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Abst rac t  

Barkhausen Noise emerges as a promising avenue for generating random numbers, offering inher-
ent unpredictability and sensitivity to external influences. In this study, we explore the feasibility 
of utilizing Barkhausen Noise as a source for random number generation. Through meticulous 
measurements and in-depth analysis, our research demonstrates the viability of Barkhausen Noise 
in producing random numbers. However, we also investigated the limitations, indicating that while 
Barkhausen Noise provides a viable method for generating random numbers, it falls short of meet-
ing the stringent requirements of high-security applications. This research sheds light on the po-
tentials and limitations of Barkhausen Noise in the realm of random number generation, paving the 
way for further investigations into its practical applications. 

Keywords: cryptography, true random numbers, Barkhausen Noise 
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1  In t roduct ion 

Random numbers play a crucial role in various fields, especially in cryptography, where they form 
the foundation of secure algorithms and communication protocols. In the realm of random number 
generation, two distinct categories are recognized: pseudo random numbers, generated by algo-
rithms which are inherently deterministic, and true random numbers, characterized by unpredicta-
ble, non-repeating sequences. While pseudo random numbers have many use cases, certain appli-
cations however, particularly in cryptographic algorithms, demand a higher level of unpredictabil-
ity that only true random numbers can provide. Hence true random numbers are vital for applica-
tions where the integrity and confidentiality of information are paramount, such as in secure com-
munications, digital signatures, gambling, scientific research, and encryption. 

Despite the advancements in random number generation techniques, efficiently and reliably gen-
erating true random numbers remains an ongoing challenge.  

In this study, we explore Barkhausen Noise measurements as a potential avenue for generating true 
random numbers. Barkhausen Noise, arising from the movement of magnetic domain walls in fer-
romagnetic materials, exhibits inherent randomness due to its complex underlying physical pro-
cesses. The question we seek to answer is whether these naturally occurring phenomena can be 
harnessed to create a reliable source of true random numbers.  

Through stringent analysis of Barkhausen Noise measurements, this study delves into the intrica-
cies of this phenomenon, assessing its potential as a robust source of true randomness. By scruti-
nizing the data obtained from these measurements and subjecting it to rigorous randomness tests, 
we look to assess the practicality and effectiveness of Barkhausen Noise as a true random number 
generator. Our findings could pave the way for novel applications in cryptography and other do-
mains that demand unparalleled levels of randomness and security. 

2  Methodo logy 

2.1 Barkhausen Measurement 
2.1.1 Introduction to Barkhausen Noise 

Barkhausen Noise stands out as a pivotal non-destructive magnetic measurement technique with 
widespread industrial applications, rendering it indispensable for quality control and precise pro-
cess validation. Its versatility is exemplified in various contexts, such as the in-depth analysis of 
grinding burn effects on diverse ground components and meticulous surface inspections conducted 
after a range of heat treatments. 

The genesis of Barkhausen Noise unfolds within ferromagnetic metals during the magnetization 
process, where the movement of domain walls within the material mirrors an intricate avalanche-
like phenomenon, culminating in the generation of Barkhausen noise. This unique acoustic signal 
is not only a testament to the material's magnetic state but also possesses exceptional sensitivity to 
external influences and inherent unpredictability. 
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In the realm of our study, these characteristics of Barkhausen Noise become particularly intriguing. 
The sensitivity to external factors and the inherent unpredictability of this source raises the possi-
bility of its suitability for random number generation, a fact that we explore in depth as part of our 
research.  

2.1.2 Barkhausen Noise Measurement Instrument (Barkhausenmeter) 

Traditional Barkhausen Noise measurement devices comprise two integral components: the mag-
netizing element and the probe, collectively unveiling the unique characteristics of materials under 
study. When placed in contact with the sample to be measured, they transmit voltage data to a 
computer.  

At the heart of the measurement device lies the magnetizing element, typically fashioned as an 
open-loop solenoid. This solenoid plays a pivotal role in magnetizing the sample under investiga-
tion, setting the stage for the Barkhausen Noise to be effectively measured. It's noteworthy that the 
solenoid generates a sine magnetization signal, a fundamental aspect to bear in mind during subse-
quent data processing endeavors. 

The magnetizing element consists of an open loop sole-
noid and provides magnetization for the tested sample al-
lowing for the Barkhausen Noise to be measured. This 
solenoid generates a sine magenetization signal which is 
important to remember when processing the data.  

Complementing the magnetizing element, the probe fea-
tures a pickup coil. As the magnetizing element excites 
the material, inducing magnetic responses within the 
sample, voltage is generated within the pickup coil. This 
induced voltage serves as a direct reflection of the mate-
rial's magnetic behavior. 

The voltage values acquired from the pickup coil are transmitted to a desktop computer for further 
analysis. Once received by the computer, these voltage measurements are processed and compiled 
into a comprehensive .txt file. This file encapsulates the essence of the material's magnetic re-
sponse, forming the basis for in-depth examinations and subsequent data processing. 

2.2 Data Processing 
2.2.1 Nature of the Data Set 

Upon completing the Barkhausen measurements, we obtained nine raw datasets (numbered from 1 
to 9), each collected from different metals of varying hardness, structured in intervals marked by 
'enters', and containing a generator signal inherent to the measurement method. Our data processing 
methodology was meticulously applied to refine these raw datasets into a usable format for analy-
sis. To achieve this, we rigorously removed the generator signal and conducted thorough segmen-
tation and filtering procedures tailored to the specific characteristics of each metal. This meticulous 
approach allowed us to separate genuine Barkhausen Noise signals from unwanted interference. 

