BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR

MARKÓ BALÁZS

Forgácsolásindukált rétegközi sorja kísérleti vizsgálata Al/CFRP és CFRP/Al lemezekben

Konzulens: Dr. Geier Norbert Adjunktus

Budapest, 2023

NYILATKOZAT

Alulírott, *Markó Balázs* (Y6JD1F), a Budapesti Műszaki és Gazdaságtudományi Egyetem hallgatója, büntetőjogi és fegyelmi felelősségem tudatában kijelentem és sajátkezű aláírásommal igazolom, hogy ezt a dolgozatot meg nem engedett segítség nélkül, saját magam készítettem, és dolgozatomban csak a megadott forrásokat használtam fel. Minden olyan részt, melyet szó szerint vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a hatályos előírásoknak megfelelően, a forrás megadásával megjelöltem.

Budapest, 2023. 10. 31.

Markó Balázs

Tartalomjegyzék

Mel	lékle	tek jegyzéke	V
Ábr	ajeg	yzék	'n
Elős	szó		I
Jelö	blésel	c jegyzékeI	I
1 E	Bevez	zetés	1
1.1		élkitűzés	1
1.2	2 Á	ttekintés	1
2 A	AI/CF	RP szendvicsszerkezetek forgácsolási sajátosságai és sorjavizsgálati módszerei	3
2.1		//CFRP szendvicsszerkezetek tulaidonságai	3
2.2	2 4	I/CFRP szendvicsszerkezetek forgácsolási kihívásai	3
2.1	- <u>.</u> .	1 JID-CERP kompozitok forgácsalási tulaidonságai	5 Д
	2.2.	2 Alumíniumötyözetek forgácsolási tulaidonságai	т 5
	2.2.	3 Fém/CFRP szendyicsszerkezetek forgácsolási tulaidonságai	6
2.3	3 Sc	pria jellemzése	8
2.4	4 Se	pria mérése	8
2.5	5 Sa	oria vizsgálata furatoknál	9
2.6	5 K	övetkeztetések és a célkitűzés nontosítása	3
3 4	/ il	szerű soriahecslő módszer hemutatása	4
3 1	12 UJ	vrjabacslő módszar működése és algoritmusa	- /
3.1		soriavizsgálati mádszor alkalmazási korlátai	т 5
J.2	2 A	sorjavizsgalati mouszer alkannazasi korlatal	3
4 r	eina	sznait anyagok, eszkozok és modszerek	ð
4.	l Fe	elhasznalt anyagok I	8
4.2	2 K	ísérleti környezet és kísérletterv1	8
4.3	8 M	lérőeszközök és szoftverek1	9
5 E	Eredi	nények és következtetések2	0
5.1	E	rőmérés eredménye2	0
5.2	2 So	orjabecslő módszer kivitelezése a mérési adatok alapján2	2
	5.2.	1 Paraméterek összefüggésének keresése sorjabecslő módszernél2	2
	5.2.	2 Mért adatokra görbeillesztés a sorjabecslő módszer alapján2	5
	5.2.	3 Becslő módszerrel nem leírható tartományokra illesztett görbék2	9
5.3	B So	orjabecslő módszerrel kapott eredmények2	9

6 Ös	sszefoglalás és kitekintés	
6.1	Összefoglalás	
6.2	Kitekintés	
7 Fe	elhasznált források	

Mellékletek jegyzéke

- 1. sz. melléklet: Kísérleti és mérési jegyzőkönyv
- 2. sz. melléklet: Erőmérés eredménye
- **3.** sz. melléklet: Mért furatokhoz tartozó *h-b* és *RGB-b* diagramok
- 4. sz. melléklet: Mért és 2D-s mikroszkópi kép alapján becsült értékek összehasonlítása
- 5. sz. melléklet: Eredményként adódó mért és becsült értékeket összehasonlító diagramok

Ábrajegyzék

1.1. ábra Dolgozat felépítése	1
2.1. ábra Anyagok fajlagos modulusa és fajlagos szakítószilárdsága [11]	4
2.2. ábra UD-CFRP (a) ortogonális forgácsolása és (b) marása [13]	4
2.3. ábra Delamináció képződése fűrás során (a) be- és (b) kilépő oldalon [13]	5
2.4. ábra Alumínium ötvözetek előnyös és hátrányos tulajdonságai forgácsolhatóság	
szempontiából [17]	6
2.5. <i>ábra</i> Rétegsorrend hatása a forgácsalakra [20]	7
2.6. <i>ábra</i> Mért sorjageometria [25]	8
2.7. ábra Sorja mérési módszerek rendszerezése [26]	9
2.8. ábra Különböző sorjatípusok furatoknál: (a) körkörös-, (b) korona- és az (c) átmene	ti
sorja [29]	10
2.9. ábra Sorjaméret meghatározásának folyamata [29]	10
2.10. ábra Kilépési sorjamagasság és szerszámkopás összefüggése [31]	11
2.11. ábra 25%-os kopással rendelkező csigafúró (a) mikroszkópi- és (b) 3D-s képe [36]	12
2.12. ábra Analitikus úton levezetett összefüggés relatív hibája (a) sorjamagasságra és (l	5)
sorjavastagságra [37]	12
3.1. ábra Sorjabecslő módszer algoritmusa	14
3.2. ábra Felületi hibaforrások a mikroszkópi képen	16
3.3. ábra Sorja egy részletének 3D-s képe	17
4.1. ábra (a) Kísérleti- és a (b) mérési környezet	19
5.1. ábra Erőmérés feldolgozás	20
5.2. ábra Mért erő karakterisztikája (a) Al/UD-CFRP és (b) UD-CFRP/Al lemezsorrendi	ıél 21
5.3. ábra Erőmérés eredmények: (a) Al lemez felül, (b) Al lemez alul	22
5.4. ábra Sorjamagasság és a mikroszkóppal készített kép összefüggése	23
5.5. ábra (a) Sorjamagasság és (b) RGB érték egy mérési irányban	24
5.6. ábra Sorjamagasság összefüggése az RGB értékkel minden mérési irányban	25
5.7. ábra Mérési pontokra illesztett másodfokú polinomok	26
5.8. ábra Determinációs együttható eloszlása (b) Al/UD-CFRP- és (b) UD-CFRP/Al	
rétegsorrendben	27
5.9. ábra Mért és becsült eredmények összehasonlítása	
5.10. ábra A sorja különböző tartományai	29
5.11. ábra Mért és becsült sorja az első mérési irányban	30
5.12. ábra Mért és becsült sorja a harmadik mérési irányban	30
5.13. ábra Mért és becsült sorjakeresztmetszet összehasonlítása	31
5.14. ábra Mért és becsült sorjamagasságok összehasonlítása	32
6.1. ábra Mért és becsült sorja a nyolcadik mérési irányban	34

Előszó

A fém/szálerősített polimer kompozit szendvicsszerkezetek napjainkban igen nagy népszerűségnek örvendenek a jó fajlagos mechanikai tulajdonságaik miatt. Így több olyan iparágban is alkalmazzák, ahol a jó mechanikai tulajdonságok mellett a minőségi követelmények is igen magasak (például: repülőgépipar és energiaipar). Az ilyen szendvicsszerkezetekben a leggyakrabban alkalmazott kötési technológia a csavarkötés, amihez furat készítésére van szükség. Fúrási művelet során napjainkban is legtöbbször megoldandó problémát jelent a forgácsolásindukált sorja, ezért fontos az elkerülése, illetve a minél költséghatékonyabb és pontosabb mérése. Ez a két tényező a jelenleg jellemzően használt mérési eljárásoknál egymással ellentétben áll.

* * *

A kutatás során nyújtott folyamatos szakmai támogatást szeretném megköszönni konzulensemnek, Dr. Geier Norbertnek. A CMG kutatócsoport a szakmai hátteret nyújtotta a kutatás során. A KEYENCE konfokális mikroszkóppal való mérésnél való szakmai közreműködésért Dr. Hlinka Józsefnek tartozom köszönettel. Az alumínium lemezek felajánlását köszönöm a Martin Metal Product Kft.-nek és Bors Istvánnak. Ez a kutatás a Kína és Magyarország tudományos és technológiai együttműködését ösztönző 2021-1.2.4-TÉT-2021-00051 támogatásnak köszönhetően valósult meg.

Végül, de nem utolsó sorban köszönettel tartozom családomnak a támogató és megértő közeg biztosításáért.

Budapest, 2023. 10. 31.

Markó Balázs

Jelölések jegyzéke

A táblázatban a többször előforduló jelölések magyar és *angol* nyelvű elnevezése, valamint a fizikai mennyiségek esetén annak mértékegysége található. Az egyes mennyiségek jelölése – ahol lehetséges – megegyezik hazai és a nemzetközi szakirodalomban elfogadott jelölésekkel. A ritkán alkalmazott jelölések magyarázata első előfordulási helyüknél található.

Latin betűk		
Jelölés	Megnevezés, megjegyzés, érték	Mértékegység
$A_{\rm s}$	Sorjakeresztmetszet	mm^2 , μm^2
b	Sorjavastagság	mm
D	Furatátmérő	mm
F_{z}	Előtolás irányú erőkomponens	Ν
h	Sorjamagasság	mm
п	Fordulatszám	1/min
R^2	Determinációs együttható	
f	Előtolás	mm
Vc	Forgácsoló sebesség	m/min

Görög betűk

Megnevezés, megjegyzés, érték	Mértékegység
Szignifikancia szint	
Szórás	
	Megnevezés, megjegyzés, érték Szignifikancia szint Szórás

Rövidítések, mozaikszavak

nee indices en,	to raiteben, mozambea van						
Jelölés	Megnevezés, értelmezés						
CCI	Central Composite Inscribed (Centrál kompozit kísérlettervezési módszer)						
CSV	Comma-separated values (Vesszővel tagolt fájl formátum)						
CFRP	Carbon fibre reinforced polymer (Szénszállal erősített polimer)						
FFT	Fast Fourier-transformation (Gyors Fourier-transzformáció)						
MD	Multi-directional (Többirányú szálerősítés)						
UD	Uni-directional (Egyirányú szálerősítés)						
RGB	Red (piros) Green (zöld) Blue (kék) alapszínek keverésével létrehozható színek						

1 Bevezetés

A fém/kompozit szendvicsszerkezetek használata széles körben elterjedt különböző iparágakban, például a repülőgépiparban, űriparban és az energiaiparban. Ezen szendvicsszerkezeteknél egyik leggyakrabban használt kötési technológia a csavarozás, amihez furat készítésére van szükség. A nagypontosságú furatokat jellemzően forgácsolási technológiákkal szokták elkészíteni, mint például fúrással vagy marással. A felmerülő forgácsolási nehézségek miatt nehéz teljesíteni a high-tech iparágak elvárásait [1].

