# A KIRIGAMI PARADOXON

Készítette: Gyetvai Zsófia

Témavezető: Dr. Fehér Eszter



TDK dolgozat

### Budapesti Műszaki és Gazdaságtudományi Egyetem

Morfológia és Geometriai Modellezés Tanszék

2023. november

#### ABSZTRAKT

A kirigami egy japán művészeti technika, mely során a vékony papírt vágásokkal és hajtásokkal formáljuk. Előnye, hogy sík lapból készíthető segítségével háromdimenziós szerkezet. A modern világban számos műszaki területen jelent inspirációt, például az építészetben, a robottechnikában, az űrtechnikában és a metaanyagok kutatásaiban is. A közelmúltban több publikáció megjelent a hajlított kirigami ívek [1-3] és kupolák [3] témájában, melyekben vékony lemezekből különféle bevágásokkal építészetben is használatos formákat értek el. Keveset tudunk azonban arról, hogy a bevágások milyen hatással vannak a végső forma merevségére. Dolgozatomban koncentrált erővel terhelt, befogott, perforált ívek merevségét és alakját vizsgáltam úgy, hogy különböző területű és elrendezésű felületeket vágtam ki az anyagból. A perforáció által a szerkezet merevsége csökken, de az elrendezésétől függően az alak is változik, amely hathat kedvezően a merevségre. Munkánk célja meghatározni, hogy a porozitás mértéke és elrendezése milyen hatással van az alakra és a merevségre.

Különböző mintázatokat terveztünk, melyeket PET lemezekből lézervágással vágtunk ki. A mintázatok három csoportba sorolhatók: 1) a porozitás változó, de az elrendezés rögzített, 2) a porozitás rögzített, az elrendezés különböző, 3) mindkettő paraméter változik. A perforált lemezeket íves alakban meghajlítottuk, majd az így létrejött ív két végét befogással támasztottuk meg. A szerkezet legmagasabb pontján súllyal terheltük, a terhelt és a terheletlen alakot fotók-kal rögzítettük. A merevséget a középső pont deformációjából számítottuk.

Míg az irodalomban csak a porozitás mértékével magyarázzák a perforált lemezekből készült szerkezetek merevségét [2], a kísérleteink alapján megállapítható, hogy ívek esetén a porozitás mértéke és elrendezése azonos nagyságrendben befolyásolja a merevséget.

[1] Lee, T. U., Gattas, J. M., & Xie, Y. M. (2022). Bending-active kirigami. *International Journal of Solids and Structures*, 254, 111864.

[2] Liu, M., Domino, L., & Vella, D. (2020). Tapered elasticæ as a route for axisymmetric morphing structures. *Soft Matter*, *16*(33), 7739-7750.

[3] Zhang, Y., Yang, J., Liu, M., & Vella, D. (2022). Shape-morphing structures based on perforated kirigami. *Extreme Mechanics Letters*, *56*, 101857.

## Tartalom

| Bevezetés                                                       |
|-----------------------------------------------------------------|
| A probléma bemutatása                                           |
| A téma megközelítése                                            |
| Előzetes vizsgálatok                                            |
| A kísérletek menete6                                            |
| Minták létrehozása7                                             |
| Tapasztalatok, következtetések                                  |
| Vizsgálatok PET anyaggal9                                       |
| A kísérletek menete9                                            |
| A vizsgált mintázatok11                                         |
| Eredmények14                                                    |
| Változó lokális porozitás rögzített globális porozitás esetén14 |
| Egyenletes mintázat, változó globális porozitás mellett16       |
| Változó globális, változó lokális porozitás17                   |
| Konklúzió                                                       |
| Köszönetnyilvánítás                                             |
| Irodalomjegyzék                                                 |

### **B**EVEZETÉS

Kutatásom során perforált lemezekből készített szerkezetek merevségét és alakváltozását vizsgáltam a kirigami módszerével. A kirigami egy japán művészeti technika, mely során a vékony papírt vágásokkal és hajtásokkal formáljuk. Előnye, hogy sík lapból készíthető segítségével háromdimenziós szerkezet. A tanulmányomban a vizsgált, téglalap alakú lemezeken a perforáció mértékét és elhelyezését változtatva, azonos terhelés mellett vizsgáltam a perforáció hatását a lemezekből meghajlítással készített ívek alakváltozására.

Ezzel a témával több kutató is foglalkozott. Liu és társai [1] azt keresték, hogy hogyan lehet hajlítható lapokból előállítani bizonyos 3D-s formákat a lapok szélességének változtatásával.

Megfigyelték, hogy ha a lemez szélességét változtatják, akkor megváltozik a meghajlított lemez alakja. Amikor az eredetileg téglalap alakú lap közepéből vettek el több anyagot, akkor keskenyebb lett az ív, de ha a lap két végéből, akkor gömbölyűbb. Eljárást készítettek, amely megadja a lemez változó szélességét úgy, hogy a meghajlítás után a kívánt alakot vegye fel a szerkezet.



