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Abstract

The purpose of the study was to determine variation in load bearing capacity of a
thin steel plate under axial load in its transition from a solid model (without voids)
to a porous model (infinite voids). The load bearing capacity of solid model was
calculated using analytical method, also in the case of porous model, an analytical
approximation (Gurson’s model) was used to determine the load bearing capacity.
Gurson model allows for a good approximation for spherical voids in a 3D stress
state and as an approximation we shall use for the case of ellipsoidal voids.

The transition from solid to porous model was done by determining the load bear-
ing capacity of increasing number of voids placed at random positions. The voids
were either circular or elliptical. In case of elliptical voids, two different axes ratios
of b : a = 1 : 5 and b : a = 1 : 10 were used.

The study uses a plane stress version for the analysis of the thin steel plate for
porosities of 1.5%, 6%, 24% and 40% for different number of voids each with five
variations each to increase the sample size.

A plane strain variation was also analyzed for porosity of 24% to make a compar-
ison. To better understand the behavior of plate with voids, large strains were also
analyzed for porosities of 6% and 24%.

i



Acknowledgements

Throughout the research and writing of this manuscript, I have gotten a lot of encouragement,
support, assistance along with furtherance of my interests in the research in the field of me-
chanics.

I would first like to thank my supervisor, Professor Emeritus Imre Bojtár, for his guidance and
direction through each stage of the research process. He, inspite of his retirement, supervised
me throughout the research project along with giving me the necessary theoretical knowledge
in the subject. His concise lecture notes in the subject of material models, nonlinear mechanics
and then finally fracture mechanics helped me give a basic understanding of the subject. His
advice on “making the building stone by stone", that is taking one step at a time was invalu-
able for the duration of the whole project and will remain invaluable. His expertise in defining
the methodology, research questions and the theoretical approximations to be considered was
invaluable. His insightful feedbacks and honed skills of critical thinking have helped me made
significant improvements in my ability to ask critical questions.

I would also like to thank my parents for always being there for me and counselling me. Finally,
I would like to thank my friends for their support and happy distractions they provided to help
me ease my mind.

ii



Contents

1 Material Models 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Elastic Material Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Elasto-Plastic Material Model . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Material Models Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Gurson’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Stress Concentration 8
2.1 Elastic Solution of Circular Holes . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Elastic Solution of Elliptical Holes . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Elasto-Plastic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Numerical Solution 13
3.1 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Plane Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Plane Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Finite Element Model 14
4.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Load bearing capacity calculation . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Numerical Simulation Results 23
5.1 Circular Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Elliptical Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Comparison between Geometric Variations . . . . . . . . . . . . . . . . . . . 42
5.4 Comparison between Plane Stress and Plane Strain . . . . . . . . . . . . . . . 46
5.5 Comparison between Small Strain and Large Strain . . . . . . . . . . . . . . . 48

Appendix A: Plastic Zone Propagation 52
A.1 6% Porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.2 24% Porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Appendix B: Codes for Creation of Geometry 56
B.1 Circular Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.2 Elliptical Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.3 Circular Hole Geometry Creation . . . . . . . . . . . . . . . . . . . . . . . . . 57
B.4 Elliptical Hole Geometry Creation . . . . . . . . . . . . . . . . . . . . . . . . 58

iii



List of Figures

1 Transition from Intact to Porous Model . . . . . . . . . . . . . . . . . . . . . 1
2 Different Scales of Material Models . . . . . . . . . . . . . . . . . . . . . . . 3
3 Linear elastic and linear elastic-linear hardening plastic material . . . . . . . . 5
4 Stress Strain diagram of Material 1 . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Stress Strain diagram of Material 2 . . . . . . . . . . . . . . . . . . . . . . . . 7
6 Growth, Nucleation, and Coalesence of Voids in Microscopic Scale . . . . . . 8
7 Hoop Stress around an Infinite Plate for θ =±90 . . . . . . . . . . . . . . . . 9
8 Stress Concentration Factor vs Diameter to Width Ratio . . . . . . . . . . . . . 10
9 Major and minor principal axis . . . . . . . . . . . . . . . . . . . . . . . . . . 11
10 Crack and an elliptical void . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
11 Arbitrary contour Γ around a crack . . . . . . . . . . . . . . . . . . . . . . . . 13
12 Rectangular Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
13 Examples of circular hole geometries . . . . . . . . . . . . . . . . . . . . . . . 16
14 Examples of elliptical hole geometries with b : a = 1 : 5 . . . . . . . . . . . . . 17
15 Examples of elliptical hole geometries with b : a = 1 : 10 . . . . . . . . . . . . 17
16 Constrained geometry for holes . . . . . . . . . . . . . . . . . . . . . . . . . . 18
17 Rectangular grids for large number of holes . . . . . . . . . . . . . . . . . . . 19
18 Geometry of PLANE183 Element . . . . . . . . . . . . . . . . . . . . . . . . 20
19 Mesh of plate with 100 circular holes . . . . . . . . . . . . . . . . . . . . . . . 21
20 Mesh of plate with 100 elliptical holes . . . . . . . . . . . . . . . . . . . . . . 22
21 Boundary Conditions of Analyzed Problem . . . . . . . . . . . . . . . . . . . 23
22 Stress distribution differences due to support disturbance . . . . . . . . . . . . 23
23 LB capacity of Material 1 for circular holes . . . . . . . . . . . . . . . . . . . 28
24 LB capacity of Material 2 for circular holes . . . . . . . . . . . . . . . . . . . 30
25 Regression curves for LB capacity of Material 1 for circular holes . . . . . . . 31
26 Regression curves for LB capacity of Material 2 for circular holes . . . . . . . 31
27 LB capacity of Material 1 for elliptical holes with b/a = 1/5 . . . . . . . . . . 35
28 LB capacity of Material 2 for elliptical holes with b/a = 1/5 . . . . . . . . . . 37
29 LB capacity of Material 1 for elliptical hole with b/a = 1/10 . . . . . . . . . . 39
30 LB capacity of Material 2 for elliptical hole with b/a = 1/10 . . . . . . . . . . 41
31 Regression curves for LB capacity of Material 1 for elliptical holes . . . . . . . 42
32 Regression curves for LB capacity of Material 2 for elliptical holes . . . . . . . 42
33 Comparison of LB capacity of Geometric variations for Material 1 . . . . . . . 44
34 Comparison between geometric variations for Material 2 . . . . . . . . . . . . 46
35 Comparison between plane stress and plane strain for Material 1 . . . . . . . . 47
36 Comparison between plane stress and plane strain for Material 2 . . . . . . . . 47
37 Softening and hardening of porous material under uniaxial tension and com-

pression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
38 Maximum strain zone for large strain . . . . . . . . . . . . . . . . . . . . . . . 49
39 Comparison between small and large strain for Material 1 for 6% porosity . . 49
40 Comparison between small and large strain for Material 1 for 24% porosity . . 50
41 Example of Plastic Zone Propagation for Material 1 with n=2 and f=6% . . . . 52
42 Example of Plastic Zone Propagation for Material 1 with n=10 and f=6% . . . 53
43 Example of Plastic Zone Propagation for Material 1 with n = 2 and f = 24% . 54
44 Example of Plastic Zone Propagation for Material 1 with n = 10 and f = 24% . 55

iv



Nomenclature

σ̄ 1D yield strength

ḟ Void growth

εkl Strain tensor

ν Poisson’s ratio

ρ Radius of curvature of hole or notch

σ1, σ2, σ3 Normal stresses in principal directions

σe von Mises equivalent stress

σm Average normal stress

σx, σy, σz Normal stresses in x,y,z direction

σ∞ Stress at infinity

σθθ Hoop stress

σi j Stress tensor

σmax Maximum stress due to stress concentrator

σnom Nominal stress

σrr Radial stress

τrθ Shear stress in cylindrical coordinates

τxy, τyz, τzx Shear stresses in x,y,z plane

a Length of major axis of ellipse

b Length of minor axis of ellipse

E Elastic modulus

Et Tangent modulus

f Porosity

Fi j Elastic response function

Hk Material parameter system

J2 Second invariant of deviatoric stress tensor

k Material parameter equal to σ̄/
√

3

n Number of holes

q1, q2, q3 Experimental constants for porous materials

r Radius of circular hole
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Introduction

An opening or a hole in structural member causes a sudden increase in stress at the point of
opening which will result in decrease in load bearing capacity. In this study, the change in load
bearing capacity is analyzed with its shift from solid or intact model to Gurson model. Finite
element analysis of a thin steel plate is used for this purpose. The shift between intact and
porous model is done by increasing number of voids. It is to be noted that porous model is
applied on either a 3D model. Also, the number of spherical pores approach towards infinity
in porous model. So, a more reliable approach towards analyzing the shift would be to have
minimum number of voids upto 105. But that isn’t the case for this study as large number of
voids come with some drawbacks listed below.