A forgácsolási nehézségek több tulajdonságból is származtathatóak. Az egyik ilyen például, hogy forgácsolhatóság szempontjából két különböző tulajdonságú anyagot kell megmunkálni egy menetben. Viszont a nehézségek legtöbbje a szénszállal erősített polimer (CFRP) kompozitok forgácsolási nehézségeiből adódik [2], [3].

Az ilyen szendvicsszerkezetekben készített furatnál nem csak a be- és kilépő oldalon figyelhető meg sorja, hanem rétegközben is, amely hiba a mechanikai tulajdonságokra van nagy hatással [4].

1.1 Célkitűzés

Dolgozatom célja, hogy könnyebben mérhetővé váljon a rétegközben képződött sorja. Ehhez fejlesztettem ki egy újszerű módszert, aminek segítségével a rétegközben keletkező sorja jellemezhetővé válik. Így végső célom, hogy egy 2D-s mikroszkópi képből meghatározhatóvá váljon a sorjakeresztmetszet.

1.2 Áttekintés

Dolgozatom fő struktúrája látható az 1.1. ábrán.

1.1. ábra Dolgozat felépítése

~ 1 ~

Az **1.1. ábra** alapján elsőként összefoglalom a szakirodalom jelenlegi álláspontját az Al/CFRP szendvicsszerkezetekkel kapcsolatban és bemutatom a jelenleg alkalmazásban levő sorjamérési és -jellemzési módszereket. Majd ezt követően leírom az általam fejlesztett sorjabecslő módszert. Ezt követően bemutatom a kísérleti környezetet, a felhasznált anyagokat, eszközöket és a kísérlettervet. A kísérleti környezet ismertetése után a kísérletek kiértékelése és az eredmények ismertetése következik, amit egy összefoglalással zárok.

2 Al/CFRP szendvicsszerkezetek forgácsolási sajátosságai és sorjavizsgálati módszerei

Ebben a fejezetben ismertetem az Al/CFRP szendvicsszerkezetek forgácsolásával kapcsolatos kulcsfontosságú szakirodalmi ismereteket, főként a fúrási technológiára fókuszálva. Majd a forgácsolásindukált sorja főbb jellemzési és mérési eljárásait ismertetem.

2.1 Al/CFRP szendvicsszerkezetek tulajdonságai

A CFRP egy szénszál erősítésű kompozit, ahol az erősítőanyag többnyire 5-10 μ m átmérőjű szál, míg a mátrix anyaga többnyire epoxi gyanta, vinilészter gyanta vagy poliészter gyanta. Ezen felül fontos a szálerősítés iránya, ami lehet egyirányú (UD), többirányú (MD) és kitüntettet irány nélküli [5], [6].

Az alumínium ötvözetek tulajdonságai nagy mértékben eltérhetnek az ötvözők függvényében, de jellemzően jó fajlagos szilárdsággal és korrózióállósággal rendelkeznek [7], [8].

Olyan mechanikai tulajdonságok elérése a cél a fém (Alumínium, Titán, Magnézium) ötvözetek és polimer kompozitok egyesítésével, amely tulajdonságok egyik anyaggal sem érhetők el külön-külön. Tehát így egyesíthetőek a két anyag előnyös tulajdonságai jelentős súlynövekedés elkerülésével [8]. Ezért használják ezen szendvicsszerkezeteket olyan iparágakban, ahol a kis tömeg mellett a kiváló mechanikai tulajdonságok elérése a cél. Például a Boeing 787-es repülőgép körülbelül 35 tonna szénszálerősítésű kompozitot tartalmaz, aminek egy része Alumínium- vagy Titán ötvözettel van egy szendvicsszerkezetben [9].

Fém-polimer szendvicsszerkezetek közül az Al/CFRP (CFRP/Al, Al/CFRP/Al, CFRP/Al/CFRP) összetétel a leggyakoribb, ami a kiváló fajlagos szilárdságának, korrózióés erózió állóságának köszönhető [9]. Ezért ez a dolgozat is ilyen szendvicsszerkezettel foglalkozik.

2.2 Al/CFRP szendvicsszerkezetek forgácsolási kihívásai

Al/CFRP szendvicsszerkezetek nehezen forgácsolhatóak, mivel két eltérő anyagot kell egy műveletben forgácsolni [10]. A **2.1. ábra** jól szemlélteti, hogy a két anyagnak jelentősen eltérőek a mechanikai tulajdonságai.

2.1. ábra Anyagok fajlagos modulusa és fajlagos szakítószilárdsága [11]

A **2.1. ábra** alapján kijelenthető, hogy a CFRP nagyobb fajlagos modulussal és fajlagos szakítószilárdsággal rendelkezik [11]. A következő két alfejezetben részletezem ezen két anyag forgácsolási tulajdonságait.

2.2.1 UD-CFRP kompozitok forgácsolási tulajdonságai

Az UD-CFRP kompozit anyagok inhomogének és anizotrópok az erősítőszál következtében, így forgácsképződésük eltér a fémekétől [12].

Ezen szálerősítésű kompozitok forgácsolásánál a hagyományos forgácsolási paramétereken (például: forgácsoló sebesség, előtolási sebesség és fogásmélység) felül bevezettek két további paramétert, ami a szálvágási szög (Θ) és a szálorientációs szög (ϕ). Ezt a két paramétert jól szemlélteti a **2.2. ábra**.

2.2. ábra UD-CFRP (a) ortogonális forgácsolása és (b) marása [13]

~ 4 ~

A szálvágási szögnek van a legjelentősebb hatása a forgácsolási mechanizmusra. Ez nagy mértékben megnehezíti a szálerősített kompozitok marással vagy fúrással történő megmunkálását, mivel ezen technológiák esetén a szerszámforgással együtt változik folyamatosan a szálvágási szög. Így a forgácsolási mechanizmus is folyamatosan változik [14], [15].

Mivel a dolgozatban a furatok forgácsolásán van a hangsúly, ezért a fúrás során fellépő hibákat említem meg. Szálerősítésű kompozitoknál fellépő, gyakrabban előforduló furathibák a következők lehetnek: delamináció, mátrix elkenődés, mikrorepedés, sorja és szálkihúzódás [16]. Ezek közül a delaminációt mutatom itt be. Mivel dolgozatomban a sorja vizsgálatára kerül sor ezért a sorja ismertetése egy külön alcímet kapott.

Az UD-CFRP kompozitok forgácsolása során, ha a forgácsolási erő a laminált rétegre kedvezőtlen irányba hat, akkor a laminált rétegek szétválhatnak egymástól, amely jelenséget delaminációnak nevezik. Ez a jelenség a furatok be- és kilépő oldalán is megjelenhet. Amely hiba hatással van a kompozit mechanikai tulajdonságaira. Ezt jól szemlélteti a **2.3. ábra**.

2.3. ábra Delamináció képződése fúrás során (a) be- és (b) kilépő oldalon [13]

A **2.3. ábrán** található jelenség a szendvicsszerkezetek fúrásál is megjelenik. De ekkor még számolni kell a fém és a CFRP lemez szétválásával is [1], [13].

2.2.2 Alumíniumötvözetek forgácsolási tulajdonságai

Egy anyag forgácsolhatósága több tényezőtől is függ, ilyen például a forgácsoló szerszámot koptató hatása. Relatíve kis szilárdságuk és megfelelő hőtani tulajdonágaik következtében az alumíniumötvözetek a jól forgácsolható anyagok közé tartoznak, de az ötvözetek forgácsolhatósága jelentősen eltérhet. A **2.4. ábrán** látható az alumínium ötvözetek forgácsolás szempontjából fontos tulajdonágai.

2.4. ábra Alumínium ötvözetek előnyös és hátrányos tulajdonságai forgácsolhatóság szempontjából [17]

A **2.4. ábrán** lévő tulajdonságokon felül még fontos megemlíteni, hogy az alumíniumötvözetek (főként a kis keménységűek) hajlamosak a "kenődésre", ezért előnyös a viszonylag nagy forgácsoló sebesség alkalmazása. De a forgácsoló sebesség megválasztásakor a Fém/CFRP szendvicsszerkezeteknél mindkét anyag tulajdonságát figyelembe kell venni, ezért a következő alfejezetben ezt vizsgálom [17], [18].

2.2.3 Fém/CFRP szendvicsszerkezetek forgácsolási tulajdonságai

Ebben az alfejezetben részletezem a különböző kutatók által elért eredményeket fém/CFRP szendvicsszerkezeteknél. Legfőképp a furatkészítésre helyezem a hangsúlyt.

Xu és Mansori [19] munkájukban a Ti/CFRP szendvicsszerkezetek forgácsolását végezték. A technológiai paraméterek vizsgálatánál bemutatták az egyik fő problémát az ilyen szendvicsszerkezetek forgácsolásánál. Ez a probléma abból adódik, hogy a szakirodalom szerint eltérő technológiai paraméterek a megfelelők a két különböző anyaghoz. Például a forgácsoló sebesség esetében a javasolt érték Titán ötvözetnél v_c = 10-30 m/min, míg CFRP esetében v_c = 150-200 m/min. Továbbá eredményül megállapították, hogy milyen hatása van a rétegsorrendnek a megmunkált furat minőségére, ezt szemlélteti a **2.1. táblázat**.

~ 6 ~

Rétegsorrend	Forgácsolási erő	Forgács típus	Furatminőség		Furathiba	
		-	Felületi érdesség	Furat átmérő	Delamináció	Sorjavastagság
CFRP→Ti	↑	_	↑	↑	\downarrow	↑
Ti→CFRP	\downarrow	_	\downarrow	\downarrow	↑	\downarrow

2.1. táblázat Rétegsorrend hatása a furat minőségére [19]

Megjegyzés: ↑ esetén előnyös-, ↓ esetén hátrányos a minőségre, míg – esetén nincs rá szignifikáns hatással

A **2.1. táblázat** alapján a delaminációt és a forgácstípust leszámítva a CFRP/Ti rétegsorrend eredményezett jobb minőségű furatot. Azonban más kutatásokban is vizsgálták a rétegsorrend hatását. An és mtsai. [20] forgácsalaknál jelentős különbséget fedeztek fel, amit a **2.5. ábra** jól szemléltet.

2.5. ábra Rétegsorrend hatása a forgácsalakra [20]

A **2.5. ábrán** látható, hogy Ti/CFRP rétegsorrendnél szabályos spirál alakú a forgács. Továbbá ennél a rétegsorrendnél hosszabb sorját kaptak, ami forgácsolási szempontból nem előnyös.

A megfelelő fúrószerszám keresésével is több kutató foglalkozik. Vizsgálják a szerszámkialakítás, szerszámanyag vagy szerszámbevonat hatását [21]–[23]. Zhong és mtsai. [22] a szerszámbevonat hatását vizsgálták a CFRP/Al/CFRP szendvicsszerkezeten. Bevonatos szerszámnál TiAlN bevonatot alkalmaztak. Végeztek erőméréseket, mérték a forgácsolt átmérő pontosságát és konfokális mikroszkóppal vizsgálták a furatok palástfelületét. A végzett mérések alapján megállapították, hogy a felsorolt három jellemző mindegyikére pozitív hatással volt a szerszámbevonat.

