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ABSTRACT. A solid body, resting on a plane under gravitational force, must have at least one stable equilibrium 
point on its boundary (minimizing the distance from the center of mass) and one unstable equilibrium point 
(maximizing the same distance.)  A body with a unique stable (resp. unstable) equilibrium is monostable (resp. 
mono-unstable.) If it has at least one of these properties it is monostatic; if both, mono-monostatic. 
 
Conway and Guy [2] showed that a homogeneous polyhedron can be monostable, but that a 
homogeneous tetrahedron has at least two stable equilibrium points.  The same idea has been used [7] to 
prove that a homogeneous tetrahedron has at least two unstable equilibria. Conway [3] also claimed that 
an inhomogeneous tetrahedron may be monostable. Here we give a formal proof of this statement, and 
show that all monostatic tetrahedra have exactly 4 equilibria. We also show that certain patterns of obtuse 
dihedral (resp. face) angles are equivalent to the existence of a monostable (resp. mono-unstable) 
weighting. 
 
Our results imply that mono-monostatic tetrahedra do not exist.  In contrast, we show that for any other 
legal number of faces, edges, and vertices there is a mono-monostatic polyhedron with that face vector. 
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The curious mechanical properties of tetrahe-
dral solids were first studied in 1967 when 
Aladár Heppes constructed a homogeneous 
tetrahedron [8] that could rest stably on only 
two of its faces. John Horton Conway then 
showed [3] that for a homogeneous tetrahe-

dron, this number cannot be improved; i.e., it cannot be 
monostable.

A three-dimensional weighted convex polyhedron P 
with center of mass O supported by a fixed horizontal plane 
has three sorts of equilibria: stable (on a face), unstable (on 
a vertex), and saddle (on an edge). These correspond to lo-
cal minima, maxima, and saddle points of the radial height 
function rP,O ∶ S2 → ℝ

+ describing the boundary of P 
as a distance measured from O. The global study of such 
equilibrium points, today associated with Morse theory, 
goes back (on smooth surfaces interpreted in a Cartesian co-
ordinate system) to Arthur Cayley [1] in 1859. James Clerk 
Maxwell [9] noted a few years later that Euler’s formula 
f − e + v = 2 describes the relationship between maxima, 
saddles, and minima; applied to the radial height function 
rP,O , this links the numbers of those faces, edges, and ver-
tices of the convex polyhedron P that carry equilibria.

Conway claimed that monostability is possible for 
weighted tetrahedra, and he asked whether monostabil-
ity was possible for homogeneous simplices in higher 
dimensions. This was answered in a series of papers [3, 4, 
6] by Dawson and Finbow, who also showed [5] that even 
some regular polytopes, appropriately weighted, can be 
monostable.

Here we focus on the weighted case. We will exhibit 
conditions on a (nonregular) tetrahedron T  equivalent to 
the existence of a weighting (T,O) making it monostable. 
Surprisingly, a tetrahedron that meets this criterion can, 
with suitable weighting, be monostable on any face. We 
will also give a similar set of conditions for a tetrahedron to 
have a monounstable weighting.

Some bodies with interesting stability properties are 
very sensitive to variation in shape. The monomonostatic 
Gömböc, for instance, has a shape tolerance of about 
0.1%, and one would be hard put to distinguish a genu-
ine Gömböc from an impostor by visual inspection alone. 
Indeed, it has been shown [11] that smooth homogeneous 
monomonostatic bodies in ℝ3 are, in a quantifiable sense, 
nearly spherical. In contrast, our criteria for tetrahedra are 
qualitative, involving only the obtuseness of certain face 
and dihedral angles.

We will show that every monostable tetrahedron is 
biunstable, that is, that it has equilibria on exactly two 
vertices. Neither Gömböc-like monomonostatic weighted 
tetrahedra nor monostable tetrahedra with three or four 
unstable equilibria exist. We will also show that while in 
general, the physics of tipping bodies in three or more di-
mensions is highly complicated, the tipping of a real-world 
monostable tetrahedron can be described with minimal 
calculation, given its shape and center of mass.

