it random? No Yes No No No No No Yes No

Note: A test is considered passed if a tick is present in the appropriate column. The numbers next to the ticks indicate
the subtests that have been passed. According to the standards proposed by NIST a data set is considered random if it
fails no more than seven tests.

These results underscore the innate randomness within Barkhausen Noise. However, our data pro-
cessing methods proved inadequate for generating true random numbers. Challenges emerged par-
ticularly in tests assessing subsequent equal bits and overlapping patterns within the dataset. These
issues might be attributed to our data processing approach; although we successfully identified the
generator signal through FFT, subtle generator signals could have been overlooked.

Barkhausen Noise is susceptible to external influences, such as Cosmic Background Radiation
(CBR) and radio signals, which might have interfered with the results. Further refinements in our
data processing techniques are necessary to harness the full potential of Barkhausen Noise for ran-
dom number generation.

6 The code used for testing and the tested data sets can be found at: https://github.com/BBotond03/Barkhausen_TDK

23

4 Conc lus ion

In this study, we examined the potential of utilizing Barkhausen Noise measurements for random
number generation, while also exploring the limitations inherent in our approach. Although our
experiments did not immediately yield results applicable to high-security applications, they illumi-
nated the substantial degree of randomness inherent in Barkhausen Noise. The findings of this
research carry significant implications for the field of random number generation, shedding light
on the challenges of harnessing natural phenomena for cryptographic purposes.

To enhance the effectiveness of Barkhausen Noise as a random number generator, future research
should concentrate on refining methodologies in data processing. Exploring innovative techniques,
such as simultaneous measurements and cross-referencing signals from multiple sources, holds
promise in mitigating the limitations observed in this study, particularly the presence of repeating
signals from external sources.

While challenges persist, the pursuit of refining these methods is essential in realizing the full ca-
pabilities of Barkhausen Noise as a reliable source of true randomness.

Acknowledgment s
The authors would like to express their sincere gratitude to Professor Dr. Mészáros, István for his
invaluable guidance and support at the inception of this research. His expertise and insightful sug-
gestions played a pivotal role in shaping the initial idea and conducting the preliminary measure-
ments. We are deeply thankful for his mentorship and contributions to this study.

5 Refe rences

1. Spasojević, D., Bukvić, S., Milošević, S. and Stanley, H.E., 1996. Barkhausen noise: Elementary
signals, power laws, and scaling relations. Physical Review E, 54(3), p.2531.

2. Santa-aho, S., Laitinen, A., Sorsa, A. and Vippola, M., 2019. Barkhausen noise probes and modelling:
A review. Journal of Nondestructive Evaluation, 38(4), p.94.

3. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks,
D., Heckert, A. and Dray, J., 2001. A statistical test suite for random and pseudorandom number
generators for cryptographic applications (Vol. 22). US Department of Commerce, Technology
Administration, National Institute of Standards and Technology.

4. Barr, A.S., 2010. Fast Fourier Transform.
5. Cooley, James W., and John W. Tukey, 1965, “An algorithm for the machine calculation of complex

Fourier series,” Math. Comput. 19: 297-301.
6. Press, W., Teukolsky, S., Vetterline, W.T., and Flannery, B.P., 2007, Numerical Recipes: The Art of

Scientific Computing, ch. 12-13. Cambridge Univ. Press, Cambridge, UK.
7. https://github.com/stevenang/randomness_testsuite/blob/master/BinaryMatrix.py?fbclid=IwAR2LbT

UbNBCaMFGmJZL9gVxiD4t8mBLN-tA1jQcDHFPrRYgOx9SC4yUrHWA
8. J. Makhoul, 1980, ‘A Fast Cosine Transform in One and Two Dimensions’, IEEE Transactions on

acoustics, speech and signal processing vol. 28(1), pp. 27-34, DOI:10.1109/TASSP.1980.1163351
9. A. J. S. Hamilton, 2000, “Uncorrelated modes of the non-linear power spectrum”, MNRAS, 312,

257. DOI:10.1046/j.1365-8711.2000.03071.x

24

10. https://docs.scipy.org/doc/scipy/tutorial/fft.html
11. Chen, Y., Gou, B., Yuan, B., Ding, X., Sun, J. and Salje, E.K., 2022. Multiple Avalanche Processes

in Acoustic Emission Spectroscopy: Multibranching of the Energy− Amplitude Scaling. physica
status solidi (b), 259(3), p.2100465.

12. https://www.comm.utoronto.ca/frank/notes/erfc.pdf

13. https://mathworld.wolfram.com/IncompleteGammaFunction.html