1. ábra. Liu és társai eljárása: félgömb létrehozása lapokból kivágással. Forrás: [1]

Erre alapozva megpróbálták egy félgömbnek az alakját elkészíteni (1. ábra). Ugyan a kapott felület gömb alakú, inkább egy koronára emlékeztetett, mivel nagy lyukakkal rendelkezett.

Zhang és társai [2] a lemez közepébe vágtak kis téglalap alakú lyukakat, és próbálták ezzel befolyásolni a meghajlítottlemezből készülő ív alakját. E két cikk szerzői között volt átfedés, ezért e második cikkben felhasználták az előbbi során szerzett tudásukat, eljárást készítettek, amellyel meghatározzák, hogy milyen perforáció szükséges ahhoz, hogy a kívánt alakot vegye fel a szerkezet. Ezzel a módszerrel készítettek gömb alakot közelítő perforált lemezeket, melynek így kevésbé lyukacsos lett a felülete. A cikkben az így kapott szerkezetek merevségét kísérletekkel és számításokkal vizsgálták és arra jutottak, hogy minél kevesebb anyagot távolítanak el a lemezből, annál erősebb a kapott szerkezet. Mivel a vizsgált esetek egymástól nagyon különbözőek voltak, ezért nem lehetett megmondani, hogy mi befolyásolta pontosan a végeredményt. Minket a jelen kutatás során az érdekelt, hogy a lemezbe vágott minta pontosan hogyan befolyásolja a merevséget, mivel erről ebben a cikkben nem volt elég információ.

Lee és társai [3] szimmetrikus és aszimmetrikus bevágásokkal formálták a papírfelületbe bevágott sávok alakját és oldalirányú dőlését. A cikkben papírlapokba vágtak bele, majd csúsztatási módszerrel készítettek íveket. Megfigyelték, hogy hogyan befolyásolja a papírcsíkok alakját, ha meghajtják a végeiknél, vagy nem. Ez a cikk nem tért ki a merevségre, de elkészítettek egy emberméretű mobil összehajtható ívet, ezzel mutatták be, hogy ezeket a tapasztalatokat hogyan lehet alkalmazni az építészetben idegilenes szerkezetek, installációk készítésénél.

### A PROBLÉMA BEMUTATÁSA

Egy w szélességű [mm], és l hosszúságú [mm] lemezt meghajlítva egy b támaszközű [mm] befogásba tettünk, mellyel egy h magasságú [mm] ívet hoztunk létre (2. ábra). A lemezbe x hosszúságú és y szélességű téglalapokat vágtunk bele. A lemezt a befogás miatt kicsit hosszabbra készítettük, ezt az extra hosszt az ábrán e-vel jelöltük, ezt a számításokban nem vettük figye-



2. ábra. A tanulmányban használt paraméterek bemutatása

lembe. Az ív közepét koncentrált F súlyerővel [N] terheltük, mely hatására az ív magassága h're [mm] változott. Az ív terhelt és terheletlen magasságának d különbségét neveztük deformációnak [mm]. A merevség a deformáció és az erő hányadosa, azt fejezi ki, hogy egységnyi deformációhoz mekkora erő szükséges [N/mm]:

$$K=\frac{F}{d}.$$

A merevség a szerkezet egy fontos jellemzője, mely kapcsolatban áll a szerkezet teherbírásával is: minél nagyobb az ív merevsége, annál nagyobb terhet képes viselni anélkül, hogy összedőlne. Ahhoz, hogy az általunk vizsgált szerkezeteket tartószerkezeti szemszögből is értékeljük, célszerű tehát a merevségüket meghatározni. Fmax-nak nevezzük a legkisebb olyan súlyt, melyet az ív még éppen elbír, ennél nagyobb F-re a h' eléri a nullát. A lapba különböző méretű és mintájú lyukakat vágtunk, ezt nevezzük perforálásnak. Meghatározott Ar összterületű téglalapokat vágtunk ki az  $A_0$  területű lemezből, és így kaptunk egy A területű perforált lemezt. Az  $A_0$  és az A hányadosával számoltuk ki a  $\varphi$  globális porozitást:

$$\varphi = 1 - \frac{A}{A_0} = 1 - \frac{A_0 - Ar}{A_0}.$$

Tehát a globális porozitás azt fejezi ki, hogy a teljes felület hány százalékát távolítottuk el. Az irodalommal összhangban használjuk a lokális porozitás fogalmát is, ami a kivágások eloszlására utal. A lokális porozitás akkor változik, ha a lemezből való kivágás helyzete megváltozik. A sima lemezként hivatkozunk az olyan lemezre, mely nincs perforálva, azaz Ar=0.

Egyes vizsgált esetekben nincs kivágott anyag, csupán bevágások, mint a tradicionális kirigamiban. Ekkor az Ar kiszámolásánál problémába ütköztünk, mert a bevágásnak nincs szélessége, ezért a kivágott terület 0-val egyenlő, mellyel nem lehet kiszámolni a lemez globális porozitását. Ekkor inkább a bevágások hosszainak az összegével számoltunk, azaz a bevágást 1 mm szélesnek tekintettük.

