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Introduction 

Classical continuum-mechanics  presumes the materials to be homogeneous, but as a matter 

of fact, all the materials are heterogeneous due to their microstructure. It is merely an 

engineering simplification that above a certain structural level, we regard them to be 

homogeneous, thereby facilitating mechanical computations. The aim of the most recent 

developments in material modeling is to describe a structure in such way that under a 

prescribed loading  regarding either its yielding or fatigue failure , at the critical structural 

parts the macroscopically homogeneous material shall be replaced with its micro- or 

mesolevel model taking into account its heterogeneous behaviour. This type of material 

modeling is called multiscale modeling. 

In case of composite (particle- or fiber-reinforced materials) and polycrystalline materials 

(metals, ceramics), the effective behaviour of the heterogeneous material can be determined in 

function of the known material parameters of the individual phases and the volume fractions 

of them. The connection between the physical properties on micro- and macrolevel  is given 

by the so-called homogenization methods. The multiscale model needs the results of the 

micro-/mesolevel model to be transformed to the macrolevel structural model, therefore it 

applies homogenization methods and appropriate boundary conditions to connect the different 

modeling levels. 

Studying the behaviour of heterogeneous materials is not only important in multiscale 

modeling, but it can also be applied at designing structures against fatigue failure. Based on 

the energies of inclusions and inhomogeneities, one can derive criterion for crack propagation 

also taking into account whether the individual phases or the interface between them is the 

weakest part of the material regarding fracture. Another remarkable application of 

micromechanical based design is to produce new building materials and to develop already 

existing ones. The computer-aided material modeling presented in this paper can replace the 

outdated trial-error procedures on a purely scientific basis, resulting in a faster and more 

economical design process. 

Since the subject of micromechanics has not been involved in our university studies, first I 

had to get familiar with this vast field of mechanics. I reviewed a great amount of literature, 

both on the analytical and on the numerical background of the subject under consideration. 

The scope of this work is to give an overall introduction to mesolevel material modeling that I 

can continue studying and in the future benefit from this knowledge in the field of multiscale 

modeling. 

In this paper, first I demonstrate the mathematical and mechanical background of the 

mesolevel mechanical modeling of heterogeneous materials. The disturbed stress- and strain 

field due to the presence of inclusions and inhomogeneities are described with the help of 

Green’s functions. In order to interpret this disturbing effect from mechanical point-of-view, I 

introduce the definitions of eigenstrains and eigenstresses, that allow us to distinguish voids, 

inclusions, inhomogeneities and inhomogeneous inclusions inside a material. 

In order to get acquainted with the future applications of multiscale modeling, I review the 

international researches made under the topic of atomistic- and mesolevel models so far. 
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The mechanical study of the environment of inhomogeneities is based both on analytical 

solutions from the literature and on my own numerical models. I pay special attention to 

Eshelby’s analytical solution developed for ellipsoidal inhomogeneities, which allow me to 

make use of the Eshelby tensor  describing the connection between the strain- and 

eigenstrain field in heterogeneous materials  in the homogenization methods as well. 

Finally, I compute the macrolevel material properties of a heterogeneous material with 

known physical properties of the individual phases, and given geometry and spatial 

distribution of heterogeneities. I compare the different analytical and numerical results and 

define the limit of applicability of the applied homogenization methods. 
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1 The historical background of multiscale modeling 

1.1 Multiple scales in heterogeneous materials  

I would like to introduce the importance of micromechanics by a discussion by Egon Orowan 

(Orowan, 1944): 

„The tensile test is very easily and quickly performed, but it is not possible to do much with its 

results, because one does not know what they really mean. They are the outcome of a number 

of very complicated physical processes taking place during the extension of the specimen. The 

extension of a piece of metal is, in a sense, more complicated than the working of a pocket 

watch, and to hope to derive information about its mechanism from two or three data derived 

from measurements during the tensile test is perhaps as optimistic as would be an attempt to 

learn about the working of a pocket watch by determining its compressive strength.” 

This statement summarizes the basic idea behind multiscale modeling: the answer of 

engineering materials to mechanical effects is highly dependent on their microstructure, 

and at critical parts of structures, the otherwise macrolevel structural model shall be replaced 

by its meso- or microlevel counterparts. When modeling the mechanical behavior of a 

structural element, a major requirement is to get the most accurate result besides investing in 

the least possible time and energy. That is the reason why we cannot model everything at its 

atomistic level: a very complex input would yield a very complex output while the whole 

process is immensely time-consuming as well. In Figure 1 the different length scales of 

materials are to be seen. 

 

Figure 1   Multiple scales in heterogeneous materials 

The electronic scale is considered only in very rare cases, for example at carbon nanotubes, 

but in general, this level is only a field of research, mainly investigated by physicists. The 
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next level is the atomistic level, which appears in mechanics occasionally, but it is more likely  

a subject of chemistry. On the other hand, in order to understand the connections between 

individual atoms to macromolecules, the atomistic level needs to be examined thoroughly. In 

materials science, we are interested in the microstructure of materials, which is quite a wide 

range consisting of individual dislocations and precipitates on the nanometer scale to e.g. the 

grain structure of polycrystalline materials on the scale of 0.1 mm. The latter structural level 

is usually called mesolevel. Most engineers only deal with the macroscale, which is the reason 

we need to apply homogenization methods in order to provide them macrolevel material 

properties based on the exact properties measured on smaller levels. 

1.2 Historical overview of materials sciences and mechanics 

1.2.1 History of materials sciences 

The history of materials sciences is influenced by the culture of the peoples and by the history 

of the Earth itself. 

Around 300,000 BC, in the Stone Age, the use of flint marked the beginning of the use of 

ceramics. From 5000 BC, in the Bronze Age, the utilization of metals became popular, 

continuously developing the science of metallurgy. In the years 3000 BC, the first alloy, 

bronze came into use. In the 10th century BC, glass production began to thrive in the Near 

East. The first steel, called wootz steel was invented in India near 300 BC. 

The Roman Empire used local materials, such as pozzolana, a volcanic ash that served as a 

hydraulic-setting cement, in which they threw local stones, aggregates. This is the Roman 

concrete, the first man-made composite material. 

The application of wood as building material became popular in the Middle Ages, when the 

Little Ice Age hit the northern hemisphere, resulting in the demand for warmer materials. In 

the 16th century, Italian metallurgist Vannoccio Biringuccio published his book De la 

pirotechnia, the first systematic book on metallurgy. At the same time in the Netherlands, 

glass lens were developed, a fundamental component of microscopes and telescopes. 

In the 1600s, Italian polyhistor Galileo Galilei’s book Two new sciences on strength of 

materials and kinematics included the first quantitative statements on material sciences, as a 

starting point of the Age of Enlightenment. In these years, throughout the 18th century,  a 

great scientific development called Scientific Revolution took place with Isaac Newton, 

Robert Hooke, Charles-Augustin de Coulomb, Augustin-Louis Cauchy, Pierre-Simon 

Laplace, Joseph Fourier, Leonhard Euler and Joseph-Louis Lagrange. 

The 19th century  based on the theoretical evolution of the 1700s  was the age of Industrial 

Revolution with new manufacturing processes, and thus, new artificial materials, such as 

rubber, metal alloys etc. 

The modern materials sciences in the 20th century dealt with steel production, polymers, high 

temperature and/or high strength materials and soft materials such as gels, foams and organic 

matters. The first Materials Science Department was founded in 1955 at Northwestern 

University, Chicago. 



9 

 

1.2.2 History of continuum mechanics 

Mechanics is a science of the behavior of physical bodies subjected to forces and 

displacements and the resulting effects of the bodies on their environment. 

Based on the writings of Aristotle, Archimedes and Leonardo da Vinci, Galilei and Newton 

laid the foundation of classical mechanics, a branch of mechanics concerned with particles 

that are either at rest or moving with velocities much smaller than that of light. Although the 

atomic nature of matter was already accepted, these works concentrated on the mechanics of 

rigid bodies. Later on, scientists like Ukrainian engineer Stepan Timoshenko (Timoshenko & 

Goodier, 1934) emphasized in their works, that „Atomic structure will not be considered (…) 

It will be assumed that the matter of an elastic body is homogeneous and continuously 

distributed over its volume so that the smallest element cut from the body possesses the same 

specific physical properties as the body.”  The unifying theory of continuum mechanics 

related to American mathematician Clifford Truesdell (Truesdell, 1960) came into use in the 

mid-1900s along with developments in thermodynamics and rheology. At the same time, 

quantum mechanics was born in 1925, which is not contradictory to classical mechanics, but 

it has a more general scope. 

1.2.3 History of micromechanics 

The first postulation of materials having discrete internal structure was found in the work of 

Leucippus that was later extended by his student, Democritus in the fifth century BC. 

According to Democritus, the world is built up by atoms (from the Greek word ’atomos’ 

meaning ’indivisible’) moving about incessantly in a void of emptiness. He stated that only 

the atoms and the void are real, the objects of sense are just supposed to be real. This 

perception can be expressed as the observed macroscopic properties being only consequences 

of the microstructure of materials, they cannot be the starting point of materials science. 

Democritus also took into account the shapes of atoms and the connections between them 

when defining the source of the observed properties of a particular material. 

Despite being close to the real structure of materials, Democritus’ philosophy was abandoned 

because of its secular nature, and his books were burned, his work is only known from 

references by others. In Classical Greek philosophy, Plato’s view was the leading one, which 

stated that the basic particles the material is composed of, are made of four basic elements: 

earth, fire, water and air, and a fifth one, aether (also called quintessence meaning ’fifth 

element’) filling the universe. These five platonic solids (Figure 2) were assumed to bear 

predefined shapes: cube for earth, tetrahedron for fire, icosahedron for water, octahedron for 

air and dodecahedron for aether. 
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Figure 2   The platonic solids 

In 1611 AD, German astronomer Johannes Kepler wrote a booklet On the Six-cornered 

Snowflake (Kepler, 1966) in which he ponders the persistent six-fold symmetry of 

snowflakes. He supposed that this constant shape of snowflake has something to do with the 

internal structure of snow. He compared it to other natural objects having the same symmetry, 

such as honeycomb and the seeds in a pomegranate. His observation, known as Kepler’s 

conjecture is that the highest possible sphere packing density is obtained from cubic or 

hexagonal close-packing (Figure 3)  which was later proven by American mathematician 

Thomas Hales , and is again an approach towards the modern materials science. 

 

Figure 3   Hexagonal and cubic close-packed spheres 

In the late 17th century, English scientist Robert Hooke examined materials through the 

newly-invented microscope. In his book Micrographia (Hooke, 1987), sketches of ’crystalline 

bodies’ can be found, which he observed in stones, metals, minerals and salts. He claimed that 

these regular bodies are constructed by packing ’globular particles’ together. Being a 
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contemporary of Hooke,  English physicist Isaac Newton made the same perception on the 

existence of atoms in his book Optics (Newton, 1730) by saying that these indivisible solid 

particles of particular shapes, sizes and properties are always much harder than the porous 

bodies compounded by them, which is the basic idea of today’s micromechanics as well. 

In 1808, English scientist John Dalton proposed that each chemical element is composed of 

atoms of a unique type that cannot be altered or destroyed by chemical means, and his idea 

became the accepted atomic theory of matter. French crystallographer René-Just Haüy 

researched the taxonomy of crystal structures, and he stated that crystals are built up from 

polyhedral particles, hence, he did not accept the idea of the close-packed spherical particles. 

These two concepts were integrated by French scientist Gabriel Delafosse, who replaced 

Haüy’s molecules by polyhedra with Dalton’s spherical atoms at the vertices. These 

polyhedra were classified by French physicist August Bravais, also introducing the idea of 

unit cells. 

The idea of homogenization arose in the 20th century, when scientists made effort to 

incorporate the inhomogeneous nature of materials in their calculations without the difficult 

mathematical part of solving differential equations. In 1957, Eshelby’s paper (Eshelby, 1957) 

on a single ellipsoidal inclusion in isotropic media was a major breakthrough in 

micromechanics. In the next decade, Hill (Hill, 1963; 1965), Hashin, Shtrikman (Hashin & 

Shtrikman, 1961; 1963; Hashin, 1988), Budiansky and Tsai laid the foundation of 

homogenization. In the 1970s, these methods were extended to composites having periodic 

microstructure. 

In the present, the main field of interest is to find better bounds, to design new materials or 

develop already existing ones with the help of homogenization. Due to the continuous 

advancements in computer science, computational physics  an application of numerical 

methods in solving problems of physics  became a major field of research, and without the 

support of homogenization, the modern multi-scale modeling techniques would not exist. 

1.3 Introduction to atomistic models of materials 

1.3.1 Empirical atomistic models of materials 

In order to model properly the bonding problems of solids, one must apply quantum 

mechanics and solve Schrödinger’s equations for the electronic wave functions. Since the 

methods of quantum mechanics is too complex even in the simplest cases, numerical solutions 

can be found using the so-called density functional theory (DFT) or its parametrized version, 

tight-binding (TB), but these methods need great computational time.  To model the bonding 

problem of solids, we have to use fitted functional forms that gives an approximation to the 

atomic interactions. Even the TB formulations contain daring approximations comparing to 

quantum mechanics, therefore the empirical models should always be treated suspiciously. 

1.3.2 Molecular statics 

With the help of the methods of molecular statics, one can study the main features of the 

potential energy landscape of a configuration of atoms. 
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With the highly accurate methods of quantum mechanics ‒ DFT or TB ‒, one can compute the 

total potential energy of a configuration of atoms. These empirical models approximate the 

electronic energy as a potential energy function dependent only on the interatomic distances. 

The common feature of these models is that we can calculate the potential energy  V V r  

for any arbitrary set of N  atoms with the positions  1
, ...,

N
r r r . The configuration space 

of the system contains the set of all the possible coordinates  r
 . 

The potential energy function can be visualized as a 3N -dimensional potential energy 

landscape, that can be characterized by its extremal points, i.e. minima, maxima and saddle 

points. In order to find these particular points, numerical techniques must be applied, such as 

the method of the steepest descent.  This way the configuration space can be divided into 

disjoint regions, corresponding to the set of points that quench to the same minimum. These 

regions are called the basins of attraction. They are separated by dividing surfaces that 

intersect each other in the saddle points. The deepest minima on the energy landscape refers 

to the defect-free crystalline structures. Minima with higher energies are associated with 

crystalline containing internal defects. Even higher energies denotes the amorphous structures 

and finite clusters. The curvature of the energy function around a minimum point determines 

the elastic modulus of the particular solid. The transition paths, which is the lowest-energy 

trajectory between two minima, predict how the material deforms. 

In numerical mathematics, finding the global minimum of a nonconvex, multi-dimensional 

function quickly is still an open field of research. These nonlinear optimization problems are 

usually solved with the help of the steepest descent (SD), conjugate gradient (CG) or Newton-

Raphson (NR) method. These methods are also called local optimization methods, since there 

is no guarantee that the result coming from these methods is truly the global minimum of the 

function, usually they result only in local minima. When talking about relaxation, it is the 

process that takes us from the unrelaxed, i.e. starting configuration or initial guess to the local 

minimum, which is the relaxed structure. There are global optimization techniques such as 

simulated annealing, that uses Monte Carlo sampling. 

When solving nonlinear optimization problems, the solution is highly dependent on the initial 

guess. It is not always needed to find the global minimum, for example in solids, it would be 

associated with the perfect crystal, but we are more interested in crystals with internal defects, 

therefore finding local minima is more suitable. 

Dislocation motions, fracture, chemical reactions and diffusion are some of the processes that 

follow the transition paths of the potential energy landscape. Finding saddle points are even 

more difficult than finding local minima.  The general feature of saddle points is that they 

have positive curvature in one direction and negative curvature in another. The so-called 

eigenvector-following methods analyze the Hessian matrix of the system, which is very time 

consuming. Transition paths are easy to find, once the saddle points are known. The most 

widely used method is the so-called nudged elastic band (NEB) method. 

In molecular statics, we are able to predict the atomic behavior at zero temperature. Though, 

the atoms in the crystals are always vibrating with a velocity that is highly dependent on 
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temperature. On microscale, the thermal fluctuations are of random and chaotic nature, thus 

we need to resort to statistical methods to understand the effect of this motion on the 

macroscopic level of materials science. The numerical realization of statistical mechanics is 

the equilibrium molecular dynamics. 