The polar dual of a polyhedron P is by definition the 
set P∗ = {x ∶ x ⋅ p ≤ 1 for all p ∈ P} . If P is convex, 
then P∗∗ = P . The polar dual of a tetrahedron is also a 
tetrahedron, and there is a natural pairing between the ver-
tices of one and the faces of the other. The following result 
was proved in [7].

Proposition 1.  Let (P,O) be a weighted convex polyhedron 
with O at the origin. Then P has an equilibrium on a face if 
and only if P∗ has an equilibrium on the corresponding vertex.

Thus every monounstable weighted tetrahedron is bista-
ble. We will exhibit explicit geometric conditions for a tet-
rahedron to have such a weighting; and we can see that (in 
contrast to the monostable case) if (T,O) is monounstable 
on a vertex A, then T  cannot be weighted to be monoun-
stable on any other vertex. Finally, we will show that the 
face vector (f , e, v) = (4, 6, 4) that characterizes tetrahedra 
is unique among those of polyhedra, in that any other legal 
face vector has a representative polyhedron that may be 
weighted to make it monomonostatic.

Definitions of Equilibrium

Definition 2  ([7, 11]). Let P be a convex polyhedron, and 
let intP and bdP denote its interior and boundary. We 
select a point O ∈ intP , which we shall think of as the 
center of mass. (We are not assuming P to have uniform 
density, so this implies no restriction on O other than its 
being an interior point.)

We say that (P,O) is in equilibrium on a face, edge, or 
vertex A if there exists Q ∈ relintA (the relative interior of 
A) such that the plane perpendicular to [O, Q] at Q sup-
ports P . (Recall that the relative interior is defined in such 
a way that a singleton’s relative interior is itself, though 
its interior is empty. Thus P may be in equilibrium on a 
vertex.) We call an equilibrium stable if Q is on the relative 
interior of a face, unstable if Q is a vertex, and hyperbolic 

http://crossmark.crossref.org/dialog/?doi=10.1007/s00283-023-10294-2&domain=pdf
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(saddle) otherwise, and we denote their respective numbers 
by S, U, H.

As noted above, Maxwell showed that

These equilibria correspond intuitively to positions in 
which a physical model of (P,O) balances on a horizon-
tal surface. They also correspond to “pits,” “peaks,” and 
“passes” in the radial function of P with respect to O.

Definition 3  ([7]). We call a convex polyhedron P mono- 
stable if it has a unique stable equilibrium ( S = 1 ; there is 
exactly one face on which it will rest) and monounstable if 
it has a unique unstable equilibrium ( U = 1 ; there is exactly 
one vertex on which it can balance precariously). It is 
monostatic if S = 1 , U = 1 , or both; and monomonostatic if 
S = U = 1.

Results on Monostability
Henceforth we assume that P is a tetrahedron T = 
⊠ABCD with face A  opposite vertex A, etc. The next 
result gives a simple qualitative criterion for a tetrahedron 
to have a monostable weighting.

Obtuse dihedral angles play an important role in the sta-
bility of polyhedra: if a polyhedron can tip across an edge, 
then the dihedral angle at that edge must be obtuse. We say 
that a tetrahedron has an obtuse path A–B–C–D if it has 
three edges AB , BC , CD with obtuse dihedral angles not all 
sharing a vertex.

Theorem 4.  Let T  be a tetrahedron; then the following are 
equivalent: 

1.	 T  has an obtuse path;
2.	 there exists O such that (T,O) is monostable;
3.	 for every face F, there exists OF such that (T,OF ) is mono- 

stable on F.

Proof.  (3) ⇒ (2) trivially.
(2) ⇒ (1) : There must be enough obtuse dihedrals to let 

the tetrahedron roll from any face to the resting face. But 
no face of a tetrahedron can have three obtuse dihedrals, 
and no tetrahedron can have four obtuse dihedrals. Thus 
it must be possible to order the faces (F1,F2,F3,F4) 

(1)S −H + U = 2.

with an obtuse dihedral angle between Fn and Fn+1 for 
n = (1, 2, 3) and no other obtuse dihedral angles. But the 
edges Fn ∩Fn+1 and Fn+1 ∩Fn+2 have a point in com-
mon for n = 1, 2 . Thus the obtuse dihedrals form a path of 
length 3, as desired.