1. Figure (Barkhausen Noise Measurement Device) 
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The resulting datasets were transformed into binary representations, where 'ones' and 'zeros' repre-
sented specific states of the magnetic domain walls' movements. Each of these binary datasets, 
derived from the nine distinct measurements conducted on metals of different hardness, served as 
the foundation for our subsequent analysis. This comprehensive approach ensured that the inherent 
randomness of Barkhausen Noise was accurately captured across all datasets, eliminating extrane-
ous signals and noise, and establishing a robust basis for our research. 

2.2.2 Fast Fourier Transform 

In our dataset, a distinct sine generator signal (as depicted in Figure 2) was present alongside the 
Barkhausen noise. To extract the genuine Barkhausen noise, we employed the Fast Fourier Trans-
form (FFT), a powerful technique widely used in signal processing. 

Fourier analysis allows expressing a function as a sum of periodic components, enabling the re-
covery of the original signal from these components. When both the function and its Fourier trans-
form are discretized, it becomes the Discrete Fourier Transform (DFT). The Fast Fourier Transform 
(FFT) is an efficient algorithm for computing the DFT. 

Using the FFT method provided by the Python library scipy.py, we processed our dataset. Specif-
ically, we utilized the Discrete Cosine Transform (DCT) and its inverse (IDCT) to achieve this 
goal. 

In signal processing, there are various types of DCT, each with its own definition and application. 
We focused on Type I, Type II, Type III, and Type IV DCT, with Scipy implementing the first four 
types. These transforms allowed us to mathematically manipulate the data, isolating the generator 
signal for removal. 

The definition of unnormalized Type I DCT is the following: 

𝑦[𝑘] = 𝑥଴ + (−1)௞𝑥ேିଵ + 2 ෍ 𝑥[𝑛] cos ൬
𝜋𝑛𝑘

𝑁 − 1
൰ ,      0 ≤ 𝑘 < 𝑁.

ேିଶ

௡ୀଵ

 

2. Figure (plot of data set 1, showing the nature of the dataset) 
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The definition of unnormalized Type II DCT is the following: 

𝑦[𝑘] = 2 ෍ 𝑥[𝑛] cos ൬
𝜋(2𝑛 + 1)𝑘

2𝑁
൰ ,      0 ≤ 𝑘 < 𝑁.

ேିଵ

௡ୀ଴

 

In case of the normalized Type II DCT, the DCT coefficients y[k] are multiplied by a scaling fac-
tor f: 

𝑓 =

⎩
⎪
⎨

⎪
⎧

ඨ
1

4𝑁
,   𝑖𝑓 𝑘 = 0

ඨ
1

2𝑁
,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The definition of unnormalized Type III DCT is the following: 

𝑦[𝑘] = 𝑥଴ + 2 ෍ 𝑥[𝑛] cos ൬
𝜋𝑛(2𝑛 + 1)

2𝑁
൰ ,      0 ≤ 𝑘 < 𝑁.

ேିଵ

௡ୀ଴

 

The definition of normalized Type III DCT is the following: 

𝑦[𝑘] =
𝑥଴

√𝑁
+

2

√𝑁
෍ 𝑥[𝑛] cos ൬

𝜋𝑛(2𝑛 + 1)

2𝑁
൰ ,      0 ≤ 𝑘 < 𝑁.

ேିଵ

௡ୀ଴

 

The definition of unnormalized Type IV DCT is the following: 

[𝑘] = 2 ෍ 𝑥[𝑛] cos ൬
𝜋(2𝑛 + 1)(2𝑘 + 1)

4𝑁
൰ ,      0 ≤ 𝑘 < 𝑁.

ேିଵ

௡ୀ଴

 

The definition of normalized Type IV DCT is the following: 

[𝑘] = ඨ
2

𝑁
෍ 𝑥[𝑛] cos ቆ

𝜋(2𝑛 + 1)(2𝑘 + 1)

4𝑁
ቇ ,      0 ≤ 𝑘 < 𝑁.

ேିଵ

௡ୀ଴
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After applying FFT, we obtained the generator function. By subtracting this function from the 
original dataset, we successfully recovered our raw data, representing the pure Barkhausen noise 
(as illustrated in Figure 3). This refined dataset, free from unwanted signals, formed the basis of 
our subsequent analysis. 

2.2.3 Creating a Binary Dataset 

To convert the processed data into a binary format, a simple and effective method was employed. 
First, we calculated the median of the dataset, ensuring an equal distribution of ones and zeros. For 
each data point, if its value was greater than the median, we assigned it a value of zero; conversely, 
if the value was less than or equal to the median, it was assigned a value of one. This binary trans-
formation created a balanced representation of the data, where 'ones' and 'zeros' accurately repre-
sented the specific states of the magnetic domain walls' movements. By employing this method, 
we achieved a well-defined binary dataset, ready for further analysis. 