1.3.3 Classical equilibrium statistical mechanics 

Statistical mechanics is a ’bridge’ between atomistic and continuum mechanical models. It is 

based on the fact that continuum variables represent the averages over sufficiently large 

number of atoms. Molecular dynamics simulations on the macrolevel give us information 

about the positions and velocities of the atoms of a system, that should be translated to the 

level of engineering design, i.e. how can the engineers use this data for designing an airplane 

against fatigue failure. 

The most important reason to connect these two models is the application of ’multiscale 

methods’, that concurrently couple continuum and atomistic descriptions in one model. At the 

interface of the micro- and macrolevel, appropriate boundary conditions need to be set. 

The key to averaging over the dynamical behavior of a large number of atoms is the fact that 

as a set, they exhibit highly regular statistical behavior. 

Phenomenological theories, such as continuum mechanics use variables that can be measured 

at macrolevel, like volume, energy, temperature, stress and entropy. These variables are 

referred to as macroscopic observables. In continuum mechanics the macroscopic observables 

are called state variables. At the microscale, a system is fully characterized by the set of 

positions and momenta  ,q p  of its atoms. It is then convincing to assume that a macroscopic 

observable  is related to a function  ,A q p  called phase function. The aim of statistical 

mechanics is to make an explicit connection between the state variable  and the phase 

function  ,A q p . 

1.3.4 Molecular dynamics 

Molecular dynamics simulations follow the motion of all the atoms in the system by treating 

them as classical Newtonian particles, writing the equations of motion 

(1.1) ,  1, ...,m r f N
  

  , 

where N  is the number of atoms in the system, m
  is the mass of the  -th atom, r

  is its 

position and f


 is the time-dependent force acting on it due to both external and internal 

effects. 

MD simulations are used to replace the limited molecular statics simulations, because the 

latter cannot take into account that at finite temperature, the real systems of atoms are in 

constant motion. Molecular dynamics is a branch of science evolved from statistical 

mechanics. 
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2  Description of the mathematical and continuum-mechanical 

background of the mechanical modeling of heterogeneous materials 

2.1 Mathematical basis. Application of Green’s functions 

The analytical solutions of problems related to the existence of inclusions and 

inhomogeneities are based on the application of Green’s functions. In order to understand the 

formulae given in the forthcoming chapters, I introduce the most important mathematical 

expressions from the Fourier series to Green’s functions through the integral transforms.  

2.1.1 Fourier series and Fourier integrals 

2.1.1.1 Fourier series 

The Fourier series of a function  f x , where  f x  is a 

continuous, integrable function defined on the interval 

 ,c c : 

(2.1) 0

1

( ) cos sin
2

k k

k

a k x k x
f x a b

c c

 



      
        

      
 . 

The coefficients 
k

a  and 
k

b  ( k : integer): 

(2.2) 
1

( ) cos ,  0,1, 2, ...

c

k

c

k x
a f x dx n

c c





 
  

 
 , 

(2.3) 
1

( ) sin ,  1, 2, ...

c

k

c

n x
b f x dx n

c c





 
  

 
 . 

If  f x  were an odd function (Figure 4): 

( ) ( ),f x f x    then  0  0,1, 2, ...
n

a n  , thereby we 

can express  f x  as a sinusoidal function with the help 

of its Fourier series extension. If  f x  were an even 

function (Figure 5): ( ) ( )f x f x  , then 

 0  1, 2, ...
n

b n  , hence its Fourier series extension will 

not include the sinusoidal term. 

2.1.1.2 Double Fourier series 

Let  ,
n

    be a set of continuous functions defined on 

the region a a   , .b b    The set of functions is 

x

f(x)

Figure 4   Odd function 

x

f(x)

Figure 5   Even function 
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orthogonal, if 

(2.4) ( , ) ( , ) 0,  
n m

d d n m

 

           . 

The norm of  ,
n

   :  

(2.5) 

1

2

2
( , )

n n
d d

 

     
 

  
 
 
  . 

We say that a set of function is normalized, if: 1
n

  . 

It is possible to extend a function of two variables  ,f    in terms of  ,
n

    orthogonal 

functions: 

(2.6) 
0

( , ) ( , )
n n

n

f c    





  . 

The coefficients can be calculated based on the orthogonality of the functions: 

(2.7) 
2

( , ) ( , )

( , )

n

n

n

f d d

c
d d

 

 

      

    


 

 
. 

If the orthogonal set of functions are normalized, the denominator in (2.7) is 
2

( , ) 1
n

d d

 

       , and the coefficients become: 

(2.8) ( , ) ( , )
n n

c f d d

 

         . 

2.1.1.3 Double trigonometric series 

Considering the orthogonal set of functions 

       

       

         

1,  cos ,  sin ,  cos ,  sin ,

cos cos ,  sin cos ,

cos sin ,  sin sin ,  ... , 1, 2, 3, ...

mx mx ny ny

mx ny mx ny

mx ny mx ny n m 

  

defined on the region x    , y    , it is leading to the system 

(2.9)      
2

1
, cos cos d d

mn

y x

a f x y mx ny x y


   , 

 (2.10)      
2

1
, sin cos d d

mn

y x

b f x y mx ny x y


   , 
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(2.11)      
2

1
, cos sin d d

mn

y x

c f x y mx ny x y


   , 

(2.12)      
2

1
, sin sin d d

mn

y x

d f x y mx ny x y


   , 

with , 1, 2, ...m n  . Extending the possible values that ,m n  can take by either 0m   or 0n  , 

the series expansion of function  ,f x y  can be written as: 

(2.13)

 

, 0

( , ) ( cos( ) cos( ) sin( ) cos( ) cos( ) sin( ) sin( ) s in( ))
mn mn mn mn mn

m n

f x y a m x ny b mx ny c mx ny d mx ny





   

 

with the coefficients 

(2.14) 

1
for 0,

4

1
for 0,  0   0,  0,

2

1 for , 0 .

m n

m n

m n or m n

m n




 






    



 



 

The  , , ,x y         variables and domain can be transformed into  , , ,a a b b      , 

where x
a


 , y

b


 . 

2.1.1.4 Integral transforms 

The function  f x  has convergent integral
1
 on  0,   if 

(2.15) 
0

( ) ( ) ( )
f

I f x K x dx 



   

                                                 

1
 An infinite series  

0n

f n





  of non-negative terms  f x  defined on the unbounded interval  0,   on which 

it is monotone decreasing , converges to a real number if and only if the improper integral  
0

df x x



  is finite. 

In this case, the improper integral is the limit of a definite integral as the endpoint of the interval of integration 

approaches to infinity:  lim d

b

b
a

f x x
   . If the improper  integral is finite, then the proof also gives the lower 

and upper bound for the infinite series:        
00 0

d 0 d

n

f x x f n f f x x

 



    . 
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is convergent.  f
I   is the integral transform of function  f x  by kernel

2
  K x . 

If (2.15) is satisfied by only one particular  f x , then the integral (2.15) has an inverse form: 

(2.16) 
0

( ) ( ) H ( ) d
f

f x I x  



  . 

If ( ) ( )K x H x  , then  K x  is a Fourier kernel, and the integral transform of function 

 f x  by a Fourier kernel  K x  is called the Fourier transform  F   of the function: 

(2.17)      
0

dF f x K x x 



  . 

The Mellin transform  K s  of kernel  K x : 

(2.18) 1

0

( ) ( )
s

K s K x x dx




  , 

where the kernel  K x  itself is transformed by the Mellin kernel 

(2.19)  
1

,
s

M x s x


 . 

If  K x  is a Fourier kernel, it has the property 

(2.20)    1 1K s K s  . 

2.1.1.5 Dirichlet’s conditions 

Dirichlet’s conditions give integrability properties of a given function  f x . 

 

Figure 6    A function  f x  satisfying Dirichlet’s conditions 

                                                 
2
 An integral transform is a particular type of mathematical operator, where the input is a function  f x , the 

output is another function  f
I   dependent on the choice of the kernel function  K x  of variables x  and 

 . There are some special integral transforms, such as Fourier transform, Mellin transform, identity transform, 

they are dependent only on the applied kernel function. 

x

f(x)

a ba
i

a
1

a
n

...a
i+1

f(a
i
-0)

f(a
i
+0)
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A function  f x  satisfies Dirichlet’s conditions if  f x  has only finite number n  of 

extrema and of finite discontinuities in interval  ,a b  (Figure 6). If  f x  satisfies Dirichlet’s 

conditions in  ,a b , then in each subinterval defined between an extremum or discontinuity 

i
a  and 

1i
a


, the function is monotone increasing or decreasing and  

(2.21) lim ( ) sin( ) 0

b

a

f x x dx



 

 , 

(2.22) lim ( ) cos( ) 0

b

a

f x x dx



 

  

where     means that the upper bound b  of the definite integral approaches infinity, 

resulting in an improper integral
1
. 

The function  f x  can be expanded in a Fourier series which converges to the function 

 f x  at continuous points, and to the mean of the positive and negative limits 

1
( ( 0) ( 0))

2
f x f x    at points of discontinuity: 

(2.23) 

( 0) ( 0) if 0 ,

( 0) if 0 ,2 sin( )
lim ( )

( 0) if 0 ,

0 if 0  or 0.

b

a

f x f x a b

f x a bu
f x u du

f x a bu

a b a b





 

    


  

  
  

    

  

If  f x  satisfies Dirichlet’s conditions, then 

(2.24) 
0

1 1
( ( 0) ( 0)) ( ) cos( ( )) d

2
f x f x d f u u x u 



 



      , 

at points of discontinuity and at continuous points 

(2.25) 
0

1 1
( ) ( ( 0) ( 0)) ( ) cos( ( )) d

2
f x f x f x d f u u x u 



 



       . 

2.1.1.6 Integral theorems 

If a function  f x  has a convergent integral in interval  0,   and satisfies Dirichlet’s 

conditions, we can extend  f x  in interval  , 0  such that    f x f x  , i.e. by 

constructing an even function. In this case, from (2.24) comes 

(2.26) 
0 0 0

2 2
( ) cos( ) ( ) cos( ) d ( ) cos( )

c
f x x d f F x d       

 

  

    , 

where the Fourier cosine transform of  f x  is defined as 
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(2.27) 
0

2
( ) ( ) cos( )

c
F f d   





  . 

If we extend  f x  in the interval  , 0  such that    f x f x   , i.e. by constructing an 

odd function, then, similarly to (2.26): 

(2.28) 
0 0 0

2 2
( ) sin( ) ( ) sin( ) d ( ) sin( )

s
f x x d f F x d       

 

  

    , 

where the Fourier sine transform of  f x  is 

(2.29) 
0

2
( ) ( ) sin( )

s
F f d   





  . 

Noting that 

(2.30)      
0

cos d 2 cos d

m m

m

x x     



    , 

(2.31)   sin d 0

m

m

x  



  , 

from (2.25) it can be written that 

(2.32)         
 

0

1 1 1
lim d cos d lim d d

2

m m

i x

m m
m

f x f x f e
 

       
 

 



   
  

        

which further implies  

(2.33) 
1

( ) ( )
2

i x i
f x e d f e d

 
  



 



 

   . 

The Fourier integral of a function  f x  is defined as 

 
1

( )
2

i x
f x F e d


 









  , 

where 

(2.34) 
1

( ) ( )
2

i x
F f x e dx










  . 

The Fourier integrals can be considered as limiting cases of the Fourier series, where c    

in (2.1). 

2.1.1.7 Convolution integrals 

The convolution theorems can be used to evaluate integrals. 
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The convolution of functions  f x  and  g x  is defined as 

(2.35)     ( ) ( )f g x f x g d  





   . 

Let us consider the Fourier transforms 

(2.36) 
1

( ) ( )
2

itx
F t f x e dx







  , 

(2.37) 
1

G( ) ( )
2

itx
t g x e dx







  . 

The convolution of  f x  and  g x  can be written with the help of their Fourier transforms 

 F t  and  G t  as 

(2.38)     ( ) ( ) ( ) ( )
itx

f g x F t G t e dt f x g d  

 



 

     . 

In a special case, when 0x  , the convolution    f g x  can be written as 

(2.39)    0 ( ) ( ) ( ) ( )f g F t G t dt f g d  

 

 

     . 

If  f x  is an even function, i.e.    f x f x  , then we can replace  F t  with the Fourier 

cosine transform  c
F t  and  G t  with  c

G t , respectively (see (2.27)). Hence, (2.39) 

becomes 

(2.40)    
0 0

0 ( ) ( ) ( ) ( )
c c

f g F t G t dt f g d  

 

    . 

2.1.1.8 Fourier transforms of derivatives of a function 

The formula for the Fourier transform of the r -th derivative of a function  f x  can be 

obtained by integrating by parts 

(2.41) ( ) 1 ( )
( )

2

r

r i x

r

d f x
F e dx

dx










  . 

The general formula can be written as 

(2.42) ( )
( ) ( ) ( )

r r
F i F    . 
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2.1.1.9 Dirac delta function 

 

Figure 7    Identity transform of function  f s  by kernel  ,s a  

It can be seen in Figure 7 that the improper integral of the step function  ,s a  along s  

yields 

(2.43) 
1 1

( , ) 2 1
2

s a ds 






     . 

By expanding  f s  around point s a , only the first term of its Taylor series will nonzero 

be. Thus, 

(2.44) 
0

lim ( , ) ( ) ( )s a f s ds f a









 . 

Note that 

(2.45)  
0

lim ,  at s a s a





    

and 

(2.46)  
0

lim , 0  at s a s a





  . 

Let us define the Dirac delta function such that 

(2.47) 
0

lim ( , ) ( )s a s a


 


  , 

and 

(2.48) ( ) ( ) ( )f s s a ds f a





  , 

with 

s
a

f(s)

h(s)

1/e

a+e/2a-e/2
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(2.49) 
if ,

( )
0 if .

s a
s a

s a


 
  



 

Regarding the case 0a  , the Dirac delta function can be written as 

(2.50)  
if 0,

0 if 0,

s
s

s


 
 



  

hence, from (2.43), the integral of the Dirac delta function over an unbounded region is 

always of unit magnitude: 

(2.51)   d 1s s





 . 

From the property (2.48) the Dirac delta function  s a   is also considered as the kernel 

function of the identity transform (Figure 7). 

2.1.2 Green’s function 

2.1.2.1 General definition of Green’s function 

In general, Green’s function  ,G x s  is the impulse response of an inhomogeneous partial 

differential equation 

(2.52)    Lu x f x  

defined on a domain with prescribed boundary or initial conditions: 

(2.53)   0Du x  . 

At time-invariant, linear problems, the impulse response  ,G x s  of a linear transformation 

 L L x   acting at point x s , is the image of the Dirac delta function  x s   under the 

transformation: 

(2.54)    ,LG x s x s  , 

where the case x s  results in a homogeneous equation due to the property of Dirac’s delta 

function given in (2.49). If the kernel of L  is non-trivial, then the Green’s function of the 

problem is not unique. In general, due to the prescribed boundary or initial conditions, 

Green’s function is always unique. 

The convolution of Green’s function  ,G x s  with any arbitrary function  f s  on that 

domain is the solution for the inhomogeneous differential equation for  f s : 

(2.55)          , dLG x s f s s x s f s f x    , 

where the Dirac delta function appeared as a kernel function of the identity transform (see 

(2.48)). Substituting (2.52) into (2.55) we have 
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(2.56)      , dLu x LG x s f s s  . 

Since  the linear operator L  is only a function of x , it can be taken out from the integration 

along s  and 

(2.57)      , dLu x L G x s f s s  , 

which implies 

(2.58)      , du x G x s f s s  . 

It is the exact solution of the inhomogeneous partial differential equation (2.52). The difficult 

part of finding the solution with the help of Green’s function is finding the Green’s function 

itself for a given linear operator L . Moreover, the evaluation of the integration in (2.57) is 

quite complicated, but this method gives a theoretically exact result for inhomogeneous partial 

differential equations. 

2.1.2.2 Mechanical interpretation of Green’s function 

In applied physics, Green’s functions are used to solve inhomogeneous boundary value 

problems, such as the boundary value problem in mechanics defined in the following, where 

body forces appearing in the elastic media are also considered. 

In anisotropic elastic media, the equilibrium equations: 

(2.59) 
,

0
ij j i

b   , 

where 
i

b  is the vector of body force per unit volume. 

The constitutive equations:  

(2.60) 
,ij ijkl kl ijkl k l

C e C u   , 

where 
ij

e  denotes the small elastic strains and 
ijkl

C  stands for the elastic stiffness tensor of the 

media. Substituting the stresses in (2.60) into the equilibrium equation (2.59), we obtain: 

(2.61) 
,ijkl k lj i

C u b  . 