• Randomly placing large number of voids in geometry also has problem often resulting in
infinite loop. Even for n = 1000 for circular voids and n = 500 for elliptical voids, zones
were needed to be used to overcome the infinite loop.

• Increasing the number of voids increases difficulty in discretization of domain. Smaller
edges of pores can’t be ignored which results in an exponential increase in time required
to discretize.

• Using large number of voids increases the computation time and also result in conver-
gence problems specially in case of elliptical voids.

Even though having maximum number of voids would result in a more smooth shift from in-
tact to porous model, it is not feasible in our current situation. So, for the purpose of this study
maximum number of voids in case of circles are 1000 while in case of ellipsis are 500.

As we mentioned, the main objective of this study is to analyze the shift from solid to porous
model shown in Figure 1 and deduce a mathematical form which is followed by this shift. The
stress state of the model also varies in the transition from solid to porous model. Solid model
has a 3D stress state. The numerical models created in the study have a 2D stress state i.e.
plane stress. Porous model also has theoretically a 3D stress state.

Figure 1: Transition from Intact to Porous Model
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Outline of Chapters

An overview of chapters is given below.

1. Material Models gives a brief understanding of the behavior of applied mechanical ma-
terial models. The characteristics, examples and brief mathematical introduction of elas-
tic, elasto-plastic and porous material models are explained.

2. Stress Concentration explains stress concentration around the holes and how it differs
from stress singularity. The effects of shape of voids on stress concentration are ex-
plained. An explanation into how stress concentration occurs in different materials.

3. Numerical Solution gives an introduction to Finite Element Method. Difference be-
tween plane stress and plane strain is also briefly explained.

4. Finite Element Model gives an overview of the applied numerical model. It introduces
the geometries applied for each of porosities. Domain discretization for different geome-
tries and applied boundary conditions are briefly described. The method for calculating
load bearing capacity is given.

5. Numerical Simulation Results presents the calculated load bearing capacities for each
of different porosities. The comparison between different hole shapes is also presented
along with the comparison between different formulations (plane stress - plane strain
and small strain - large strain).

2



1 Material Models

1.1 Introduction
The kinematic and equilibrium equations are not sufficient to solve a boundary or initial value
problem in continuum mechanics. For a complete set of equations, a constitutive equation has
to be formulated which characterizes the material response of a body under consideration. The
constitutive theory describes either the “microscopic" or the “macroscopic" behavior of a ma-
terial in response to the external effects [1].

Scale of observation is an important question in continuum mechanics. In continuum mechan-
ics we assume that the space is filled with continuous set of material points connecting to each
other’s infinitely close sense. In reality, the real material is not continuous with most of mate-
rials having some sort of discontinuity either due to manufacturing or other defects. Similarly,
mechanical variables don’t represent a specific point in the continuity but an average value. For
this reason, we can define a smallest element in a material whose state characterizes the whole
material. The smallest representation element has different ranges for different materials. But
as the size of the representative smallest element decreases, the applicability of continuum me-
chanics principles also ends. As we’ll now have to take into account the microscopic behaviors.
An important question is how we can correlate two different scale models. Figure 2 shows the
different scales of material models with their respective disciplines different disciplines [2].

The materials like steel and concrete commonly used for engineering purposes, a macroscopic
model is sufficient. Steel plate is analyzed in current study, so only the macroscopic models
will be discussed further.

Figure 2: Different Scales of Material Models
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Material model gives us constitutive equations that relate the stresses to strains in case of
mechanics. Since real materials can exhibit very complex behavior, approximations have to
be applied within the derivation process of constitutive equations. These, however, have to
cover all effects observed in experimental investigations. The basic principles from mechanics
have to be obeyed to obtain theoretically sound constitutive equations [1]. These constitutive
equations are what make a material model. These equations are not simple approximations
but the governing principles of how a material would behave theoretically, when subjected to
certain external effects.

1.2 Elastic Material Model
The first attempt at scientific description of solid mechanics was done by Galileo. He treated
bodies as to be inextensible. At that time, there were no experimental or physical hypothesis
that could give the relation between deformations and forces that are producing deformations.
The first one to give a law of proportionality was Robert Hooke in 1676 as “extension is pro-
portional to force [3]." In the majority of engineering applications of structural and geological
materials such as metals, concrete, soils, rocks, and rubber under short-term loading, time in-
dependence of the stress-strain relation can be assumed. So, time doesn’t appear as an explicit
variable in the constitutive equations. We also note that the materials are assumed to be under
isothermal conditions.

The behavior of many engineering materials can be described using elastic material models. A
material body is deformed when subjected to applied forces. If upon the release of the applied
forces the body recovers its original shape and size, then the material body is called elastic. The
linear elastic model is used to describe the behavior of metal materials at stress levels below
the yield limit. Nonlinear elastic model can be used to describe the behavior of soft materials
like rubber, biological tissues etc. Therefore, elastic constitutive relations are the basis for the
theory of elasticity, which has found many applications in different engineering problems. It
should be noted that the elastic constitutive models are also needed in the theory of plasticity
as well. Elastic-plastic models are used quite a lot for metals in cases when stress is beyond
yield limit.

For elastic material, the current state of stress depends only on the current state of deformation;
that is, the stress is a function of strain [4]. This mathematical representation is given by,

σi j = Fi j(εkl), (1.1)

where the function Fi j is the elastic response function. Thus, the elastic behavior described by
Equation (1.1) is both reversible and path independent since strains are uniquely determined
from the current state of stress. Also, there is no dependence on the path followed to reach the
current state of stress or strain. But the fact is that there is no material which can be described
as an ideal elastic material. All materials undergo some permanent deformations, sometimes
even for low loads. Also, no material behaves similarly when loaded with different speeds. If
these differences are small enough to be neglected safely, then that material can be modeled as
an ideally elastic material. Elastic material model can be used for almost any material if the
stresses are inconsiderable.

1.3 Elasto-Plastic Material Model
There are materials which behave in an elastic manner upto a specific threshold limit, beyond
that permanent deformations are produced. These permanent deformations are one of the most
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Figure 3: Linear elastic and linear elastic-linear hardening plastic material

important characteristics of plastic materials and must be taken into account. The material
behaves plastic only over a definite stress state. The mathematical relations that describe the
limit of elastic behavior and beginning of plastic behavior are called yield conditions. The
geometrical representation of these mathematical relationships is called as yield surface. The
yield condition is a function of stress state and material parameter system Hk. For ideal plastic
materials (no hardening), Hk is stress limit of material. But in case of hardening, Hk is function
of loading system and stress state. Now, the general form of yield condition for isotropic
materials is given as

F(σi j,Hk) = 0. (1.2)

There are different yield conditions each with their significance such as Huber-Mises-Hencky
yield condition, Tresca model, Rankine model and Mohr-Coulomb model etc.

For the course of this study, Huber-Mises-Hencky yield condition will be explained. It is one
of the most important yield condition for metals.

According to HMH yield condition, material becomes plastic if the second invariant of the
deviatoric stress tensor becomes equal to H1 = k2.