2.3 Sorja jellemzése

A sorját többféleképpen is lehet definiálni. Az ISO 13715 számú szabvány szerint a sorja egy a megmunkálás során mérhető maradékanyag, amelynek nagysága nullától eltérő [24].

Furatok forgácsolása során a be- és kilépő oldalon létrejön a sorja. A leggyakrabban és legkönnyebben mérhető paraméterek a sorjamagasság és sorjavastagság. A **2.6. ábra** jól szemlélteti a furatoknál a sorjageometriát.

2.6. ábra Mért sorjageometria [25]

A 2.6. ábra alapján megállapíthatóak a különböző sorjamagassági (B_{hi} , B_{he} és EB_{he}) és sorjavastagsági (B_{wi} , BR_{wi} , B_{we} és BR_{we}) paraméterek, valamint a maximális sorja zóna (θ) [25]. A dolgozatban ettől eltérő, a szakirodalomban gyakrabban használt jelöléseket használok. Munkámban a sorjamagasságra– h, a sorjavastagságra- b jelölést alkalmazom.

2.4 Sorja mérése

A sorja mérése igen sok módszerrel elvégezhető, amely módszereket a 2.7. ábra mutatja be.

2.7. ábra Sorja mérési módszerek rendszerezése [26]

A 2.7. ábra jól szemlélteti, hogy a sorját geometriai szempontból jellemző adatok csak a folyamaton kívül mérhetőek. A szükséges vizsgálati módszer attól is függ, hogy milyen jellegű jellemzők keresése a cél. Tehát külön kezelendő a sorja anyagminőség változását jellemző paraméterek a sorja geometriai jellemzőitől. A dolgozat továbbiakban kizárólag a geometriai jellemzőket vizsgálja. Ebben a csoportban három módszer kiemelendő, amelyek a következők: mérőtapinós-, optikai mikroszkópos- és a konfokális mikroszkópos mérés. Számos kutatásban ezen a három módszer egyikével végeztek méréseket [26], [27].

Mérőtapintós méréssel egyszerűen meghatározható a sorjamagasság és sorjavastagság, ugyanakkor a sorjatérfogat csak igen sok mérési pont felvételével és azok egy modellbe illesztésével hozhatóak létre. Így manapság ez nem hatékony sorjatérfogat mérési módszer a konfokális mikroszkóphoz képest [26].

Optikai mikroszkópos mérésnek hátránya, hogy "csak" a sorja alakjának egyik irányba eső paramétere kapható a mérés eredményeként. Ennek ellenére ez sok esetben elegendő ipari alkalmazásnál [28].

Konfokális mikroszkóppal való mérésből 2D-s és 3D-s információk is nyerhetőek, így geometriai jellemzők vizsgálatához ez a mérési módszer szolgáltat a legtöbb információt. Ezen mérési technológiának hátránya, hogy időigényesebb, mint egy optikai mikroszkópos mérés és költségvonzata is nagyobb [28]. Így dolgozatom témájának fő hajtóereje az, hogy bizonyos peremfeltételek között a konfokális mikroszkóppal való mérés kiváltható legyen optikai mikroszkóppal.

2.5 Sorja vizsgálata furatoknál

Különböző sorjatípusokat lehet megkülönböztetni furatoknál [29]. A különböző típusokat a **2.8. ábra** jól szemlélteti.

~ 9 ~

2.8. ábra Különböző sorjatípusok furatoknál: (a) körkörös-, (b) korona- és az (c) átmeneti sorja [29]

A **2.8. ábra** alapján megállapítható a három különböző sorjatípus, ami a körkörös-, koronaés az átmeneti sorja.

Bahçe és Özdemir [29] fejlesztettek egy sorja mérési- és elemzési módszert, aminek folyamata a **2.9. ábrán** látható.

2.9. ábra Sorjaméret meghatározásának folyamata [29]

A **2.9. ábra** alapján a sorja 3D-s modelljéből indultak ki. Az átlag sorjamagasság meghatározása volt a céljuk. Kétféle módszerrel határozták meg az átlag sorjamagasságot a hagyományostól eltérő módon. Mindkét módszer egy, a sorjáról oldalról készült mikroszkópi képből indul ki. Egyik esetben a sorjaterületből, míg másik esetben a sorjagörbe hosszából indultak ki. A valós eredményhez képest mindkét módszer nagy szórást (9,94%-48,14%) mutatott, de a mért eredmények trendre megegyeztek a valós eredménnyel. Tehát ez alapján megállapítható, hogy a sorjaterület és a sorjagörbe hossza összefüggésbe van az átlag sorjamagasággal.

Hellstern és Woodruff [30] alumínium szendvicsszerkezeteken vizsgálták a különböző geometriájú és bevonatú fúró szerszámok hatására létrejövő sorját. Nagy számú (1500 darab) kísérlet alapján több eredmény is adódott. A bevonat nélküli lépcsős csigafúró szerszám kisebb sorjamagasságot eredményezett és ezek szórása is kisebbnek adódott, mint más szerszámgeometria esetén. Továbbá megállapította, hogy a sorjamagasság és a

szerszámkopás között nincs szignifikáns összefüggés. Li és mtsai. [31] ezzel ellentétben helikális marási stratégiánál vizsgálták többek között a szerszámkopás és a forgácsolásindukált sorjamagasságot. A kapott eredményük a **2.10. ábrán** látható

2.10. ábra Kilépési sorjamagasság és szerszámkopás összefüggése [31]

A **2.10. ábra** alapján a szerszámkopás és a sorjamagasság között jelentős összefüggés van. Továbbá az is látható, hogy a szerszám kopásával a mért sorjamagasság értékének ingadozása növekszik.

Mondal és mtsai. [32] alumínium ötvözet furat készítése során vizsgálták a létrejövő sorját. Céljuk a sorjamagasság minimalizálása volt. Taguchi kísérlettervezési módszert használtak, ahol vizsgálták a fordulatszám (*n*), az előtolás (*f*) és a csigafúró csúcsszögének (θ) hatását. A három vizsgált paraméter segítségével 95%-os szignifikancia szint mellett meghatároztak egy sorjamagasság becslő összefüggést. Ezen modell determinációs együtthatója R^2 = 0,9172 volt. Ez igen jó eredmény, tekintve a faktorok alacsony számát.

Az előbb említett becslő összefüggésekkel a probléma az, hogy a legtöbb esetben egy bizonyos anyagminőség forgácsolásakor igazak, és nehezen általánosíthatóak többféle anyagminőségre. Tehát továbbra is a legtöbb esetben szükséges 2D-s vagy 3D-s mikroszkópi felvétel a sorja valamilyen geometriai paraméterének meghatározásához [32]–[35].

Mandra és mtsai. [36] kidolgoztak egy modellt, amivel a változó sorjanagyság vizsgálható a csigafúró kopásának hatására. Három különböző kopási szinten végeztek méréseket. A **2.11. ábrán** látható a 25%-os kopással rendelkező szerszám.

2.11. ábra 25%-os kopással rendelkező csigafúró (a) mikroszkópi- és (b) 3D-s képe [36]

A **2.11. ábrán** látható, hogy már egy 25%-os kopás is nagy hatással lehet a készített furat minőségére. A mérések alapján megállapítást nyert, hogy 50%-os kopásnál a maximális sorjamagasság nagyságrendileg háromszorosa, a kopással nem rendelkező szerszáméhoz képest. Végezetül a kutatók által felállított modell a sorjamagasságot 30%-os-, míg a sorjavastagságot 20%-os hibával tudta becsülni.

Abdelhafeez Hassan és mtsai. [37] egy analitikus modellt állítottak fel Fém/CFRP szendvicsszerkezetek rétegközi sorja méretének (sorjamagasság és sorjavastagság) vizsgálatához. Különböző anyagú lemezen végeztek kísérletet. A kísérletek eredménye látható a **2.12. ábrán**.

2.12. ábra Analitikus úton levezetett összefüggés relatív hibája (a) sorjamagasságra és (b) sorjavastagságra [37]

A **2.12. ábrán** lévő eredmények alapján a felállított összefüggés igen jól közelíti a valós eredményeket sorjamagasságra (a) és sorjavastagságra (b) nézve. A relatív hiba minden esetben 20%-nál kisebbnek adódott.

2.6 Következtetések és a célkitűzés pontosítása

Az előbb ismertetett szakirodalmak alapján kijelenthető, hogy az Al/CFRP szendvicsszerkezetek megmunkálása során több nehézség is felmerül. Kiemelendő az UD-CFRP anizotrópiája, aminek hatására a forgácsolási tulajdonságok irányfüggőek, amely forgácsolási tulajdonságok hatással vannak sorjaképződésére. Így a dolgozatban a sorja vizsgálatát több irányban is elvégzem. A sorjajellemzési és -mérési módszerek fejlesztése elengedhetetlen, mivel fém/CFRP szendvicsszerkezeteknél a kutatások zöme a CFRP lemezen keletkező sorjával foglalkozik, a fémen keletkező sorjáról legtöbb esetben említést sem tesz.

Sorják jellemzése során elsőként fontos rögzíteni az alkalmazott jelöléseket, mert ezek is eltérnek sok esetben. Dolgozatomban az alkalmazott jelölések a következők: b- sorjavastagság, h- sorjamagasság, A_s - sorjaterület.

Az irodalomkutatásból továbbá az is látható, hogy a sorjamérés problémája, hogy a méréshez vagy valamilyen tapintós mérést alkalmazunk, vagy 3D-s mérésre alkalmas eszközt. Az idő- és költségcsökkentés, valamint pontosság feltételét tekintve látható, hogy egyik sem teljesíti megfelelően ezt a három feltételt. Továbbá léteznek empirikus modellek, amelyekkel becsülhetőek a sorja egyes paraméterei, de ezeknek a formuláknak a hibája jelentős mértékű, vagy igen sok megkötésnek (peremfeltétel) kell teljesülnie az alkalmazásukhoz. Így a dolgozat témájának kiindulási alapja egy olyan mérési eljárás megalkotása, amivel kiküszöbölhetővé válnak a két mérési módszer hiányosságai. Ez a módszer 2D-s mikroszkópi kép alapján ad becslést a sorja háromdimenziós jellemzőire.

3 Az újszerű sorjabecslő módszer bemutatása

Ebben a fejezetben ismertetésre kerül az általam fejlesztett újszerű sorjabecslő módszer működése és a nem elhanyagolható hibaforrások leírása.