Gondolati úton is lehet következtetni arra, hogy melyik paraméter megváltoztatása hogyan befolyásolja az ív alakját és teherbírását. A nagyobb szélességgel, rövidebb hosszúsággal, kisebb támaszközzel és kisebb porozitással egy erősebb: nagyobb merevségű ívet lehet létre hozni. De ugyanakkor azt is tudjuk, hogy a magasabb ív merevsége nagyobb, mint egy alacsonyabbé.

A dolgozatomban a következő kérdésekre kerestük a választ:

- A lemezeken a kivágások elhelyezkedése hogyan befolyásolja az ív alakját és merevségét?

- Van-e olyan hely, ahol kedvezőbb a több lyukasztás, mint egy másik helyen, tehát lehet-e csak a lokális porozitás megváltoztatásával egy kedvezőbb, nagyobb merevségű ívet létrehozni?

- Elképzelhető-e két ív, mely közül az egyiknek a porozitása és a merevsége is nagyobb, mint a másiké?

- Lehet-e egy adott szerkezet merevségét növelni további perforálással, vagy a meglévő lyukak megnagyobbításával?

### A TÉMA MEGKÖZELÍTÉSE

#### Előzetes vizsgálatok

A kísérletek menete

Az elővizsgálatok során egy puha origami papírral kezdtem dolgozni. Az anyagot a papír könnyű elérhetősége, hajlíthatósága és vághatósága miatt választottam. Először meghatároztam, hogy milyen szélesség-hossz aránnyal folytassam a vizsgálatot. A hosszt előre meghatároztam: a lemezek könnyebb előkészítése, és a szám sok osztója miatt 120 mm-t választottam. A rögzített hossz mellé kerestem a megfelelő



3. ábra. A lemezek szélességvizsgálata. b=1/2×l; w1=20mm; w2=30mm; w3 =40mm

szélességet, a 3. ábrán látható ennek folyamata, amikor háromféle modellt készítettem. Eredményül az jött ki, hogy a lemez szélessége nem befolyásolja az ív alakját, de a szélesebb ív merevebb. Olyan szélességet választottam, amely a kísérletekhez használt súly alatt csak kis deformációkat szenved. A továbbiakban mindig l=120 mm és w=30 mm méretű téglalapokkal dolgoztam. Ezután különböző mintákat vágtam a lemezekbe, melyekhez az ötletet részben Zhang és társai cikke [2] adta.

A perforált lemezeket a végüknél behajtottam, ahogyan a Lee és társai [3] is tették, és a behajtás mögött ragasztószalaggal rögzítettem. A lap hosszába nem számítottam bele a támaszhoz szükséges hosszt. A mintákat különböző b támaszközökkel vizsgáltam, melyek a lemez hosszának háromnegyede, fele, negyede, valamint nulla voltak:  $b=3/4\times1$ ;  $b=1/2\times1$ ;  $b=1/4\times1$ ; b=0.

A rögzítés után lemértem az ív magasságát, majd egy kis teherrel terheltem. Mivel egy puha papírt használtam, ezért a súly nagyon kicsi lehetett: tűzőkapcsokat használtam, de ezek tömegét nem tudta leolvasni a mérleg, ezért e fázisban az F-et N helyett a kapcsok számával számoltam. Ezután leolvastam a h'-t, ami a terhelés után megváltozott magasság.

#### Minták létrehozása

#### Változó lokális porozitás ugyanakkora globális porozitás esetén

Zhang és társai [2] a kutatásukat rugalmas lemezek alakváltozásának vizsgálatával kezdték változó helyi porozitás mellett. Ez alapján mi is készítettünk változó lokális porozitású lemezeket (4. ábra harmadik oszlopa és a középső oszlop utolsó három mintája fentről lefelé haladya), da a gandalatat tayább feilasztettük



ladva), de a gondolatot tovább fejlesztettük. *4. ábra. A papír vizsgálatok során elkészített egyes minták* Zhang és társai főképpen a lemezek alakját figyelték meg. A lokális porozitás változtatása alatt csak a kivágott téglalapok y hosszát változtatták, de nem figyelték meg az x változtatásának hatását. Minket emellett a kérdés mellett még az is érdekelt, hogy mi történne, ha a lemez oldalából is vennénk ki anyagot a szélesség mentén aszimmetrikusan, nem csak középen (4. ábra középső oszlop első három mintája fentről lefelé haladva). Erre Lee és társai [3] tettek hasonló kísérleteket. Ők csak az ív alakját figyelték meg, nem vizsgálták, hogy ez az aszimmetrikus elvétel hogyan hat az ív merevségére. A vizsgálatok során megállapítottuk, hogy azonos globális porozitás mellett a lokális porozitás változtatásával jelentősen változik a szerkezet alakja (5. ábra) és merevsége is.