F = J2 − k2 = 0, (1.3)
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where J2 is second invariant of deviatoric stress tensor. After substituting value of J2 in terms
of elements of total stress tensor, we get

F =
1
6
(
(σx −σy)

2 +(σy −σz)
2 +(σz −σx)

2)+ τ
2
xy + τ

2
yz + τ

2
zx − k2 = 0. (1.4)

The yield condition can also be written in terms of principal normal stresses as

F =
1
6
(
(σ1 −σ2)

2 +(σ2 −σ3)
2 +(σ3 −σ1)

2)− k2 = 0. (1.5)

The value of k can be determined by using a tensile strength test. As in case of tensile test,
there is only one principal stress acting in longitudinal direction. Therefore, σ2 and σ3 become
equal to zero. The parameter k can be given as,

k2 =
1
3

σ
2
1 , (1.6)

k =
σ1√

3
=

σ̄√
3
. (1.7)

Here, σ̄ , is one dimensional yield strength.

1.4 Material Models Used
Two different materials were used for the purpose of this study. It should be noted that the
materials chosen for the purpose of this simulation were arbitrary. They don’t reflect the actual
engineering data used for numerical simulation of steel. These materials will be hereinafter
referred to as Material 1 and Material 2.

Material 1 will be used with Elastic Modulus E = 200 GPa and Poisson’s ratio ν = 0.3. Yield
strength is σ̄ = 250 MPa. Since this material has no hardening, therefore tangent modulus
Et = 0 GPa.

Figure 4: Stress Strain diagram of Material 1
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Material 2 will be used with Elastic Modulus E = 200 GPa and Poisson’s ratio ν = 0.3.
Yield strength is σ̄ = 250 MPa. Since this material has linear hardening, tangent modulus
Et = 60 GPa is used for the purpose of this study.

Figure 5: Stress Strain diagram of Material 2

1.5 Gurson’s Model
The Gurson model [5] is used to represent plasticity and damage in ductile porous metals. We
note that the model was then modified by Tvergaard, Chu and Needleman, and Tvergaard and
Needleman. Gurson-Tvergaard-Needleman(GTN) model analyzes the plastic flow in porous
materials assuming that the material behaves as a continuum. Voids appear in the model in-
directly because of their effects on global flow behavior. The effect of the voids is averaged
through the material which is assumed to be homogeneous and continuous. The main differ-
ence between classic plasticity of metals and GTN is that the yield surface is independent of
hydrostatic stresses in classic metal plasticity while it is not in the case of GTN model [6]. The
GTN model gives a yield criteria as

F(σe,σm, σ̄ , f ) =
(

σe

σm

)2

+2q1 f cosh
(

3
2

q2σm

σ̄

)
− (1+q3 f 2) = 0. (1.8)

Here, σe is the von Mises stress, σm is average normal stress, σ̄ is the 1D yield stress, f is the
porosity and q1,q2,q3 are experimental constants. For metals, their values are q1 = 1.5, q2 = 1
and q3 = q2

1. For f = 0, we get von Mises yield criterion.

When plasticity and damage occur, ductile metal goes through a process of nucleation, void
growth and coalescence. A void is formed around an inclusion when sufficient stress is applied
to break the interfacial bonds between the particle and the matrix. When the voids are formed,
hydrostatic stresses and plastic strain cause the void to grow. According to Chu and Needleman
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[7], void nucleation can be given as

ḟ = (1− f )ε̇ p
kk +Λε̇

p
eq. (1.9)

where the first part indicates the growth rate of existing voids while the second term indicates
the nucleation of voids because of plastic strain.

Gurson’s method models the process by incorporating these microscopic material behaviors
into macroscopic plasticity behaviors based on changes in the porosity and pressure. An in-
crease in porosity shows an increase in material damage, which results in a decreased load
bearing capacity of material. Figure 6 shows nucleation (formation of voids), dilatation(growth
of voids) and coalescence (establishing connections).

Figure 6: Growth, Nucleation, and Coalesence of Voids in Microscopic Scale
[8]

In above figure, the shape of the voids shown are for illustration purpose only. The voids
that are included in GTN model are theoretically spherical voids with a uniform distribution.
Also, the stress state is a 3D stress state not a 2D stress state.

2 Stress Concentration

Since, the study involves analysis of steel plates with circular and elliptical voids with different
porosities, it becomes imperative to have an understanding of stress concentration and how the
material model affects stress concentration around voids. Stress concentration can be defined
as accumulation of stress in a body due to sudden change in its geometry.

2.1 Elastic Solution of Circular Holes
The analysis of stress concentration began in 1898 by Kirsch [9], when he calculated a linear
elastic solution for stresses around a circular hole in an infinite plate under uniaxial loading.
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Figure 7: Hoop Stress around an Infinite Plate for θ =±90

The solution gives us a factor of 3 for uniaxial loading in an infinite plate with a circular hole.
Kirsch’s equations for stresses around a circular hole are as follows

σrr =
σ∞

2

(
1−

(a
r

)2
)
+

σ∞

2

(
1−4

(a
r

)2
+3

(a
r

)4
)

cos2θ , (2.1)

σθθ =
σ∞

2

(
1+

(a
r

)2
)
− σ∞

2

(
1+3

(a
r

)4
)

cos2θ , (2.2)

τrθ =−σ∞

2

(
1+2

(a
r

)2
−3

(a
r

)4
)

sin2θ . (2.3)

At an infinite distance from the hole, the a/r terms become zero. The radial stress, σrr, equals
σ∞ at θ = 0° and 180°. The hoop stress, σθθ , equals σ∞ at θ = ±90°. Shear stress, τrθ is
coordinate transformation of σ∞.

While at the surface of hole, radial stress, σrr, and shear stress, τrθ , become zero. The remain-
ing stress is σθθ which equals −σ∞ at θ = 0°. The stress concentration occurs at θ = ±90°
where σθθ equals 3σ∞. It should also be noted that for an infinite plate, the maximum stress is
independent of radius of hole. The increase in stress at boundary of hole with a factor of 3 gives
us the stress concentration factor, denoted by Kt . Stress concentration is defined as the ratio of
maximum stress due to a hole or a fillet (not a crack) to the remote stress. It is important not to
misinterpret the stress concentration factor, Kt , with the stress intensity factor which occurs in
crack analysis.

For the case of an infinite plate with a circular hole Kt = 3. Figure 7 shows the distribution of
hoop stress at theta = ±90°. The stress concentration factor for plates with finite width can
be calculated by using nominal stress, σnom, which is average stress at hole due to reduction in
cross section. Now, the stress concentration factor becomes σmax/σnom instead of σmax/σ∞. In
a finite plate, the ratio of diameter of hole to the width affects the stress concentration factor.
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Figure 8: Stress Concentration Factor vs Diameter to Width Ratio

The stress concentration factor [9] for a finite plate is given as

Kt = 3−3.14
(

2a
W

)
+3.667

(
2a
W

)2

−1.527
(

2a
W

)3

. (2.4)

Figure 8 shows Kt equals 3 at (2a)/W = 0. Then, the value starts to decrease with increasing
ratio and limits to 2 for maximum ratio possible. Since, the Kirsch’s solution was linear elastic,
therefore, maximum stress had no limit as a linear elastic material doesn’t have a yield point
and its stress continues to increase theoretically. But, in reality the materials do have a yield
point and stress in a material can’t increase beyond this point.