3.1 Sorjabecslő módszer működése és algoritmusa

A dolgozatban vizsgált sorjabecslő módszer alapfelvetése, hogy a 2D-s mikroszkópi kép pixeleihez tartozó színárnyalat (*RGB*) és a sorja magasság (*h*) között valamilyen összefüggés írható fel. Mivel a sorja nem tekinthető homogénnek, ezért szükséges többirányú mérést és kiértékelést végezni rajta. Ennek érdekében elengedhetetlen, egy definiált algoritmus alkalmazása, amely segít a mérések végrehajtásában és azok kiértékelésében. A sorjabecslő módszer algoritmusa látható a **3.1. ábrán**.

3.1. ábra Sorjabecslő módszer algoritmusa

~ 14 ~

A 3.1. ábra alapján elsőként a mért adatok exportálása szükséges .csv fájlformátumba. Itt két különböző tömböt kell kimenteni. Ki kell menteni az X- és Y koordinátákhoz tartozó magassági- és RGB értékeket. Ezt követően a furat tengelyének helyét kell megkeresni, amit a mikroszkóp szoftverének segítségével határoztam meg. Így definiálható a furat átmérőjének ismeretében a sorja várható helye. Mivel sok (26 darab) furaton mérünk több mérési irányba, ezért célszerű a mért koordináták automatikus meghatározása, ami könnyen megtehető kör egyenletének és szögfüggvényeknek alkalmazásával. Az így kapott koordinátákból a mérési adatok (magassági- és RGB értékek) importálása szükséges. A sok felesleges munka elkerülésének érdekében ekkor fontos megvizsgálni, hogy a kapott értékek a megfelelőek -e, gondolva itt például a nem megfelelő helyen való mérésre. Ha a kapott értékek megfelelőek akkor meg kell keresi a sorjamagasság és az RGB érték közötti összefüggést, amely összefüggés leírására legtöbb esetben egy másodfokú polinom megfelelő. A sorjabecslő módszerrel nem vizsgálható tartományoknál a sorjamagassági értékekre polinomok illesztése szüksége, amely polinomokkal meghatározzuk a magassági értékeket. Így a két módszerrel kapott eredményeket egy diagrammon lehet ábrázolni és meg lehet állapítani több a sorját jellemző paramétert.

Az előbbi leírás alapján látható, hogy igen sok (12) lépésből áll a sorjabecslő módszer, ezért törekedni kell a folyamat minél nagyobb fokú automatizálására, de ezen dolgozat fő célja nem ez, hanem a módszer alkalmazhatóságának vizsgálata és az elérhető becslési pontosság meghatározása.

3.2 A sorjavizsgálati módszer alkalmazási korlátai

Az irodalomkutatás alapján megállapítható, hogy a furatoknál a sorja vizsgálata csak akkor lehet reprezentatív, ha több irányból végzünk méréseket. Ennek hatása Al/UD-CFRP szendvicsszerkezeteknél jelentős hibaforrás. Ez adódhat abból, hogy ott végezzük a sorjamérést, ahol az UD-CFRP- és az alumínium lemez találkozik, így a kompozit anizotrópiájának hatása van a keletkező sorjára. A másik hibaforrás az alumínium lemez felületi hibáiból adódhat, mivel a felületi hibák sorjamagasság irányába legtöbb esetben kis eltérést jelentenek, viszont az *RGB* érték ennek hatására nagy mértékben megváltozik, ezt mutatja a **3.2. ábra**.

3.2. ábra Felületi hibaforrások a mikroszkópi képen

A **3.2. ábrán** többféle hibaforrás látható. Pirossal vannak bekarikázva néhány olyan rész, ahol CFRP forgács maradt a felületen, míg a bekeretezett rész az Al lemez felületi hibája. Mindkettő esetben látható, hogy ezek a hibák az *RGB* értéket nagy mértékben módosítják, így nagymértékű hibaforrást jelentenek.

További hibaforrást jelent az *RGB* skála felbontása. Mivel a fekete-fehér színátmenetes képek *RGB* értéke 0 és 255 között van ezért ez jelentős hibaforrás. Ezen felül megemlítendő, hogy ennek a szűk tartománynak szélső tartományaiba jellemzően nem esik az érték, így a valójában használt skála lecsökken ~200-as tartományra. Ez a tartomány növelhető a mikroszkópi fény erősségénék megváltoztatásával, amely megnövekedett tartomány a becsülhető sorjamagasság tartományt növelheti, elősegítve a módszer gyakorlati alkalmazhatóságát.

Továbbá vannak olyan hibaforrások, amelyekkel legtöbb esetben minden mérés rendelkezik. Ilyen a mikroszkóp pontatlanságából adódó hibaforrás. Az alkalmazott mikroszkópnak a mérési pontossága $\pm 2,5 \mu$ m, ismétlési pontossága $\pm 0,4 \mu$ m. További hibaforrást jelent az X- és Y- koordinátabeli felbontás, amit a mérőgép szoftvere csak 15,676 µm felbontásban tudja kiexportálni egyéb fájl típusokba. Ennek a felbontásnak a finomítása nagyban javíthat a pontosságon, mivel a sorja geometriájában sok esetben vannak 30-40 µm nagyságú kitüremkedések (helyi maximum), amik így nem detektálhatóak megfelelően. Ezt jól mutatja a **3.3. ábra**, ami a **3.2. ábrán** látható furatról készült.

3.3. ábra Sorja egy részletének 3D-s képe

A **3.3. ábrán** jól látható továbbá egy másik hibaforrás. Megállapítható, hogy hibát okoz a sorja jellemzésében, amennyiben kizárólag 2D-s jellemzőkkel próbáljuk leírni. A mért adatok csak lokálisan jellemzik a sorját. Ezen felül a sorja meredeksége nem csak sugár irányban változik, így előfordulhat, hogy a megállapított meredekség jelentősen eltér a valóstól. Ezért érdemes lehet felületszerű becsléseket végezni a vonalszerű helyett.

4 Felhasznált anyagok, eszközök és módszerek

Ebben a fejezetben található a kísérlet során forgácsolt anyagok és a kísérleti környezet leírása. Végezetül a kapott eredmények kiértékelésének módszere kerül bemutatásra.

4.1 Felhasznált anyagok

A kísérlet során egyirányban szénszállal erősített kompozitot használtam. Amely száliránya a marógép X-tengelyével meggyezett. Az UD-CFRP lemez mátrix anyaga vinilészter volt. A **4.1. táblázatban** található a felhasznált kompozit lemez néhány anyagjellemzője.

	R _m	$ au_{ m m}$	Sd	<i>a</i> _{cN}
Anyag	(MPa)	(MPa)	(-)	(kJ/m2)
Vinilészter mátrixú UD-CFRP	547,9±45,8	21,77±0,70	88,24±0,36	263,17±24,8

4.1. táblázat Vinilészter mátrixú UD-CFRP anyagjellemzői [11]

A szendvicsszerkezet másik alkotója az alumínium ötvözet. A kísérletben felhasznált lemez AlMgSil alumínium ötvözet. Az AlMgSi ötvözetekben a korrózióállóság nagy szilárdsággal párosul, ezért például a járműiparban is alkalmazzák. A **4.2. táblázatban** látható az AlMgSil fontosabb jellemzői.

4.2. táblázat AlMgSil ötvözet anyagjellemzői [7]

	Rm	R p0,2	A50	
Anyag	(MPa)	(MPa)	(%)	
AlMgSi1	310	260	8	

4.2 Kísérleti környezet és kísérletterv

A furatok megmunkálása Kondia B-640 típusú háromtengelyes marógépen történt. A felhasznált szerszám egy Ø10-es TIVOLY POLARIS 150 Xtreme típusú csigafúró volt. Továbbá a lemezek befogása a BME Gyártástudomány és -technológia Tanszéken lévő F1- es fúrókészülékben történt, ahol csavarokkal rögzíthetők egymáshoz a lemezek.

Kísérlettervezésnél a *Central Composite Inscribed* (CCI) típusú kísérlettervezést használtam, ahol a kísérleti alappontot ötször ismételtem meg. A kísérlet során faktorként a forgácsolási sebességet (v_c) és az előtolást (f) variáltam. A kísérletterv a **4.3. táblázatban** található.

Faktorok	Faktorszintek						
		-2 ^{1/2}	-1	0	+1	+2 ^{1/2}	
Forgácsolási sebesség	v _c (m/min)	100	114,65	150	185,36	200	
Előtolás	f(mm)	0,05	0,065	0,1	0,135	0,15	

4.3. táblázat Az alkalmazott kísérletterv

A 4.3. táblázatban látható kísérlettervet mindkét lehetséges lemezsorrendben elvégeztem.

4.3 Mérőeszközök és szoftverek

Kísérlet során végeztem erőmérést Kistler 9257B erőmérővel. A mérési frekvencia 7 kHz volt, amelyet a maximális fordulatszám alapján határoztam meg. Erőmérés során tengely irányú (F_z) forgácsoló erőkomponenst mértem. Az erőmérés kiértékelését Minitab® szoftverben készítettem.

A rétegközi sorja mérését Keyence VR-5000 típusú konfokális mikroszkóppal végeztem. Amely mikroszkópnak mérési pontossága $\pm 2,5 \mu m$, ismétlési pontossága $\pm 0,4 \mu m$. A **4.1. ábrán** található a kísérleti- és a mérési környezet.

4.1. ábra (a) Kísérleti- és a (b) mérési környezet

A **4.1. ábrán** látható kísérleti- (a) és mérési (b) környezet az **1. sz. mellékletben** található kísérleti- és a mérési jegyzőkönyvben részletesen kerülnek jellemzésre.

5 Eredmények és következtetések

Ebben a fejezetben a mérési eredmények és az azokból levonható következtetések kerülnek ismertetésre.

5.1 Erőmérés eredménye

Bár a dolgozatban későbbiekben bemutatott módszer nem használja fel a forgácsoló erők alakulását, de az irodalomkutatás alapján látható, hogy léteznek olyan empirikus sorjabecslő képletek, amelyek a forgácsoló erőkből adnak becslést a keletkezett sorja egyes paramétereire. Ezért elengedhetetlennek tartom a forgácsoló erők alakulásának vizsgálatát. Az erőmérés eredményeként kapott szűretlen adatokon két különböző módszerrel is végeztem szűrést, amit az **5.1. ábra** szemléltet.

5.1. ábra Erőmérés feldolgozás

~ 20 ~

Az **5.1. ábra** alapján végeztem szűrést Gyors Fourier-transzformáció (FFT) és mozgó átlag módszerrel. A Gyors Fourier-transzformáció (FFT) módszer alkalmazásakor a szűrési frekvenciát (f_{FFT}) úgy definiáltam, hogy minden szerszámfordulat után két jel adódjon szűrést követően. A mozgó átlag esetében pedig az az intervallum, amelyen az átlagolást végzi a módszer, az megegyezik a szűretlen jel hullámhosszával (T). A kapott eredmények jellegre mindkét szűrési módszernél megegyeznek ezért csak az FFT módszerrel kapott eredményeket ismertetem.

Az **5.2. ábrán** látható mindkét lemezsorrendnél a mért erő ugyanazon technológiai paraméterek mellett.