If 
i

b  is concentrated, acts at point 'x x  in direction 
m

x , and its magnitude is unity, then 

(2.62) 
0 if ,

( ') if ,
i

i m
b

x x i m


 

 

 

or it can be written as: 

(2.63)  ( ')  1, 2, 3
i im

b x x i    , 

where  'x x   is the Dirac delta function and 
ij

  indicates the Kronecker delta tensor: 

(2.64) 
1 if ,

0 if .
ij

i j

i j



 


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Based on (2.63), equation (2.61) can be rewritten in a 

form 

(2.65) 
 

,
( ')

m

ijkl k lj im
C u x x    , 

where the physical meaning of 
 m

k
u  is (Figure 8): the 

component of displacement u  in the k -th direction at 

point x , caused by a point force acting in the m -th 

direction at point 'x . Displacement 
 m

k
u  generates a 

connection between two vectors, thereby this quantity 

is a tensor, and this is the Green’s function 
mk

G  of the 

boundary value problem under consideration: 

(2.66)  m

k mk
u G . 

Green’s function is always symmetric, 
mk km

G G , therefore 

(2.65) can be written in the form 

(2.67) 
,

( , ') ( ')
ijkl km lj im

C G x x x x    . 

The requirement for Green’s function is the influence of the point force to vanish sufficiently 

rapid in the physical space: 

(2.68) 
1 1

~  as 
'

km
G r

x x r
  


, 

i.e. the displacements at x  caused by the point force at 'x  vanish as the distance 'x x  

tends to infinity. The solution of (2.59) can be obtained with the help of the Fourier transform 

of Green’s function: 

(2.69) 3
( ) ( , ')

iK x

km km
g K G x x e d x





  , 

hence, the Fourier-integral of Green’s function is: 

(2.70) 3

3

1
( , ') ( )

(2 )

iK x

km km
G x x g K e d K









  , 

where K  is the Fourier vector in Fourier space. Multiplying (2.67) by 
 'iK x x

e


 and integrating 

over the unbounded domain, we have 

(2.71)    ' '3 3

,
( , ') d ( ') d

iK x x iK x x

ijkl km lj im
C G x x e x x x e x 

 

 

 

    , 

where  
3 3

d d 'x x x   because of the fixed position of 'x . Taking into account (2.68), 

integration by parts yield 

x'

x

x-x'

m

b
m

k

u
k

(m)

Figure 8   Physical meaning of 

displacement 
 m

k
u  
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(2.72)    
3

, ' d '
j l ijkl km im

K K C G x x x x 





    . 

If we define a unit vector T  along vector 'x x , we can express Green’s function as 

(2.73)    
 

 
sgn

, '
km km km

s
G x x G sT G T

s
  , 

and the 
n

 -th derivative of Green’s function: 

(2.74) 
1 2 1 2 1 2, ... , ... , ...

sgn( )
( , ') ( ) ( )

n n nkm km kmn

s
G x x G sT G T

s
        

  , 

where s  is an algebraically signed scalar expressing the distance between x  and 'x . 

2.1.2.3 Isotropic Green’s function 

In case of isotropic elastic media, we can define the elastic stiffness tensor 
ijkl

C  with the help 

of the Kronecker delta tensor 
ij

  and Lamé’s constants   and  : 

(2.75) ( )
ijkl ij kl ik jl il jk

C          . 

The isotropic Green’s function can be expressed by 

(2.76) 
2

21
( ') '

8 2
km km

k m

G x x x x
x x

 


  

  
     

   

 

with 

(2.77) 
2 2

'
'

x x
x x

  


. 

The displacement 
 m

k
u  is independent of the positions x  and 'x , it is only the function of the 

distance 'x x  between them, resulting in Green’s function being translation invariant. At 

linear, time-invariant problems, Green’s function is always translation-invariant, and due to 

this property, it acts as a convolution operator: 

(2.78)    , ' 'G x x G x x  . 
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2.2 Mechanical basis. Definitions of eigenstrains and eigenstresses, basic 

equations 

2.2.1 General theory of eigenstrains 

2.2.1.1 Definition of eigenstrains 

Eigenstrains are such nonelastic strains as thermal expansion, phase transformation, initial 

strains, plastic strains or misfit strains. This type of strain appears in a body even if there is no 

external load acting on it. 

Eigenstresses are such self-equilibrated internal stresses caused by eigenstrains in bodies 

which are free from any other external force and surface constraints. This stress field is 

created by the incompatibility of the eigenstrains. 

2.2.1.2 Fundamental equations of elasticity 

If a free body D  is subjected to a given distribution of eigenstrains, otherwise it is free from 

any external surface or body force, then the actual strain (
ij

 ) can be computed as the sum of 

the eigenstrains (
ij



) and the elastic strains (

ij
e ) defined by Hooke’s law in elastic bodies: 

(2.79) 
ij ij ij

e 


  . 

The compatibility equation written for the total strain: 

(2.80) 
, ,

1
(u u )

2
ij i j j i

   . 

The connection between the elastic strains and stresses: 

(2.81) ( )
ij ijkl kl ijkl kl kl

C e C  


   , 

and its inverse form: 

(2.82) 
1

ij ij ijkl kl
C  

 
  , 

which  for isotropic materials  can be expressed with the help of Lamé’s constant ( also 

known as shear modulus)   and Poisson’s ratio  : 

(2.83) 
1

2 1

ij kk

ij ij ij

  
  

 


 

   
 

. 

If body D  is not free from external forces, then the actual stress field is the sum of the 

eigenstress of the free body and the solution of the boundary value problem. The equations of 

equilibrium if we neglect the body forces: 

(2.84) 
,

0,  1, 2, 3
ij j

i   . 

The boundary conditions for free external surface forces: 
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(2.85) 0
ij j
n  , 

where 
i

n  is the outward unit normal vector on the surface of D . 

We can express the stress field with the help of eigenstrains and the displacement field based 

on (2.80) and (2.81): 

(2.86) 
,

( )
ij ijkl k l kl

C u 


  . 

The conditions (2.84) and (2.85) yield: 

(2.87) 
, ,ijkl k lj ijkl kl j

C u C 


 , 

(2.88) 
,ijkl k l j ijkl kl j

C u n C n


 . 

From (2.87) we can see that the eigenstrain contributes as a body force 
i

X : 

(2.89) 
,ijkl k lj i

C u X  . 

It is also visible that in (2.88) the eigenstrain behaves like a surface force on the boundary of 

D .  Summarizing these two observations, the elastic displacement field in an elastic body 

caused by a given eigenstrain 
ij



 is equivalent to that caused by a body force 

,ijkl kl j
C 


  and 

surface force 
ijkl kl j

C n


. 

In most cases, D  is considered as an infinitely extended body, thus (2.85) can be replaced 

with the following condition: 

(2.90) (x) 0  as 
ij

x    . 

The compatibility conditions can be given with the help of the 

third-order permutation tensor :
pki

  

(2.91) 
,

0
pki qlj ij kl

    . 

The fundamental equations to be solved are equations (2.87). 

Several methods for calculating the associated elastic fields under 

a given distribution of eigenstrains were developed. The most 

important one was made by Eshelby (Eshelby, 1951; 1957; 1959; 

1961), when a uniform eigenstrain is given in an ellipsoidal 

domain   in an infinitely extended medium D  (Figure 9). The 

results are useful regarding the mechanical properties of solids that 

contain precipitates, inclusions, voids and/or cracks. 

Figure 9   Uniform 

eigenstrain 
ij




 in an 

ellipsoidal domain   in an 

infinitely extended body D  
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2.2.2 General expressions of elastic fields for given eigenstrain distributions 

2.2.2.1 Periodic solutions 

If the eigenstrain is given in the form of a single wave of amplitude 
ij



, which is a function of 

the wave vector  : 

(2.92) ( ) ( )
i x

ij ij
x e


  

 
 , 

the corresponding displacement field can also be written in the form: 

(2.93) ( ) ( )
i x

i i
u x u e


 . 

In (Mura, Micromechanics of defects in solids, 1987) one can find explicit expressions for the 

resulting elastic field: 

(2.94) 
1

( ) ( ) ( ) ( )
i x

i jlm n m n l ij
u x iC N D e


    

 
  , 

(2.95)   11
( ) ( ) ( ) ( ) ( )

2

i x

ij klmn mn l j ik i jk
x C N N D e


        

 
  , 

(2.96)  1
( ) ( ) ( ) ( ) ( )

i x

ij ijkl pqmn mn q l kp kl
x C C N D e x


       

  
  , 

with 

(2.97) ( )
ik ijkl j l

K C   , 

(2.98) 
1 2 3

( )
m nl m n l

D K K K  , 

(2.99) 
ln

1
( )

2
ij ikl jmn km

N K K   . 

The periodic solution was used by Mura (Mura, 1964) for periodic distributions of 

dislocations and by Khachaturyan (Khachaturyan, 1967) for a coherent inclusion of a new 

phase. 

2.2.2.2 Method of Fourier series and Fourier integrals 

If the eigenstrain is given in the Fourier series form (see Appendix): 

(2.100) ( ) ( )
i x

ij ij
x e


  

 
  , 

its solution is the superposition of the elastic fields of single waves of the form (2.92): 

(2.101) 
1

( ) ( ) ( ) ( )
i x

i jlm n m n l ij
u x i C N D e


    

 
   , 

(2.102)   11
( ) ( ) ( ) ( ) ( )

2

i x

ij klmn mn l j ik i jk
x C N N D e


        


  , 

(2.103)  1
( ) ( ) ( ) ( ) ( )

i x

ij ijkl pqmn mn q l kp kl
x C C N D e x


       

  
  . 
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If 
ij



 is given in the Fourier integral form (see Appendix): 

(2.104) ( ) ( )
i x

ij ij
x e d


   



 



   

where 

(2.105) 3
( ) (2 ) ( )

i x

ij ij
x e dx


   



  



  , 

the corresponding displacement, strain and stress field: 

(2.106) 1
( ) ( ) ( ) ( )

i x

i jlmn mn l ij
u x i C N D e d


     



 



   , 

(2.107)   11
( ) ( ) ( ) ( ) ( )

2

i x

ij klmn mn l j ik i jk
x C N N D e d


         



 



  , 

(2.108) 1
( ) ( ) ( ) ( ) ( )

i x

ij ijkl pqmn mn q l kp kl
x C C N D e d x


        



  



 
  

 
 . 

2.2.2.3 Method of Green’s functions 

The integral representations of the elastic field can also be given with the help of Green’s 

functions, it is called the fundamental solution. If Green’s function
3
  , '

ij
G x x  (see Appendix) 

is defined as: 

(2.109) 
( ')3 1

( ') (2 ) ( ) ( )
i x x

ij ij
G x x N D e d


   



 



   , 

the solution: 

(2.110) 
,

( ) ( ') ( ') '
i jlmn mn ij l

u x C x G x x dx







   , 

(2.111) 
, ,

1
( ) ( ')( ( ') ( ')) '

2
ij klmn mn ik lj jk li

x C x G x x G x x dx 







     , 

(2.112) 
,

( ) ( ') ( ') ' ( )
ij ijkl pqmn mn kp ql kl

x C C x G x x dx x  



 



 
    

 
 . 

Explicit expressions for Green’s functions are only available for isotropic and transversely 

isotropic materials, otherwise the Fourier integral forms are more convenient. 

                                                 
3
 Having the property of  translation invariance, Green’s function  , '

ij
G x x  is only a function of  the distance 

between 
i

x  and '
i

x , thus it can be written as  'ij
G x x . 
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2.2.3 Static Green’s functions 

The equations of equilibrium with respect to a displacement  'km
G x x  when the body force 

 'im
x x    is applied: 

(2.113) 
,

( ') ( ') 0
ijkl km lj im

C G x x x x     . 

2.2.3.1 Isotropic materials 

For isotropic materials, Lord Kelvin found the Green’s function, expressing it with the help of 

Lamé’s constants  ,   and/or Poisson’s ratio  : 

(2.114) 

2

3

4 2

( 2 ) ( ) 1
( ) (2 ) (3 4 )

( 2 ) 16 (1 )

i xij i j i j

ij ij

x x
G x e d

x x


       

   
     







    
    

   
 , 

where '
i

x  is taken as zero without the loss of generality, and 
1

2( )
i i

x x x . 

The expression for Green’s function is usually given as a line integral. Let us define a unit 

sphere 2
S  in the  -space centered at the origin of the coordinates 

i
  (Figure 10). Green’s 

function at point 
i

x  can be expressed by a line integral along the unit circle 1
S  which lies on 

the plane perpendicular to 
i

x : 

(2.115)

 

2 1

2 2( 2 ) ( ) ( 2 ) ( )(2 ) (2 )
( ) ( ) ( ) ,

2 ( 2 ) 2 ( 2 )

ij i j ij i j

ij

S S

G x x x dS d
x

              
   

     

      
 

 
 

 

where 
ij ij

   and 
i i

x xx .   is an angle on the plane perpendicular to 
i

x , bounded by the 

unit circle 1
S , and the starting line of measuring this angle is arbitrary. 
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Figure 10   Unit sphere 
2

S and unit circle 
1

S   in  -space 

2.2.3.2 Anisotropic materials 

For anisotropic materials, the surface- and line integral expression of Green’s functions are 

the following: 

(2.116) 
2 1

1 1

2 2

1 1
( ) ( ) ( ) ( ) ( ) N ( ) D ( )

8 8
ij ij ij

S S

G x x x N D dS d
x

       
 

 
   . 

2.2.3.3 Kröner’s formula 

Since    1

ij
N D 

  is a continuous function on 2
S , it can be extended into a series of 

surface harmonic functions, which is any linear combination of spherical harmonics (set of 

solution of Laplace’s equation): 

(2.117) 1

0

( ) ( ) ( )
ij n

n

N D U  







  , 

where 

(2.118) 
2

12 1
( ) ( ') ( ') ( ') ( '),  0,1, 2, ...

4
n n ij

S

n
U P N D dS n    




   

and 
n

P  is the Legendre polynomial. The solution of Legendre’s differential equation for 

0,1, 2, ...n   form a polynomial sequence of orthogonal polynomials called the Legendre 

polynomials. Each  n
P z  polynomial is an n -th degree polynomial: 

(2.119)   21
(z) 1

2 !

n
n

n n n

d
P z

n dz
  . 
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Kröner’s formula is a series expression of Green’s function for general anisotropic materials 

using surface harmonic functions: 

(2.120) 
0

1
( ) (0) ( )

4
ij n n

n

G x P U x
x





  . 

Kröner’s formula was modified by Mura and Kinoshita (Mura & Kinoshita, 1971), their 

solution is continuously differentiable: 

(2.121) 
2

1

2

1
( ) ( ) ( ) ( )

16
ij ij

S

G x N D x dS   



   . 

2.2.3.4 Derivatives of Green’s functions 

In the solution of eigenstrain problems, we usually need the derivatives of Green’s function. 

The formulae can be found in the previous section in (2.74), furthermore in (Mura, 1987) 

found by Barnett (Barnett, 1972) and Willis (Willis, 1975). 

3 Mechanical study on the environment of inclusions and 

inhomogeneities. Analytical solutions for determination of the resulting 

elastic field 

3.1 Inclusions 

3.1.1 Definition of inclusion 

When an eigenstrain is prescribed in a finite subdomain   in a homogeneous material D , 

and it is zero in the matrix defined by D   , then   is called an inclusion and D    is 

called matrix (Figure 11). The elastic moduli in the inclusion and in the matrix is assumed to 

be the same. 

 

Figure 11   Inclusion   with eigenstrain 
ij




 in homogeneous body D  

The elastic field due to the inclusion can be written with the help of Green’s functions: 

(3.1) 
,

( ) ( ') ( ') '
i jlmn mn ij l

u x C x G x x dx




   , 

D, C

, C, 
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(3.2) 
, ,

1
( ) ( ')( ( ') ( ')) '

2
ij klm n m n ik lj jk li

x C x G x x G x x d x 




     , 

(3.3) 
,

( ) ( ') ( ') ' ( )
ij ijkl pqmn mn kp ql kl

x C C x G x x dx x  
 



 
    

 
 , 

or, considering its Fourier integral forms: 

(3.4) 
( ')3 1

( ) (2 ) ( ') ( ) ( ) '
i x x

i jlmn mn l ij
u x i C x N D e d dx


     



  

 

    , 

(3.5)  
( ')3 11

( ) (2 ) ( ') ( ) ( ) ( ) '
2

i x x

ij klmn mn l j ik i jk
x C x N N D e d dx


         



  

 

   , 

(3.6) 
( ')3 1

( ) (2 ) ( ') ( ) ( ) ' ( )
i x x

ij ijkl pqmn mn q l kp kl
x C C x N D e d dx x


        



   

 

 
  

 
  , 

where ( ) 0
kl

x


  for x D   . 