2.2 Elastic Solution of Elliptical Holes
Kirsch’s [9] solution was the first to quantify increase in stress due to holes or voids but it was
only applicable to circular holes. A more generalized solution was done by Muskhelishvili,
Kolosov and Inglis for linear elastic material for elliptical holes. Inglis’s [10] solution provided
the stress field for the ellipsis, which can be applied to an infinite number of cases having
different ratios of major to minor axis. It should however be noted that Inglis’s solution, like
Kirsch’s, was linear elastic for an infinite plate. The maximum stress at the tip of ellipse is
given as

σmax = σ∞

(
1+2

b
a

)
. (2.5)

Here a is the length of major principal axis while b is the length of minor principal axis as
shown in Figure 9.
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Figure 9: Major and minor principal axis

It can be seen from above equation that Inglis’s solution equals to the Kirsch’s solution for
circular hole (a = b) and gives the same result of σmax = σ∞. The radius of curvature of the tip
of ellipse is given as

ρ =
b2

a
. (2.6)

Substituting above equation in Equation (2.5), we get

σmax = σ∞

(
1+2

√
a
ρ

)
. (2.7)

Equation (2.7) shows that the maximum stress due to an elliptical hole depends on a, the dis-
tance of tip to center of ellipse, and radius of curvature, ρ , of the tip. Equation (2.7) is quite
important because it shows that as ρ decreases, maximum stress increases.

When the ρ reaches zero, the stress becomes infinite. For ρ = 0, theoretically σmax = ∞. An
ellipse with ρ = 0 is infinitely sharp crack. This result caused concern when it was first dis-
covered because no material is capable of withstanding infinite stress. A material that contains
a sharp crack theoretically should fail upon the application of an infinitesimal load. But an
infinitely sharp crack in reality is not possible because the materials are made of atoms. Metals
upon plastic deformation would cause the sharp crack to become blunt. In the absence of any
plastic deformation, smallest possible radius for crack tip is of the order of atomic radius [11].
To predict the increase in stress near the tip of sharp cracks or notchs, stress intensity factor is
used which can be applied to linear elastic materials.

Introducing sharp cracks results in infinite stress (stress singularities) according to Equation
(2.7) but stresses can’t increase beyond the yield limit. The solution done by Inglis uses
Hooke’s law and has therefore no limiting value.
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(a) Sharp Crack (b) Elliptical Void

Figure 10: Crack and an elliptical void

2.3 Elasto-Plastic Case
In case of plastic materials, whenever stress reaches the yield limit around a stress concentrator,
a plastic zone starts to form around it. The formation of plastic zone decreases the stress
concentration due to redistribution of forces into neighboring areas. Even though the stress
concentration factors decrease, the strain starts to increase in the plastic zone. If the force
continues to increase, the plastic zone starts to grow and if the failure criteria is reached material
fails. In this case, the stress concentration factor will have a finite value. It is to be noted that
the extreme cases, that is sharp cracks and infinite stress will not be the scope of this study due
to time constraints.

The J integral is widely used as a fracture characterizing parameter for nonlinear materials. By
idealizing elastic–plastic deformation as nonlinear elastic, G.P.Cherepanov in 1967 and James
R. Rice in 1968 provided the basis for extending fracture mechanics methodology beyond the
limits of Linear Elastic Fracture Mechanics. The loading behavior for both, nonlinear elastic
and elastic-plastic, materials is identical in their work. But the material responses differ on
the unloading path. The elastic–plastic material follows a linear unloading path with the slope
equal to Young’s modulus, while the nonlinear elastic material unloads along the same path as
it was loaded. There is a unique relationship between stress and strain in an elastic material,
but a given strain in an elastic–plastic material can correspond to more than one stress value
if the material is unloaded or cyclically loaded. Consequently, it is much easier to analyze a
nonlinear elastic material than a material that exhibits irreversible plasticity. As long as the
stresses in both materials increase, the mechanical response of the two materials is identical.

When the problem is generalized to three dimensions, it does not necessarily follow that the
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loading behavior of the nonlinear elastic and elastic–plastic materials is identical, but there
are many instances where this is a good assumption. Thus an analysis that assumes nonlinear
elastic behavior may be valid for an elastic–plastic material, provided no unloading occurs.
Cherepanov and Rice independently applied deformation plasticity to the analysis of a crack in
a nonlinear material. He showed that the nonlinear energy release rate, J, could be written as a
path-independent line integral as

J =

�
Γ

(
wdy−Ti

∂ui

∂x
ds
)
. (2.8)

Here, w is strain energy density, Ti are components of traction vector at the contour line, ui are
the displacement vector components and ds is a length increment along the contour Γ [12].

Figure 11: Arbitrary contour Γ around a crack

3 Numerical Solution

The finite element method is a numerical method for solving problems of engineering and
mathematical physics. For physical systems involving complicated geometries, loadings, and
material properties, it is generally not possible to obtain analytical mathematical solutions to
simulate the response of the physical system. Analytical solutions are those given by a math-
ematical expression that yields the values of the desired unknown quantities at any location
in a body (here total structure or physical system of interest) and are thus valid for an infinite
number of locations in the body. These analytical solutions generally require the solution of
ordinary or partial differential equations. Because of the complicated geometries, loadings,
and material properties, the solution to these differential equations is usually not obtainable.
Hence, we need to rely on numerical methods, such as the finite element method, finite differ-
ence method and finite volume method, that can approximate the solution to these equations.
Here, we’ll only use the finite element method
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3.1 Finite Element Method
In finite element solutions (according either to any orthogonality or stationarity condition) fi-
nally we have to solve an equation system:

Ku
˜
= f

˜
. (3.1)

Here, K is coefficient (e.g. stiffness) matrix of the analysed problem, while u
˜

contains unknown

nodal values. f
˜

represent the boundary conditions, such as pressure, displacements, or temper-

ature, that will be applied on nodes.

It should be noted that we can encounter also nonlinearities too, while solving FEM. In our cur-
rent case, material is nonlinear, therefore stiffness matrix is nonlinear too. There are different
methods to solve these nonlinear equations, one of the most important is the Newton-Raphson
method. The details of this method will not be discussed here.

3.2 Plane Stress
Plane stress is used to model the thin steel plate. As the plane stress is generally applied,
when the thickness of member is considerably smaller and the load acts in plane of member.
Therefore, we use plane stress for analysis of thin steel plate. Plane stress can be defined as
a stress state in which normal stress and shear stresses directed perpendicular to the plane of
plate are assumed to be zero. If the plate is in x− y plane, then the normal stress σz and shear
stresses τxz and τyz are assumed to be zero.

3.3 Plane Strain
Along with plane stress, plane strain is also used for modeling select porosities.Contrary to
plane stress, plane strain is applied when the thickness of member is considerably large. Plane
strain can be defined as a strain state in which normal strain and shear strains directed perpen-
dicular to plane of member are assumed to be zero. If the plate is in x−y plane, then the normal
stress εz and shear stresses γxz and γyz are assumed to be zero.

4 Finite Element Model

The finite element model always starts with building an accurate geometry which represents
the actual physical problem. The next task is to perform a domain discretization. This process
can affect the results adversely, the details of which will be discussed further in the study. After
performing discretization, we can apply the boundary conditions for domain. Next step is to
solve the set of equations which also requires a good understanding of the processes involved to
get the maximum efficiency along with accuracy. Final step is to perform the post-processing
of the solution and get required results.

4.1 Geometry
The domain to be analyzed using numerical simulation consists of a rectangular plate with
either circular or elliptical holes placed at the random positions in rectangular plate. Figure 12
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shows the rectangular plate.The parameters of the rectangular plate are as follows.

Width = 50cm,

Height = 150cm,

Thickness = 1cm.