5.2. *ábra Mért erő karakterisztikája (a) Al/UD-CFRP és (b) UD-CFRP/Al lemezsorrendnél* Az **5.2.** *ábra* alapján megállapítható az UD-CFRP-ben nagyságrendileg csak a fele a tengely irányú erőkomponens (*F*_z). Ami meglepő az erődiagrammok eredményében, hogy UD-CFRP/Al (b) esetén minden esetben tapasztalható volt rétegközben (3) egy erőmaximum, ami a tisztán alumíniumot forgácsoló részhez (4) képest 200 N-nal nagyobb. Ez azt jelenti, hogy ez egy hirtelen felfutó erő és ez hatással lehet a rétegközi sorjaképződésre. Ez a csúcs csak kisebb mértékben jelentkezik akkor, amikor az Al/UD-CFRP rétegsorrendnél (a) megkezdődik a forgácsolás. A **2. sz. mellékletben** látható az összes furatra kapott erő diagram.

A CCI kísérletterv alkalmas arra, hogy a vizsgált tartományban kiszámolhatóvá váljon egyes paraméter kombinációk esetén a vizsgált jellemző. Ezért gyakran alkalmazott módszer a technológiai paraméterek hatásainak szemléltetése térbeli felületként. Az **5.3. ábrán** szemléltetésre kerül a kísérletben vizsgált faktorok (v_c , f) hatása a tengely irányú erőkomponensre (F_z).

5.3. ábra Erőmérés eredmények: (a) Al lemez felül, (b) Al lemez alul

Az 5.3. ábrán egyértelműen látható, hogy mindkét lemezsorrend esetén az előtolásnak (*f*) volt nagyobb hatása a tengely irányú erőkomponensre. A varianciaanalízis (ANOVA) alapján is az ellőtolásnak (*f*) van szignifikáns hatása a tengely irányú erőkomponensre (F_z), $\alpha = 0,05$ szignifikancia szint mellett.

5.2 Sorjabecslő módszer kivitelezése a mérési adatok alapján

5.2.1 Paraméterek összefüggésének keresése sorjabecslő módszernél

Az előző fejezetben ismertetett Keyence VR-5000 típusú konfokális mikroszkóppal végzett mérést követően a mérőgép szoftverének segítségével a mért adatok .csv formátumba lettek kimentve. Így a furatokat jellemző tömbök jöttek létre, ami X- és Y-koordinátákhoz rendel hozzá különböző jellemzőket (*h*, *RGB*). Ezeknek a tömböknek felbontása 15,676 μm. Az adatok beolvasását és vizsgálatát Microsoft Excel® programmal végeztem. Minden furat esetén két különböző tömböt vizsgáltam. Az egyik tömbben a koordinátákhoz tartozó magasság, míg a másikban a fekete-fehér színátmenetes mikroszkóppal készített kép *RGB* értéke volt. A dolgozatban az *RGB* (Red Green Blue) érték alatt minden esetben egy fekete-fehér színátmenetes kép *RGB* értékét értem, ami azt jelenti, hogy mind a három színárnyalat azonos értéket kap, így végig csak egy értékként hivatkozok a színárnyalatra.

A dolgozat alapfeltevése alapján a sorja jellemzése 2D-s mikroszkópi kép alapján abban az esetben elvégezhető, ha a sorjamagasság (*h*) és a mikroszkóppal készített kép pixeljeinek *RGB* értéke egymással összefügg. Az **5.4. ábrán** kerül szemléltetésre a két jellemző összefüggése.

~ 22 ~

5.4. ábra Sorjamagasság és a mikroszkóppal készített kép összefüggése

Az **5.4. ábra** alapján felfedezhető, hogy vizuálisan nem észrevehető az összefüggés, de ha egy diagramon kerül ábrázolásra a mikroszkópi kép *RGB* értéke a sorjamagasság függvényében, akkor felfedezhető a két jellemző összefüggése. Az 1. rész az, amit vizsgálni lehet 2D-s mikroszkópi kép alapján. Ez az a rész, ahol az *RGB* érték jelentősen csökken a sorjakeresztmetszet meredekségének megváltázásának hatására. A 2. szakasz az, amit jelen mérési beállítás mellet nem lehet vizsgálni, mivel az *RGB* érték beáll egy megközelítőleg állandó 30-40 közötti értékre. Ezért ennek a szakasznak közelítése a mérési pontokra illesztett polinomok segítségével történik.

A furatokon 20°-onként felvett mérési irányokban vizsgáltam a furatokat. Elsőként itt is a sorjamagasságot vetettem össze az *RGB* értékkel. Az **5.5. ábra** a harmadik furat első mérési irányában készült Al/UD-CFRP rétegsorrend esetén.

5.5. ábra (a) Sorjamagasság és (b) RGB érték egy mérési irányban

Az 5.5. ábrán felfedezhető, hogy az RGB (b) érték és a sorjamagasság (a) között van kapcsolat. Az RGB érték változása a sorjamagasság meredekségének megváltozásával van összefüggésben. Ezt indokolja a két mennyiség közötti fizikai kapcsolat is. A jelenség magyarázata a következő: A mikroszkópi fény a munkadarab felületéhez képest közel merőlegesen esik be (amennyiben többek között eltekintünk például a mért lemezek síklapúságától). Ennek a fénynek nagyrésze (~60-70%) visszaverődik az alumínium lemezről [38], így a mért felület meredeksége hatással van a mikroszkóp lencséihez érkező fényre. Így az érzékelt színárnyalattal is összefügg a felületrész meredeksége. A fizikai tartalmat figyelembe véve egyértelmű, hogy miért nem mutatkozik meg az RGB értéken mikor a sorja maximális magasságát elérve csökkeni kezd a sorjamagasság. Ekkor a meredekség abszolútértéke nem változik, ami a visszavert fény mennyiségét meghatározza. A **3. sz. mellékletben** láthatók a h-b és a RGB-b diagramok.

Az **5.6. ábrán** látható az előzőleg is vizsgált furat minden mérési irányában a sorjamagasság és az *RGB* érték összefüggése.

5.6. ábra Sorjamagasság összefüggése az RGB értékkel minden mérési irányban

Az **5.6. ábra** egyértelműen megmutatja, hogy alakra minden mérési irány megegyezik, viszont egyes szakaszokon nagy eltérések tapasztalhatók a mérési irányok között. Ennek a hibának egy része a lemez síklapúsági hibájából ered, amely korrigálva lett. Továbbá látszik, hogy a sorjamagasság és az *RGB* összefüggésének közelítésére egy másodfokú polinom elegendő, mivel legtöbb esetben nem tartalmaznak az egyes mérési irányokba kapott pontokra illesztett görbék a módszer szempontjából jelentős inflexiókat.

5.2.2 Mért adatokra görbeillesztés a sorjabecslő módszer alapján

Minden mérési irányba kapott sorjamagasság értékeket szükséges ábrázolni az *RGB* függvényében. Itt csak azon mérési pontok vannak ábrázolva, ahol az *RGB* értéke eléri a 40et. Valamint ezekre a mérési pontokra kell illeszteni a másodfokú polinomokat. A görbék illesztése 95%-os szignifikancia szint mellett történt. Az **5.7. ábrán** látható az eddigiekben is vizsgált furat első- és második mérési irányba mért pontokra illesztett görbéje.

5.7. ábra Mérési pontokra illesztett másodfokú polinomok

Az 5.7. ábra jól szemlélteti a görbeillesztés jóságának szélsőségeit. A két mérési irányba tapasztalható igen nagy eltérés a sorja inhomogenitásából származik, ami a mikroszkópi eredmények alapján látható. Ebben az esetben a polinomok együtthatóinak előjele sem egyezik meg. Ez kilenc mérési irány esetében csak a második irányra igaz, ezért ezt az irányt figyelmen kívül hagyom a későbbi számítások során. Továbbá azokat az eredményeket is figyelmen kívül hagyom, ahol az illesztett görbe determinációs együtthatója (R^2) 0,1 alatti. Mivel ezek nagyban torzítanák a sorjaillesztési módszer használhatóságának vizsgálatát. Így az összes furatot tekintve a 234 illesztett görbe közül összesen 17 került kiszűrésre. A

determinációs együtthatók szórásának vizsgálata igen fontos a tárgyalt sorjabecslő módszernél, ezért az **5.8. ábrán** ez kerül szemléltetésre.

5.8. ábra Determinációs együttható eloszlása (b) Al/UD-CFRP- és (b) UD-CFRP/Al rétegsorrendben

Az **5.8. ábra** alapján látható, hogy igen nagy szórást mutat a görbeillesztés determinációs együtthatója (Al/UD-CFRP lemezsorrendnél 0,23, míg UD-CFFRP/Al lemezsorrend esetében 0,27). Ezért érdemes vizsgálni annak hatását, hogy a szélső tartományokba eső részek hogyan befolyásolják az eredményeket. Szűrés nélkül a determinációs együttható Al/UD-CFRP lemezsorrendnél R^2 = 0,527, míg UD-CFFRP/Al lemezsorrend esetében R^2 = 0,534.

Az **5.7. ábrán** látható illesztett másodfokú polinomok együtthatóinak átlagát vettem és ebbe a polinomba behelyettesített *RGB* értékekkel történik a sorjamagasság becslés, azon tartományba, ahol *RGB*<40. Ekkor fontos összevetni a mért sorjamagasságokat a becsült értékekkel. Az **5.9. ábrán** ez látható, a többi diagram a **4. sz. mellékletben** láthatóak.

5.9. ábra Mért és becsült eredmények összehasonlítása

Az **5.9. ábrán** látható, hogy a becsléssel kapott értékek jól közelítik a mért értékeket. Ezen a furaton a nyolc mérést (második mérési irány kiszűrésre került) tekintve a determinációs együtthatók átlag értéke $R^2_{\text{átl}}$ = 0,729 (σ = 0,132). Ez az érték nagyobb, mint ugyanezen mérésekre kapott determinációs együttható, amely illesztett görbékből származik. Az **5.1.** táblázatban van feltüntetve az egyes mérési irányoknál az illesztett másodfokú polinom- és az eredményként kapott összehasonlítás determinációs együtthatója.

5.1.	táblázat	Deter	minációs	együtthatók	vizsgal	ata

	Mérési irányok										
	1	2	3	4	5	6	7	8	9	Átlag	Szórás
1. determinációs együttható * 2. determinációs	0,874	-	0,773	0,753	0,832	0,826	0,299	0,451	0,775	0,698	0,183
együttható **	0,854	-	0,858	0,662	0,664	0,828	0,466	0,656	0,845	0,729	0,132

*A mért adatoknál a *h* meghatározása *RGB* függvényében. Itt a determinációs együttható a másodfokú polinom közelítését mutatja meg a mért adatokhoz képest.