5. ábra. Azonos globális-, különböző lokális porozitású, terheletlen papírlemezek alakvizsgálata

#### Egyenletes mintázat, változó globális porozitás mellett

Kísérleteink során minket az is érdekelt, hogy egyenletes

mintázat mellett a globális porozitás változtatása hogyan

befolyásolná a merevséget és mi lenne, ha csak bevágáso-

kat tennénk az ívbe (6. ábra), tehát technikailag nem lenne

elvett terület. Tapasztalataink megegyeztek az irodalmi

eredményekkel, egyenletesen elhelyezett, azonos méretű

lyukak esetén a nagyobb globális porozitás kisebb merev-

6. ábra. Egy minta terheletlen (bal) és terhelt (jobb) alakja 50 db tűzőkapocs alatt az egyik növekvő porozitású sorozatból

Emellett érdekelt minket az is, hogy van e különbség aközött, hogy a kivágott téglalapoknak a lemez hosszanti oldalával párhuzamos oldalainak hossza megegyezik a kivágott területek közti távolság hosszával és aközött, ha a kivágott területek között egy bizonyos, azonos távolság van.

#### Tapasztalatok, következtetések

séggel társult.

Az elővizsgálatok sokat segítettek az érdekes kivágási minták megtalálásában. Lehetett látni, hogy mit lesz érdemes megvizsgálni jobb körülmények között. A papír használatával több probléma állt elő, ezért az adatok nem voltak teljesen pontosak. A papír-vizsgálattal könnyen elkészíthető volt sokféle minta, melyek között észre lehetett venni az elrontottokat és kijavítani a hibákat. Például előfordult, hogy az egyik mintát többször kellett elkészíteni, a terület hibás kiszámítása miatt.

Az első és a legnagyobb probléma a befogással volt. A papír anyaga miatt a megtámasztás nem volt se csuklós, se befogott. A papír a hajtás miatt nem tudott szabadon elfordulni, mint a csuklós megtámasztás esetében. A hajtással lehetett befolyásolni a leragasztott támasznál lévő szögét, ezért befolyásolható volt az alakja, így tehát nem tekinthető befogásnak sem. A részleges csuklósság miatt, amikor a támaszköz túl kicsi volt, az ív oldalirányba kezdett elhajolni, ezért a koncentrált erő nem teljesen az ív középpontjában hatott. Emellett baj volt a kis teher is, melyet a merevség vizsgálatára használtunk. A kutatás során a terhelésre használt tűzőkapcsokkal az volt a probléma, hogy az ívhez képest nagy felületűek voltak, nem feltétlenül voltak koncentráltak, nem tudták a pontszerű terhelést modellezni. Emellett a használt papír sem volt tökéletesen hajlékony anyag, jellemző volt rá az ún. kúszás: a h' terhelt magassága idővel csökkent a terhek további növelése nélkül. Ezen kívül a papírnak nagy volt a párafelszívó képessége, ezért a nedvesebb időjárás befolyásolta a vizsgálatok eredményét.

### Vizsgálatok PET anyaggal

#### A kísérletek menete

Az elővizsgálatok problémái miatt egy másik fajta anyaggal folytattuk a kutatást, egy átlátszó 0,5mm vastagságú PET lappal. A papír vizsgálatok alatt a befogás bizonytalanságával is sok probléma volt, ezért terveztünk egy befogott támaszokkal rendelkező eszközt, ami két egymással párhuzamos alumínium 7. ábra. A PET lemezek befogására elkészített eszköz



rúdra felszerelt 3D nyomtatott elemből álló szerkezet, melyben két egymásnak nyomott, párnázott alumínium lemez biztosítja a meghajlított lemezek befogását (7.ábra). Az eszköz a BME Áramlástan Tanszék laboratóriumában készült. A két alsó rúdon csúsztatva lehet változtatni a befogások távolságát. A PET anyagokkal való kísérletek során csak két támaszközzel kísérleteztük, a b=3/4×1 és a b=1/2×1 távokkal, azaz a támaszköz a lemez hosszának háromnegyede és fele volt. A két egymásnak nyomott lemez közé be lehetett csúsztatni a PET lapokat, és a nyomás miatt nem csúsztak ki belőle.

PET lapból lézervágással vágtuk ki a különböző mintákat a BME Rajzi és Formaismereti Tanszékén (8.ábra bal). A harmincötféle mintát többször is kivágtuk a pontosabb eredmények elérése érdekében. A befogás miatt mindegyik minta végére 1-1 extra cm-t hagytunk, és a pontszerű terhelés érdekében a minták közepébe egy 5mm átmérőjű lyukat vágtunk. A lyuk területét kihagytuk a számolások során. A terhelést egy M5-ös csavarral, egy szárnyas anyával és egy meghajlított dróttal végeztük, ami gyakorlatilag egy felcsavarható kampót hozott létre (8. ábra jobb), melynek tömege 6 g volt. Ez a csavaregyüttes a terheletlen íven is rajta volt, ezért a számításokban elhanyagoltuk a tömegét. A kapott kampóra ráhelyeztük a terheket (9. ábra).