Figure 12: Rectangular Geometry

For geometries with circular holes, five random geometries were created for each of n =
[1,2,10,100,1000], if possible to fit the holes within rectangular plate. Table 2 and 3 shows
the radii for each n corresponding to different porosity variations. Porosity is defined as ratio
of area of holes to the total area of rectangular domain.
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Porosity n r [mm]

1.5%

1 60
2 42.3
10 18.9
100 6
1000 1.89

6%

1 120
2 84.6
10 37.8
100 12
1000 3.78

24%

1 240
2 170
10 76
100 23.9
1000 7.57

40%

2 218.5
10 97.7
100 30.9
1000 9.78

Table 1: Circular hole
geometries

(a) 6% Porosity

(b) 24% Porosity

(c) 40% Porosity

Figure 13: Examples of circular hole geometries

For geometries with elliptical holes, five random geometries were created for each of n =
[1,2,10,100,500], if possible to fit the holes within rectangular plate. The number of holes for
ellipsis were reduced because of the difficulties in discretizing and solving the problems with
larger number of elliptical holes. Table 1 shows the radii for each n corresponding to different
porosity variations.
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Porosity n a [mm]

1.5%

1 134
2 94.6
10 42.3
100 13.4
500 5.98

6%

2 189.2
10 84.6
100 26.8
500 1.20

24%
10 169
100 53.5
500 23.9

40%
10 218.5
100 69.1
500 30.9

Table 2: Elliptical hole
geometries with axis ratio

b : a = 1 : 5

(a) 24% Porosity

(b) 40% Porosity

Figure 14: Examples of elliptical hole
geometries with b : a = 1 : 5

Porosity n a [mm]

1.5%

1 189
2 133.8
10 59.8
100 18.9
500 8.46

6%
10 119.7
100 37.8
500 16.9

24%
10 239.4
100 75.7
500 33.8

40%
100 97.7
500 43.7

Table 3: Elliptical hole
geometries with b : a = 1 : 10

(a) 24% Porosity

(b) 40% Porosity

Figure 15: Examples of elliptical hole
geometries with b : a = 1 : 10

There is a constrain for the edge of circles or ellipse. The minimum distance between the
edges of circular or elliptical holes to any rectangular edge is set to 5 mm.

Creation of Geometry

An important aspect of the geometry creation was to decide on which algorithm should be used
for placing holes at random places in geometry. There are different solutions possible that can
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be used to place random circular holes in a rectangle. Some algorithms simulate the particles to
fall into the rectangle under gravity and then allow them to become stable. But for the purpose
of this study, to place circles and ellipsis a a geometric algorithm was used in which a random
point was selected in range of (x,y) = ([5+ r,495− r], [5+ r,1495− r]) shown in Figure 16.

Figure 16: Constrained geometry for holes

Then, the circle was placed if the boundary of the circle didn’t intersect with any other
circle. A constraint was also introduced here to have the boundary of two circles to be at least
5 mm away from each other. This works well for lower porosity and less number of circles.
But for higher porosity and more number of circles, the placement can’t work under these
conditions. For this reason, rectangular regions were created to divide the rectangular domain
into smaller regions (as in Figure 17), so that the placement of holes could be done easily.

18



Figure 17: Rectangular grids for large number of holes

Geometric placement rule used for circles is quite simple as the distance between center of
two circles should be greater than the diameter plus the boundary constraint that is applied. But
in case of ellipsis, it is a bit complex. The complexity of it was avoided by using a rectangle
around the elliptical boundary with width and height equal to major axis plus the boundary
constraint and minor axis plus the boundary constraint respectively.

The script to generate the coordinates for center of circular and elliptical holes was written in
MATLAB, while all the geometries were created in Ansys SpaceClaim using a Python script.
See Appendix B for the codes attached.

4.2 Discretization
All the geometries were discretized using Ansys PLANE183 element. Figure [18] shows the
geometry of PLANE183 element. PLANE183 element is a quadratic 2-D element with either
8 nodes or 6 nodes. In this study, both the arrangements with 8 and 6 nodes were used. 8 node
elements were used for n ≤ 100 while 6 node elements were used for n > 100. It should be
noted that if KEYOPT (1) is not set to 1, then all the triangular elements will be degenerated
rectangular elements with 8 nodes. PLANE183 has quadratic displacement behavior and is
well suited to modeling irregular meshes. This element is defined by eight nodes or six nodes.
It can be used as a plane element (plane stress, plane strain and generalized plane strain) or as
an axisymmetric element (with or without torsion). In most cases, the element has two degrees
of freedom at each node: translations in the nodal x and y directions. It should be noted that
the element can be used for plasticity, hyperelasticity, creep, stress stiffening, large strain and
large strain [13]. In this study, this element was used for both linear hardening plasticity and
large strain cases.
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Figure 18: Geometry of PLANE183 Element

Generating a correct mesh is quite important and a difficult task in solution of FEM prob-
lem. Having a coarse mesh could render all your results incorrect. The general trend is that
accuracy of a solution increases with increasing the fineness of mesh, that is by having smaller
and smaller elements. By decreasing element size could achieve more and more accurate re-
sults, but the first question to be asked here is how much error in the solution could be safely
ignored. The reason for this question is that by increasing mesh fineness, the time and compu-
tational cost for solution increase a lot. Also, the space required to store all the results increases
in similar proportion. So, we have to find a trade off between the mesh fineness and accurate-
ness of solution.

To be able to find the point where we could get our desired accuracy at smallest possible num-
ber of nodes, a mesh convergence study needs to be done. The process of mesh convergence
involves decreasing the element size and analyzing the impact of this process on the accuracy
of the solution. In current study, mesh convergence study can’t be performed for each single
geometry. Therefore, we did the mesh convergence for a few geometries. These results gave
us a good approximation of the parameters that we should use for mesh while keeping our so-
lutions accurate.

Different methods were used for creation of mesh. In first method, an inflation layer with a
maximum aspect ratio of 3 was used around all the hole boundaries. In the second method, a
rectangular face was created around the boundary of hole with an offset and then a fine mesh
was generated for that face. Both the methods, lead to similar results. The parameters used for
mesh are as follows

Global Element Size = 20mm,

Number of Inflation Layers = 2−5,
Thickness of Inflation Layer = 1−5mm.
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(a) Mesh of circular hole porosity variation

(b) Zoomed Red Rectangular Area

Figure 19: Mesh of plate with 100 circular holes

21



(a) Mesh of elliptical hole porosity variation

(b) Zoomed Red Rectangular Area

Figure 20: Mesh of plate with 100 elliptical holes

4.3 Boundary Conditions
Boundary conditions in FEM are actually the boundary conditions of PDEs. Models in FEM are
mathematical representation of a physical phenomenon happening. So, the choice of boundary
conditions also comes with approximations that best represent the actual physical conditions.
Also, an important thing is that even when we apply a continuous boundary condition, FEM
then applies those boundary conditions on discretized nodes.

In our case, all the boundary nodes are restricted in only x direction, except one node which is
restricted in both, x and y, directions as shown in Figure 21. The benefit of using this boundary
condition is that we’ll not have any stress disturbances in the plate as shown in Figure 22.
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Figure 21: Boundary Conditions of Analyzed Problem

(a) Stress distribution around support for applied
support condition

(b) Stress distribution around support for all nodes
with hinge support

Figure 22: Stress distribution differences due to support disturbance

4.4 Load bearing capacity calculation
To calculate load bearing capacity, load is applied in small time-steps until the maximum
strain reaches the 2.5‰ limit for the small strain case. The value for which the strain limit
is reached is defined as load bearing capacity of steel plate. Load is applied as pressure
normal to the lower edge of plate which is similar to uniaxial tension. For the large strain
problem analyzed, prescribed displacement is applied in small steps. The load bearing capacity
in this case is then extracted from the prescribed displacement value.

5 Numerical Simulation Results

After an explanation into the setting up of Finite Element Model for the current problem. After
performing solutions for all the different variations. Stress and strain diagrams at the yield
loading and ultimate loading were plotted for all the variations of the problems analyzed. σ −ε

diagrams and Fl − ε diagrams were also plotted.

Different variations of the problem that were analyzed are as follows

• 1.5%, 6%, 24% and 40% porosity variations were analyzed for circular holes placed at
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random positions.

• 1.5%, 6%, 24% and 40% porosity variations were analyzed for elliptical holes with
b/a = 1/5 placed at random positions.

• 1.5%, 6%, 24% and 40% porosity variations were analyzed for elliptical holes with
b/a = 1/10 placed at random positions.

• 24% porosity variation was analyzed for plane strain problem for circular holes placed
at random positions.