When the eigenstrain is uniform in an inclusion and   has an arbitrary shape, it is convenient 

to rewrite (3.1) as a surface integral, where   is the boundary of  : 

(3.7) ( ) ( ')
i jlm n m n ij l

u x C G x x n dS




   . 

3.1.2 Interface conditions 

The eigenstrain field is discontinuous on the boundary of the inclusion, but some quantities 

must be continuous, like displacements and tractions. The continuity conditions: 

(3.8)  
-

( ) (S ) 0
i i ijump

u u S u


   , 

(3.9)   ( ( ) ( )) 0
ij j ij ij j

jump
n S S n  

 
   , 

where S  denotes the interface between the matrix and  . The positive side is the one 

belonging to the matrix. The displacements can be discontinuous only if the inclusion can 

slide on the interfacial surface. 

The displacement gradient or distortion is discontinuous at the interface: 

(3.10)  , , ,
( ) ( )

i j i j i j i j
jump

u u S u S n
 

   , 

where   is the proportionality constant, which gives the magnitude of the jump. It is shown 

in (Mura, 1987) that the displacement gradient, the strain and the stress field can be calculated 

from 

(3.11)   1

,
( ) ( )

i j lkmn mn k j il
jump

u C n n N n D n
 

  , 
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(3.12)     11
(S ) ( ) ( ) ( )

2
ij lkmn mn k j il i jl

jump
C n n N n n N n D n 

  
   , 

(3.13)

 

       1

,
( ) ( ) ( ( ) ( ) ).

ij ij ij ijkl k l kl ijkl pqm n m n q l kp kljum pjum p jum p
S S C u C C n n N n D n     

     
      

 

Equation (3.13) is applicable when computing the strains and stresses just outside the 

inclusion, if the strain and stress field is given inside the inclusion. The uniqueness theorem 

for inclusion-matrix interface states that if the stress or strain is known locally at one side of 

the interface between an inclusion and the surrounding matrix, then their jumps and 

consequent values at the other side of the interface are explicitly determinable in terms of the 

matrix moduli, the eigenstrain in the inclusion and the interface normal. 

3.1.3 Some examples of eigenstrains 

Let us consider an aluminum ball under given eigenstrain, let it be thermal strain. First, there 

is no constraint, hence no stress is induced by the temperature change. Consequently, the 

elastic strain is zero: 

(3.14) 0
ij ij ij ijkl kl

e M  


    , 

where 
ijkl

M  is the fourth-order flexibility matrix
4
. 

The total strain is then equals to the eigenstrain: 

(3.15) 
ij ij ij ij Al ij

e T    
 

     , 

where 
Al

  is the thermal coefficient of aluminum and T  is the change of temperature in the 

aluminum ball. 

Next, let this ball be embedded in a rigid matrix. In this case, the total strain must be zero 

because of the rigid constraint: 

(3.16) 0
ij ij ij

e 


   . 

Hence, the elastic strain is no longer zero, which results in a nonzero stress field in the 

aluminum ball: 

(3.17) 
ij ij ij ij Al ij

e T    
 

       , 

                                                 
4
 The 6-by-6 compliance matrix is the inverse of the 6-by-6 stiffness matrix, but this statement does not hold for 

the fourth-order compliance and stiffness tensors. In this case, we can use the following equality: 

   
1

1

ij ik kl lj
C R C R




 , where  
1

ij
C



 is the inverse of the stiffness matrix, thus, it is the 6-by-6 compliance 

matrix,  1

ij
C


 is the contracted form of the inverse of the fourth-order stiffness tensor and 

1,1,1, 2, 2, 2
ij

R   is the diagonal Reuter-matrix. 
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(3.18) 
ij ijkl kl Al nnij

C e C T     . 

Finally, the aluminum ball is embedded in deformable copper matrix. In both material, the 

total strain is nonzero. Due to the deformability, the elastic strain is also nonzero: 

(3.19) 
, ,ij A l ij A l Al Al ij

e T     , 

(3.20) 
,C u ,C uij ij C u C u ij

e T     , 

thereby stresses are induced in the ball and in the matrix, too. The associated stress field 

cannot be obtained easily, but it is shown above, that stresses exist due to the different 

physical behavior of the materials. 

3.1.4 Ellipsoidal inclusion with uniform eigenstrains. Eshelby solution 

Consider an ellipsoidal inclusion   with given uniform eigenstrain 
ij



 in an infinite domain 

D . The inclusion is defined by its semi-axes 
1 2 3
, ,a a a  (Figure 12): 

(3.21) 

22 2

31 2

1 2 3

1 2 3

, , ; 1
xx x

x x x
a a a

      
         

       

. 

 

Figure 12   Eshelby’s solution: Ellipsoidal inclusion   in x -space with semi-axes 
1 2 3
, ,a a a  

The eigenstrain distribution is given in the form 

(3.22) 
for 

( )  
0 for x

ij

ij

x
x







  

 
 

. 

Applying the Green’s function for the solution of the eigenstrain problem, we have 

(3.23)  
( ')

( ) C '
'

m i

i m jkl kl

j

G x x
u x dV x

x








 



 , 



36 

 

(3.24) ( ) ( )
ij klmn mn ijkl

x C P x 
 

 , 

(3.25)  ( ) ( )
ij ijkl pqmn mn klpq kl

x C C P x  
  

  , 

where  , '
ij

G x x


 is the infinite domain Green’s function and 

(3.26)  ( ) ( , ') '
ijkl ijkl

P x x x dV x
 



  . 

The fourth-order tensor  , '
ijkl

x x


   is defined by 

(3.27) 

2 22 2( , ') ( , ')( , ') ( , ')1
( , ')

4

kj ljki li

ijkl

j l i l j k i k

G x x G x xG x x G x x
x x

x y x y x y x y

  


   

     
        
 

. 

These expressions are valid for x  both inside and outside the inclusion. For x    the 

 ijkl
P x


 is a constant fourth-order tensor: 

(3.28) 
3 1 21 2 3

Ŝ

( ) P ( ) ( ) dS ( ),  
4

ijkl ijkl ijkl

a a a
P x H a D x  



  
    , 

where 
ijkl

P  is the Hill polarization tensor and  

(3.29) ( ) ( ) ( ) ( ) ( )
ijkl ik j l jk i l il j k jl i k

H N N N N                , 

(3.30)      
2 2 2

1 1 2 2 3 3
a a a a     . 

The integration is carried out over the surface of a unit sphere
2

S  in  -space (Figure 10), 

where 

(3.31)  
1

2 2 2 2
1 2 3

      , 

(3.32) 





 . 

Let us introduce a fourth-order tensor 

(3.33) ( ) C ( )
ijkl mnkl ijmn

S x P x


 , 

thus the strain and stress field in D  can be rewritten as 

(3.34) ( ) S ( )
ij ijkl kl

x x 


 , 

(3.35)    ( ) ( ) ( )
ij ijkl klmn mn kl ijkl klmn klmn mn

x C S x C S x I   
  

     

with 
ijkl

I  fourth-order identity tensor: 

(3.36)  
1

2
ijkl ik jl il jk

I      . 
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From equation (3.28) and (3.33), for x   ,  ijkl
S x  is also constant, thereby the total strain 

and stress field is uniform inside the ellipsoidal inclusion given that the eigenstrain is 

uniform: 

(3.37) ( ) ,  
ij ijkl kl

x S x 


   . 

The 
ijkl

S  fourth-order tensor is the Eshelby inclusion tensor and equation (3.37) is called the 

Eshelby ellipsoidal inclusion solution. From Hooke’s law, the stress field can easily be 

obtained: 

(3.38) ( )
ij ijkl kl kl ijkl kl ij

C C    
 

    , 

(3.39) 
ij ijkl kl

C 
 

  . 

ij



 indicates the stress polarization, which is the stress inside the inclusion caused by 

eigenstrain 
ij



 when the inclusion is not allowed to deform, that is, the total strain 

ij
e  is zero. 

It is the case, when the aluminum ball with given thermal strains was embedded into a rigid 

matrix. 

The Eshelby tensor 
ijkl

S  is nonsingular, independent of the eigenstrain but it is dependent on 

the material of the matrix. About the symmetry of the tensor, in general the Eshelby tensor 

does not possess the diagonal symmetry 
ijkl klij

S S , but the minor symmetry 

ijkl jikl ijlk jilk
S S S S    always holds. In case of general anisotropic materials, the integration 

in the Eshelby tensor needs to be carried out numerically.  For isotropic materials, the integral 

can be rewritten as elliptical integrals and for special shaped inclusions, explicit expressions 

can be obtained (see (Mura, 1987)).  

Please note, that Eshelby’s ellipsoidal inclusion solution is only valid for material points 

inside the inclusion, hence, when computing the strain and stress field in the surrounding 

matrix, one has to carry out the integration in (3.26) or it is also convenient to use the solution 

based on the uniqueness theorem, namely if we know the elastic field inside the inclusion, we 

can compute the jump in the required quantities and we get the solution of the problem for 

exterior points. Another solution was obtained by Tanaka and Mura (Tanaka & Mura, 1982). 

For a given stress field  ij
S


 inside the inclusion, find the stress field  ij

S


 of the 

exterior points by assuming that   is a void and the applied stress is  ij
S


 . The stress 

field of the exterior points for the inclusion problem is the sum of  ij
S


 and  ij

S


. 

A different approach to determine the elastic field of exterior points is to use Green’s 

functions. In this case, two integrals should be carried out in order to obtain the associated 

stress and strain field: 

(3.40) ( ) ' 'x x x d x



  , 
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(3.41) 
1

( ) '
'

x d x
x x








 . 

Norman Macleod Ferrers (Ferrers, 1877) and Frank Watson Dyson (Dyson, 1891) expressed 

the above integrals in terms of the following elliptic integrals ( the so-called I-integrals): 

(3.42) 
1 2 3

( ) 2
( )

ds
I a a a

s


 






 , 

(3.43) 
 

1 2 3 2
( ) 2

( )
i

i

ds
I a a a

a s s


 




 

 , 

(3.44) 
   

1 2 3 2 2
( ) 2

( )
ij

i j

ds
I a a a

a s a s s


 




  

 , 

where 

(3.45)       
1

2 2 2 2

1 2 3
( )s a s a s a s       

and  is the largest positive root of the equation 

(3.46) 
     

22 2

31 2

2 2 2

1 2 3

1
xx x

a a a  
  

  
. 

For interior points, 0  . In order to define the elastic field for both exterior and interior 

points, one must compute the higher order derivatives of (3.40) and (3.41). If the I-integrals 

are applied, due to the fact, that the lower bound of the integrals (3.42)-(3.44) are only a 

function of x , the derivatives of  I  ,  i
I   and  ij

I   can be reduced to the derivatives of 

 . The I-integrals are given for ellipsoids (see (Mura, 1987)), therefore this is the easiest way 

to determine the elastic field in a material caused by the presence of inclusions. 

3.1.5 Isotropic inclusions 

3.1.5.1 Ellipsoidal inclusions with polynomial eigenstrains 

Consider an elastic infinite body D  with an ellipsoidal inclusion  . The eigenstrain on the 

inclusion is given in the form 

(3.47) ( ) ...
ij ijk k ijkl k l

x B x B x x


   , 

where , , ...
ijk ijkl

B B  are constants symmetric with respect to the free indices i  and j  (e.g. 

ijkl ijlk
B B ) and the constant term was excluded for the sake of simplicity. The displacement 

field of both the interior and exterior points can be expressed with the help of functions 

(3.48) ( ) ' ( ') '
ij ij

x x x x d x




   , 
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(3.49) 
( ')

( ) '
'

ij

ij

x
x d x

x x






 


 . 

 ij
x  and  ij

x  are the harmonic and biharmonic potentials due to a body   of density 

 ij
x


. Substituting the polynomial eigenstrain into the potential functions, we have 

(3.50) ( ) ...
ij ijk k ijkl kl

x B B     , 

(3.51) ( ) ...
ij ijk k ijkl kl

x B B      

with  

(3.52) 
...

( ) ' ' ' ' '
ij k i j k

x x x x x x d x



     , 

(3.53) 
...

' ' '
( ) '

'

i j k

ij k

x x x
x d x

x x




  



 . 

The harmonic potentials (3.52) and (3.53) can be expressed in terms of the following elliptic 

integrals: 

(3.54) 
1 2 3

( )
( )

( )

U s
V x a a a ds

s









 , 

(3.55) 
 

1 2 3 2

( )
( )

( )
i

i

U s
V x a a a ds

a s s







 

 , 

(3.56) 
   

1 2 3 2 2

( )
( )

( )
ij

i j

U s
V x a a a ds

a s a s s







  

 , 

where 

(3.57) 
     

22 2

31 2

2 2 2

1 2 3

( ) 1
xx x

U s
a s a s a s

 
    
   
 

. 

According to (Dyson, 1891), the potentials (3.52) and (3.53) are related to the V-integrals in 

the following way: 

(3.58) V  , 

(3.59) 2

n N n N
a x V  , 

(3.60)   2 2 21

4
m n M m n N M N m n r r R M M r r RM

a x x a V V x x V a V x x V 
 

     
 

. 

The I -integrals ((3.42)-(3.44)) and V -integrals ((3.54)-(3.56)) are related: 

(3.61)  
1

( ) ( ) ( )
2

r r R
V x I x x I   , 
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(3.62)  
1

( ) ( ) ( )
2

i i r r Ri
V x I x x I   , 

(3.63)  
1

( ) ( ) ( )
2

ij ij r r Rij
V x I x x I   . 

Eshelby pointed out in (Eshelby, 1961) that in case of an eigenstrain which is a homogeneous 

polynomial of 
i

x  with degree n , the total strain inside the inclusion becomes an 

inhomogeneous polynomial of 
i

x  with terms of degree    , 2 , 4 , ...n n n  . The same result 

was obtained for anisotropic materials by Asaro and Barnett (Asaro & Barnett, The non-

uniform transformation strain problem for an anisotropic ellipsoidal inclusion, 1975). The I-

integrals are of great importance in the explicit expressions of the solutions of special shaped 

inclusions. 

3.1.5.2 Energies of inclusions 

Consider a finite body D  with homogeneous and isotropic or anisotropic material. The body 

D  contains inclusions 
i

  (Figure 13), the sum of domains occupied by them is denoted by 

 , and the volume of   is V . 

 

Figure 13    Inclusions 
i

  in finitely extended body D  

3.1.5.2.1 Elastic strain energy 

If the  body D  is free from any external force and surface constraint, but eigenstrains are 

prescribed in  , the elastic strain energy: 

(3.64) 
1 1

2 2
ij ij ij ij

D

W e dD dD  
 



    . 
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If   is an ellipsoidal inclusion and the eigenstrain is uniform, the stress field will also be 

uniform, thus the strain energy becomes 

(3.65) 
1

2
ij ij

W V  
 

  . 

If   is the sum of two inclusions 
1

  and 
2

 , the strain energy can be written in the form 

(3.66) 

             

           

1 2

1 2 1

1 2 1 1 2 2

1 1 2 2 2 1

1

2

1
2 ,

2

ij ij ij ij ij ij

ij ij ij ij ij ij

W dD dD

dD dD dD

     

     



 

  

 
      

 
 

 
    

 
 

 

  

  

where 
 1

ij
  and 

 2

ij
  are the eigenstrains in the first and second inclusion, and 

 1

ij
  and 

 2

ij
  are 

the stress fields caused by 
 1

ij
  and 

 2

ij
 , respectively. Then consider the case when body D  is 

subjected to given surface tractions 
i

F . The displacement field is the sum of the 

displacements 0

i
u  caused by 

i
F  only and the displacements 

i
u  caused by the eigenstrains 

only. The elastic strain energy in this case 

(3.67)    0 0 0 0

, , ,

1 1 1

2 2 2
ij ij i j i j ij ij i j ij ij

D D

W u u dD u dD dD     
  



        , 

where 
0

ij
  is the stress field caused by 0

i
u  and 

ij
  is that caused by the eigenstrains. Please 

note, that the elastic strain energy is the sum of the energies caused by the external force and 

the eigenstrain, respectively, which is a Colonetti’s theorem
5
. 