8. ábra. Balra a lézervágás menete látható, jobbra pedig a terhek rögzítésére használt csavaregyüttes



9. ábra. Egy vizsgált lemez alakváltozása 38g teher alatt,  $b=1/2 \times l$ támaszközön (A felirattal ellenben ez a B5 minta alakváltozása)

Mivel az elővizsgálatok alatt probléma volt a papírívek kicsi mérete, ezért háromszor akkora ívekkel dolgoztuk tovább. Tehát 1=360 mm; w=90 mm. A méréseket többször is megismételtük.

A kísérletezést a sima lemez vizsgálatával kezdtük. Egy lyukak nélküli ívre fokozatosan egyre több tömeget helyeztünk, és minden nagyobb tehernél fényképekkel dokumentáltuk az ív magasságát és alakját (10. ábra), a fényképek alapján a Rhino

programban rajzoltam át az ívüket. Az 1. diagramon ábrázoltuk a teher-elmozdulás függvényt a b=1/2×l és a b=3/4×l-re. A két ív hasonló lett, és feltételeztük, hogy a többi példánál is hasonló diagramot kapnánk. Az Fmax körülbelül 2/3-ánál ketté lehetett bontani a függvényt, így egy lineáris szakaszt és egy nem lineáris ívet kaptunk. Az utóbbi résznél megállapítható volt, hogy kicsi teherváltozásra nagy magasságváltozást kaptunk. A továbbiakban az lett a cél, hogy a



1. diagram. Sima lemez elmozdulás-teher függvénye

10. ábra. Sima lemez magasságváltozása  $b=1/2 \times l$  támaszközön egyre nagyobb terhek hatására

példákat mindig akkora súllyal terheljük, hogy még a függvény lineáris részén belül maradjunk, hogy kis változás hatására ne változzon drasztikusan az ív magassága. Így a kis mérési hibák kevésbé tudnak nagy eltérést okozni. Feltételeztük, hogy a különböző mintákhoz tartozó F-d ábrák nem metszik egymást a lineáris szakaszon, így a mintákat csak egy-egy teherérték mellett vetettük össze.

#### A vizsgált mintázatok

Az elkészített mintákat, melyek a 11. ábrán láthatóak, három nagy csoportba lehetett rendezni a kísérlet iránya szempontjából. Az első csoportba a változó lokális porozitású minták tartoznak rögzített globális porozitás mellett, a másodikba a változó globális porozitásúak, a harmadikba pedig olyanok, ahol mind a globális, mind a lokális porozitást változtattuk a nagyobb merevség elérése érdekében.

A PET anyagok vizsgálatát az ugyanakkora globális porozitású lemezek merevségének meghatározásával kezdtük. Kérdés, hogy a különböző mintájú, de összességében ugyanakkora összterületű kivágás hogyan változtatja meg a kivágott anyag alakját és ez hogyan hat a merevségére.

Az A és B példa, azaz mintasorozat esetében ugyanazt vizsgáltuk, csak más-más irányokban változtak a kivágások paraméterei, míg a kivágott felületek összterülete ugyanannyi maradt. Mindkét esetben 10-10 kis téglalapot vágtunk ki, az A-ban a kivágott téglalapok x hossza (a lemez hosszának irányában), míg a B példában az y hossza (a lemez szélessége irányában) változott. A téglalapok oldalai mindig fokozatosan változtak, és középpontosan tükrözhetők voltak.

A C példában a kezdőgondolat szintén az azonos porozitás megtartása volt. Itt különböző mintákat használtunk fel, és az érdekelt, hogy hogyan hat az ív szerkezetére, ha a széléből is veszünk el, tehát nem feltétlenül marad meg ablakszerű lyukként a kivágás.

Két változó globális porozitású példánk volt: a D és az E. A D példa esetében csupán bevágásokkal dolgoztunk. A különböző mintákon egyre kisebb távolságú, egyre több vágást tettünk, ezzel növeltük a globális porozitást. Az E példában a kivágott téglalapok száma ezzel szemben állandó volt. A kivágott téglalapoknak a lemez hosszával párhuzamos oldala lett egyre nagyobb, és az utolsóban annyira megnőtt, hogy a téglalapok egymáshoz értek, ezért ott csak két nagy téglalapot vágtunk ki. A harmadik csoportban hatféle példa volt. Az F példában a logika hasonló volt az E példához. Itt is egyre nagyobb területeket vágtunk ki, de itt a lyukak közt megmaradt terület lemez hoszszával párhuzamos oldalszélessége állandó volt. Emiatt az egymást követő mintákban egyre kevesebb téglalapot vágtunk ki. (Véletlenül az utolsó kettő mintából kivágott terület ugyanakkora lett.) Míg a D és E példákban a lokális porozitás egyenletes volt, az F példát nem nevezhetjük egyenletesnek, mivel változtak a kivágott területek darabjai. Ezek miatt e példát nem lehetett a növekvő, de lokálisan ugyanolyan porozitású (D és E) példákhoz sorolni. A maradék, G, H, I, J és K példák, mind mintapárok, melyekben az első minta további lyukasztásával jött létre a második minta. Itt mindig azon volt a vizsgálat hangsúlya, hogy lehet-e erősebb mintát létrehozni több anyag elvételével.