3  Randomness  Te st i ng  

3.1 Introduction to Randomness Testing 
Understanding true randomness is a nuanced challenge; there is no definitive source of randomness, 
and even seemingly random processes can reveal patterns under scrutiny. Consider a classic exam-
ple like rolling a dice in a game of Yahtzee – seemingly random, yet influenced by various factors 
like table friction and rolling technique, potentially leading to recognizable patterns over multiple 
repetitions. While this might be inconsequential in the context of the game, in high-security appli-
cations where a substantial volume of numbers is required, these underlying patterns can pose sig-
nificant problems. 

In our experiments, our aim was to generate a random bit sequence comprising ones and zeros. For 
a bit sequence to be truly random, each flip must have a probability of ½ of being one or zero. 
Independence is crucial, ensuring that previous attempts will not influence future ones. Addition-
ally, unpredictability is a necessity, in case the seed is unknown, no knowledge of previous out-
comes should not allow for someone to determine the future outcomes. 

3. Figure (plot of noise on first dataset) 
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To evaluate the randomness of our generated sequences, we adhered to the guidelines outlined by 
the National Institute of Standards and Technology (NIST). While these tests do not substitute for 
rigorous cryptoanalysis, they serve as essential tools in assessing the viability of Barkhausen Noise 
random number generation technology. 

3.2 Randomness Testing Methods 
3.2.1 Frequency (Monobit) Test 

The test's primary focus lies in examining the ratio of zeros to ones within the entire sequence. The 
objective of this test is to ascertain whether the number of ones and zeros in a sequence closely 
approximates what one would expect in a truly random sequence. It evaluates how near the fraction 
of ones is to 1/2, meaning that the number of ones and zeros in the sequence should be roughly 
equal. All subsequent tests depend on the passing of this test. Therefore, if a sequence fails this 
test, there is no need to proceed with further testing, and the sequence should be regarded as non-
random. 

Test Description: 

Conversion to ±1:  The zeros and ones of the input sequence (ε) are converted to values of –1 and 
+1 and are added together to produce Sn = X1 + X2+…+Xn , where Xi = 2εi – 1 = ±1. 

Compute the test statistic: 

S௢௕௦ =
|𝑆𝑛|

√𝑛
 

Sobs = the absolute value of the sum of the Xi in the sequence divided by the square root of the length of the sequence 
n = the length of the bit string 

𝑃௩௔௟௨௘ = 𝑒𝑟𝑓𝑐 ቀ
ௌ೚್ೞ

√ଶ
ቁ , where erfc1 is the complementary error function. 

If the Pvalue were small (< 0.01), then this would be caused by |Sn| or |Sobs| being large. Large positive 
values of Sn suggest an excess of ones, while large negative values of Sn indicate an excess of 
zeros. 

3.2.2 Frequency Test within a Block 

The primary objective of this test is to assess the proportion of ones within M-bit blocks. Within 
each block the test runs the Frequency (Monobit) Test to determine whether the frequency of ones 
in an M-bit block is approximately equal to M/2, which aligns with the expectations of randomness.  

Test Description: 

Divide the sequence into 𝑁 =  ቔ
௡

ெ
ቕ equal, non-overlapping blocks, discarding any unused bits. 

Determine the proportion qi of ones in each M-bit blocks:  

 
1 The complementary error function, erfc(x), is defined, for x ≥ 0, as. (2/Sqrt[Pi]) erfc(t) =Integrate[E^(-t)^2, {t, z, 
Infinity}] 
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𝑞௜  =  
∑ 𝜀(௜ିଵ)ெା௝

ெ
௝ୀଵ

𝑀
 

Calculate χ௢௕௦
ଶ :  

χ௢௕௦
ଶ  =  4𝑀 ෍(𝑞௜ − 0.5)ଶ

ெ

௜ୀଵ

 

𝜒௢௕௦
ଶ  = a measure of how closely the actual proportion of ones within a specific M-bit block aligns with the expected 

proportion (1/2) 

Determine the Pvalue:  

𝑃௩௔௟௨௘ =  𝑖𝑔𝑎𝑚𝑐 ቀ
ே

ଶ
,

஧೚್ೞ
మ

ଶ
ቁ, where igamc2 is the incomplete gamma function 

A small Pvalue means a large deviation from the equal proportion of zeros and ones in at least one 
of the blocks.  

3.2.3 Runs Test 

The focus of this test is the total number of uninterrupted sequences of identical bits (further re-
ferred as runs) in the whole sequence. A run of length l is characterized by a sequence of l consec-
utive bits with the same value, and it is delineated by bits with the opposite value both before and 
after the run. The objective of the test is to determine whether the number of runs of ones and zeros 
is as expected for a random sequence. Specifically, this test aims to assess whether the alternation 
between such zeros and ones is too fast or too slow. 

Test Description: 

Determine the proportion q of ones in the input sequence:  

𝑞 =  
∑ 𝜀௝

 
௝

𝑛
 

This test fails initially if the sequence did not pass the first test (Frequency Test) 

The test statistic:  

𝑉௡(௢௕௦) = ෍ 𝑟(𝑘) + 1

௡ିଵ

௞ୀଵ

 

r(k) = 0, if εk = εk+1 and r(k) = 1 otherwise 

 
2 The upper incomplete gamma function, igamc(x) is defined as: ∫x^∞ t^(s - 1) e^(-t) dt 
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Calculate Pvalue:  

𝑃௩௔௟௨௘ = 𝑒𝑟𝑓𝑐 ቆ
𝑉௡(௢௕௦) − 2𝑛𝑞(1 − 𝑞)

2√2𝑛𝑞(1 − 𝑞)
ቇ 

A large Vn(obs) value arises when the string's oscillation pattern suggests an excessive speed of os-
cillation, whereas a small value indicates an oscillation that is excessively slow. Both of these 
causes Pvalue being below the pass barrier (<0.01). 