• 6% and 24% porosity variation were analyzed for large strain problem for circular holes
placed at random positions.

Since, the main aim of this study is to present a mathematical approximation of LB capacity
transition from solid to porous material, therefore regression analysis was done to get a function
dependent on n, so that LB capacity can be given as a function of n.

LB Capacity = f (n). (5.1)

Regression analysis is the process of finding the relationship between a dependent variable,
in this case n, and outcome which in this case is LB capacity. There are different types of
regression analysis, so choice of type of regression is quite important. The most simple form of
the regression is linear regression. A nonlinear function can also be approximated by linearizing
the nonlinear function. In this case, the function chosen for regression is as follows

f =
p1 · x+ p2

x+q1
. (5.2)

Here, p1, p2 are the coefficients of linear term in numerator while q1 is coefficient for denu-
merator.

5.1 Circular Holes
In case of circular holes, we had five different geometric variations for each n. These variations
were then analyzed for both Material 1 and Material 2. The LB capacity for all these cases is
shown in Figures 23 and 24. The figures show us the transition from solid to porous model.
From the figures, it can be seen that the solid model for Material 1 has LB capacity of 2500
kN/m while Material 2 has LB capacity of 3250 kN/m. After we start adding holes, the LB
capacity first drastically decreases for smallest n, as we start increasing n then the LB capacity
starts to increase.

In case of smallest number of holes, the stress concentration is maximum but when we start
increasing the number of holes, the stress concentration decreases, which results in an increase
in LB capacity.

An important deduction can be made here about the LB capacity that if we start increasing the
number of holes in a body for a given porosity, then after a certain limit, the LB capacity of
body starts to become independent of position of the holes. This can be seen in Table [4] as
we start to increase the number of holes from n = 1 → 1000, then the general trend is that the
mean value of LB capacity starts to increase while the standard deviation starts decreasing.
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By using the regression analysis for the LB capacity data, we get regression curves as shown
in Figures [25,26]. The regression functions we get are given below.

For Material 1

f (n,1.5) =
2450 ·n+4.33 ·106

n+4062.5
, (5.3)

f (n,6) =
2282.94 ·n+3.5 ·106

n+5090.74
, (5.4)

f (n,24) =
1604.68 ·n+7.54 ·105

n+3730.92
, (5.5)

f (n,40) =
1000.6 ·n+1.26 ·105

n+1447.27
. (5.6)

Now, for Material 2

f (n,1.5) =
3193.01 ·n+8.64 ·106

n+7896.42
, (5.7)

f (n,6) =
2971.3 ·n+5.19 ·106

n+6506.21
, (5.8)

f (n,24) =
2087.67 ·n+1.06 ·106

n+4394.14
, (5.9)

f (n,40) =
1301.36 ·n+1.79 ·105

n+1700.72
. (5.10)

From the above equations, we can see that in regression analysis coefficient p1 converges to
the value of approximated value of LB capacity calculated from the Gurson’s model.
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Table 4: LB Capacity of geometry with circular holes

Porosity n
LB capacity[kN/m]

Material 1 Material 2
Mean SD Mean SD

1.5%

1 704.00 261.81 806.40 293.10
2 1041.25 118.31 1204.00 136.34
10 917.50 204.70 1062.25 234.43
100 948.20 21.16 1097.60 38.53
1000 1212.60 54.68 1328.40 53.22

6%

1 462.50 182.83 533.90 209.80
2 694.80 212.80 807.50 236.90
10 733.00 247.25 861.25 290.79
100 695.20 44.95 809.60 47.46
1000 950.40 25.32 1088.00 25.30

24%

1 67.86 6.19 79.00 10.55
2 270.60 69.05 315.00 79.14
10 190.80 54.60 227.00 65.73
100 322.40 18.89 383.00 22.25
1000 487.00 6.71 570.00 7.50

40%

2 72.19 20.39 86.80 23.48
10 91.60 29.87 108.90 34.66
100 170.66 19.13 201.96 22.38
1000 389.40 86.13 464.40 102.49
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(a) 1.5% Porosity

(b) 6% Porosity
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(c) 24% Porosity

(d) 40% Porosity

Figure 23: LB capacity of Material 1 for circular holes
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(a) 1.5% Porosity

(b) 6% Porosity
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(c) 24% Porosity

(d) 40% Porosity

Figure 24: LB capacity of Material 2 for circular holes
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Figure 25: Regression curves for LB capacity of Material 1 for circular holes
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Figure 26: Regression curves for LB capacity of Material 2 for circular holes

5.2 Elliptical Holes
In case of elliptical holes, two different elliptical holes and five different geometric varia-
tions for each n were created. These variations were then analyzed for both Material 1 and
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Material 2. The LB capacity for all these cases is shown in Figures [27,28,29,30]. The figures
show us the transition from solid to porous model. It should be noted that the approximated
value of LB capacity is actually calculated for a 3-D stress state with spherical holes placed in
the continuum. But for the purpose of this study, the approximation is also considered for the
elliptical holes as well. The geometries with smaller axis ratio will have higher LB capacity
than the ones with larger axis ratio as can be seen in Tables [5,6]. The reason for this is that the
radius of curvature of tip of ellipse with smaller axis ratio is higher, which results in a lower
stress concentration factor.

Like circular holes, in case of smallest number of holes, the stress concentration is maximum
but when we start increasing the number of holes, the stress concentration decreases, which re-
sults in an increase in LB capacity. Also the deduction about the independence of load bearing
capacity from the position of holes for higher n is same.

By using the regression analysis for the LB capacity data, we get regression curves as shown in
Figures [31,32]. The regression analysis was done only for a/b = 1 : 5. Regression functions
are as follows.

For Material 1

f (n,1.5) =
2471.89 ·n+2.69 ·106

n+12617.28
, (5.11)

f (n,6) =
2354.61 ·n+4.83 ·106

n+37113.59
, (5.12)

f (n,24) =
1600 ·n+4.68 ·105

n+23096.86
, (5.13)

f (n,40) =
1000 ·n+3.49 ·105

n+10338.12
. (5.14)

Now, for Material 2

f (n,1.5) =
3222.22 ·n+3.79 ·106

n+15470.14
, (5.15)

f (n,6) =
3040.91 ·n+4.08 ·106

n+29581.32
, (5.16)

f (n,24) =
2137.94 ·n+7.3 ·105

n+28209.07
, (5.17)

f (n,40) =
1315.47 ·n+4.73 ·105

n+12264.43
. (5.18)
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Table 5: LB Capacity of geometry with elliptical holes (b/a = 1/5)

Porosity n
LB capacity[kN/m]

Material 1 Material 2
Mean SD Mean SD

1.5%

1 180.00 79.65 204.60 91.32
2 261.60 45.40 299.20 51.09
10 187.60 61.94 215.70 71.42
100 228.10 31.99 266.70 39.44
500 299.60 3.99 337.50 8.42

6%

2 133.10 17.46 150.40 18.46
10 148.00 46.00 126.00 26.31
100 129.50 19.69 150.50 27.52
500 161.70 16.30 186.80 15.79

24%
10 16.60 8.74 19.68 10.03
100 25.60 2.97 33.26 1.52
500 54.06 2.52 63.00 3.26

40%
10 36.40 10.91 41.75 11.85
100 40.48 10.26 46.00 11.09
500 78.80 6.61 89.10 8.39

Table 6: LB Capacity of geometry with elliptical holes (b/a = 1/10)

Porosity n
LB capacity[kN/m]

Material 1 Material 2
Mean SD Mean SD

1.5%

1 71.90 18.58 83.40 21.15
2 103.60 29.75 118.80 33.58
10 110.80 32.21 123.60 34.75
100 145.20 30.09 158.40 31.71
500 192.00 13.04 226.50 15.27

6%
10 57.30 14.29 66.00 16.92
100 58.66 22.97 65.00 25.20
500 69.20 7.01 79.60 6.84