**Az adott koordinátához tartozó mért pontok és a becsült pontok közötti illeszkedést "jóságát" jelzi.

Az 5.1. táblázat alapján látható, hogy másodfokú polinommal 95%-os szignifikancia szint mellett a determinációs együtthatók átlag értéke R^2 = 0,729-nak adódott σ = 0,132-os szórás mellett. Az is látható, hogy azon mérési irányok (7-8), amelyek az 1. determinációs együtthatónál nagyon alacsony értékűek (<0,5), azok jelentősen jobban becsülhetők, mint az az eredetileg *h/RGB* alapján várható lett volna. Ez azt jelentheti a módszer alkalmazhatóságára nézve, hogy egy kevésbé szigorú szűréssel is igen jó közelítés érhető el, úgy, hogy az eredetileg is jól illeszthető irányokban sem romlik jelentősen a determinációs együttható.
5.2.3 Becslő módszerrel nem leírható tartományokra illesztett görbék

A korábbiak alapján csak azon tartományokra volt használható a sorjabecslő módszer, ahol az *RGB* érték kisebb, mint 40. Így még két tartományon kell görbét illeszteni. Az **5.10. ábrán** a különböző tartományok vannak elválasztva.

5.10. ábra A sorja különböző tartományai

Az **5.10. ábra** alapján a b_1 jelöli az ismertetett módszerrel becsülhető tartományt. A b_2 és b_3 tartományoknál a mért adatokra illesztettem polinomokat és ezeknek együtthatóit átlagoltam. A polinomokat itt is az eredeti görbékben lévő inflexiók száma alapján határoztam meg. Ez azért fontos, mert így kevésbé adódhatnak olyan sorjaalakok eredményül, amelyek messze állnak egy valódi sorja alakjától. Például a b_3 szakaszt tekintve látható, hogy a valódi alakja egy másodfokú görbéhez közelíthet leginkább (további, a diagramon nem látható pontok is rendelkezésre állnak így magasabb fokú polinomokhoz is illeszthető) hiába eredményeznének a magasabb fokú polinomok jobb illeszkedést. Így a b_2 szakaszt egy negyedfokú-, míg a b_3 szakaszt egy másodfokú polinommal közelítettem. Továbbá a b_2 és b_3 esetén a nulladik kitevőhöz tartozó együttható értéke az előző szakasz végpontja, különben nem beszélhetnénk összefüggő görbéről. Így már a sorja teljes tartománya meghatározásra került.

5.3 Sorjabecslő módszerrel kapott eredmények

Az előző alcímben leírt lépések eredményeként a kilenc mérési adatból nyolc mérési eredmény adódott (a második mérési irány jelentősen eltért a többi sorjától, így csak nagy

hibával lehetne közelíteni). Az eredmények leginkább a mért és a becsült görbék egy diagramon való ábrázolásával szemléltethetők. Ez látható az **5.11. ábrán**.

5.11. ábra Mért és becsült sorja az első mérési irányban

Az **5.11. ábra** alapján látható, hogy *h*= 0,01 mm sorjamagasságig igen jó közelítés, majd megnő az eltérés. Ez abból adódik, hogy itt már nem a 2D-s mikroszkóppal készített kép alapján becslő módszer, hanem csak a mért sorjamagasságokra polinom illesztése és azok együtthatóinak átlagolása történt. Az igen nagy különbség a két módszer között, hogy a 2D-s mikroszkópi kép alapján becslő módszer figyelembe tudja venni a sorja helyi alaksajátosságát, míg a másik módszer csak egy átlag görbe alakot tud illeszteni. De vannak irányok, ahol ez a módszer is igen jó közelítést ad. A harmadik mérési irányba egy ilyen jó közelítés látható az **5.12. ábrán**.

5.12. ábra Mért és becsült sorja a harmadik mérési irányban

Az **5.12.** ábrán mindhárom szakaszban alakra jó közelítés látható, de mint majd későbbiekben látható ez nem jelenti azt, hogy a sorjakeresztmetszet (A_s) esetén is ez jobb közelítés, mint az első mérési irány esetében. A többi mérési iránynál kapott diagram az **5.** sz. mellékletben látható.

A dolgozat kiindulási célja egy sorjakeresztmetszet becslés volt. Az előző bekezdésben látható volt, hogy a sorjakeresztmetszet nem adja vissza megfelelően a sorjaalakot, de az irodalomkutatás során látható volt, hogy a sorja jellemzése során mégis fontos mérőszám a sorja terület és a sorjatérfogat, mivel ezek a mérőszámok adják meg sok esetben az eltávolítandó anyagmennyiséget. Igaz, a vizsgált szendvicsszerkezet esetében rétegközben nem beszélhetünk eltávolítandó anyagmennyiségről, de a dolgozatban bemutatott módszer feltehetően nem csak a szendvicsszerkezeteknél teszi lehetővé a sorjavizsgálatot, hanem egyéb furatkészítés során is. Ezért érdemes bemutatni a sorjakeresztmetszet kapott eredményeket.

Sok esetben az adott eredmények összehasonlítása során nehezen megállapítható, hogy az eredmény mennyire ad pontos megközelítést. Ennek elkerülése érdekében a mért adatokat három különböző területszámítási módszerrel is kiszámítottam. Ezeket a területszámítás során illesztett alakzatok szerint jelöltem. Az illesztett alakzatok a téglalap, a trapéz és a parabola. A területszámítási módszerek is ebben a sorendben egyre pontosabbak. A sorjabecslési módszernél parabolát illesztettem minden esetben. Az **5.13. ábrán** a területszámítás eredményei láthatóak.

5.13. ábra Mért és becsült sorjakeresztmetszet összehasonlítása

Az 5.13. ábrán látható, hogy a mért sorjakeresztmetszet nagyobb szórással rendelkeznek, mint a becsült értékek. Ez a görbeillesztés során lévő átlagolásból is származik. A mért és a becsült értékek elétérése igen változatos mértékű, de ez irodalomkutatás során is már látható volt, hogy a sorjavizsgálatnál legtöbb esetben jelentősen eltérnek az egyes irányok. illesztésével Számszerűsítve a parabola kapott eredmények mért esetben $A_{\rm sm}$ = 4658,052 μ m², míg becsült esetben $A_{\rm sb}$ = 4090,164 μ m². A becsült eredmények jóságának átlaga $A_{s,becsült}/A_{s,mért} = 0,902$, míg ennek a jellemzőnek szórása $\sigma = 0,156$. Mivel a szakirodalomban legtöbb esetben a felállított modelleket sorjamagasságra vizsgálják, ezért szükséges összehasonlítani a kapott sorjamagasságokat.

A kutatás jelenlegi fázisában a sorjamagasság vizsgálata nem jellemzi a 2D-s mikroszkópi kép alapú sorjabecslő módszert, mivel azok a szakaszok nem esnek bele abba a tartományba, ahol a görbe meredeksége nagyobb. Így inkább a sorjamagasságok összevetése csak a mért pontokra illesztett polinomokat (b_2 és b_3) jellemzi. A mért és a becsült sorjamagasságok láthatóak az **5.14. ábrán**.

5.14. ábra Mért és becsült sorjamagasságok összehasonlítása

Az **5.14. ábrán** látható, hogy a becslési módszer jelen beállítások mellett nem követi le megfelelően a különböző sorjamagasságokat. A 6-9 mérési irányoknál pedig csak igen kicsi eltérés (~0,001 mm) van a becsült sorjamagasságokban.

6 Összefoglalás és kitekintés

Ebben a fejezetben ismertetem az elvégzett kutatás során elért fontosabb eredményeket és ezek alapján összegzem a továbblépési lehetőségeket, amik alapján folytatódhat a megkezdett kutatómunka.

6.1 Összefoglalás

A dolgozatban egy a forgácsolási technológiák során gyakran felmerülő problémára kerestem a választ. Ez a forgácsolásindukált sorja mérése furatkészítés során. A szakirodalmak alapján tapintós érdességmérővel és konfokális mikroszkóppal történhet. Mindkettő jelentős hátrányának (idő, költség és pontosság) kiküszöbölése hívta életre dolgozatom témáját, ahol az alapelképzelés szerint 2D-s mikroszkópi kép alapján becsülhetővé válnak a sorja különböző jellemzői. Ehhez az elképzeléshez kapcsolódott a BME Gyártástudomány és -technológia Tanszék egyik fő kutatási irányának számító fém/CFRP szendvicsszerkezetek vizsgálata. Ahol fontos vizsgálni а szendvicsszerkezeteknél a rétegközi sorját. Így dolgozatomban Al/UD-CFRP szendvicsszerkezeteknél vizsgáltam a rétegközi sorját az Al lemezeken. Kiindulásként problémát jelentett, hogy a szakirodalom áttekintése során a nyílt forrású szakirodalomban nem találtam olyan kutatást, ahol hasonló mérési módszert vizsgáltak, így a dolgozatomban tárgyalt mérési módszer ezen a területen újszerűnek mondható.

A dolgozat során elsőként kidolgoztam egy algoritmust, ami alapján kivitelezhető a sorjamérési módszer. Majd tárgyaltam a sorjabecslő módszer hibaforrásait és limitációit. Ahol jól láthatóvá vált, hogy a becslő módszernél sok nehézség adódik, amivel szükséges foglalkozni. Ennek hatására ez a becslő módszer egy hosszabb kidolgozást igényel, ami jelen dolgozat keretei között nem kivitelezhető. Így arra fókuszáltam, hogy a dolgozat eredményeként láthatóvá váljon a módszer alkalmazhatósága.

Végeztem fúrási kísérletet CCI (Central Composite Inscribed) kísérletterv alapján. A dolgozat kidolgozása nem tette volna szükségessé a CCI kísérlettervet, de a későbbi vizsgálatokra való tekintettel ez bizonyult előnyösnek. Így két faktort variáltam öt szinten a szakirodalmi ajánlásokat figyelembe véve. A forgácsolási sebességet v_c = 100-175 m/min-, míg az előtolást *f*= 0,05-0,15 mm/ford tartományban vizsgáltam.

A sorjabecslő módszert egy furaton lévő több mérési irányban vizsgáltam. Elsőként az adott mérési koordinátához tartozó sorjamagasság (*h*) és a mikroszkópi kép színárnyalata (*RGB*) közötti összefüggést kerestem. Itt egyértelműen látszódott, hogy másodfokú polinommal jól közelíthető az *RGB* függvényében a sorjamagasság. Itt meghatároztam 95%-

~ 33 ~

os szignifikancia szint mellett a görbék determinációs együtthatóit (R^2). Al/UD-CFRP rétegsorrendnél a determinációs együtthatók átlaga R^2 = 0,698, míg annak szórása σ = 0,183.