3.2.4 Test for the Longest Run of Ones in a Block 

The focus of the test is the longest run of ones within M-bit blocks. This test compares the length 
of the longest run of ones within the tested sequence to the length of the longest run of ones that 
would be expected in a random sequence. Hence in case of an irregularity in the expected length 
of the longest run of ones would cause an irregularity to the longest run of zeros, there is no need 
to test for both. 

Test Description: 

Divide the sequence into M-bit blocks. 

Produce a table that categorizes the frequencies νi for the longest runs of 
consecutive ones within each block into distinct categories. In each cell 
of the table, display the count of runs of ones of a specific length. 

This test supports only the given M sizes, thus the νi cells will be the 
following: 

Calculate χ௢௕௦
ଶ : 

χ௢௕௦
ଶ = ෍

(ν௜ − 𝑁𝑞௜)
ଶ 

𝑁𝑞௜

௄

௜ୀ଴

 

𝜒௢௕௦
ଶ  = a measure of how well the observed longest run length within M-bit blocks matches the expected longest length 

within M-bit blocks 

qi = as calculated in 4.2.2 

the value of K and N are determined by the following table: 

Determine the Pvalue: 

𝑃௩௔௟௨௘ =  𝑖𝑔𝑎𝑚𝑐 ቆ
𝐾

2
,
χ௢௕௦

ଶ

2
ቇ 
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3.2.5 Binary Matrix Rank Test 

This test focuses on the rank of disjoint sub-matrices of the entire sequence. The purpose of this 
test is to examine the presence of linear dependence within fixed-length substrings of the original 
sequence. 

Test Description: 

Divide the sequence into MxQ-bit disjoint blocks sequentially. There will exist 𝑁 = ቂ
௡

ெொ
ቃ such 

blocks. Make M by Q matrices of the MxQ bit segments. Each row of the matrix is filled with 
successive Q-bit blocks of the original sequence. 

M = the number of rows in each matrix (in this test: M=32) 

Q = the number of columns in each matrix (in this test: Q=32) 

Calculate the binary rank (Ri) of each matrix, where i = 1,…,N.  

Determine χ௢௕௦
ଶ : 

χ௢௕௦
ଶ =  

(𝐹ெ − 0.2888𝑁)ଶ

0.2888𝑁
+

(𝐹ெିଵ − 0.5776𝑁)ଶ

0.5776𝑁
+

(𝑁 − 𝐹ெ − 𝐹ெିଵ − 0.1336𝑁)ଶ

0.1336𝑁
 

𝜒௢௕௦
ଶ  = a measure of how well the observed number of ranks of various orders match the expected number of ranks 

expected for randomness 

FM = the number of matrices with full rank à Ri = M 

FM-1 = the number of matrices with full rank – 1 à Ri = M-1 

Determine the Pvalue:  

𝑃௩௔௟௨௘ =  𝑒ି஧೚್ೞ
మ /ଶ 

A large value of 𝜒௢௕௦
ଶ  indicates a deviation of the rank distribution from what would be expected in a random sequence. 

3.2.6 Discrete Fourier Transform (Spectral) Test 

This test focuses on the peak heights in the Discrete Fourier Transform of the sequence. It aims to 
detect periodic features (repetitive patterns 
that are near each other for instance) in the 
tested sequence. These would indicate a de-
viation from the assumption of randomness. 
The intention is to determine if the quantity 
of peaks surpassing the 95% threshold sig-
nificantly differs from the expected 5%. 

Test Description: 

Conversion to ±1:  The zeros and ones of the input sequence (ε) are converted to values of –1 and 
+1 and are added together to produce X= x1 + x2+…+xn , where xi = 2εi – 1 = ±1. 
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Apply a Discrete Fourier transform (DFT) on X to produce: S = DFT(X). It produces a sequence 
of complex variables which represents periodic components of bits of the sequence at different 
frequencies. 

Determine M: 

M = modulus(S’) = |S*| 

S’= the substring including the first n/2 elements of S à peak heights are being produced by the modulus function 

Calculate T: 

𝑇 = ඨ൬𝑙𝑜𝑔
1

0.05
൰ 𝑛 

T = the 95% peak height threshold value 

Calculate N0: 

N0 = .95/2.  

N0 = the expected theoretical (95%) number of peaks that are less than T 

Calculate N1; the count of observed peaks in M that are less than T 

Determine d: 

𝑑 =
(𝑁ଵ − 𝑁଴)

ඥ𝑛(.95)(.05)/4
 

d = the normalized difference between the observed and the expected number of frequency components exceeding the 
95% threshold 

Calculate Pvalue:  

𝑃௩௔௟௨௘ = 𝑒𝑟𝑓𝑐 ൬
|𝑑|

2
൰ 

A small d value indicates that there were not enough peaks(<95%) below T, and too many peaks 
above T (more than 5%), thus a sequence should fail. 