24%
10 16.42 8.42 18.90 9.66
100 26.40 1.95 28.00 1.41
500 20.34 2.17 23.00 1.90

40%
100 21.58 8.80 24.75 10.09
500 52.60 5.37 61.00 2.12
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(a) 1.5% Porosity

(b) 6% Porosity
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(c) 24% Porosity

(d) 40% Porosity

Figure 27: LB capacity of Material 1 for elliptical holes with b/a = 1/5
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(a) 1.5% Porosity

(b) 6% Porosity
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(c) 24% Porosity

(d) 40% Porosity

Figure 28: LB capacity of Material 2 for elliptical holes with b/a = 1/5
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(a) 1.5% Porosity

(b) 6% Porosity
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(c) 24% Porosity

(d) 40% Porosity

Figure 29: LB capacity of Material 1 for elliptical hole with b/a = 1/10
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(a) 1.5% Porosity

(b) 6% Porosity
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(c) 24% Porosity

(d) 40% Porosity

Figure 30: LB capacity of Material 2 for elliptical hole with b/a = 1/10
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Figure 31: Regression curves for LB capacity of Material 1 for elliptical holes
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Figure 32: Regression curves for LB capacity of Material 2 for elliptical holes

5.3 Comparison between Geometric Variations
The purpose of creating three different versions of holes was to see how the change in shape
affects the LB capacity of material. Figures [33,34] show that the LB capacity of plates with
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circular holes is greater than the plates with elliptical holes. We can also see that in case of
elliptical holes with smaller minor to major axis ratio has more LB capacity than the ones
with larger ratios. Another important thing that can be observed from Figures [33,34] is that
the difference in LB capacity decreases between different geometric variations as the porosity
increases.

(a) 1.5% Porosity

(b) 6% Porosity
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(c) 24% Porosity

(d) 40% Porosity

Figure 33: Comparison of LB capacity of Geometric variations for Material 1
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(a) 1.5% Porosity

(b) 6% Porosity
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(c) 24% Porosity

(d) 40% Porosity

Figure 34: Comparison between geometric variations for Material 2

5.4 Comparison between Plane Stress and Plane Strain
The actual problem was analyzed using plane stress formulation as it works well for thin ele-
ments with unit thickness. But to check whether using a different formulation would have an
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effect on the values of LB capacity, plane strain formulation was also used to analyze the prob-
lem for a selected porosity for circular holes. Figures [35,36] show that by using plane strain
formulation results in a small increase in the value of LB capacity under the same loading.

Figure 35: Comparison between plane stress and plane strain for Material 1

Figure 36: Comparison between plane stress and plane strain for Material 2
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5.5 Comparison between Small Strain and Large Strain
The maximum of small strain conidtion was taken as 2.5‰ at any point of the structure for
which the maximum value of LB capacity occurs. The maximum displacement of the structure
for this case was approximately 0.4 mm. In order to compare the difference in LB capacity,
large strain analysis was also done for selected porosities using Material 1 and Material 2.

In case of large strains, a prescribed displacement of 4 mm, approximately 10 times higher,
as was in previous case, was applied. It should be noted that for the Material 1, stress can’t
increase over 250 MPa. While, in case of Material 2, the stress can theoretically keep on
increasing after reaching the yield point along with a relatively higher tangent modulus than
usual materials.

Another interesting situation in the case of large strains is the analytical approximation of LB
capacity for large strain. Approximations were done to calculate the LB capacity for strain
limit of 2.5‰ but in case of large strains (25% to 35% at specific points), these approximations
can’t be ignored.

An approximation done for small strain case to ignore the softening of materials after reaching
the initial yield stress. But in reality, the material undergoes softening under uniaxial tension
because of the growth of voids and possible formation of new voids. This complex behavior is
prominent in case of large strains. Therefore, a good approximation for LB capacity can’t be
made in case of large strains for both materials. Figure 37 shows the softening and hardening
behavior of a linearly elastic perfectly plastic material with a porosity under uniaxial tension
and compression respectively.

Figure 37: Softening and hardening of porous material under uniaxial tension and compression

Here, we will only focus on the comparison between the small strain and large strain for
Material 1. The strain limit was not fixed in the current case. Strains ranged from 25% to
35% at some points of the structures. Figure 38 shows the maximum strain zone around the
holes. The case of Material 1 is simpler than the case of Material 2 where the stress keeps on
increasing with a tangent modulus quite higher than usual materials. The behavior of Material
2 for the large strain case can be an interesting question but will not be discussed here.
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Figure 38: Maximum strain zone for large strain

It can be seen in Figures 39 and 40, the LB capacity of large strain case is higher than the
small strain. It should be noted that n = 1 for 24% porosity is special case because it has the
hole with maximum length perpendicular to uniaxial tension that’s why both small and large
strain situation has similar LB capacity values.

Figure 39: Comparison between small and large strain for Material 1 for 6% porosity
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Figure 40: Comparison between small and large strain for Material 1 for 24% porosity

Summary

The purpose of the study was to understand the effect of porosity on the LB capacity of a thin
plate. The effect of the change in the number of holes with different shapes and positions for
a porosity was analyzed. The conclusion that can be made here is that the LB capacity tends
towards a value close to LB capacity approximated by the Gurson Model as we increase the
number of n. A numerical drawback here is that we can’t increase the number of holes to the
same scale as of the Gurson Model, but it presents a good transition between the solid model
with no voids to porous model. The Gurson’s model is only applicable for spherical voids
but here as an approximation we use it both for circular and elliptical holes. A study of the
comparison between use of spherical voids (Gurson’s mdoel) and ellipsoidal voids in a 3D
stress state could be performed to have a better approximation models for different shapes of
holes.

In current case, only tension analysis was done. This could be expanded to the use of study of
bending and the interaction of bending and tension as well. Another interesting problem would
be the analysis of large strain behavior of the plate.
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Appendix A: Plastic Zone Propagation

The red zone in the figures below shows the plastic zones. It should be noted here that only
red zones show the yielded structure. The colors transitioning from the blue to red show an
increase from smallest value to maximum value possible.

A.1 6% Porosity

(a) Small Strain Case

(b) Large Strain Case

Figure 41: Example of Plastic Zone Propagation for Material 1 with n=2 and f=6%
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(a) Small Strain Case

(b) Large Strain Case

Figure 42: Example of Plastic Zone Propagation for Material 1 with n=10 and f=6%
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A.2 24% Porosity

(a) Small Strain Case

(b) Large Strain Case

Figure 43: Example of Plastic Zone Propagation for Material 1 with n = 2 and f = 24%
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(a) Small Strain Case

(b) Large Strain Case

Figure 44: Example of Plastic Zone Propagation for Material 1 with n = 10 and f = 24%
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Appendix B: Codes for Creation of Geometry

B.1 Circular Holes

1 function cs = geometry(porosity ,number_circles)

2 radius = sqrt(( porosity *1500*500) /(pi*number_circles));

3 l_limits = [5 5]+ radius;

4 u_limits = [495 1495] - radius;

5 counter = 1;

6 c_coords = zeros(number_circles ,2);

7 f = 0;

8 while counter <= number_circles

9 coords = l_limits+rand (1,2).*( u_limits -l_limits);

10 if counter ==1

11 c_coords(counter ,:) = coords;

12 counter = counter +1;

13 else

14 if sum(sqrt(sum((c_coords -coords).^2 ,2)) > radius *2+5)==counter

-1

15 c_coords(counter ,:) = coords;

16 if mod(counter ,5)==0

17 fprintf("%4d Circles found\n",counter)

18 end

19 counter = counter +1;

20 else

21 f = f+1;

22 if f >=50000

23 f = 0;

24 counter = 1;

25 c_coords = [];

26 end

27 end

28 end

29 end

B.2 Elliptical Holes

1 function cs = geometry(porosity ,number_ellipsis ,r_axis)

2 b = round(sqrt(( porosity *1500*500) /(pi*number_ellipsis*r_axis)) ,1);