3.1.5.2.2 Interaction energy 

The total potential energy of a finite body D  containing inclusions   with external surface 

tractions 
i

F  on S  and eigenstrain 
ij



 in  : 

(3.68)  0

i i i

S

W W F u u dS


   . 

If there is no eigenstrain in D , the total potential energy becomes 

(3.69) 
0 0 0

0 ,

1

2
ij i j i i

D S

W u dD F u dS   . 

If the external forces are zero, the total potential energy of D : 

(3.70)  1 ,

1 1

2 2
ij i j ij ij ij

D

W u dD dD   
 



     . 

                                                 
5
 Colonetti’s theorem states that if a body containing an inclusion is subjected to traction forces on its boundary, 

there will be no cross term in the total elastic energy of the body, between the internal stress field and the applied 

stress field. 
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The interaction between the traction forces and the eigenstrain appears in the total potential 

energy as well. The interaction energy is defined as 

(3.71) 0

0 1 i i ij ij

S

W W W W F u dS dD 




         . 

In case of uniform eigenstrain in an ellipsoidal inclusion  , the interaction energy: 

(3.72) 
0

ij ij
W V  


   . 

Under constant temperature, the elastic strain energy of a body is the Helmholtz free energy 

of the body. The Gibbs free energy of a body is the total potential energy of it, which is 

defined as the sum of the elastic strain energy of the body and the potential energy of an 

external force. 
0

W  is the Gibbs free energy of D  when only the external force is the source of 

the stress field. 
1

W  is the Gibbs free energy of the body when there is no external force but 

there is an internal stress field due to the inclusion. Thus, W  is an additional term in the 

Gibbs free energy when not only an external force acts on the body, but also there is an 

eigenstrain-induced stress field in it. It represents the coexistence of the two effects acting on 

the body. 

For example, in fracture mechanics, we are interested in the energy that is produced in a body 

initially subjected to external tractions 
i

F , when due to inclusions, eigenstrain  is introduced 

in the material as well: 

(3.73) 
0 1

W W W W W      . 

This energy is formed due to the eigenstrain and the interaction between the inclusions and 

the external forces. Please note that all the expressions for energy calculations are given by 

integrals over  , thus, the calculations become easier. 

For dilatational eigenstrains  

(3.74) ( )
ij ij

x  
 

 , 

the elastic strain energy per unit volume of an inclusion is constant independently of the shape 

of the inclusion, and can be expressed in terms of Lamé’s constant    and Poisson’s ratio 

of the material under consideration: 

(3.75)  
2 1

2
1

W

V


 





 



, 

with the volume of   

(3.76) 
1 2 3

4

3
V a a a . 

As a result, the hydrostatic pressure 
3

ii


 is uniform for any shape of inclusion in case of 

dilatational eigenstrain  that can be constant or a function of x  as well : 
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(3.77) 

1
4 in 

1

0 outside 

ii


 

 


 

 

 

. 

The stress field inside an inclusion is only a function of the dilatational eigenstrain inside this 

particular inclusion, hence in case of several simultaneous inclusions, the dilatational 

eigenstrains do not interact. This observation holds only for isotropic materials and only for 

inclusions. 

3.1.5.3 Cuboidal inclusions 

 

 

In this thesis, cuboidal shaped inclusions (Figure 14) are not 

expounded, but they are interesting from that point of view, 

that the stress field inside the cuboidal inclusion will not be 

uniform in case of uniform eigenstrains. There are also 

logarithmic singularities in shear stresses in certain edges and 

corners of the cuboidal inclusion when 
ij



 has no shear strain 

components. 

 

 

3.1.5.4 Inclusions in a half space 

 

Figure 15   Inclusion    in a semi-infinite medium D  bounded by the free surface 
3

0x   

Consider a semi-infinite domain where 
3

0x   and the plane 
3

0x    with unit normal 
i

n  is 

free from external tractions (Figure 15). The Green’s functions of the half-space have the 

properties 

(3.78) 
,

( , ') ( , ') 0
ijkl km lj im

C G x x x x    

Figure 14   Cuboidal inclusion   

in body D  
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on 
3

0x  , and  

(3.79) 
,

( , ') ( , ')
ijkl km l j im S

C G x x n x x   

on 
3

0x  . In the above equations, 
ij

  is the Kronecker delta, while ( , ')x x  and ( , ')
S

x x  are 

the three- and two-dimensional Dirac delta functions. S  indicates the surface 
3

0x   and 

(3.80)      
0

' , ' d 'f x x x x f x



 , 

(3.81)         3
' , ' d '  at 0

S

S

f x x x S x f x x   , 

(3.82)    , ' , ' 0  if '
S

x x x x x x    . 

The explicit expression for the Green’s function of an isotropic semi-infinite body was found 

by Mindlin (Mindlin, 1953). One can look up the formulae in (Mura, 1987). 

3.1.5.4.1 Ellipsoidal inclusion with a dilatational uniform eigenstrain 

The elastic field of the ellipsoidal inclusion with given dilatational uniform eigenstrain close 

to the free surface of the half-space (Figure 15) can be calculated with the help of the V -

integrals (see (Mura, 1987)). It was shown by Seo and Mura (Seo & Mura, 1979) that the 

stresses in the inclusion and the surrounding matrix depends on the shape of the inclusion  

sphere or ellipsoid , and on the depth of the inclusion. Also the uniformity of the stresses 

inside the inclusion is mitigated by the existence of the free surface and tensile stresses may 

appear in the matrix. The free surface has less effect on the spherical inclusions, moreover, it 

was observed that this effect ceases, if the distance between the free surface and the centroid 

of the inclusion is greater than the diameter of the sphere. On the other hand, in case of 

spherical inclusions, there are large tensile stresses in the matrix close to the free surface. This 

behavior diminishes when the inclusion is embedded deeper in the semi-finite body. These 

tensile stresses are smaller when considering ellipsoidal inclusions, but they do not disappear 

with   being deeper in the matrix. 

The elastic strain energy of a semi-infinite body with given dilatational eigenstrain is 

extended by a correction factor that represents the effect of free surface. The force acting on 

the inclusion is negative, thus the free surface attracts the inclusion. 

3.1.6 Anisotropic inclusions 

Since explicit expression for Green’s functions of anisotropic materials are not available, one 

must carry out the integrals either in the Fourier space or in the physical space. 

For any type of eigenstrain distribution in an ellipsoidal shaped inclusion embedded in an 

infinitely extended anisotropic material, the resulted elastic field both inside and outside the 

inclusion can be calculated from 

(3.83) 
2

1 2

11 2 3

2

1 0 0

( ) ( ') N ( ) D ( ) '( ) ( )
8

R

i klm n nm ik l

S

a a a
u x dz d rdr C x y z dS



        


 



      , 
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(3.84) 
2

1 2

11 2 3

, 2

1 0 0

( ) ( ') N ( ) D ( ) ''( ) ( )
8

R

i j klm n nm ik l j

S

a a a
u x dz d rdr C x y z dS



         


 



      . 

 

Figure 16   The polar coordinate system used in case of ellipsoidal shaped anisotropic inclusions transformed 

into unit sphere 
2

S  

The new coordinates 
i

y  and 
i

  (Figure 16) come from 

(3.85) 

,

'
' ,  1, 2, 3;  

,

i

i

i

i

i

i

i

i

i

x
y

a

x
y i

a

a










 




  




 



, with    
1 1

2 2 2 2 2 2 2 2 22 2
1 2 3 1 1 2 2 3 3

a a a            . 

The transformation from the ellipsoid to the unit sphere 2
S  can be written in the form 

(3.86) 
x

y





  

and the distance between the observed plane and the centroid of the unit sphere becomes 

(3.87) 
'

'
x

z y





  . 

Likewise, in the polar coordinate system we have 

(3.88) 
1 2 3 1 2 3 1 2 3 1 2 3

d ' d ' d ' d ' d ' d ' d ' d d dx x x x a a a y y y a a a r r z   , 

and the following property has also been applied in the derivation of (3.83) and (3.84): 

(3.89)      ' ' '
l

l

x x x x
x

    


  


. 
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For constant eigenstrains, 
,i j

u  will also be constant, and for linear 
ij



, the distortions will be 

linear. In case of uniform eigenstrains, we can write the displacements inside the inclusion in 

the form 

(3.90) 
1 2

3

1 0

1
( ) ( ) d

4
i jlm n nm k ijkl

u x C x d G



   






   , 

where   is measured counter-clockwise from the 
1

 -axis () and 

(3.91) 
1

( ) ( ) ( )
ijkl k l ij

G N D    


 . 

 

Figure 17   Unit sphere in  -space 

This way, we can write Eshelby’s solution for ellipsoidal inclusions with the Eshelby tensor 

for anisotropic materials and uniform eigenstrain: 

(3.92)  
1 2

3

1 0

1
( ) ( )

8
ijm n pqm n ipjq jpiq

S C d G G d



   




   .  

Formulae for the elastic field of exterior points in an anisotropic media due to eigenstrain 
ij



 

can be found in (Mura, 1987). 

The stress jump on the boundary of the inclusion can be computed from 

(3.93)    1
( ) ( ) C ( ) N ( ) D ( ) ( )

ij ij ij ijkl pqmn nm kp q l kl
jump

S S C x n n n n x    
    

     , 

which can be used in the evaluation of the stress concentration factor of a lens-shaped void 

and its relation to the stress intensity factor of a crack. 

When examining the interaction of two ellipsoidal inhomogeneities subjected to an applied 

stress, it is convenient to give the eigenstrain as a solid harmonic function of y  in the 

ellipsoidal inclusion  : 
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(3.94) ( ) ( )
n

ij ij n

y
x y P

y


  

 
 

  
 

, 

where   is an arbitrary vector on the unit sphere 2
S  and 

n
P  is the Legendre polynomial of 

degree n . 

3.1.6.1 Periodic distribution of spherical inclusions 

Consider a periodic distribution of spherical inclusions with a period 2 L  in all three 

directions of a Cartesian coordinate-system (Figure 18). The eigenstrain distribution is given 

in its Fourier series form: 

(3.95) 
1 2 3, ,

( ) ( )
i x

ij ij
x e



  

  



 

 

    , 

where 

(3.96) ,  0
i

i i
L


   , 

(3.97) 
3

1
( ) ( )

8

L L L

i x

ij ij

L L L

x e dx
L


  

 

  

    . 

 

Figure 18   Unit cells of cubic crystals with edge lengths 2 L , modelled as periodic distribution of spherical 

inclusions with period 2 L  in  three orthogonal directions 

The resulting elastic field of a simple cubic, a body-centered cubic and a face-centered cubic 

crystal can be found in (Mura, 1987). Based on these expressions, one can study the stability 

of periodic arrangements of atoms in alloys. The atoms tend to array in such formulation, that 

the elastic strain energy to be the possible minimum. In some formulation, with decreasing 

period 2 L  the elastic strain energy decreases monotonically to the asymptotic value. The 

difference between the actual elastic energy and the asymptotic value is the interaction energy 

among the spherical precipitates. On the other hand there are arrangements in which the 

elastic strain energy decreases until a certain value, then increases to the asymptotic value. On 

this specific minimum energy level, formations of intermediate phases occur. We can see that 

phase transformations can be interpreted on the basis of the elastic strain energy associated of 

the clustering of contaminants. 
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3.2 Inhomogeneities 

3.2.1 Definition of inhomogeneity 

If a finite subdomain   in a material D  has an elastic modulus different from those of the 

matrix,   is called inhomogeneity (Figure 19). Applied stresses are disturbed by the 

existence of the inhomogeneity. The disturbed stress field can be simulated as an eigenstress 

field by applying a fictitious eigenstrain in  , while considering a homogeneous material. At 

composite problems (plane strain or plane stress problems) the complex potential method by 

Muskhelisvili (Muskhelishvili, 1953) is more effective than the generally applied equivalent 

inclusion method. 

 

Figure 19   Inhomogeneity   embedded in medium D having different material properties than that of body 

D  

A material containing inhomogeneities is free from any stress field unless a load is applied. 

On the other hand, a material containing inclusions is subjected to an eigenstress field even if 

it is free from external loading. When uniformly distributed stress is applied in infinity, at the 

neighbourhood of the inhomogeneity the stress field will not be uniform. 

An inhomogeneity can also bear its own eigenstrain, this type of inhomogeneity is called 

inhomogeneous inclusion. As an example, most of the precipitates in alloys and martensitic 

blades in phase transformations are inhomogeneous inclusions with misfit and phase 

transformation strains as eigenstrains. 

The inhomogeneity problem appears in other engineering problems, such as in a certain 

geotechnical problem, where a deep anchor embedded in soil or rock can be modelled as 

needle-type inhomogeneity and its load-deflection characteristics can be investigated. Another 

example is concrete, which can be modeled as ellipsoidal aggregates embedded in cement. 

Considering an inhomogeneity under applied stress, the displacements and tractions across the 

boundary must be continuous. Indicating the elastic modulus of the inhomogeneity by 
ijkl

C


, 

the stress field in the matrix  S
  and in the inhomogeneity  S

  can be written as 

(3.98) 
,

( ) ( )
ij ijkl k l

S C u S
 

 , 

D, C

, C*
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(3.99) 
,

( ) ( )
ij ijkl k l

S C u S
  

 , 

therefore the continuity condition 

(3.100)        0
ij j ij ij j

jump
n S S n  

 
    

becomes 

(3.101) 
, ,

( ) n ( ) n
ijkl k l j ijkl k l j

C u S C u S
  

 . 

The distortion field is discontinuous on the boundary, thereby equation (3.10) holds for the 

inhomogeneity problem, too: 

(3.102)  , , ,
( ) ( )

i j i j i j i j
jump

u u S u S n
 

   . 

Substituting (3.102) into (3.101) we have 

(3.103)    ,ijkl k l j ijkl ijkl k l j
C n n C C u S n

 
  , 

from which the unknown vector 
i

  can be determined: 

(3.104)        
1

,i ij k jklm jklm l m
N n n C C u S D n

  
  . 

Substituting (3.104) into (3.102): 

(3.105)       1

, , ,
( ) ( ) ( )

i j i j ik j l klmn klmn m n
u S u S N n n n C C u S D n

    
   . 

The resulting stress field just outside the inhomogeneity, if the elastic field is known inside 

:  

(3.106)             1

, ,ij ijkl k l kp l q pqmn pqmn m n
S C u S N n n n C C u S D n

    
   . 

These results hold for any shape of inhomogeneity and are applicable when computing the 

strains and stresses just outside the inhomogeneity, if the strain and stress field is given inside 

the inhomogeneity. The uniqueness theorem for inhomogeneity-matrix interface states that if 

the stress or strain is known locally at one side of the interface between an inhomogeneity and 

the surrounding matrix, then their jumps and consequent values at the other side of the 

interface are explicitly determinable in terms of the moduli of the inhomogeneity and the 

matrix and the interface normal. 

3.2.2 Ellipsoidal inhomogeneities. Equivalent inclusion method 

Consider an infinite elastic body D  containing an ellipsoidal shaped inhomogeneity  . The 

fourth-order elastic stiffness tensors of the matrix and inhomogeneity is C  and C


, 

respectively. On the boundary of D , the body is under surface traction forces 
0 0

p n  

(Figure 20). 
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When the two elastic moduli are identical, the elastic body D  is homogeneous. In this case, 

the total stress field is uniform 

(3.107) 
0t

  . 

Applying the linear superposition of the elastic theory, let us write the stress field of the 

elastic body D  consisting inhomogeneity   as the sum of the stress field of the 

homogeneous body and the so-called stress perturbation due to the presence of the 

inhomogeneity: 

(3.108) 
0t

    . 

The perturbed stress field is in self-equilibrium, it satisfies the equilibrium equations and the 

homogeneous boundary condition 

(3.109) 0  ,  

(3.110) 0  on n S  , 

(3.111) 0  in infinity  . 

The strain field can also be divided into two parts. Let us denote the one corresponding to the 

homogeneous material by the superscript ‘0’ such that 

(3.112) 
0 0

C  , 

where  due to their symmetric behavior  the second order tensors of are in Voigt form and 

the fourth-order tensors are reordered into 6-by-6 matrices. 

The total strain field of the body including inhomogeneity can be written as 

(3.113) 0t
    , 

where   denotes the perturbed strain field due to the presence of the inhomogeneity. 