3.2.7 Non-overlapping Template Matching Test 

This test searches through the entire sequence, looking for the number of occurrences of predefined 
target strings. It aims to detect if there are any aperiodic patterns occurring too many times. An m-
bit window is used to search for a specific m-bit pattern both in this, and the next test (Overlapping 
Template Matching test). The window slides one bit position if the pattern is not found. Upon 
discovering the pattern, the search process continues by resetting the window to the bit immediately 
following the identified pattern. 
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Test Description: 

Separate the sequence into N independent blocks, each of length M. 

N is set to 8 in our test 

The number of times that B (the template) occurs within the block j:= Wj, where j=1,…,N 

B = the m-bit template to be matched, which is a predefined sequence of ones and zeros  

To look for matches, an m-bit window is positioned on the sequence, and the bits within this win-
dow are compared to the template. If no match is detected, the window moves forward by one bit. 
If there is a match, the window slides over m bits. 

Calculate the theoretical mean µ and variance σ2 under the assumption of randomness: 

µ =
(ெି௠ାଵ)

ଶ೘      σଶ = 𝑀 ቀ
ଵ

ଶ೘ −
ଶ௠ିଵ

ଶమ೘ ቁ 

m = the length in bits of each template 

M = the length in bits of the substring of ε to be tested 

Determine χ௢௕௦
ଶ  

χ௢௕௦
ଶ = ෍

൫W௝ − µ൯
ଶ

 

σଶ

ே

௝ୀଵ

 

𝜒௢௕௦
ଶ   = An indicator of the degree to which the actual count of template "hits" corresponds to the anticipated count of 

template "hits" (under the assumption of randomness) 

Calculate the Pvalue:  

𝑃௩௔௟௨௘ =  𝑖𝑔𝑎𝑚𝑐 ቆ
𝑁

2
,
χ௢௕௦

ଶ

2
ቇ 

If the P-value is extremely low(<0.01), it indicates that the sequence exhibits irregular instances of potential template 
patterns. 
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3.2.8 Overlapping Template Matching Test 

This test searches through the entire sequence, looking for the number of occurrences of predefined 
target strings. It aims to detect if there are any aperiodic patterns occurring too many times. An m-
bit window is used to search for a specific m-bit pattern both in this, and the previous test (Non-
overlapping Template Matching test). The window slides one bit position if the pattern is not found. 
The difference between this test and the previous test (Non-overlapping Template Matching test) 
is that when the pattern is found, the window slides only one bit before resuming the search. 

Test Description: 

Separate the sequence into N independent blocks, each of length M. 

N is set to 968 in our test 

Determine the number of occurrences of B within each of the N blocks. The search for matches 
involves the establishment of an m-bit window on the sequence, where the bits contained within 
this window are compared to B, and a counter is incremented upon finding a match. After each 
examination the window slides over one bit. Maintain a record of the occurrences of B in each 
block by updating an array qi (where i ranges from 0 to 5). Specifically, increment q0 when there 
are no B occurrences in a substring, q1 when there is one occurrence of B, and q5 when there are 
five or more occurrences of B. 

B = the m-bit template to be matched  

Calculate values for λ and η that will be used to determine the theoretical probabilities πi corre-
sponding to the classes of v0: 

λ =
(ெି௠ାଵ)

ଶ೘    η =  λ/2 

 

m = the length in bits of the template, here it is the length of the run of ones 

M = the length in bits of a substring ε to be tested, in this test it has been set to 1032 

Determine χ௢௕௦
ଶ : 

χ௢௕௦
ଶ = ෍

(q௜ − 𝑁𝑞௜)ଶ 

𝑁𝑞௜

ହ

௜ୀ଴

 

χ୭ୠୱ
ଶ  = An indicator of the degree to which the actual count of template "hits" corresponds to the anticipated count of 

template "hits" (under the assumption of randomness). 

 

 



15 
 

Calculate the Pvalue:  

𝑃௩௔௟௨௘ =  𝑖𝑔𝑎𝑚𝑐 ቆ
5

2
,
χ௢௕௦

ଶ

2
ቇ 

For the 2-bit template (B = 11), if the entire sequence had too many 2-bit runs of ones, then: ν5 would have been too 
large, the test statistic would be too large, the P-value would have been small (< 0.01) and a conclusion of non-
randomness would have resulted. 

3.2.9 Linear Complexity Test 

The test primarily assesses the length of a linear feedback shift register (LFSR) to determine 
whether or not the sequence exhibits the requisite complexity to be classified random. Longer 
LFSRs characterize random sequences, while a too short LFSR implies non-randomness. 

Test Description: 

Separate the n-bit sequence into N distinct blocks, each consisting of M bits, such that n = MN. 

With the help of the Berlekamp-Massey algorithm3, calculate the linear complexity Li of each of 
the N blocks (i = 1, 2,…,N). Li represents the minimum length of a linear feedback shift register 
sequence required to generate all the bits within block i. In any sequence of Li bits, there exists a 
particular combination of those bits such that, when summed modulo 2, it generates the next bit in 
the sequence, denoted as bit Li + 1.  