11. ábra. A felhasznált minták

 $\mathbb{K}^2$ 

•

### **EREDMÉNYEK**

Változó lokális porozitás rögzített globális porozitás esetén

Az azonos porozitású (A és B) példák alakjai (12. ábra) a szakirodalmi eredményekkel összhangban voltak. A B példában az a változat lett merevebb, ahol az ív tetőpontjához közel távolítottunk el több anyagot, a befogás közelében kevesebbet. Itt megfigyelhető a különbség az ívek alakjában is. Ezzel szemben az A példában nem volt különbség az ívek alakjában, de itt is az az eredmény jött ki, hogy az ív merevebb lesz, ha a lemez közepén van több kivágás és a befogások közelében kevesebb (2. diagram).



2. diagram. Az A és B minták merevsége. Az adatok három mérés átlagából születtek  $b=3/4 \times l$ ; F=0,38N; A esetében  $\varphi=27\%$  és B esetén pedig  $\varphi=20\%$  paraméterek mellett



12. ábra. Az A és B minták terheletlen alakja. Jól látható, hogy az A minták ívei azonosak, a B minták ívei változóak

A B példák közül előzetes feltételezéseink ellenére a B5 példa gyengébb lett, mint a B4 példa, pedig a B5 példában több anyagot vettünk el a lemez közepéből. Mivel az ív alakjának vizsgálata során a B5 magasabbnak bizonyult, mint a B4 példa, ezért gondolhatjuk, hogy az rontott az ív merevségén, hogy a két középső kivágás túl kevés anyagot hagyott meg a lemez oldalán, és ezért veszített a merevségéből. Ebből azt is megállapíthattuk, hogy ha egy ív terheletlen magassága nagyobb, az nem feltétlenül jelenti azt, hogy merevebb is lesz.

A C példák esetén a merevségben sokkal nagyobb különbségek mutatkoztak. Az ívekre jelentősen hatott, hogy az oldalukból mennyit vágtunk ki és milyen sűrűn. Az általunk vizsgált ívek a római boltozatokhoz hasonlóan nyomással viselték a terheket, mivel a lemezek nagyon vékonyak és ezáltal kicsi a hajlítómerevségük. Ez alapján berajzoltuk az ábrákba, hogy hol és milyen irányban hatottak az erők. Sötétkékkel a fő erővonalakat, zölddel az erő kitérését jelöltük (13. ábra). Azt állapítottuk meg, hogy akkor a legoptimálisabb a szerkezet, ha az erővonal (kék) minél hosszabban tud minél kevesebb kitéréssel (zöld) haladni, azaz minél rövidebb az erővonalak összege, a szerkezet annál erősebb. Ez alapján is megállapíthatjuk, hogy a C1 és C2 minta erősebb, mint a C3 és a C4, ami meg erősebb a C5-nél (3. diagram).





3. diagram. C minták merevsége  $\varphi$ =27%; F=0,25N; b=1/2×l

13. ábra. C minták berajzolt belső erővonalai. Kék a fő erővonal, zöld az erővonal kitérése

Itt még érdemes a C5 példát összehasonlítani az E5 példával. Az E5 globális porozitása sokkal nagyobb, így a feltételezéseink szerint az E5 minta sokkal gyengébb kellett volna, hogy legyen a sok egybefüggő kivágás miatt, de mégis azt az eredményt kaptuk, hogy a C5 lett a gyengébb (3. diagram). Annak ellenére, hogy kevesebb összterület van itt kivágva a lemezből, a kivágások szélső elhelyezkedése sokat rontott a szerkezet merevségén.



4. diagram. Az E5 és C5 minták összehasonlítása. Látható, hogy az E5 minta merevsége sokkal nagyobb, annak ellenére, hogy sokkal nagyobb a porozitása ( $\varphi$ ), azaz sokkal nagyobb területet vágtunk ki belőle, mint a C5 mintából

### Egyenletes mintázat, változó globális porozitás mellett

A változó globális porozitású (D és E) példáknál (13. ábra) nem jött létre meglepő eredmény, a merevség összhangban volt az irodalomban említettekkel. Itt a diagramokon szépen látható,



5. diagram. D és E minták (14. ábra) merevsége és porozitása  $b=1/2 \times l$  támaszközön, F=0,38N erő alatt, 3 mérés átlaga. Ez egybevág a [2] szakirodalommal, mely azt állítja, hogy a merevség és a porozitás fordítottan arányos



14. ábra. D és E mintái

hogy a változó porozitás változó merevséget eredményezett (5. diagram). A porozitás növekedése a merevség csökkenésével járt.

A diagramok alapján meg lehetett állapítani, hogy ha egyenletesen helyeztük el a lyukakat, akkor mindig a kisebb porozitású lett merevebb.

### Változó globális, változó lokális porozitás

A minták harmadik csoportjába az olyan példák tartoztak (F, G, H, I, J és K), amelyek nem voltak besorolhatók a korábbi két csoportba, sem nem azonos globális porozitásúak, sem nem megegyező lokális porozitásúak. Ebben a csoportban minden minta esetén az volt a cél, hogy egy nagyobb porozitású, de merevebb lemezt hozzunk létre.