Finally, we prove (1) ⇒ (3) . If our obtuse path is 
A–B–C–D, the obtuse edges connect the faces in the order 
C –D–A –B (Figure 1). It suffices to show that for appropri-
ate OA  , the pair (T,OA) is monostable on A  , and similarly 
for B . Construct the plane perpendicular to C = △ABD 
containing the edge AB shared with D  . This cuts CD at a 
point E (Figure 1a). The tetrahedron ⊠ABCE has obtuse 
edges BC and EC . If O ∈ int ⊠ ABCE , then (T,O) has no 
stable equilibrium on C  . Next, construct the plane per-
pendicular to D = △ABC containing BC . This cuts AE 
at F, and CE is an obtuse edge of the tetrahedron ⊠BCEF 
(Figure 1b). If O ∈ int ⊠ BCEF , then (T,O) has no stable 
equilibrium on C  or D.

If we repeat this with a plane perpendicular to A  con-
taining CE , it meets BF  at G; and if OB ∈ int ⊠ CEFG , 
then (T,OB) has no stable equilibrium on A  , C  , or D  , 
so it is monostable on B (Figure 1c). Similarly, the plane 
containing the same edge but perpendicular to B meets BF  
at H; and if OA ∈ int ⊠ BCEH , then (T,OA) has no stable 
equilibrium on B , C  , or D  and is monostable on A  . 	
� ◻

Such tetrahedra exist. For instance, it can be easily veri-
fied that if

are the vertices of a tetrahedron, then A–B–C–D is an 
obtuse path, and on face D  , the tetrahedron is monostable 
with its center of mass located at O = (−2, 0, 9).

Remark 5.  We have shown that suitably weighted, a tetra-
hedron with an obtuse path is stable only on one face. We 
have not yet shown how it gets there. (As the bartender 
says at closing time, “You don’t have to go home, ladies and 
gentlemen, but you can’t stay here.”) In fact, without some 
way to dissipate energy, the tetrahedron will never settle 
onto any face but will instead bounce forever.1

When tipping over an edge (Figure 2a), a polyhedron 
has only one degree of freedom, and how it dissipates its 
energy does not affect where it ends up, as long as it does 
so effectively. However, in some cases, the body may tip not 

(A,B,C,D) =
(

(−20, 0, 0), (−1,−1, 10), (1, 1, 10), (20, 0, 0)
)

Figure 1.   Loading regions for a tetrahedron with an obtuse path.

1Fans of opera, or at least of operatic trivia, will recall the story of Eva Turner, in the role of Tosca, throwing herself from the bat-
tlements onto an over-resilient trampoline placed there by the stagehands and making several unplanned curtain calls.
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onto an edge (from where it must continue to the next face) 
but onto a vertex. Should this happen, the body temporar-
ily has not two but three degrees of freedom: the center of 
mass O moves on a sphere about A, and the body can also 
rotate about the axis AO (Figure 2b). We thus need to take 
into account torque, moment of inertia, and the position of 
O relative to the edge on which the tetrahedron lands. The 
problem might seem intractable.

Fortunately, these difficulties never arise if (T,O) is a 
monostably weighted tetrahedron. In this case, as shown 
above, if a face has two obtuse dihedrals, the center of mass 
is positioned so that T  will tip onto that face across at least 
one of those edges. Each nonequilibrium face thus has a 
unique exit; and provided that we assume landings to be 
reasonably inelastic, the exact path to stable equilibrium 
may be found easily knowing only (T,O) and the starting 
face.

Some Spherical Geometry
If we consider the intersection of T  with a small sphere SA 
centered at some vertex A, we see that the geometry of pol-
yhedral vertices is just that of the sphere. For a weighted 
tetrahedron (T,O) , let P,Q,R,Ω be the respective intersec-
tions of SA with AB , AC , AD , and AO (see Figure 3). Then 
(for instance) the face angle ∠BAC corresponds to the arc 
PQ on SA , while the dihedral angle between faces △ABC 
and △ACD corresponds to the spherical angle ∠PQR . In 
each case, the radian measures are equal. We call a spherical 
segment short if its measure is less than �∕2 ; otherwise, it 
is said to be long; angles, as usual, are “acute” or “obtuse.”