Under the assumption of randomness, calculate the theoretical mean µ: 

µ =
𝑀

2
+

(9 + (−1)ெାଵ)

36
−

ቀ
𝑀
3

+
2
9ቁ

2ெ
 

M = the length in bits of a block 

Determine the value of Ti for each substring: 

𝑇௜ = (−1)ெ • (𝐿௜ − µ) +
2

9
  

Record the Ti values in q0,…,q6 as follows: 

 If:  

 

 

 

 

 
3 Defined in The Handbook of Applied Cryptography; A. Menezes, P. Van Oorschot and S. Vanstone; CRC Press, 
1997. 
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Determine χ௢௕௦
ଶ : 

χ௢௕௦
ଶ = ෍

(q௜ − 𝑁π௜)ଶ 

𝑁π௜

௄

௜ୀ଴

 

π0 = 0.010417, π1 = 0.03125, π2 = 0.125, π3 = 0.5, π4 = 0.25, π5 = 0.0625, π6 = 0.020833 are predefined probabilities 

K = the number of degrees of freedom, which is set to 6 in this test 

χ௢௕௦
ଶ  = a measure of the degree to which the observed number of fixed-length LFSR occurrences aligns with the ex-

pected number of occurrences based on the assumption of randomness. 

Calculate the Pvalue:  

𝑃௩௔௟௨௘ =  𝑖𝑔𝑎𝑚𝑐 ቆ
𝐾

2
,
χ௢௕௦

ଶ

2
ቇ 

If the P-value were less than 0.01, it would imply that the observed frequency counts of Ti stored in the qi bins deviate 
from the expected values. The expectation is that the distribution of Ti frequencies within the qi bins should be in 
proportion to the computed πi. 

3.2.10  Serial Test 

The central objective of this test is to analyze the frequency of all possible overlapping m-bit pat-
terns throughout the entire sequence. The aim is to assess whether the observed number of occur-
rences of these 2m m-bit overlapping patterns closely matches what would be expected in a random 
sequence. In random sequences, there is a uniform distribution, meaning that every m-bit pattern 
has an equal likelihood of appearing compared to every other m-bit pattern. It's worth noting that 
when m equals 1, the Serial test is equivalent to the Frequency test. 

Test Description: 

Create an augmented sequence ε′, by extending the original sequence. This extension involves add-
ing the first m-1 bits to the end of the sequence, and this process is repeated for different values of 
n. 

m = the length in bits of each block 

n = the length in bits of the bit string 

Calculate the occurrence frequency of all potential overlapping m-bit, (m-1)-bit, and (m-2)-bit 
blocks. Let 𝑞௜೗...௜೘

 denote the frequency of the m-bit pattern il…im; let 𝑞௜೗...௜೘షభ
 denote the frequency 

of the (m-1)-bit pattern il…im-1; let 𝑞௜೗...௜೘షమ
 denote the frequency of the (m-2)-bit pattern il…im-2. 
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Calculate: 

ψ௠
ଶ =

2௠

𝑛
෍ ቀ𝑞௜೗…௜೘

−
𝑛

2௠
ቁ

ଶ

௜೗…௜೘

 

ψ௠ିଵ
ଶ =

2௠ିଵ

𝑛
෍ ቀ𝑞௜೗…௜೘షభ

−
𝑛

2௠ିଵ
ቁ

ଶ

௜೗…௜೘షభ

 

ψ௠ିଶ
ଶ =

2௠ିଶ

𝑛
෍ ቀ𝑞௜೗…௜೘షమ

−
𝑛

2௠ିଶ
ቁ

ଶ

௜೗…௜೘షమ

 

Calculate the test statistic: 

∇ψ௠
ଶ = ψ௠

ଶ − ψ௠ିଵ
ଶ  

∇ଶψ௠
ଶ = ψ௠

ଶ − 2ψ௠ିଵ
ଶ + ψ௠ିଶ

ଶ  

∇ψ௠
ଶ  and ∇ଶψ௠

ଶ  = a measure of how well the observed frequencies of m-bit patterns match the expected frequencies 
of the m-bit patterns 

 

Calculate the Pvalue-s:  

𝑃௩௔௟௨௘ =  𝑖𝑔𝑎𝑚𝑐(2௠ିଶ, ∇ψ௠
ଶ  ) 

𝑃௩௔௟௨௘ଶ =  𝑖𝑔𝑎𝑚𝑐(2௠ିଷ, ∇ଶψ௠
ଶ  ) 

Large ∇ψ௠
ଶ  and ∇ଶψ௠

ଶ  values indicates non-uniformity of the m-bit blocks. 

3.2.11  Approximate Entropy Test 

Much like the Serial test discussed previously, this test primarily examines the frequency of all 
conceivable overlapping m-bit patterns throughout the sequence. The objective of the test is to 
evaluate how the frequency of overlapping blocks with two consecutive or adjacent lengths (m and 
m+1) compares to the expected frequencies for a random sequence. 