Applying Hooke’s law for both the inhomogeneity   and the matrix D   : 

(3.114) 
0 0

( )  in 
t

C    


     , 

(3.115) 
0 0

( )  in -
t

C D         . 
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Figure 20   Equivalent inclusion method: Ellipsoidal inhomogeneity   embedded in infinitely extended 

material D  under applied stresses 
0

ij
  modelled as an ellipsoidal  inclusion    with appropriate eigenstrain 

ij



 in body D  free from any external load 

This problem will be solved with the so-called equivalent inclusion method. Consider an 

elastic body D  with an ellipsoidal inclusion   (Figure 20). In this case the elastic modulus is 

the same in the whole body. The eigenstrain 
  is uniformly distributed in the inclusion. The 

value of the eigenstrain must be determined such that the stress field induced by the inclusion 

is the same as the stress field of the inhomogeneity problem presented above. We can say that 

the equivalent method substitutes the inhomogeneity problem with an inclusion problem by 

applying a proper eigenstrain field. 

Writing Hooke’s law for the inclusion problem: 

(3.116) 
0 0

( )  in 
t

C     


      , 

(3.117) 
0 0

( )  in -
t

C D         , 

but in this case   and   indicates the stress and strain field due to the eigenstrain in the 

inclusion, respectively. Substituting Eshelby’s ellipsoidal inclusion solution into equations 

(3.116) and (3.117), and given that the stress field of the inhomogeneity is the same as that of 

the inclusion, we have the necessary and sufficient condition for the equivalency of the 

stresses and strains of the inhomogeneity and inclusion problem: 

(3.118) 
0 0

( )  in 
t

C S     
 

      , 

where S  denotes the fourth-order Eshelby tensor reordered into a 6-by-6 matrix. Substituting 

(3.118) into (3.114): 

(3.119) 
0 0

( ) ( )  in C S C    
  

     . 

D, C, s0

, C*

D, C

, C, 
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Making use of the Eshelby-tensor providing a connection between the strain and eigenstrain 

field once again, we have 

(3.120) 
0 0

( ) ( )  in C S C S    
   

     . 

This is the equivalent inclusion equation. The eigenstrain needed to simulate the 

inhomogeneity in the inclusion problem: 

(3.121)   
1

1
0

S C C C 



 

    , 

the total strain on the inclusion: 

(3.122) 
0 0 0t

S T     


      

with 

(3.123)   
1

1
T I SC C C


 

   . 

The stresses in the inhomogeneity can be computed from the equivalent inclusion equation 

(3.118). 

3.2.3 Inhomogeneous inclusions 

An eigenstrain can be prescribed not only in an inclusion but also in an inhomogeneity. These 

types of inhomogeneities are called inhomogeneous inclusions, they appear for example at the 

formation of martensitic blades in quenched carbon steels and precipitations in alloys. 

In this case, the elastic body D  is under surface traction forces 
0 0

p n  on its boundary and 

in   a given eigenstrain p
  is also prescribed (Figure 21). The stress field in the 

homogeneous material is 0
 . Applying Hooke’s law in D , the total stress field: 

(3.124) 
0 0

( )  in 
t p

C     


      , 

(3.125) 
0 0

( )  in -
t

C D         . 
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Figure 21   Equivalent inclusion method in case of inhomogeneous inclusions: Ellipsoidal inhomogeneous 

inclusion   with prescribed eigenstrain 
p

ij
  embedded in infinitely extended material D  under applied 

stresses 
0

ij
  modelled as an ellipsoidal inclusion   with appropriate eigenstrain 

ij



 in body D  free from 

any external load 

The perturbed stress field   and strain field   is due to the presence of both the 

inhomogeneity and the eigenstrain field in the inhomogeneity. We can simulate these two 

effects by a homogeneous material containing an inclusion with a uniform eigenstrain field of 
p

 


 , namely applying the equivalent inclusion method here as well (Figure 21). 

The total stress field in the equivalent inclusion: 

(3.126) 
0 0

( )  in 
t p

C      


       , 

(3.127) 
0 0

( )  in -
t

C D         . 

Eshelby’s ellipsoidal inclusion solution becomes 

(3.128) S 


  

with 

(3.129) p
  

 
  . 

The equivalent inclusion equation  at the inhomogeneous inclusion problem is 

(3.130) 
0 0

( ) ( )  in 
t p

C S C S      
   

       . 

The eigenstrain in the inclusion is written in the form 

(3.131)      
1

0 p
C S I C S C C M C  


   

     . 

Since 

D, C, s0

, C*, p

D, C

, C, 

=p+
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(3.132)       
1 1 1

1
S C S I C S CS C C H C

  
   

         , 

where H  denotes Hill’s constraint tensor 

(3.133)  1 1 1
H CS C C S I P C

  
      . 

Therefore the eigenstrain 
  can be written also as 

(3.134)     
1

1 0 p
S H C C C M C  


    

     . 

The total strain on the inhomogeneous inclusion: 

(3.135)     
1

0 0 0 0t p
S H C C C M       


  

         , 

where the stress polarization is defined by 

(3.136) 
p p

C 


  . 

The total stress field in   becomes 

(3.137)     
1

0 0 0
( )

t p
C S H H C C C M      


   

        , 

which can be written in a simple form: 

(3.138)  0 0
 in 

t t
H       . 

If there is no applied loading, only the given eigenstrain in the inhomogeneity, the total strain 

field becomes 

(3.139)  
1

t p
H C 




   , 

and the stresses in the inhomogeneity become 

(3.140)  
1

 in 
t p t

H H C H  



     . 

When an anisotropic inhomogeneous inclusion is contained in an isotropic matrix, we take C  

and S  for the isotropic material. 

The displacement and stress field for exterior points can be obtained with the help of the 

equivalent eigenstrain, but these calculations are quite complicated. Tanaka and Mura 

(Tanaka & Mura, 1982) proposed an alternative method for computing the elastic fields 

outside the inhomogeneity (Figure 22). Let us consider an ellipsoidal inhomogeneity in an 

infinitely extended matrix with applied stress 
0

  at infinity. The stress field in   shall be 

computed and denoted by  0
S 


 , where the negative side of the boundary S  of   

belongs to the inhomogeneity, and the positive side to the matrix.. Then find the stress field 

 S
  in the matrix assuming that   is a void and the applied stress is  S


 . The stress 

field of the inhomogeneity problem for the exterior points is the sum of the above stress 
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fields, namely    0
S S  

 
   where solutions for the void problem are available in the 

literature. 

 

Figure 22   Calculation of the elastic field caused by the presence of inhomogeneity   at points 
i

x D    

The system of equations in the equivalent inclusion equation becomes singular when an 

inhomogeneity is taken as a void. The solution of this system of equations is not unique, 

which means that there are an infinite number of eigenstrains which do not generate any stress 

field within the material. These eigenstrains are called impotent eigenstrains. To avoid such a 

problem in numerical calculations, cavities can be modelled as weak inhomogeneities with 

their elastic moduli significantly smaller than that of the matrix: C C
 . 

Assuming a material with two inhomogeneities 
1

  and 
2

 , 

even if 
0

  is uniform, the strain field   due to the 

inhomogeneities is no longer uniform, because the interior 

points of 
1

  are exterior points of 
2

  and the stress in 
1

  is 

disturbed by 
2

  (Figure 23). Numerical calculations 

performed by Moschovidis (Moschovidis, 1975) show that in 

case of two spherical cavities under uniform tension field, the 

interaction between the two cavities become negligible if the 

distance between their centroids are at least four times larger 

than their radii. 

The equivalent inclusion method can be applied even in case of 

non-uniform stresses. When an applied stress is a function of 

the coordinates, and a polynomial of degree n , the equivalent 

eigenstrain is also function of the coordinates and chosen to be 

a polynomial of degree n . 
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*, 
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h
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2
, C
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*, 
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2

Figure 23   Interaction between 

spherical inhomogeneities 
1

  

and 
2

  
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3.2.4 Energies of inhomogeneities 

3.2.4.1 Elastic strain energy 

3.2.4.1.1 Elastic energy of a body containing inhomogeneous inclusion 

The elastic strain energy of a body D  free from any external force or constraint, but 

containing inhomogeneous inclusion   with prescribed eigenstrain 
p

ij
 : 

(3.141) 
1 1

2 2

p

ij ij ij ij

D

W e dD dD  




    , 

where the elastic strain is 

(3.142)  , ,

1

2

p p

ij ij ij i j j i ij
e u u       . 

If   is an ellipsoidal heterogeneity with volume V  and the prescribed eigenstrain 
p

ij
  is 

uniform, the elastic strain energy of D  becomes 

(3.143) 
1

2

p

ij ij
W V  


  . 

If the elastic modulus 
ijkl

C


 of the inhomogeneity is slightly different from that of the matrix, 

we can approximate the elastic strain energy of the body containing inhomogeneous inclusion 

based on a homogeneous inclusion problem. Given a homogeneous body of elastic modulus 

ijkl
C  with prescribed eigenstrain 

p

ij
 , the resulting displacement, elastic strain, stress and 

elastic strain energy for the homogeneous inclusion problem is denoted by 
i

u , 
ij

e , 
ij

  and W , 

respectively. Making use of (3.142) and the fact that 

(3.144) 
, ,

d d 0
ij i j ij i j

D D

u D u D    , 

the elastic strain energy of the homogeneous inclusion problem becomes 

 (3.145)  , ,

1 1 1

2 2 2

p p

ij ij ij ij i j j i ij ij

D D

W dD u u dD e dD    



         . 

Similarly, the elastic strain energy of the inhomogeneous inclusion problem is 

(3.146) 
1

2
ij ij

D

W e dD


  . 

If 
ij ij

e e  is small quantity compared to 
ij

e , the difference in the elastic strain energy of the 

inhomogeneous  and homogeneous inclusion problem can be approximated by 

(3.147)  
1

2
ijkl ijkl kl ij

W W C C e e dD
 



   . 
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Equations (3.145) and (3.147) can be used as an approximation of the inhomogeneous 

inclusion problem, where   can be the sum of several inclusions 
i

 . This method was 

proposed by Eshelby. In case of two inhomogeneities, the interaction energy between these 

two inhomogeneities: 

(3.148)    

1 2

2 1p p

ij ij ij ij
W dD dD   



 

      , 

where 
 m

ij
  is the stress caused by the prescribed eigenstrain in 

m
 . 

3.2.4.1.2 Elastic energy of a body containing inhomogeneous inclusion under traction 

boundary condition 

The elastic strain energy in a body D  under applied surface force 
i

F  and containing 

inhomogeneous inclusion   with eigenstrain 
p

ij
 : 

(3.149)    0 0

, ,

1
d

2

p

ij ij i j i j ij

D

W u u D  


    , 

where the displacement and stress field is denoted by 0

i i
u u  and 

0

ij ij
  , respectively. The 

superscript ‘0’ indicates the elastic field when 
i

F  acts in the absence of the inhomogeneous 

inclusion  . Hence, 

(3.150) 
0 0

,ij ijkl k l
C u  , 

(3.151)  0 0

, ,

p

ij ij ijkl k l k l kl
C u u  


    . 

Since 

(3.152)  0

, ,
d 0

ij i j i j

D

u u D   , 

(3.153) 
0

,
d 0

ij i j

D

u D   

and applying the equivalent inclusion method with fictitious eigenstrain 
ij



 

(3.154)    0 0 0 0

, , , ,

p p

ij i j ij ijkl k l i j ij ij ij ij i j ij ij
u C u u u       

  
        

with 

(3.155)  ,
 in 

p

ij ijkl k l kl kl
C u  


    . 

It follows that 

(3.156)  0 0

,
d d

p

ij i j ij ij ij

D

u D D   




   . 

The elastic strain energy of the inhomogeneous inclusion problem with given traction 

boundary condition: 



58 

 

(3.157) 0 0 0

,

1 1 1

2 2 2

p

ij i j ij ij ij ij

D

W u dD dD dD    
 

 

     . 

If body D  under applied traction forces 
i

F  contains inhomogeneity   without eigenstrain 

 0
p

ij
  , the elastic strain energy becomes 

(3.158) 0 0 0

,

1 1

2 2
ij i j ij ij

D

W u dD dD  
 



   . 

On the contrary, the elastic strain energy of body D  with inhomogeneous inclusion   

 0
p

ij
   in the absence of external loading becomes 

(3.159) 
1

d
2

p

ij ij
W D 





   . 

According to Colonetti’s theorem
5
, the elastic strain energy W

  of body D  due to the 

coexisting eigenstrain 
p

ij
  and external loading 

i
F  is the sum of the individual elastic strain 

energies (3.158) and (3.159). It is the same as the originally derived strain energy expressed in 

(3.157). 

When considering an infinite anisotropic matrix containing ellipsoidal anisotropic precipitate, 

which is an inhomogeneous inclusion, based on the calculation of the elastic strain energy, it 

was shown that the resulted elastic field is strongly dependent on the orientation and shape of 

the precipitates. 

3.2.4.2 Interaction energy 

Given a body D  with inhomogeneity   and external surface tractions 
i

F  on boundary S . 

The total potential energy or Gibbs free energy of this body is the sum of the elastic strain 

energy and the potential energy of the external loading: 

(3.160)  0 0 0 0

,

1 1

2 2
ij i j ij ij i i i

D S

W u dD dD F u u dS  




      . 

If body D  is homogeneous, the total potential energy can be written as 

(3.161) 
0 0 0

0 ,

1

2
ij i j i i

D S

W u dD F u dS   . 

The interaction energy between the external surface tractions and the inhomogeneity is 

defined as 

(3.162) 
0 0

0

1 1

2 2
ij ij i i ij ij

S

W W W dD F u dS dD   
 

 

         . 

If 
0

ij
  is uniform and   is an ellipsoidal inhomogeneity, 

ij



 becomes uniform and the 

interaction energy can be written as 
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(3.163) 01

2
ij ij

W V  


   . 

As a remark the interaction energy can also be is used in fracture mechanics for the derivation 

of Griffith’s fracture criterion, when   is a crack and 
ij

V 

 is held constant as 0V   and 

ij



  . The interaction energy can be expressed as an integral over the surface of  , 

denoted by  , bypassing the problem that   has no volume (the derivation can be found in 

(Mura, 1987)): 

(3.164)  
01

2
ij j i jum p

W n u dS



   , 

with outward normal vector 
i

n  of the upper surface of the crack and crack opening 

displacement 

(3.165)   (upper) (lower)
i i ijump

u u u  . 

When a body D  contains an inhomogeneous inclusion   with prescribed eigenstrain 
p

ij
  and 

external surface tractions 
i

F  on boundary S , the total potential energy or Gibbs free energy 

of the body: 

(3.166)      0 0 0

, ,

1

2

p

ij ij i j i j ij i i i

D S

W u u dD F u u dS         . 

The interaction energy between the inhomogeneous inclusion and the external loading is the 

difference between the Gibbs free energy of the body given in (3.166) and that of the 

homogeneous body from equation (3.161): 

(3.167) 0 01 1

2 2

p p

ij ij ij ij ij ij
W dD dD dD     



  

       . 

These expressions are valid also for the interaction between an inhomogeneous inclusion   

and any kind of different internal stress 
0

ij
 . 

4  Analytical and numerical model of the environment of inhomogeneities 

4.1 Analytical model 

In the following I calculate the effect of applied stress in case of isotropic inhomogeneities 

inside an infinitely extended isotropic matrix material. The analytical solution is based on 

Eshelby’s equivalent inclusion method. The Matlab™ code was provided by Chunfang Meng 

(Meng & Pollard, 2014; Meng, Heltsley, & Pollard, 2012). It calculates the Eshelby tensor of 

an inhomogeneity based on the geometry of the heterogeneity and the material properties of 

the individual phases of the composite under consideration. It makes use of the I -integrals 

provided for specially shaped inhomogeneities in (Mura, 1987). 
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Let us consider an ellipsoidal inhomogeneity 

in an infinitely extended matrix material 

under applied stresses (Figure 24). The semi-

axes  1 2 3 1 2 3
, ,  a a a a a a   of the 

ellipsoidal heterogeneity are parallel to the x

, y  and z  axes, respectively. First, I 

compute the resulting stress field inside the 

heterogeneous material when a compressive 

stress in x  direction of unit magnitude is 

applied.  

The inhomogeneity is of spherical shape and 

bears the material properties of a strong 

inhomogeneity. Let us consider contaminants with elastic modulus 200 GPa
c

E   and 

Poisson’s ratio 0.3
c

  . In case of strong inhomogeneities, the inhomogeneity is stiffer than 

the surrounding matrix. Hence, I considered an infinite medium with elastic modulus 

20 GPa
m

E   and Poisson’s ratio 0.15
m

  . (Later on, at homogenization methods, I use the 

same material properties to model steel reinforcing fibers embedded in portland cement, i.e. 

fiber-reinforced concrete.) 