The following result characterizes unstable equilibria.

Lemma 6.  For any vertex A of a weighted tetrahedron (T,O) : 

1.	 (T,O) has an (unstable) equilibrium on A if and only 
if the angles ∠BAO , ∠CAO , and ∠DAO are all acute, 
equivalently, if and only if all of the spherical arcs PΩ , 
QΩ , and RΩ are short.

2.	 (T,O) has an equilibrium on A for every O ∈ intT  if 
none of the face angles ∠BAC , ∠CAD , ∠DAB are obtuse, 
equivalently, if none of the arcs PQ , QR , and RP are 
long.

Proof.  Let Π be the plane normal to OA at A. Then T  has 
an equilibrium on A if and only if B, C, D all lie on the 
same side of Π as O. This is true for every O interior to T  if 
and only if ∠BAC , ∠CAD , ∠DAB are all acute or right.

We can also characterize stable equilibria in this way, 
though we have local configurations at three vertices to 
consider. The following result is obvious:

Lemm�a 7.  1.  (T,O) has a stable equilibrium on △ABC 
if and only if the dihedral angles between (on the 
one hand) △ABC and (on the other hand) △ABO , 
△AOC , and △OBC are all acute.

2.	 (T,O) has a stable equilibrium on △ABC for every 
O ∈ intT  if and only if none of the dihedral angles 
between (on the one hand) △ABC and (on the other 
hand) △ABD , △ADC , and △DBC are obtuse.

3.	 If (for instance) the dihedral angle between △ABC 
and △ABO is obtuse, then (on SA ) the angle ∠QPΩ is 
obtuse, as is the corresponding angle on the sphere SB.

Now that we have seen the significance of spherical 
geometry in this problem, let us establish a few facts from 
mathematical folklore.

Figure 2.   A tetrahedron that rolls without slipping can have one or three degrees of freedom

Figure 3.   The geometry of a vertex is the geometry of a 
sphere
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Le�mma 8.  1.   A spherical triangle with only acute angles 	
       has only short edges.
2.	 A spherical triangle with exactly one acute angle has 

exactly one short edge, which is opposite the acute 
angle.

3.	 A spherical triangle with three long edges has three 
obtuse angles.

4.	 A spherical triangle with exactly one long edge has 
exactly one obtuse angle, opposite the long edge.

5.	 A spherical triangle with only short edges has at most 
one obtuse angle.

Proof.  1. If △ABC has only acute angles, then cosA , cosB , 
and cosC are all positive. Then if (for instance) edge BC has 
radian length a, one of the spherical cosine laws gives us that

whence a < 𝜋∕2 . The proofs for b and c are similar.
2. If A is acute, let A′ be the antipodal point: the colunar 

triangle △A′BC satisfies the conditions of (1).
3. If △ABC has only long edges, then cos a , cos b , and 

cos c are all negative; the other spherical cosine law gives

and A is obtuse. The proofs for B and C are similar.
4. This again follows from (3) by consideration of the 

colunar triangle.
5. In this case, cos a , cos b , and cos c are all positive. If 

A is obtuse, then cos a < cos b cos c , whence a, opposite A, 
must be the strictly longest edge. 	�  ◻

We can, however, construct spherical triangles with ex-
actly one obtuse angle and zero or two long edges. We can 
also construct a spherical triangle with three obtuse angles 
and only two long edges. These results are summarized in 
Table 1.

Results on Instability
We begin by ruling out the possibility of a “weighted tet-
rahedral Gömböc” and in fact prove more.

Theorem 9.  No tetrahedron has a monostable weighting and 
also a monounstable weighting, even with different centers of 
mass.

Proof.  As observed above, every monostable weighted 
tetrahedron (T,O) has two vertices B, C that each have 
two obtuse dihedrals. Table 1 shows that each of these two 
must have two obtuse face angles; but a tetrahedron can-
not have more than four obtuse face angles in total, so the 
other two vertices, A, D, have only acute face angles. By 
Lemma 6, (T,O�) has equilibria on those vertices for every 
O� ∈ intT  . 	�  ◻

cos a =
cosA + cosB cosC

sinB sinC
> 0,

cosA =
cos a − cos b cos c

sin b sin c
< 0,

For a specific weighting, we can say more.