Ezt követően a kapott közelítő összefüggéssel határoztam meg az *RGB* értékek alapján az adott pixelekhez tartozó sorjamagasságot. Itt 95%-os szignifikancia szint mellett a determinációs együtthatók átlaga R^2 = 0,729, míg annak szórása σ = 0,132. A módszer jelenlegi kidolgozottsági szintje mellett ez a determinációs együttható érték igen magasnak számít. Azonban a sorja csak egy adott tartománya volt vizsgálható (RGB<40) jelen kísérleti és mérési beállításoknál. Így a kimaradt tartományokat a mérési pontokra illesztett polinomok együtthatóinak átlagolásával kapott polinomokkal közelítettem. Így már becsülhetővé vált a sorja teljes tartománya. Egy mért és egy becsült sorja látható a **6.1. ábrán**.

6.1. ábra Mért és becsült sorja a nyolcadik mérési irányban

A **6.1. ábra** alapján látható, hogy ebben a mérési irányban igen jó a módszerrel becsült görbe közelítése.

Végül meghatároztam a kapott görbék alapján a sorjakeresztmetszetet. A területszámítás során parabolát illesztve a jóság átlaga $A_{s,becsült}/A_{s,mért}=0,902$ -nak, míg ennek a jellemzőnek szórása σ = 0,156-nak adódott.

A dolgozat eredményeit összegezve látható, hogy érdemes továbbfejleszteni a becslő módszert, mivel jelen fejlettségi szintjén is igen jó közelítéssel becsülhetők segítségével a sorja jellemzői.

6.2 Kitekintés

A kutatás során több nehézség és kihívás is felmerült, de ezek közül a dolgozat véges kerete miatt nem mindegyik került vizsgálatra. Viszont a nem vizsgált tényezőknek is igen nagy jelentősége lehet, így ezek mentén szükséges elindulni a további kutatások kiindulásánál.

A vizsgálandó kihívások a következők:

- A sorjabecslő módszer érzékeny a felületi hibákra, amik csak az *RGB* értéket változtatják meg nagy mértékben, de a sorjamagasságot nem.
- A dolgozatban a sorját csak vonalszerűen, egy mérési irány mentén vizsgáltam, de ha a sorját egy 3D-s képen ábrázoljuk, akkor látható, hogy nem csak mérési irányba változik a sorja meredeksége. Így érdemes vonalszerű helyett felületszerű problémának kezelni a sorja becslést.
- Az eredményekből látszódott, hogy a 2D-s kép alapú becslés pontosabb eredményt ad, mint a sorjamagassági értékekre illesztett polinomok. Így fontos vizsgálni a mikroszkóp mérési beállításainak hatását a 2D-s módszerrel becsülhető tartomány nagyságára nézve.
- A dolgozatban csak egy furaton készítettem el teljesen a sorjabecslő módszert, így a becslő és közelítő görbék is csak ezen kilenc mérési irány alapján történtek meghatározásra. Így szükséges vizsgálni, hogy mekkora adatmennyiség esetén válik viszonylag alacsony hibaforrássá az alulmintavételezés.
- Az eredmények szórásából látható volt, hogy jelentősen javíthatja a becslés pontosságát, ha az átlag sorja alaktól jelentősen eltérő sorják nem vesznek részt a polinomok közelítő összefüggéseinek meghatározásában.

7 Felhasznált források

- [1] Z. yuan Jia, C. Chen, F. ji Wang, C. Zhang, and Q. Wang, "Analytical model for delamination of CFRP during drilling of CFRP/metal stacks," *International Journal of Advanced Manufacturing Technology*, vol. 106, no. 11–12, pp. 5099–5109, Feb. 2020, doi: 10.1007/s00170-020-05029-y.
- S. Vigneshwaran, M. Uthayakumar, and V. Arumugaprabu, "Review on Machinability of Fiber Reinforced Polymers: A Drilling Approach," *Silicon*, vol. 10, no. 5, pp. 2295–2305, Sep. 2018, doi: 10.1007/s12633-018-9764-9.
- [3] L. Sorrentino, S. Turchetta, and C. Bellini, "A new method to reduce delaminations during drilling of FRP laminates by feed rate," *Compos Struct*, vol. 186, pp. 154– 164, Feb. 2018.
- [4] J. Liang and Y. He, "Study on the evolution and suppression strategy of the interlayer gap in the drilling of CFRP/Al stacked materials," *J Manuf Process*, vol. 92, pp. 329–337, Apr. 2023, doi: 10.1016/j.jmapro.2023.02.010.
- [5] D. K. Rajak, P. H. Wagh, and E. Linul, "Manufacturing technologies of carbon/glass fiber-reinforced polymer composites and their properties: A review," *Polymers*, vol. 13, no. 21. MDPI, Nov. 01, 2021. doi: 10.3390/polym13213721.
- [6] A. Pramanik *et al.*, "Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys – A review," *Composites Part A: Applied Science and Manufacturing*, vol. 101. Elsevier Ltd, pp. 1–29, Oct. 01, 2017. doi: 10.1016/j.compositesa.2017.06.007.
- [7] G. Szabó, "Alumíniumötvözetek típusai és feldolgozásuk félfolyamatos öntést követő hengerléssel," 2019.
- [8] R. Angelone, A. Caggiano, I. Improta, L. Nele, and R. Teti, "Characterization of hole quality and temperature in drilling of Al/CFRP stacks under different process condition," in *Procedia CIRP*, Elsevier B.V., 2019, pp. 319–324. doi: 10.1016/j.procir.2019.02.074.
- [9] L. Kala Koyyagura and P. Rao Karanam, "Influence of cutting conditions in drilling of CFRP/Al stacked composites," 2021.
- [10] M. Zhao, F. Wang, R. Fu, K. Sun, C. Du, and J. Cui, "Drilling study on CFRP/Al stack with different CFRP thickness using chip-breaking step drill bit," *J Manuf Process*, vol. 90, pp. 300–309, Mar. 2023, doi: 10.1016/j.jmapro.2023.01.050.
- [11] csongor Pereszlai, "Szénszállal erősített polimer komozitok furatforgácsolási technológiáinak fejlesztése és optimalizálása," *BME Gépészmérnöki Kar Gyártástudomány Tanszék*, 2022.
- K. K. Panchagnula and K. Palaniyandi, "Drilling on fiber reinforced polymer/nanopolymer composite laminates: A review," *Journal of Materials Research and Technology*, vol. 7, no. 2. Elsevier Editora Ltda, pp. 180–189, Apr. 01, 2018. doi: 10.1016/j.jmrt.2017.06.003.
- [13] N. Geier, J. P. Davim, and T. Szalay, "Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review," *Composites Part A: Applied Science and Manufacturing*, vol. 125. Elsevier Ltd, Oct. 01, 2019. doi: 10.1016/j.compositesa.2019.105552.
- [14] F. ji Wang, J. wei Yin, J. wei Ma, Z. yuan Jia, F. Yang, and B. Niu, "Effects of cutting edge radius and fiber cutting angle on the cutting-induced surface damage in machining of unidirectional CFRP composite laminates," *International Journal of Advanced Manufacturing Technology*, vol. 91, no. 9–12, pp. 3107–3120, Aug. 2017, doi: 10.1007/s00170-017-0023-9.

- [15] N. Geier, "Egyirányban szénszállal erősített polimer (UD-CFRP) kompozit anyagok forgácsolt alaksajátosságainak mikro- és makrogeometriai vizsgálata és jellemző mérőszámrendszerének kidolgozása," BME Gépészmérnöki Kar Gyártástudomány Tanszék, 2019.
- [16] N. Geier, J. Xu, C. Pereszlai, D. I. Poór, and J. P. Davim, "Drilling of carbon fibre reinforced polymer (CFRP) composites: Difficulties, challenges and expectations," in *Procedia Manufacturing*, Elsevier B.V., 2020, pp. 284–289. doi: 10.1016/j.promfg.2021.07.045.
- [17] R. Horváth, "Öntött alumínium ötvözetek forgácsolhatóságának elemzése külső hengeres felületek finomesztergálásánál," 2015.
- [18] Z. Maros, "Színesfémek forgácsolása," Nemzeti tankönyvkiadó, 2009.
- [19] J. Xu and M. El Mansori, "Experimental study on drilling mechanisms and strategies of hybrid CFRP/Ti stacks," *Compos Struct*, vol. 157, pp. 461–482, Dec. 2016, doi: 10.1016/j.compstruct.2016.07.025.
- [20] Q. An, J. Dang, J. Li, C. Wang, and M. Chen, "Investigation on the cutting responses of CFRP/Ti stacks: With special emphasis on the effects of drilling sequences," *Compos Struct*, vol. 253, Dec. 2020, doi: 10.1016/j.compstruct.2020.112794.
- [21] X. Y. Qiu *et al.*, "Influence of main cutting edge structure on hole defects in CFRP/titanium alloy stacks drilling," *J Manuf Process*, vol. 69, pp. 503–513, Sep. 2021, doi: 10.1016/j.jmapro.2021.07.061.
- [22] B. Zhong, F. Zou, Q. An, M. Chen, H. Zhang, and C. Xie, "Experimental study on drilling process of a newly developed CFRP/Al/CFRP co-cured material," *J Manuf Process*, vol. 75, pp. 476–484, Mar. 2022, doi: 10.1016/j.jmapro.2021.12.062.
- [23] L. Zhang, Z. Liu, W. Tian, and W. Liao, "Experimental studies on the performance of different structure tools in drilling CFRP/Al alloy stacks," *International Journal of Advanced Manufacturing Technology*, vol. 81, no. 1–4, pp. 241–251, Oct. 2015, doi: 10.1007/s00170-015-6955-z.
- [24] International Standards ISO 13715, "Second edition," 2000.
- [25] L. Pilný, L. De Chiffre, M. Píška, and M. F. Villumsen, "Hole quality and burr reduction in drilling aluminium sheets," *CIRP J Manuf Sci Technol*, vol. 5, no. 2, pp. 102–107, 2012, doi: 10.1016/j.cirpj.2012.03.005.
- [26] G. Póka, "Forgácsvastagság hatása a sorjaképződésre síkmarásnál," 2021.
- [27] J. Leopold and G. Schmidt, "Methods of burr measurement and burr detection," *VDI Ber*, vol. 1860, pp. 223–229, 2004.
- [28] Mahr katalógus, "https://precimer.hu/katalogusok/mahr/mahr_2022/mahr-feluletierdessegmerok.pdf."
- [29] E. Bahçe and B. Özdemir, "Burr Measurement Method Based on Burr Surface Area," *International Journal of Precision Engineering and Manufacturing - Green Technology*, vol. 8, no. 4, pp. 1287–1296, Jul. 2021, doi: 10.1007/s40684-020-00228-0.
- [30] C. Hellstern and G. W. Woodruff, "Investigation of Interlayer Burr Formation in the Drilling of Stacked Aluminum Sheets," 2009.
- [31] H. Li, G. He, X. Qin, G. Wang, C. Lu, and L. Gui, "Tool wear and hole quality investigation in dry helical milling of Ti-6Al-4V alloy," *International Journal of Advanced Manufacturing Technology*, vol. 71, no. 5–8, pp. 1511–1523, Mar. 2014, doi: 10.1007/s00170-013-5570-0.
- [32] N. Mondal, S. Mandal, and M. C. Mandal, "FPA based optimization of drilling burr using regression analysis and ANN model," *Measurement (Lond)*, vol. 152, Feb. 2020, doi: 10.1016/j.measurement.2019.107327.