The dimensions of the inhomogeneity is dependent on its shape. I start the calculation with 

spherical shape, where the radius of heterogeneity is 10 mmr   and I continue with 

ellipsoids, where the major to minor semi-axes ratio is of 1

2

1.25,  2 .5 , 10
a

a
 , respectively (the 

lengths in y  and z  directions are set to be the same, therefore the minor axis can be indicated 

by 
2

a  instead of 
3

a ). 

Before considering 

inhomogeneities, I check the 

Matlab™ code whether it gives 

correct results. I set the material 

properties of both the 

heterogeneity and the matrix to be 

the same  ,  =
m m

E E   , and 

loaded this specimen by 

2

kN
1 

mm
x

   . If the calculation 

is correct, the resulting stress field 

must be constant inside the 

material, since I made the 

originally heterogeneous material 

to be homogeneous. This 

verification was successful (Figure Figure 25   Verification of Matlab™ code by considering a 

homogeneous material under applied stress 1
x

    
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Figure 24   Heterogeneous material under applied 

stresses 
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25). The vertical axis shows the value of the resulting stress field which is just the same as the 

applied stress, and the horizontal axis indicates the x axis of the three-dimensional space.  

Figure 26 shows the stress field when the heterogeneity is of spherical shape. The horizontal 

axis shows the distance from the heterogeneity in millimetres, orthogonal to the distance of 

the applied stress, where the origin coincides with the centroid of the sphere. The vertical axis 

indicates the magnitude of the resulting stress field (dark blue: 
x

 , light blue: 
y

  and green: 

z
 ). 

 

Figure 26   Resulting stress field (dark blue: 
x

 , light blue: 
y

 , green: 
z

 ) in case of spherical 

heterogeneity with 10 mmr  , under applied stress 1
x

    

Due to the existence of the inhomogeneity, the applied stress 
x

  (in infinity) almost doubles 

inside the inhomogeneity and at the interface of the inhomogeneity and the matrix material, a 

sudden jump appears. It is interesting that the stress field just outside the inhomogeneity falls 

to almost zero value. It is also visible that a constant applied stress in infinity causes constant 

stress field inside the heterogeneity. As for the normal stresses in the other two directions, 

inside the heterogeneity, 
z

  has some constant nonzero value, but it decreases to zero in the 

matrix material quickly. The normal stress in y  direction behaves similarly, except the fact 

that just outside the inhomogeneity, it changes its sign and becomes tensile stress which is 

quite undesirable in a lot of heterogeneous engineering materials, such as concrete or soil. 

When varying the shape of the inhomogeneity to be 
1

10 mma   and 
2 3

8 mma a  , i.e. it is 

the case when the major-to-minor axis ratio equals 1.25, the resulting stress field becomes 

(Figure 27): 
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Figure 27   Resulting stress field (dark blue: 
x

 , light blue: 
y

 , green: 
z

 ) in case of ellipsoidal 

heterogeneity with 
1

2

1.25
a

a
  , under applied stress 1

x
    

The same applied stress field causes 13% larger compressive stress 
x

  inside the 

inhomogeneity when its size in cross directions y  and z  decreases to 80% of its original 

value. On the other hand, the stress jump at the interface halved due to this change of 

geometry. In the first case, the stresses just outside the heterogeneity were approximately -0.2 

kN/mm
2
 and inside the heterogeneity became -2 kN/mm

2
, which is ten times larger than at the 

exterior points. At the ellipsoidal one, this was only a fivefold increase. The 
y

  and 
z

  stress 

field has almost the same values than in case of a spherical heterogeneity. 

Let us see what happens, when the major-to-minor axis ratio is increased again to be 2.5, 10 

and the cross-directional semi-axes has the lengths of 
2 3

4 mma a   and 
2 3

1 mma a  , 

respectively (Figure 28-Figure 29): 
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Figure 28   Resulting stress field (dark blue: 
x

 , light blue: 
y

 , green: 
z

 ) in case of ellipsoidal 

heterogeneity with 
1

2

2.5
a

a
  , under applied stress 1

x
    

 

Figure 29   Resulting stress field (dark blue: 
x

 , light blue: 
y

 , green: 
z

 ) in case of ellipsoidal 

heterogeneity with 
1

2

10
a

a
  , under applied stress 1

x
    
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The tendency in having larger compressive stress 
x

  inside the inclusion continued, and at 

the same time, the tensile stress 
y

  tends to zero as the ratio of major to minor axes becomes 

larger. Obviously, the stresses outside the inhomogeneity fall back to their ‘undisturbed’ value 

faster as the ellipsoid gets flatter. 

Now let us see what happens, when we consider the same major-to-minor axes ratios, but this 

time the applied stress will be 
2

kN
1 

mm
y

   . Therefore, the resulting stress field is plotted 

against the distance measure from the centre of the ellipsoid in x  direction: 

 

Figure 30   Resulting stress field (dark blue: 
x

 , light blue: 
y

 , green: 
z

 ) in case of ellipsoidal 

heterogeneity with 
1

2

1.25
a

a
 ,  under applied stress 1

y
    

While in Figure 27-Figure 29, the ellipsoid became more and more elongated in the direction 

of the applied stress,  show the resulted stress field in case of such major-to minor axes ratios 

when the ellipsoid is getting flatter in the direction of the applied loading. The constant 

(applied) compressive stress inside the inhomogeneity is smaller in case of flat ellipsoids, but 

the normal stress of the orthogonal direction changes into a relatively high value of tensile 

stress. 
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Figure 31   Resulting stress field (dark blue: 
x

 , light blue: 
y

 , green: 
z

 ) in case of ellipsoidal 

heterogeneity with 
1

2

2.5
a

a
 , under applied stress 1

y
    

 

 

Figure 32   Resulting stress field (dark blue: 
x

 , light blue: 
y

 , green: 
z

 ) in case of ellipsoidal 

heterogeneity with 
1

2

10
a

a
 , under applied stress 1

y
    
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Considering the case when not only 
2

kN
1 

mm
x

   , but 
2

kN
1 

mm
y

    are also applied in 

infinity, let us observe the changes in the resulting elastic field in case of heterogeneities of 

size 
1 2 3

10 mma a a    and 
1 2 3

10 mm, 4  mma a a   . The results of the spherical case 

(Figure 33): 

 

Figure 33   Resulting stress field (dark blue: 
x

 , light blue: 
y

 , green: 
z

 ) in case of spherical 

heterogeneity with 10 mmr  , under applied stresses 1
x

    and 1
y

    in x   direction 

The stress field in y  direction will be the same, except that the sudden jump at the matrix-

inhomogeneity interface occurs in the 
x

  stresses. The resulting stress field of a 

heterogeneous material with ellipsoidal inhomogeneity under hydrostatic pressure is depicted 

in Figure 34 and Figure 35. Due to the type of the applied loading, i.e. it is of the same 

magnitude in every direction, there is no significant tensile stress even in the out-of-plane 

direction. The normal stress in the direction belonging to the longer axis of the ellipsoid 

always bears higher values of compressive stress inside the heterogeneity. The applied stress 

observed in the direction orthogonal to it, shows a sudden jump at the interface of the 

heterogeneity and the matrix, but just outside the inhomogeneity, the absolute value of the 

resulting stresses are always smaller than that of the applied stress. The magnitude of the 

interfacial jump is dependent on the direction of the applied stress and the major-to-minor 

axes ratio. If we observe the direction where the size of the heterogeneity decreases (Figure 

27-Figure 29), the magnitude of the jump increases greatly. On the other hand, when the size 

of the ellipsoid does not change in the observed direction orthogonal to the applied stress, 

while its shape becomes flatter, the jump in the resulting stress field becomes smaller (Figure 

30-Figure 32). 
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Figure 34   Resulting stress field (dark blue: 
x

 , light blue: 
y

 , green: 
z

 ) in case of ellipsoidal 

heterogeneity with 
1

2

2.5
a

a
 , under applied stresses 1

x
    and 1

y
    in x  direction 

 

Figure 35   Resulting stress field (dark blue: 
x

 , light blue: 
y

 , green: 
z

 ) in case of ellipsoidal 

heterogeneity with 
1

2

2.5
a

a
 , under applied stresses 1

x
    and 1

y
    in y  direction 
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4.2 Numerical model 

In order to verify the analytical solutions, I run some numerical analyses in finite element 

software Mechanical APDL 14.5 by Ansys™, where the inhomogeneity lies in xy  plane, and 

has the same geometry as shown before, i.e. 
1 2

10 mma a   and its variations as the major-

to-minor axis varies as 1

2

1.25,  2 .5 , 10
a

a
 . The investigated distance from the centroid of the 

initially examined sphere is also 50 mm, and due to the symmetry of the problem, I modelled 

only the half of the inhomogeneity in the infinite space. The material properties are the same 

as before: 200 GPa, 0.3
c c

E    of the contaminants and 20 GPa, 0.15
m m

E    of the 

matrix. I applied SHELL181, which is a four-node shell element with six degrees-of-freedom 

at every node (three translational and three rotational). The triangular version of this 

orogonally rectangular element is applied only as a filler element in mesh generation. 

The verification of the numerical model occured similarly to that of the analytical one, the 

material properties of the inhomogeneity are set to be the same as the properties of the matrix, 

hence the material is homogenous and an applied stress 
2

kN
1 

m m
x

   causes constant stress 

field inside the material (Figure 36): 

 

Figure 36   Verification of the numerical model 

The stress field 
x

  () and 
y

  () of the heterogeneous material consisiting spherical 

inhomogeneity when applying 
2

kN
1 

mm
x

    in infinity: 
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Figure 37   Resulting stress field
x

   in case of spherical heterogeneity with 10 mmr  , under applied 

stress 1
x

    

 

 

Figure 38   Resulting stress field
y

   in case of spherical heterogeneity with 10 mmr  , under applied 

stress 1
x

    
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Comparing Figure 37 to Figure 26, the compressive stress inside the inhomogeneity is 

approximately 17% smaller in absolute value at the numerical results, just inside the 

inhomogeneity, they become higher, then at the interface, the huge jump in the stress field can 

be observed here as well. Just outside the stress is about -0.2 kN/mm
2
, and the disturbed stress 

field is equilibrated in ~22 mm measured from the centre of the inhomogeneity in y  direction 

(at the numerical result, it is the vertical axis), which is just the same as coming from the 

analytical solution. In Figure 38, the stress 
y

  is -0.4 kN/mm
2
 inside the inhomogeneity, and 

at the interface it changes to -0.13 kN/mm
2
, it does not change sign, there is no tensile stress 

in the 0x   section under consideration. 

Now let us examine the numerical results coming from a heterogeneous material consisting a 

strong, ellipsoidal shaped inhomogeneity with major-to-minor axes ratio 1

2

10
a

a
 , under 

applied stress 
2

kN
1 

mm
x

   . The ellipsoid is elongated in x  direction. 

 

Figure 39   Resulting stress field
x

   in case of ellipsoidal heterogeneity with major-to-minor axes ratio 

1

2

10
a

a
 , under applied stress 1

x
    
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Figure 40   Resulting stress field
y

   in case of ellipsoidal heterogeneity with major-to-minor axes ratio 

1

2

10
a

a
 , under applied stress 1

x
    

Comparing Figure 39 to Figure 32, the numerical solution predicts 40% smaller compressive 

stress once again, and the disturbed stress field is balanced in ~7 mm from the centre of the 

ellipsoid, just like at the analytical solution. In Figure 40, 
y

  is (-0.9) ÷ (-0.3) kN/mm
2
 inside 

the inhomogeneity and decreases to -0.1 kN/mm
2
 at the exterior points. It is the same as the 

results coming from analytical methods. In x  direction (horizontal axis), at the tip of the 

elongated inhomogeneity, 
y

  tensile stresses appear, as one might expect. 

The flat-shaped ellipsoidal inhomogeneity was examined such that the applied stress remained 

2

kN
1 

mm
x

   , but this time the minor axis is parallel to the x  axis. Let the major-to-minor 

axes ratio be 1

2

2.5
a

a
 . In Figure 41, 

x
  is -1.2 kN/mm

2
 inside the heterogeneity, at the 

interface it decreases to -0.8 kN/mm
2
 and in 15 mm from the centre of the ellipsoid, it 

becomes -1kN/mm
2
, which is almost exactly the same as in Figure 31 at the analytical results. 

In Figure 42, 
y

  is -0.3 kN/mm
2
 inside and -0.15 kN/mm

2
 outside the inhomogeneity. 

Comparing to the analytical results, there is some diffenernce, that can be explained by the 

fact that the analytical solution applies a three-dimensional, meanwhile the numerical analysis 

applies only a two-dimensional model. 

Comparing the analytical and numerical results in general, it is observed that the analytical 

solution yields surprisingly exact results, bothregarding the values of the stresses and also the 

distance needed to equilibrate the disturbed elastic field. 
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Figure 41   Resulting stress field
x

   in case of ellipsoidal heterogeneity with major-to-minor axes ratio 

1

2

2.5
a

a
 , under applied stress 1

x
    

 

Figure 42   Resulting stress field
y

   in case of ellipsoidal heterogeneity with major-to-minor axes ratio 

1

2

2.5
a

a
 , under applied stress 1

x
    
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4.3 Weak inhomogeneities 

When modelling voids, one has to avoid the singularities caused by setting the values of 

material proeprties of voids to be zero by modelling them as very weak inhomogeneities. Let 

us define the Young’s modulus and Poisson’s ratio of the inhomogeneity (void) as 

0.01 GPa
v

E   and 0.01
v

  . The inhomogeneity is of ellipsoidal shape and its major-to-

minor axes ratio is 1

2

2.5
a

a
 . 

First, let us compare the analytical and numerical results when the heterogeneous material is 

loaded by a compressive stress of unit magnitude parallel to its major axis. 

 

Figure 43   Analytical results of a heterogeneous material containing an elongated void 

 

Figure 44   Numerical results of a heterogeneous material containing an elongated void 
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In Figure 43, the blue line shows that in the first 0.4 mm, that is inside the void, the applied 

stress becomes zero. At the interface it exceeds its applied value, but in 7 mm distance from 

the centre of the void, the disturbing effect of the void ceases. In Figure 44, the same results 

are obtained with the help of the finite element analysis, the only difference is that at the 

interface the stress reaches the magnitude of -1.2 kN/mm
2
. 

When comparing the results of a flat ellipsoid, the difference is greater between the analytical 

(Figure 45) and numerical solutions (Figure 46). According to the analytical results, at the 

interface of the void and matrix, the stress in the direction of the applied stress is only -1.08 

kN/mm
2
, while at the finite element analysis, it besomes -3 kN/mm

2
 and 15 mm from the 

centre of the void the value of this stress is still -1.5 kN/mm
2
. The analytical solution cannot 

predict the stress field at the tip of the inhomogeneity as much as the numerical analysis. 

 

Figure 45   Analytical results of a heterogeneous material containing a flat void 

 

Figure 46   Numerical results of a heterogeneous material containing a flat void 
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5  The effect of mesolevel inhomogeneities on macrolevel material 

properties 

5.1 Definitions of effective moduli of heterogeneous materials 

Heterogeneous materials generally consist of several different constituents or phases, and 

each of them has different material properties. In engineering problems, when dealing with 

heterogeneous materials at the length scale of interest, we cannot deal with all the properties 

of the different materials, we would like to define an overall or so-called effective property 

of the whole material, that describes its behavior against mechanical effects. 

Heterogeneous materials can be classified into two groups: materials with periodic (Figure 

47) and nonperiodic (Figure 48) microstructures. In this thesis, I will only deal with the latter 

one, which includes most of the fiber and particulate reinforced materials. The materials with 

periodic microstructures cannot be treated as random media, thereby the different 

constituents’ interactions need to be investigated more seriously. 

 

All the materials are heterogeneous by nature. In engineering problems, we need to define  a 

length scale at which the properties of the material are relevant. At this specific length scale, 

one can identify different constituents, that might seem homogeneous at a larger length scale, 

but would be heterogeneous itself at a smaller length scale. 

In case of heterogeneous materials we can speak of overall properties, which is the properties 

differing from point-to-point averaged over a certain volume of the material. We say a 

material is macroscopically homogeneous, when for its overall properties, the average taken 

over any arbitrary volume element comparable with the relevant length scale is the same as 

the heterogeneous material sample under consideration. 