Az F példa esetén változott mind a lokális, mind a globális porozitás. Itt a minták terheletlen alakjában nem volt számottevő különbség (15. ábra), de több más szempontból is meglepő eredmények születtek. A különböző minták merevsége nőtt a porozitás növekedésével (6. diagram), kivéve az F4 és az F5 példákban, ahol a porozitás ugyanakkora volt, de mégis az F5 merevebb lett, mint az F4. Ez alapján megállapíthattuk, hogy területileg több kivágással is létre lehet hozni merevebb ívet. A diagramon a növekvő K érték a merevebb szerkezetet jelöli, a nagyobb φ a több kivágást. Ezzel a példával meg lehetett cáfolni Zhang és társai [2] állítását, miszerint a nagyobb porozitás mindig kisebb merevséget jelent.



6. diagram. F minták merevsége és porozitása

Felmerült kérdésként, hogy mi lehet ennek a meglepő, paradox eredménynek a magyarázata. Indoklásként az azonos lokális porozitású példákhoz (A és B mintákhoz) hasonlítottuk. Az A és B példák vizsgálata során láthattuk, hogy azok a minták voltak merevebbek, amelyekben többet vágtunk ki a lemez közepéből, és kevesebbet a befogásokhoz közeli részekből. Az F

<sup>15.</sup> ábra. F minták terheletlen alakja  $b=3/4 \times l$ 

példában megfigyelhetjük, hogy a kivágások sűrűsége fokozatosan közeledik a lemez közepéhez, így egyre kevesebb kivágás és egyre több anyag van a befogások közeli részeken. Tehát az A és B mintákhoz hasonló okból lett a legmerevebb az F5.

A G, H, I, J és K példák mind mintapárok. Ez azt jelenti, hogy mindegyikben van egy eredeti minta, ami valahogyan kapcsolódik a korábban vizsgált esetekhez, majd ebbe vágtunk bele további kivágásokat, és azt figyeljük, hogy merevebb lett-e a szerkezet az újabb bevágásoktól. Ezeknek a mintapároknak egymás mellé helyeztük és megfigyeltük a merevség-porozitás függvényét, kétféle támaszközön.

A G, H és I példákkal (16-18. ábra) nem értünk el nagyobb merevséget a nagyobb kivágásokkal. A H példa esetén az újabb kivágás után a merevség nem változott, a G és I példáknál vagy nem változott, vagy kis mértékben csökkent. Tehát ezek azt bizonyítják, hogy létre tudtunk hozni olyan mintákat, melyekben a további lyukak elhelyezésével, azaz a növekvő porozitással nem



16. ábra. Balra a G minták merevsége és porozitása kétféle támaszközzel. Jobbra a G minták terheletlen alakja. G1 minta piros, G2 minta lila



17. ábra. Balra a H minták merevsége és porozitása kétféle támaszközzel. Jobbra a H minták terheletlen alakja. H1 minta piros, H2 minta kék



18. ábra. Balra az I minták merevsége és porozitása kétféle támaszközzel. Jobbra az I minták terheletlen alakja. 11 minta piros, 12 minta lila

romlott a szerkezet merevsége.

Ezeknél a mintáknál azért nem sikerült nagyobb merevséget létrehozni, mert a minták globális porozitása eleve túlságosan kicsi volt. Azért nem csökkent érzékelhetően az ívek merevsége, mivel az eleve kicsi globális porozitás a többszörösére – az I példa esetén a hatszorosára – emelve továbbra is nagyon alacsony maradt, ezért a merevség növelését célzó kivágásaink hatástalanok maradtak.

Ennek a jelenségnek indoklásaként a D minták merevség-porozitás diagramját kell megtekintenünk (5. diagram). Itt lehet látni, hogy amikor a porozitás nagyon kicsi volt, akkor az ugyanakkora bevágások után nagyot esett az ívek merevsége, míg amikor a porozitás eleve nagyobb volt, kisebb merevség csökkenés tapasztalható. Ha pedig mellé tesszük a B minták merevség vizsgálatát, ott láthatjuk, hogy ugyanakkora porozitás mellett el lehetett érni nagyobb merevséget, azaz egy jobb ívet a kivágások méretének változásával. A G, H, I mintákban a továbblyukasztásból következő gyengítés és a kedvező lokális porozitás hatásai kiegyenlítik egymást, így összességében nem, vagy csak kismértékben csökkent a merevségük.

A további példákban ezek tudatában egy nagyobb porozitású ívnek próbáltuk növelni a merevségét a globális porozitás növelésével.