- [33] E. Kilickap, "Modeling and optimization of burr height in drilling of Al-7075 using Taguchi method and response surface methodology," *International Journal of Advanced Manufacturing Technology*, vol. 49, no. 9–12, pp. 911–923, Aug. 2010, doi: 10.1007/s00170-009-2469-x.
- [34] E. Franczyk, Ł. Slusarczyk, and W. Zebala, "Drilling burr minimization by changing drill geometry," *Materials*, vol. 13, no. 14, Jul. 2020, doi: 10.3390/ma13143207.
- [35] V. N. Gaitonde, S. R. Karnik, B. T. Achyutha, and B. Siddeswarappa,
 "Methodology of Taguchi optimization for multi-objective drilling problem to minimize burr size," *International Journal of Advanced Manufacturing Technology*, vol. 34, no. 1–2, pp. 1–8, Aug. 2007, doi: 10.1007/s00170-006-0571-x.
- [36] A. M. Mandra, J. Jiang, & Fengfeng, and J. Xi, "A new burr formation model for drilling with tool wear", doi: 10.1007/s00170-021-07031-4/Published.
- [37] A. Abdelhafeez Hassan, S. L. Soo, D. K. Aspinwall, D. Arnold, and A. Dowson, "An analytical model to predict interlayer burr size following drilling of CFRPmetallic stack assemblies," *CIRP Annals*, vol. 69, no. 1, pp. 109–112, Jan. 2020, doi: 10.1016/j.cirp.2020.04.038.
- [38] Marvin J. Weber, *Handbook of optical materials*. Washington, D.C.: CRC PRESS, 2003.

Mellékletek jegyzéke

1.	sz. melléklet: Kísérleti és mérési jegyzőkönyv	2
2.	sz. melléklet: Erőmérés eredménye	7
3.	sz. melléklet: Mért furatokhoz tartozó h-b és RGB-b diagramok	
4. össz	sz. melléklet: Mért és 2D-s mikroszkópi kép alapján becsült értékek zehasonlítása	94
5.	sz. melléklet: Eredményként adódó mért és becsült értékek összehasonlítása	

1. sz. melléklet: Kísérleti és mérési jegyzőkönyv

1.1. Kutatás célja

Al/UD-CFRP szendvicsszerkezet rétegközi sorjaképződés vizsgálata.

1.2. Kísérleti környezet

- 1.2.1. Felhasznált gépek, szerszámok, műszerek és eszközök
 - Nilfisk GB733 ipari porszívó
 - Kondia B640 háromtengelyes CNC marógép
 - TIVOLY POLARIS 150 Xtreme Ø10 csigafúró
 - Kistler 9257B erőmérő
 - Jelerősítő 5070
 - Jelátalakító: National instrument USB-4431
 - Labwiev program
 - F1 fúrókészülék
 - UD-CFRP 5mm vastag vinilészter mátrix (Zoltek-től Farkas Balázson keresztül)
 - Alumínium ötvözet 5mm vastag EN AW 6082

1.2.2. Rögzített paraméterek és körülmények

- száraz megmunkálás
- forgács elszívás

1.2.3. Faktorok

Magnovozós	Lalölás	Móntókogycóg	Értelmezési tartomány			Saintoly agóma	Vizagált azintalz	
wiegnevezes	Jeloie	viertekegyseg	Legalsó szint	Legfelső s	zint	Szintek szama	vizsgait szintek	
Előtolás	f	mm/ford	0,05	0,15	3		0,05, 0,065, 0,1, 0,135, 0,15	
Forgácsolási sebesség	Vc	m/min	100	175	3		100 (S=3183), 110,98 (S=3533), 137,5 (S=4377), 164,02 (S=5221), 175 (S=5570)	
Rétegsorrend	S	-	А	В	2		A, B	

Kutatási alapadatok			
Környezet			
Dátum:	2023. szeptember. 15.		
Helyszín:	BME "G" épület		
Hőmérséklet:			
Nyomás:			
Személyzet			
Kísérletvezető:	Markó Balázs (jegyzőkönyv)		
Laboráns 1:	Dr. Geier Norbert (gépkezelő)		

1.3. Kísérlettervezési mátrix

Sam	Furatpozíció F1	Próbatest	Próbatest Faktorok			Megjegyzés	
SSZ.	fúrókészülék	azonosító	f	Vc	S (-)		
	ben		(mm/ford)	(m/min)			
1	1	AL1 CFRP1	0,100	137,50	А		
2	2	AL1 CFRP1	0,100	175,00	А		
3	3	AL1 CFRP1	0,150	137,50	А		
4	4	AL1 CFRP1	0,100	137,50	А		
5	5	AL1 CFRP1	0,100	137,50	А		
6	6	AL1 CFRP1	0,100	137,50	А		
7	7	AL1 CFRP1	0,100	100,00	А		
8	8	AL1 CFRP1	0,065	110,98	А		
9	9	AL1 CFRP1	0,135	110,98	А		
10	10	AL1 CFRP1	0,065	164,02	А		
11	11	AL1 CFRP1	0,050	137,50	А		
12	12	AL1 CFRP1	0,100	137,50	А		
13	13	AL1 CFRP1	0,135	164,02	А		
14	1	AL2 CFRP2	0,100	137,50	В		
15	2	AL2 CFRP2	0,100	175,00	В		
16	3	AL2 CFRP2	0,150	137,50	В		
17	4	AL2 CFRP2	0,100	137,50	В		
18	5	AL2 CFRP2	0,100	137,50	В		
19	6	AL2 CFRP2	0,100	137,50	В		
20	7	AL2 CFRP2	0,100	100,00	В		
21	8	AL2 CFRP2	0,065	110,98	В		
22	9	AL2 CFRP2	0,135	110,98	В		
23	10	AL2 CFRP2	0,065	164,02	В		
24	11	AL2 CFRP2	0,050	137,50	В		
25	12	AL2 CFRP2	0,100	137,50	В		
26	13	AL2 CFRP2	0,135	164,02	В		

A: Al ötvözet felül, CFRP alul

B: CFRP felül, Al ötvözet alul

További megjegyzések:

- Töltéserősítőn méréshatár 1000N
- Erősítési tényező 100 N/V
- Mérési frekvencia: f=Nmax/60*(360/5)=6684 Hz≈7000 Hz
- Ø10 csigafúrónak kilógása 65 mm (szerszámbefogó homlokfelületétől)
- Ø10 csigafúró T9-es szerszámtárhelybe lett elhelyezve
- Fúrókészülék kiórázva rövidebbik oldala mentén: ±0,02 mm
- G54-es munkadarab nullpont
- Alumínium lemezen "x" jelölés tetején a bal alsó sarokban
- Patronos szerszámbefogó
- Program indításkor potméter 100%-on van
- Egymás után vannak a furatok
- Potméter 100%
- Szerszám kopottsági állapot szemrevételezésre került és szignifikánsan nem változott
- Az NC program futtatva volt: D/NCprograms/geier/20230915_markobalazs mappából

4

1.4. Záradék

Kísérletek vége: 2023 (év) 09 (hónap) 15 (nap) 13 (óra) 00 (perc)

A kísérleti adatok lementve és a mérési környezet eredeti állapotba visszarendezve. Amortizálódott eszközök lejelentve.

A kísérleti adatokat és a kísérleti jegyzőkönyv szkennelt változatát eljuttatom Dr. Geier Norbert-nek (geier.norbert@gpk.bme.hu).

Markó Balázs

Kísérletvezető

1.5. Mérési jegyzőkönyv

Mérés ideje: 2023. szeptember. 18. 9:00-10:00

Helyszín: BME "J" épület

Mérőeszköz: Keyence VR-5000 konfokális mikroszkóp

Mérést végezték: Markó Balázs, Dr. Geier Norbert

Mérési sorrend:

Mérési	Próbatest	Furat kísérleti	Nagyítás	Megjegyzés
sorszám	azonosító	sorszáma		
1	AL1 CFRP1	1, 2, 3, 4	38x	
2	AL1 CFRP1	5	38x	Lemaradt az első mérésről ezért külön került felvételre
3	AL1 CFRP1	6, 7, 8, 9, 10	38x	
4	AL1 CFRP1	11	38x	
5	AL1 CFRP1	12, 13	38x	
6	AL2 CFRP2	1, 2, 3, 4, 5	38x	
7	AL2 CFRP2	6, 7, 8, 9, 10	38x	
8	AL2 CFRP2	11	38x	
9	AL2 CFRP2	12, 13	38x	

Megjegyzések:

• Minden mérés esetén a lemezen vettük fel a referenciasíkot

2. sz. melléklet: Erőmérés eredménye

Mivel jellegre megegyeztek a két módszerrel a kapott diagramok, ezért csak az FFT szűréssel kapott diagramok szerepelnek itt.

2.2. Első lemezen lévő furatoknál kapott erő diagramok

• 1. furat

• 2. furat

2. furat

• 4. furat

• 5. furat

• 6. furat

• 7. furat

• 8. furat

• 9. furat

• 10. furat

• 11. furat

• 12. furat

• 13. furat

2.2. Második lemezen lévő furatoknál kapott erő diagramok

• 1. furat

• 2. furat

• 3. furat

• 6. furat

• 7. furat

• 8. furat

• 9. furat

• 10. furat

• 11. furat

• 12. furat

• 13. furat

3. sz. melléklet: Mért furatokhoz tartozó *h-b* és *RGB-b* diagramok

3.1. Első lemezhez tartozó furatok

- 3.1.1. Első lemezsorrend
 - 1. furat

• 5. furat

Ennél a furatnál eltérnek a diagrammok a nem megfelelő szűrés miatt.

• 11. furat

Ennél a furatnál mérési és szűrési hibák is adódtak. Ezért nem tartalmazza a melléklet az itt kapott eredményeket.

3.1.1. Második lemezsorrend

4. sz. melléklet: Mért és 2D-s mikroszkópi kép alapján becsült értékek összehasonlítása

Ebben a mellékletben a mért és a becsült adatok láthatók azon szakaszon, ahol alkalmazható a 2D-s alapú sorjabecslő módszer.

• 1. furat

• 4. furat

• 5. furat

• 6. furat

• 7. furat

• 8. furat

• 9. furat

5. sz. melléklet: Eredményként adódó mért és becsült értékek összehasonlítása

Ebben a mellékletben a teljes *h-b* diagramok összehasonlításra kerülnek.

• 1. furat

3. furat

•

• 4. furat

• 5. furat

• 6. furat

7. furat

• 8. furat

• 9. furat