Test Description: 

Create an augmented sequence ε′, by extending the original sequence. This extension involves add-
ing the first m-1 bits to the end of the sequence. 

m = the length of each block 

n = the length of the entire bitsequence 

Create a frequency count of the n overlapping blocks. Represent the count of the possible m-bit 
((m-1)-bit) values as 𝐶௜

௠. 

i = the m-bit value 
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Calculate for each value of i:  

𝐶௜
௠ =

#𝑖

𝑛
 

 

 

 

Determine ϕ(m): 

𝑗 = 𝑙𝑜𝑔ଶ𝑖 

𝑞௜ = 𝐶௝
ଷ 

ϕ(௠) = ෍ 𝑞௜𝑙𝑜𝑔(𝑞௜)

ଶ೘ିଵ

௜ୀ଴

 

Repeat that process sated above replacing m by m+1 

Calculate the test statistics: 

χ௢௕௦
ଶ = 2𝑛[𝑙𝑜𝑔2 − 𝐴𝑝𝐸𝑛(𝑚)] 

ApEn(m)= ϕ(m)- ϕ(m-1) 

χ௢௕௦
ଶ  = a measure of how well the observed ApEn(m) matches the expected value 

Calculate the Pvalue:  

𝑃௩௔௟௨௘ =  𝑖𝑔𝑎𝑚𝑐 ቆ2௠ିଵ,
χ௢௕௦

ଶ

2
ቇ 

If the value of ApEn(m) is small, it implies strong regularity. Large values would imply substantial fluctuation or 
irregularity.  

3.2.12  Cumulative Sums (Cusum) Test 

This test focuses on the maximum deviation (from zero) in the random walk formed by the cumu-
lative sum of adjusted (-1, +1) digits in the sequence. Its purpose is to assess whether the cumulative 
sum of partial sequences within the tested sequence deviates significantly from the expected be-
havior of such a sum in random sequences. This cumulative sum can be likened to a random walk. 
In truly random sequences, the deviations of this random walk from zero should be minimal. How-
ever, in specific types of non-random sequences, these deviations can be substantial. 



19 
 

Test description: 

Create the normalized sequence (consisting of -1, +1) named X, by converting the input 1 and 0 
values of the input sequence (ε) to values of -1 and +1. this conversion is performed according to 
the following formula:  

X=X1, X2, …, Xn, where Xi = 2εi – 1 

 
Calculate partial sums Si for increasingly larger subsequences, initiating each subsequence with X1 
(if mode = 0) or Xn (if mode = 1): 

Mode = 0 (forward) Mode = 1 (backward) 
S1 = X1 
S2 = X1 + X2 
S3 = X1 + X2 + X3 
. 
. 
. 
Sn = X1 + X2 + X3  + … + Xn 

S1 = Xn 
S2 = Xn + Xn-1 

S3 = Xn + Xn-1 + Xn-2 

. 

. 

. 
Sn = Xn + Xn-1 + Xn-2 + … + X1 

Calculate the test statistic z = max1≤n|Sk|, where max1≤n|Sk| represents the largest absolute value 
among the partial sums Sk. 

Calculate Pvalue: 

𝑃௩௔௟௨௘ = 1 − ෍ ቈ𝛷 ቆ
(4𝑘 + 1)𝑧

√𝑛
ቇ − 𝛷 ቆ

(4𝑘 − 1)𝑧

√𝑛
ቇ቉

ቀ
௡
௭

ିଵቁ

ସ

௞ ୀ 
ቀ

ି௡
௭

ାଵቁ

ସ

+ ෍ ቈ𝛷 ቆ
(4𝑘 + 3)𝑧

√𝑛
ቇ − 𝛷 ቆ

(4𝑘 + 1)𝑧

√𝑛
ቇ቉ 4

ቀ
௡
௭

ିଵቁ

ସ

௞ ୀ 
ቀ

ି௡
௭

ାଵቁ

ସ

 

If the P-value < 0.01, then the sequence is concluded to be non-random, in every other case it is considered random.  

3.2.13  Random Excursions Test 

This test specifically examines the occurrences of cycles with precisely K visits in a cumulative 
sum random walk. The cumulative sum random walk is constructed by summing partial values 
after converting the (0,1) sequence to the corresponding (-1, +1) sequence. In this context, a cycle 
represents a sequence of random steps with a unit length, starting and ending at the origin. The 
purpose of this test is to determine whether the number of visits to a particular state within a cycle 

 
4 Φ is the Standard Normal Cumulative Probability Distribution Function 
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deviates from what one would expect for a random sequence. The test comprises eight individual 
assessments, each corresponding to one of the states: -4, -3, -2, -1, and +1, +2, +3, +4. 

Test description: 

Create the normalized sequence (consisting of -1, +1) named X, by converting the input 1 and 0 
values of the input sequence (ε) to values of -1 and +1. this conversion is performed according to 
the following formula:  

X=X1, X2, …, Xn, where Xi = 2εi – 1 

Next, we must calculate the partial sums of successively larger subsequences, each starting with 
X1. The set is the following: S = {Si}. 

S1 = X1 

S2 = X1 + X2 

S3 = X1 + X2 + X3 

. 

. 

. 

Sn = X1 + X2 + X3  + … + Xn 

Let J represent the total count of zero crossings in S', where a zero crossing means a transition from 
a non-zero value to zero in S'. J also corresponds to the number of cycles in S', where a cycle in S' 
is defined as a subsequence containing an initial zero, followed by non-zero values, and concluding 
with another zero. The ending zero in one cycle can serve as the beginning zero in another cycle. 
The quantity of cycles in S' is directly equated to the count of zero crossings. If the value of J is 
less than 500, the test should be discontinued. 

Calculate the occurrence frequency of each non-zero state value x, where -4 ≤ x ≤ -1 and 1 ≤ x ≤ 
4, within every cycle. 

Calculate νk(x) for each of the eight states of x, representing the total number of cycles in which 
state x occurs exactly k times across all cycles, where k ranges from 0 to 5 (for k = 5, store all 
frequencies ≥ 5 in ν5(x)). 