3 a = b*r_axis;

4 if a>=245

5 cs = [];

6 return

7 end

8 l_limits = [5 5]+[a b];

9 u_limits = [495 1495] -[a b];

10 counter = 1;

11 c_coords = [];

12 f = 0;

13 while counter <= number_ellipsis

14 coords = l_limits+rand (1,2).*( u_limits -l_limits);

15 bl_coords = coords - [a b] - [1 1];

16 tr_coords = coords + [a b] + [1 1];

17 if counter ==1

18 c_coords(counter ,:) = coords;
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19 bl_ccoords = c_coords - [a b] -[1 1];

20 tr_ccoords = c_coords + [a b] + [1 1];

21 counter = counter +1;

22 else

23 c1 = max(bl_ccoords ,bl_coords);

24 c2 = min(tr_ccoords ,tr_coords);

25 c = c1 > c2;

26 if sum(c(:,1)|c(:,2))==counter -1

27 c_coords(counter ,:) = coords;

28 bl_ccoords = c_coords - [a b] -[1 1];

29 tr_ccoords = c_coords + [a b] + [1 1];

30 counter = counter +1;

31 else

32 f = f+1;

33 if f>=5e6

34 f = 0;

35 counter = 1;

36 c_coords = [];

37 end

38 end

39 end

40 end

B.3 Circular Hole Geometry Creation

1 # Python Script , API Version = V17

2 import random

3 import math

4 import os

5 porosity =[0.4]

6 n = [1000]

7 variations = ["var1"]

8 for i in range(len(porosity)):

9 for j in range(len(n)):

10 for k in range(len(variations)):

11

12 radius = round(math.sqrt(porosity[i]*7.5 e5/(math.pi*n[j]))

,2)

13 c_coords = []

14 with open('D:\ Administrator\Documents\MATLAB\matrix.txt','r

') as file:

15 for line in file:

16 currentline = line.split(",")

17 c_coords += [[float(currentline [0]),float(

currentline [1])]]

18

19 # Sketch Rectangle

20 plane = Plane.PlaneXY

21 result = ViewHelper.SetSketchPlane(plane)

22 point1 = Point2D.Create(MM(0),MM(0))

23 point2 = Point2D.Create(MM (500) ,MM(0))

24 point3 = Point2D.Create(MM (500) ,MM (1500))

25 result = SketchRectangle.Create(point1 , point2 ,point3)

26 # EndBlock

27 for cs in c_coords:

28 # Sketch Circle
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29 origin = Point2D.Create(MM(cs[0]), MM(cs[1]))

30 result = SketchCircle.Create(origin , MM(radius))

31 # EndBlock

32

33 # Solidify Sketch

34 mode = InteractionMode.Solid

35 result = ViewHelper.SetViewMode(mode , Info2)

36 # EndBlock

37

38 # Delete Selection

39 selection = Selection.Create ([ GetRootPart ().Bodies [0]. Faces

[faces] for faces in range(n[j])])

40 result = Delete.Execute(selection)

41 # EndBlock

42

43 primarySelection = Selection.Create ([ GetRootPart ().Bodies

[0]. Edges[edges] for edges in range(n[j])])

44 secondarySelection = Selection ()

45 result = NamedSelection.Create(primarySelection ,

secondarySelection)

46 NamedSelection.Rename("Group1","circles")

47 # Save File

48 pathtoFolder = "D:\\LB capacity of Steel\\ Simulations \\new

\\"

49 dir1 = os.path.join(pathtoFolder ,str(porosity[i]),str(n[j])

,"pp",variations[k])

50 DocumentSave.Execute(dir1+"\\"+variations[k]+".scdoc")

51 # EndBlock

52 # Delete Selection

53 #selection = Selection.Create(GetRootPart ().Bodies [0])

54 #result = Delete.Execute(selection)

55 # EndBlock

B.4 Elliptical Hole Geometry Creation

1 import random

2 import math

3 import os

4 porosity =[0.015 ,0.06 ,0.24 ,0.4]

5 number_ellipsis = [1 ,2 ,10 ,100 ,500]

6 variations = ["var"+str(i) for i in range (1,6)]

7 r_axis = 10 # can be either 5 or 10

8 for i in range(len(porosity)):

9 for j in range(len(number_ellipsis)):

10 for k in range(len(variations)):

11 b = round(math.sqrt(( porosity[i]*1500*500) /(math.pi*

number_ellipsis[j]* r_axis)) ,1)

12 a = b*r_axis

13 c_coords = []

14 pathtoFolder = "D:\\LB capacity of Steel\\ Simulations \\

ellipse_1_"+str(r_axis)+"\\"

15 dir1 = os.path.join(pathtoFolder ,str(porosity[i]),str(

number_ellipsis[j]),"pp",variations[k])

16 if os.path.exists(os.path.join(dir1 ,variations[k])+".txt"):

17 with open(os.path.join(dir1 ,variations[k])+".txt",'r')

as file:
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18 for line in file:

19 currentline = line.split(",")

20 c_coords += [[float(currentline [0]),float(

currentline [1])]]

21

22 # Sketch Rectangle

23 plane = Plane.PlaneXY

24 result = ViewHelper.SetSketchPlane(plane)

25 point1 = Point2D.Create(MM(0),MM(0))

26 point2 = Point2D.Create(MM (500) ,MM(0))

27 point3 = Point2D.Create(MM (500) ,MM (1500))

28 result = SketchRectangle.Create(point1 , point2 ,point3)

29 # EndBlock

30 for cs in c_coords:

31 origin = Point2D.Create(MM(cs[0]), MM(cs[1]))

32 majorDir = -DirectionUV.DirU

33 minorDir = -DirectionUV.DirV

34 result = SketchEllipse.Create(origin , majorDir ,

minorDir , MM(a), MM(b))

35 if number_ellipsis[j] >1000:

36 for cs in c_coords:

37 point1 = Point2D.Create(MM(cs[0]-1-a),MM(cs

[1]-1-b))

38 point2 = Point2D.Create(MM(cs [0]+1+a),MM(cs

[1]-1-b))

39 point3 = Point2D.Create(MM(cs [0]+1+a),MM(cs

[1]+1+b))

40 result = SketchRectangle.Create(point1 , point2 ,

point3)

41

42 # Solidify Sketch

43 mode = InteractionMode.Solid

44 result = ViewHelper.SetViewMode(mode , Info2)

45 # EndBlock

46

47 # Delete Selection

48 selection = Selection.Create ([ GetRootPart ().Bodies [0].

Faces[faces] for faces in range(number_ellipsis[j])])

49 result = Delete.Execute(selection)

50 # EndBlock

51

52 primarySelection = Selection.Create ([ GetRootPart ().

Bodies [0]. Edges[edges] for edges in range(number_ellipsis[j])])

53 secondarySelection = Selection ()

54 result = NamedSelection.Create(primarySelection ,

secondarySelection)

55 NamedSelection.Rename("Group1","circles")

56

57 if number_ellipsis[j] >1000:

58 primarySelection = Selection.Create ([ GetRootPart ().

Bodies [0]. Faces[faces] for faces in range(number_ellipsis[j])])

59 secondarySelection = Selection ()

60 result = NamedSelection.Create(primarySelection ,

secondarySelection)

61 NamedSelection.Rename("Group1","b_rectangles")

62 primarySelection = Selection.Create ([ GetRootPart ().

Bodies [0]. Faces[faces] for faces in range(number_ellipsis[j],

number_ellipsis[j]+1)])
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63 secondarySelection = Selection ()

64 result = NamedSelection.Create(primarySelection ,

secondarySelection)

65 NamedSelection.Rename("Group1","face")

66 # Save File

67 DocumentSave.Execute(dir1+"\\"+variations[k]+".scdoc")

68 # EndBlock

69 # Delete Selection

70 selection = Selection.Create(GetRootPart ().Bodies [0])

71 result = Delete.Execute(selection)

72 # EndBlock
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