Theorem 10.  If a weighted tetrahedron (T,O) is monostable, 
then it has unstable equilibria on exactly two vertices and a 
saddle equilibrium on exactly one edge.

Proof.  By Theorem 4, we may assume that (T,O) has 
an obtuse path A–B–C–D and an equilibrium on either 
△DBC or △ACD . Since the dihedrals on BC and CD are 
obtuse, the dihedral on BD must be acute. However, by 
hypothesis, the other two dihedrals at B are obtuse.

The local geometry at B thus corresponds to a spherical 
triangle △��� with an acute angle at � and obtuse angles 
at � and � . Then (Lemma 8) the edges ��  and �� are long, 
and ��  is short. Let E be polar to the great circle through 
the points � and � ; it lies (Figure 4) on the great circle polar 
to � , which meets ��  at F and �� at G.

But by assumption, (T,O) has no equilibrium on 
△DBA , so ∠��Ω is obtuse. Thus Ω lies on the far side of 
�E , and a fortiori on the far side of GE , from D. Thus �Ω 
is long, ∠DBO is obtuse, and (T,O) has no equilibrium on 
B. A similar argument (using the lack of equilibrium on 
△ABC ) shows that (T,O) has no equilibrium on C.

The unique saddle equilibrium follows from Maxwell’s 
formula (1). 	�  ◻

Using polar duality, we also get the following corollary.

Corollary 11.  If a weighted tetrahedron (T,O) is monounsta-
ble, then it has a stable equilibrium on exactly two faces, and 
a saddle equilibrium on exactly one edge.

We can now prove a result analogous to Theorem 4 for 
monounstable tetrahedra that does not appear to follow 
from that theorem via polar duality. Define an obtuse 
cycle to be a cycle of edges A–B–C–D–A on a tetrahedron 
such that the face angles ∠ABC , ∠BCD , and ∠CDA are all 
obtuse.

Theorem 12.  A tetrahedron T  has an obtuse cycle if and only 
if for some O, the pair (T,O) is monounstable.

Proof.  Suppose that A–B–C–D–A is an obtuse cycle and 
P ∈ BC . Then ∠ABP = ∠ABC is obtuse. By the same 

Table 1.   Possible combinations of long/obtuse elements in 
spherical triangles and polyhedral vertices

Obtuse angles (dihedrals)

Long 0 1 2 3
edges 0 √ √ x x

(obtuse 1 x √ x x

face 2 x √ √ √

angles) 3 x x x √
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argument, the angle ∠DCP is obtuse. Moreover, since ∠ADC 
is obtuse, so is ∠ADP for P ∈ relintBC close enough to C. 
Now, P is on the boundary of T  , but if we let O be an inte-
rior point close enough to P, then the angles ∠ABO , ∠DCO , 
and ∠ADO will still be obtuse, and (T,O) will have no equi-
librium on B, C, or D.

We now show that monoinstability requires the exist-
ence of an obtuse cycle. Since a triangle has at most one 
obtuse angle, a tetrahedron has at most four obtuse face 
angles; and to be monounstable, it must have one (or more) 
obtuse face angles at each of the three vertices without 
an equilibrium. The obtuse face angles can thus be parti-
tioned among the vertices in only three ways: {0, 1, 1, 1} , 
{0, 1, 1, 2} , and {1, 1, 1, 1}.

We will represent a vertex with m obtuse face angles 
and n obtuse dihedrals by the ordered pair [m, n]. Since 
every obtuse dihedral has two ends, the sum of n over the 
vertices is even; and we can only use the pairs [m, n] found 
in Table 1. The only possibilities for a monounstable tetra-
hedron are as follows: 

	 I.	 {[0, 1], [1, 1], [1, 1], [1, 1]};
	 II.	 {[0, 0], [1, 1], [1, 1], [2, 2]};
	 III.	 {[0, 1], [1, 1], [1, 1], [2, 1]};
	 IV.	 {[0, 1], [1, 1], [1, 1], [2, 3]};
	 V.	 {[1, 1], [1, 1], [1, 1], [1, 1]}.