A J és K példákban a B példában felhasznált mintákat próbáltuk megerősíteni nagyobb kivágásokkal. A diagramok alapján láthattuk, hogy ez sikerült, mert a növekvő porozitás mellett a jobban kivágott lemez merevsége is nőtt (19. és 20. ábra). Mivel az A és B példákban megállapíthattuk, hogy a kivágások helyzete jelentősen befolyásolta az ív merevségét, ezért itt egy eredetileg kevésbé jó merevségű ívet erősítettük meg sikeresen újabb kivágással. Az eredmények egy újabb paradox viselkedésre mutattak rá: anyag eltávolításával, azaz a lemez gyengítésével lehetséges növelni a szerkezet merevségét.



19. ábra. Balra a J minták merevsége és porozitása kétféle támaszközzel. Jobbra a J minták terheletlen alakja. J1 minta narancssárga, J2 minta kék



20. ábra. Balra a K minták merevsége és porozitása kétféle támaszközzel. Jobbra a K minták terheletlen alakja. K1 minta rózsaszín, K2 minta zöld

### Konklúzió

A kutatás során PET műanyag lemezekből készített ívekkel folytatott kísérletekkel vizsgáltuk, hogy a kirigami módszerével készített bevágások milyen hatással vannak a lemezek végső formájának merevségére. Különböző mintázatokat terveztünk, melyek alapján láthattuk, hogy a koncentrált erővel terhelt, befogott, perforált ívek merevségét és alakját befolyásolta, hogy milyen területű és elrendezésű felületeket vágtunk ki az anyagból Megállapítottuk, hogy egy perforált ív merevségére együtt hat a globális és a lokális porozitása.

A perforáció által a szerkezet merevsége csökken, de az elrendezésétől függően az alak is változik, amely hathat kedvezően a merevségre. A lemez merevségét a lokáli porozitás változtatásával lehet változtatni. Ha változtatjuk a kivágásoknak a lemez hosszanti oldalára merőleges oldalhosszait, akkor tudunk hatni a lemez alakjára, és ezzel a merevségére is.

Ennek következtében az F mintával sikerült (15. ábra) cáfolni Zhang és társai [2] állítását, miszerint a nagyobb porozitás mindig kisebb merevséget jelent, mert ebben az F példában az ívben egyre több anyag elvételével egyre merevebb szerkezetet tudtunk létrehozni. Ezzel egy paradoxon állt elő, de erre magyarázatul szolgál a B példáknál tapasztalt jelenség, ahol tapasztaltuk, hogy az ív merevebbé válik, ha a kivágások inkább a lemez közepénél, mint a befogások környékén sűrűsödnek. Emellett a J és K mintákban (19. és 20. ábrák) is sikerült egy-egy nagyobb merevségű ívet létrehoznunk egy eleve perforált ív további kivágásával, ami egy másik, az előzőhöz hasonló paradoxon.

A kutatásaink további folytatására többféle lehetőséget is látunk. Érdekes kérdés, hogy lehetséges-e a sima, lyukasztás nélküli lemezt kellően kicsi lyuk megfelelő elhelyezésével megerősíteni? Láttuk, hogy rögzített globális porozitás esetén a lyukak elhelyezésének változtatásával javítható a szerkezet merevsége. Mi ennek a határa, hogy néz ki az optimális mintázat? A vizsgálatok kiterjeszthetőek például hajtások használatára, más (nem téglalap) alakú, valamint más elrendezésű kivágásokra is. A más elrendezés alatt például a lemez hosszával párhuzamosan sorakozó kivágásokra, aszimmetrikus mintákra gondoltunk. A kísérletek kezdeti stádiumában már megpróbálkoztunk hajtásokkal is, de PET műanyagból nem modelleztük meg e változatokat. Ismert, hogy a papír meghajtásával növelhető annak merevsége, de a túl sok hajtás gyengíti, lágyabbá teszi a szerkezetet. Ívek esetén mi ennek az optimuma? Emellett volt egy olyan eset is, ahol a koncentrált erő nem a lemez közepére került, így újabb kutatási irány mutatkozhat az aszimmetrikus terhelés irányában is. Eredményeink hasznosak lehetnek számos műszaki területen, inspirációt adva például az építészetben, a metaanyagok kutatásában, a robottechnikában, az űrtechnikában is.

### KÖSZÖNETNYILVÁNÍTÁS

Ezúton szeretném köszönetemet kifejezni témavezetőmnek, Dr. Fehér Eszternek. Köszönettel tartozom továbbá Lassu Péternek a lézervágásban és Havasi-Tóth Balázsnak a lemezek befogására szolgáló eszköz létrehozásában és a terhek rögzítési módjában nyújtott segítségéért. A dolgozat elkészítését a Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFIH) OTKA (K 143175) pályázata támogatta

### IRODALOMJEGYZÉK

[1] Liu, M., Domino, L., & Vella, D. (2020). Tapered elasticæ as a route for axisymmetric morphing structures. *Soft Matter*, *16*(33), 7739-7750.

[2] Zhang, Y., Yang, J., Liu, M., & Vella, D. (2022). Shape-morphing structures based on perforated kirigami. *Extreme Mechanics Letters*, *56*, 101857.

[3] Lee, T. U., Gattas, J. M., & Xie, Y. M. (2022). Bending-active kirigami. *International Journal of Solids and Structures*, 254, 111864.