Now we compute for each of the eight state of the test statistic: 

χ2(ops) =  ෍
(𝑣௞(𝑥) − 𝐽𝜋௞(𝑥))ଶ

𝐽𝜋௞(𝑥)

ହ

௞ୀ଴

 

where πk(x) is the probability that the state x occurs k times in a random distribution 
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For each of the eight state of x, we calculate the Pvalue-s according to the following equation: 

𝑃௩௔௟௨௘ = 𝑖𝑔𝑎𝑚𝑐 ቆ
5

2
,
χ2(obs)

2
ቇ 

If the P-value < 0.01, then the sequence is concluded to be non-random, in every other case it is considered random.  

3.2.14  Random Excursions Variant Test 

The test aims to assess the frequency of encountering a particular state during various walks. Its 
purpose is to detect any deviations from the expected visits that would occur in a random walk 
scenario. The test comprises eighteen subtests, each corresponding to a specific state: -9, -8, … -1, 
and +1, +2,…, +9. 

Test description: 

Create the normalized sequence (consisting of -1, +1) named X, by converting the input 1 and 0 
values of the input sequence (ε) to values of -1 and +1. this conversion is performed according to 
the following formula:  

X=X1, X2, …, Xn, where Xi = 2εi – 1 

Next we must calculate the partial sums of successively larger subsequences, each starting with X1. 
The set is the following: S = {Si}. 

S1 = X1 

S2 = X1 + X2 

S3 = X1 + X2 + X3 

. 

. 

. 

Sn = X1 + X2 + X3  + … + Xn 

Now we generate the modified sequence S’, by adding zeros before and after the original set S. In 
other words, S’ is constructed as: S’ = 0, S1, S2, … , Sn, 0. 

For each of the eighteen non-zero states of X, ξ(x)5 must be computed. 

For each ξ(x) we must compute the Pvalue (for all eighteen states) as: 

𝑃௩௔௟௨௘ = 𝑒𝑟𝑓𝑐 ቆ
|ξ(x) − J|

ඥ2𝐽(4|𝑥| − 2)
ቇ 

If the P-value < 0.01, then the sequence is concluded to be non-random, in every other case it is considered random.  

 
5 The number of times state X occurred across the J cycle 
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3.3 Results of Tests 

In the table below, we present a summary of our testing results for each data set6: 

  
File 

1 
File 

2 
File 

3 
File 

4 
File 

5 
File 

6 
File 

7 
 File 

8 
File 

9 
Test 1 ✓ ✓   ✓ ✓     ✓ ✓ 
Test 2                   
Test 3                   
Test 4                   
Test 5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Test 6   ✓ ✓         ✓ ✓ 
Test 7                   
Test 8                   
Test 9 ✓ ✓ ✓ ✓ ✓   ✓ ✓ ✓ 

Test 10                   
Test 11                   
Test 12a ✓ ✓   ✓ ✓     ✓ ✓ 
Test 12b ✓ ✓   ✓ ✓     ✓ ✓ 

Test 13 / 8 7✓ 8✓ 6✓ 7✓ 6✓ 8✓ 8✓ 8✓ 6✓ 
Test 14 / 18 18✓ 18✓ 18✓ 18✓ 18✓ 18✓ 18✓ 18✓ 18✓ 

Failed tests: 9 7 12 9 10 12 11 7 9 
Is it random? No Yes No No No No No Yes No 

Note: A test is considered passed if a tick is present in the appropriate column. The numbers next to the ticks indicate 
the subtests that have been passed. According to the standards proposed by NIST a data set is considered random if it 
fails no more than seven tests. 

These results underscore the innate randomness within Barkhausen Noise. However, our data pro-
cessing methods proved inadequate for generating true random numbers. Challenges emerged par-
ticularly in tests assessing subsequent equal bits and overlapping patterns within the dataset. These 
issues might be attributed to our data processing approach; although we successfully identified the 
generator signal through FFT, subtle generator signals could have been overlooked. 

Barkhausen Noise is susceptible to external influences, such as Cosmic Background Radiation 
(CBR) and radio signals, which might have interfered with the results. Further refinements in our 
data processing techniques are necessary to harness the full potential of Barkhausen Noise for ran-
dom number generation. 

 
6 The code used for testing and the tested data sets can be found at: https://github.com/BBotond03/Barkhausen_TDK 
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4  Conc lus ion  

In this study, we examined the potential of utilizing Barkhausen Noise measurements for random 
number generation, while also exploring the limitations inherent in our approach. Although our 
experiments did not immediately yield results applicable to high-security applications, they illumi-
nated the substantial degree of randomness inherent in Barkhausen Noise. The findings of this 
research carry significant implications for the field of random number generation, shedding light 
on the challenges of harnessing natural phenomena for cryptographic purposes. 

To enhance the effectiveness of Barkhausen Noise as a random number generator, future research 
should concentrate on refining methodologies in data processing. Exploring innovative techniques, 
such as simultaneous measurements and cross-referencing signals from multiple sources, holds 
promise in mitigating the limitations observed in this study, particularly the presence of repeating 
signals from external sources. 

While challenges persist, the pursuit of refining these methods is essential in realizing the full ca-
pabilities of Barkhausen Noise as a reliable source of true randomness. 
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