Possibility I, which has only three obtuse face angles, is 
realizable, for instance by a tetrahedron with vertices

(Figure 5a). Let A be the [0, 1] vertex, and AC its obtuse 
dihedral. Then BD is also an obtuse dihedral; the face 

{(−10, 0, 0), (0, 2, 0), (0,−2, 0), (1, 0, 1)}

angles ∠ABC , ∠BCD , and ∠CDA are obtuse; and A–B–C–
D–A is an obtuse cycle.

Possibility II cannot occur. Let D be the [2, 2] vertex, 
with obtuse angles ∠ADB and ∠ADC . Then the dihedrals 
on DC and DB are obtuse, B and C are the vertices of type 
(1, 1), and the angles ∠ABC and ∠ACB are both obtuse, 
which is impossible.

Possibility III can occur. Let A be the [0, 1] vertex, D 
the [2, 1] vertex. The tetrahedron has two obtuse dihedrals 
without a common endpoint. If they were AD and BC , then 
one of the angles ∠ADB,∠ACD would be obtuse (without 
loss of generality, ∠ADB ). But the angles opposite BC , that 
is, ∠ABD and ∠ACD , are also obtuse; so △ABD would 
have two obtuse angles, which is impossible.

However, if (without loss of generality) the obtuse 
dihedrals are AC and BD , we can construct examples, for 
instance

(Figure 5b ). Here A–B–C–D–A is the obtuse cycle.
Possibility IV cannot occur. Let A be the [2, 3] vertex; 

then the dihedrals on AB , AC , and AD are all obtuse. 
Without loss of generality let C and D be the vertices of 
type [1, 1]; as before, the angles ∠CDB and ∠BCD are both 
obtuse.

Possibility V would require the tetrahedron to have two 
disjoint obtuse dihedrals (without loss of generality, AC , 
BD ) opposite the four obtuse angles; but then the skew 
quadrilateral ⋈ ABCD would have angles summing to more 
than 2� , which is impossible. 	�  ◻

(A,B,C,D) = ((−10, 0, 0), (2, 0, 0), (3, 2, 0), (0, 4, 1))

Figure 4.   The configuration at a vertex with two obtuse dihedral angles.

Figure 5.   Tetrahedra with obtuse cycles.
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Remark 13.  By Theorems 4 and 12 and Maxwell’s formula 
(1), the following are equivalent for any weighted tetrahe-
dron (T,O) : 

1.	 (T,O) is monostatic;
2.	 (T,O) has exactly one saddle equilibrium;
3.	 (T,O) has exactly four equilibria.

Examples of weighted tetrahedra with every combina-
tion of two to four stable equilibria and two to four unsta-
ble equilibria are given in [7]. Indeed, there exists a single 
tetrahedron that exhibits all nine of these combinations for 
appropriate choices of center (Figure 6).2 From this exam-
ple, it follows that the monostable and monounstable cases 
are the only ones that can be characterized by the shape of 
the tetrahedron.

Remark 14.  If a weighted tetrahedron (T,O) is monounsta-
ble with an equilibrium at vertex A, then A has no obtuse 
face angles. It follows that (T,O�) has an equilibrium on A 
for all O� ∈ intT  , and thus (in contrast to the situation in 
Theorem 4) T  cannot be weighted to be monounstable on 
any other vertex. Results like this show that (despite our 

use of polar duality and the symmetry of Table 2) there is 
no simple duality between stable and unstable equilibria.

Other Polyhedra
We have seen that no tetrahedron can be monomonostatic, 
even when weighted. What about other classes of poly-
hedra? A vector (f , e, v) ∈ ℕ

3 is the face vector of some 
nondegenerate polyhedron if and only if

•	 f ≥
v

2
+ 2,

•	 v ≥
f

2
+ 2,

•	 e = f + v − 2.

We shall call such a vector legal. We note that equality is 
obtained in the first expression only when all vertices have 
degree 3, and the second only when all faces are triangular.

Theorem 15.  Every legal vector except for (4, 6, 4) is the face 
vector of a monomonostatic weighted polyhedron.

Proof.  Let P be a weighted polyhedron with at least one 
nontriangular face. We claim that some vertex V of P is 
included in one, two, or three nontriangular faces. For sup-
pose otherwise. Then intersecting the half-spaces bounded 
by supporting planes on these faces and containing P, 
we get a convex polyhedron Q with at least four edges at 
every vertex and at least four edges on every face. Then 
e ≥ 2v , e ≥ 2f  , and so for the Euler characteristic we have 
�(Q) ≤ 0 , an impossibility.

Let V be such a vertex, let F be a nontriangular face 
including V, and let 𝛿 > 0 . We will construct a new poly-
hedron P′ that shares every vertex of P except that V is 
replaced by a new vertex V ′ . Let G be the intersection of 
the affine hulls of the other nontriangular faces (if any) of 
P at V. It is an affine subspace of dimension at least 1. Let 
H be the open half-space bounded by aff F that contains 
intP . Then take V � ∈ G ∩H ∩ B�(V ) . Clearly, at least for 
small � , P′ has the same number of vertices as P , and one 
more face. Moreover, by taking � small enough, we can 
change the orientations of edges and faces by an angle less 
than any desired 𝜖 > 0 . We shall refer to this below as face 
bending.

Let (P,O) be a weighted polyhedron; we assume O to be 
in general position with respect to all edges and face diagonals. 
For small enough � , the following are true:

•	 O ∈ intP
�;

•	 (P�
,O) has an equilibrium on a vertex X if and only if 

(P,O) has an equilibrium on the corresponding vertex;

Table 2.   Possible combinations of equilibria

Unstable equilibria

1 2 3 4

Stable  
equilibria

1 x √ x x
2 √ √ √ √

3 x √ √ √

4 x √ √ √

Figure 6.   A tetrahedron that can have two to four stable 
equilibria and two to four unstable equilibria, depending on 
the choice of center.

2The vertices are (0, 0, 0), (100 000, 0, 0) , (50 000, 41 429, 0) , and (13 549, 13 544, 11 223) . The centers are M22 = (15 884, 5116, 835) , 
M23 = (46 670, 11 911, 3061) , M24 = (28 497, 5544, 2041) , M32 = (11 400, 7243, 2597) , M33 = (33 447, 17 389, 3061) , 
M34 = (23 866, 8138, 3339) , M42 = (21 845, 14 097, 7142) , M43 = (42 514, 9100, 6122) , and M44 = (24 407, 10 239, 1391).
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•	 (P,O) has an equilibrium on any face other than F if 
and only if (P�

,O) has an equilibrium on the corre-
sponding face;

•	 (P,O) has an equilibrium on F if and only if (P�
,O) has 

an equilibrium on F′ or T (this requires the foot of the 
perpendicular from O to F not to lie on the face diagonal 
that becomes an edge of F′);

•	 (P�
,O) cannot have equilibria on both F′ and T.

It follows that if there exists a monomonostatic polyhedron 
that has v vertices and f faces not all triangles, then there 
exists such a polyhedron with v vertices and f + 1 faces. As 
shown in [7], by polar duality there then also exists one with 
f vertices and v faces.

We conclude the proof using induction. First, we note 
that there exists a monomonostatic polyhedron with face 
vector (5, 8, 5) (combinatorially equivalent to a square 
pyramid); see Figure 7.

Assume, as our inductive hypothesis, that the claim 
holds for every legal vector with v ≤ 2n . Then in par-
ticular, it holds for (f , e, v) = (2n + 1, 3n + 2, n + 3) 
and (f , e, v) = (2n + 2, 3n + 3, n + 3) . By polar dual-
ity, it also holds for (f , e, v) = (n + 3, 3n + 2, 2n + 1) and 
(f , e, v) = (n + 3, 3n + 3, 2n + 2) , both of which minimize 
f for the given v. Face bending then shows that the claim 
holds for all legal vectors with v ≤ 2n + 2 , hence by induc-
tion for all legal vectors. 	 � ◻

Except in a few cases, the vector (f, e, v) does not deter-
mine the combinatorial class of a polyhedron. We conjec-
ture that in fact, every combinatorial class of polyhedra 
except the tetrahedra contains elements that admit a mono-
monostatic weighting.
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