When defining the microscale length d , which corresponds to the smallest constituent whose 

material properties have direct first-order effects on the macroscopic overall properties of the 

heterogeneous material, an optimum should be reached, by taking into consideration the 

L
1

L2

Figure 47   Periodic microstructure Figure 48   Nonperiodic microstroucture 
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balance between the exact definition of what has first-order effects on the overall properties 

and the simplicity of the resulting model. The macroscale length D  should be large enough, 

that the difference from point-to-point of the elastic field on microlevel influences the overall 

properties only through its average value. It must be true conversely, that the fluctuations of 

the elastic field should not be significant on the microscale, the macro-fields are locally 

uniform. In general, to satisfy these conditions, the microlevel must be orders of magnitude 

smaller than the macrolevel: / 1d D . 

5.1.1 Representative volume element 

When a macroscopically heterogeneous material can be described by its microscopic length 

parameter d  and macroscopic length parameter D  (Figure 49) such that / 1d D , then the 

heterogeneous material is said to be microscopically homogeneous at the macroscopic length 

scale D . A volume element of characteristic length D  is called representative volume 

element (RVE). The overall properties of each RVE of a material are the same and represent 

the overall properties of the heterogeneous material itself. 

 

Figure 49   Definition of microscopic (d) and macroscopic (D) length parameter 

5.1.2 Random media 

Most of the engineering materials are of quite complex and random nature. It would be 

impossible or at least impractical to know every detail of its microstructure. We are interested 

in the average properties of the material, which is usually determined stochastically of a 

representative volume element. We distinguish two kinds of averages: the ensemble average 

and the volume or spatial average. 

 

Figure 50   Inhomogeneity content at fixed positions in different samples 

Consider N  pieces of samples R , assuming that they were made under same processing 

conditions. The block dimension is D  for every R  and the size of an inhomogeneity d  is 

such that / 1d D , thus the macroscopically heterogeneous material is microscopically 

Dd

D

d

c(x,1) c(x,2) c(x,n)

...
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homogeneous. Let us denote the volume fraction of inhomogeneities in each sample by c . 

Due to the different distribution of the inhomogeneities in the samples, when we examine a 

small volume at the same location x  in the  -th sample, the inhomogeneity content ( , )c x   

will not be the same in all the specimens, the average will depend on N  (Figure 50): 

(5.1) 
1

1
( ) ( , )

N

c x c x
N 




  . 

In the limit case N   , the summation can be replaced by an integral over the sample space 

R , thus the average will be independent of the number of samples: 

(5.2) 
1

1
( ) lim ( , ) ( , )

N

N
R

c x c x c x d
N 

  
 



   , 

where ( )c x
6
 indicates the ensemble average. 

In the following, let us consider a sample from the R -space with a total volume of V . By 

dividing this specimen into M  subdomains, we denote the volume of the i -th subdomain by 

i
V , where 

1

M

i

i

V V



 . In each subdomain the inhomogeneity content can be calculated in a 

particular representative point 
i

x , for example in the centroid of the  -th subdomain: 

( , )
i

c x  . The average volume fraction of a particular sample depends on M : 

(5.3) 
1

1
( ) ( , )

M

i i

i

c c x V
V

 


  . 

In the limit case M   , the summation can be replaced by an integral over the total volume 

V , thus the average will not depend on the number of subdomains any more: 

(5.4) 
1

1 1
( ) lim ( ) ( )

M

i i
M

i V

c c x V c x dV
V V


 



   , 

where ( )c 
7
 denotes the volume average. 

Please note, that the ensemble average gives the mean value of the volume fraction among all 

the samples in the sample space, while the spatial average is carried out over one specific 

sample in the sample space. The volume fraction can be regarded as a random function of 

both the sample   and the position x  that is measured. According to the ergodic
8
 hypothesis 

the inhomogeneity distribution can be such that these two averages give the same value: 

(5.5) ( ) ( )c x c  , 

                                                 
6
 The mathematical symbol  in statistics represents the average S  of all the elements of a set S . 

7
 In statistics, the overbar denotes the mean value x  of a set consisting of ,  1, 2, ...,

i
x i N . 

8
 Ergodic theory is a branch of mathematics that studies dynamical systems with an invariant measure and 

related problems. The development of ergodic theory was necessitated by problems of statistical physics. 
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(5.6) 
1

( , ) ( , ) ( )

R V

c x d c x dV x
V

    . 

Generalizing the ergodic hypothesis to the microstructure features in heterogeneous materials, 

we should slightly modify the above expressions. Assuming there is a probability distribution 

function ( )p   defined over R  which satisfies 

(5.7) ( ) 1

R

p d   . 

Suppose there are N  different types of inhomogeneities or phases in each member of the 

group, where the r  -th inhomogeneity has the volume of ( ),  1, 2, ...,
r

V r N  . To describe 

the spatial distribution of the inhomogeneities, it is convenient to introduce a characteristic 

function that takes the value of 1 if x  is inside ( )
r

V   and zero otherwise: 

(5.8) 
1 if ( )

( , )
0  if ( )

r

r

r

x V
f x

x V







 



 . 

In a specific sample, at position x , there can only be one kind of material phase, but there 

must be a phase, thus the characteristic function has the property 

(5.9) 
1

( , ) 1

N

r

r

f x 


 . 

The ensemble average of the characteristic function defines the probability ( )
r

P x  of finding 

phase r  at position x : 

(5.10) ( ) ( , ) ( , ) ( )
r r r

R

P x f x f x p d      . 

Similarly, finding phase r  at x  and phase s  at 'x  simultaneously has the probability of 

( , ')
rs

P x x : 

(5.11) ( , ') ( , ) ( ', ) ( , ) ( ', ) ( )
rs r s r s

R

P x x f x f x f x f x p d        . 

The functions ( )
r

P x  and ( , ')
rs

P x x  are the one- and two-point correlation functions of 

( , )
r

f x  , respectively. A heterogeneous medium is said to be statistically homogeneous, if 

its correlation functions are translation invariant. In this case the one-point correlation 

function ( )
r

P x  is a constant, thus the inhomogeneities are uniformly distributed in each 

sample, and the two-point correlation function will have the property ( , ') ( ')
rs rs

P x x P x x  , 

which means ( , ')
rs

P x x  will only depend on the distance between x  and 'x , regardless the 

exact location of these points. If the characteristic function of a heterogeneous material 

satisfies the ergodic hypothesis, the material is statistically uniform. 



79 

 

The microstructure or the distribution of the inhomogeneities of a heterogeneous material can 

be characterized by the correlation functions ( )
r

P x  and ( , ')
rs

P x x . The spatial average gives 

the volume fraction 
r

c  of the r -th phase: 

(5.12) 
1

( , ) ( , ) ( ) r

r r r

V

V
f x f x dV x c

V V
    . 

The ergodic hypothesis states 

(5.13) ( ) ( , ) ( , )
r r r r

P x f x f x c    . 

The volume average of the two-point correlation: 

(5.14)

1 1
( , ) ( ', ) ( , ) ( ', ) ( ) ( ( '), ) ( ) g ( ')

r

r s r s s rs

V V

f x f x f x f x dV x f x x x dV x x x
V V

           , 

therefore, according to the ergodic hypothesis 

(5.15) ( , ') ( , ) ( ', ) ( , ) ( ', ) g ( ')
rs r s r s rs

P x x f x f x f x f x x x       . 

Applying  the above introduced characteristics, we can say that the representative volume 

element must be defined so that it includes a very large number of inhomogeneities and in the 

meanwhile be statistically homogeneous and representative of the local continuum properties, 

so that the averaging schemes over this domain determine the overall mechanical properties of 

the heterogeneous material. 

5.1.3 Macroscopic averages 

Consider a statistically homogeneous material with domain D , where the average stresses and 

strains over D  is defined as 

(5.16) 
1

ij ij

D

dV
D

   , 

(5.17) 
1

ij ij

D

dV
D

   , 

respectively. Due to the statistically homogeneous behavior, the volume and the ensemble 

averages are the same. Note that domain D  does not need to be a single domain and the 

volume of domain D  is denoted by V . 

Let us consider a given constant stress tensor 
0

ij
  with the traction boundary condition 

(5.18) 
0 0

ij j j ij j
S

n p n    

prescribed on the entire boundary S  of the domain D  with outward normal vector 
j

n . The 

average stress on D  is given by 
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(5.19) 
0

ij ij
  , 

this is called the average-stress theorem. According to this theorem, when a body is subjected 

to traction boundary condition (5.18) with 
0

ij
  being constant, the resulting stress averaged 

over the entire body is the same as 
0

ij
 , regardless the complexity of the stress field within the 

domain. Thus, the traction boundary condition can be written as 

(5.20) 
ij j ij j

S
n n  , 

where 
ij

  is the average stress tensor in the body enclosed by S . 

Similarly, considering a given constant strain tensor 
0

ij
  with displacement boundary 

condition 

(5.21) 
0

i ij jS
u x  

prescribed on the entire boundary S  of the domain D . The average strain on D  is given by 

(5.22) 
0

ij ij
  , 

this is called the average-strain theorem. According to this theorem, when a body is subjected 

to displacement boundary condition (5.21) with 
0

ij
  being constant, the resulting strain 

averaged over the entire body is the same as 
0

ij
 , regardless the complexity of the strain field 

within the domain. Thus, the displacement boundary condition can be written as 

(5.23) 
i ij jS

u x , 

where 
ij

  is the average strain tensor in the body enclosed by S . 

5.1.4 Hill’s lemma 

Consider a representative volume element with volume V  and boundary S  with prescribed 

displacement or traction boundary condition. For any stress and strain fields 
ij

  and 
ij

  at a 

given point in the RVE the following statement always holds 

(5.24)    
1

ij ijij ij i j ij ik k ik k

S

u x n n dS
D

          , 

where 

(5.25) 
1

ij ij ij ij

V

dV
V

     . 

Equation (5.24) is Hill’s lemma. A corollary of Hill’s lemma states 

(5.26) ij ijij ij
    , 
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which is also known as Hill’s macrohomogeneity condition or Mandel-Hill condition. It states 

that the twice of the value of the volume averaged strain energy density of a heterogeneous 

material can be obtained from the product of the volume averages of the strain field and stress 

field of the material, respectively. 

5.1.5 Definitions of effective moduli of heterogeneous media 

Assuming that a statistically homogeneous heterogeneous medium can be represented by an 

RVE consisting of N  different phases dispersed throughout the RVE as inhomogeneities, 

with the size of an inhomogeneity being much smaller than the size of the RVE. Let us 

suppose that the interfaces between the distinct phases are perfectly bonded. 

Note that heterogeneous materials with distinct matrix phase are called composite materials, 

while for example a polycrystalline material can be modelled as a heterogeneous material 

with infinitely many different phases without any particular matrix phase in which the 

inhomogeneities are embedded. 

 

Figure 51   Stiffness tensors of the inhomogeneities and of the matrix in a heterogeneous material 

Consider a heterogeneous body D  bounded by surface S . The inhomogeneities are randomly 

oriented and shaped embedded in a matrix material with material stiffness tensor 
0

L
9
. The 

stiffness tensors of the inhomogeneities are denoted by ,  1, 2, ...,
r

L r N , (Figure 51). The 

effective modulus or stiffness tensor L  of a heterogeneous material is defined by the relation 

(5.27) L  , 

                                                 
9
 Please note that the material stiffness tensor is a fourth-order tensor, which can be converted to a 6-by-6 matrix 

due to the minor symmetry of the tensor:
ijkl ijlk jikl jilk

L L L L   . This 6-by-6 matrix can be related to the 

symmetric stress and strain tensors, if the stresses and strains are written in Voigt notation. In the previous 

chapters, the elastic modulus was indicated by 
ijkl

C , however, regarding the homogenization methods, I 

incorporated a distinct notation 
ijkl

L  also used in the literature. 

Dd

d<<D

L(0)

L(1)

L(2)

L(a)

L(N)
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where   and   are the average stress and strain tensors of the heterogeneous body in Voigt 

form, respectively. The effective material compliance tensor M
10

 of a heterogeneous material 

is defined similarly: 

(5.28) M  . 

The effective stiffness and compliance tensors must satisfy the condition 

(5.29) LM ML I  , 

that is 

(5.30) 
1

L M


 . 

Under given displacement boundary condition (5.23), the effective stiffness tensor of a 

composite can be given by the formula 

(5.31)  0 0

1

N

r r r

r

L L c L L A



   , 

where 
r

A  is the strain concentration tensor for the r -th inhomogeneity. The average strain in 

the r -th inhomogeneity 
r

  is defined as 

(5.32) 
r r

A  . 

Similarly, under given traction boundary condition(5.20), the effective compliance tensor of a 

composite can be calculated from 

(5.33)  0 0

1

N

r r r

r

M M c M M B



   , 

with 
r

B  being the stress concentration tensor of the r -th inhomogeneity. The average stress 

in the r -th inhomogeneity 
r

  is defined by 

(5.34) 
r r

B  . 

The concentration tensors defined above compare the elastic field of the r -th inhomogeneity 

and the averaged value of that of the entire sample. These are the so-called global 

concentration tensors. In composite materials, where there is a distinct matrix phase in which 

the inhomogeneities are embedded, one can compare the elastic fields of the r -th 

inhomogeneity and that of the matrix material through the local concentration tensors: 

(5.35) 
0r r

G  , 

(5.36) 
0r r

H  , 

                                                 
10

 Similarly to the material stiffness tensor, the fourth-order material compliance tensor can also be converted to 

a 6-by-6 matrix, which can be related to the stress and strain tensors written in Voigt form. 
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where 
0

  and 
0

  are the averaged strain and stress tensors of the matrix in Voigt form, 

respectively, and 
r

G  is the local strain concentration tensor and 
r

H  is the local stress 

concentration tensor of the r -th inhomogeneity. The relation between the global and local 

concentration tensors: 

(5.37) 

1

0

1

N

r r r r

r

A G c I c G





 
  

 
 , 

(5.38) 

1

0

1

N

r r r r

r

B H c I c H





 
  

 
 . 

These known relations allow us to determine the effective stiffness and/or compliance tensors 

of the composite material from solely the local concentration tensors. 

5.2 Bounds for effective moduli 

The exact values of the effective moduli are not always easy to find, thereby knowing the 

bounds for these moduli can also be enough. These bounds can be derived based on the 

application of variational principles. 

5.2.1 Classical variational theorems in linear elasticity 

First, let us write two of the classical variational theorems of linear elasticity. 

According to the minimum potential energy theorem, among all the kinematically admissible 

displacement fields, the solution of the problem makes the potential energy minimum: 

(5.39) 0

, ,

1
( )

2
i ijkl k l i j i i

D S

u L u u dV p u dS



    , 

where D  is the total volume of the body under consideration and S


 is the part of the 

boundary of D  where 0

i
p  traction forces are prescribed. 

The minimum complementary energy theorem states that among all the statically admissible 

stress fields, the solution of the boundary value problem makes the complementary energy 

minimum: 

(5.40) 01
( )

2
u

ij ijkl kl ij i ij j

D S

M dV u n dS       , 

where D  is the total volume of the body under consideration and 
u

S  is the part of the 

boundary of D  where 0

i
u  displacements are prescribed. 

The above theorems can be applied to heterogeneous materials, because the tensors 
ijkl

L  and 

ijkl
M  does not need to be constant throughout body D . 

Next, consider a body D  under prescribed displacements on S  (5.23) and no prescribed 

traction forces. Making use of the average strain theorem and Hill’s lemma, the average strain 

energy density in the heterogeneous material can be written as 
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(5.41) 
1 1

2 2
ijkl kl ij ij ijkl kl

D

U L dV L
D

     , 

where 
ijkl

L  is the effective stiffness tensor of the heterogeneous material. According to the 

minimum potential energy theorem, the following inequality holds for any kinematically 

admissible displacement field ˆ
i

u : 

(5.42) 
, ,

1
ˆ ˆ

2
ijkl k l i j

D

U L u u dV
D

  . 

Making use of the minimum complementary energy theorem, for any statically admissible 

stress field ˆ
ij

 , the complementary energy becomes 

(5.43) 
1

( )
2

ij ijkl kl ij ij ij

D D

M dV dV D U          , 

and the following inequality always holds 

(5.44) 
1 1

ˆ ˆ ˆ
2

ij ij ijkl kl ij

D D

U dV M dV
D D

      . 

Combining the inequalities (5.42) and (5.44), we have  

(5.45) ˆ ˆ ˆ2 2
ij ij ijkl kl ij ijkl ij kl

D D D

dV M dV DU L dV          , 

where the statically admissible stress field ˆ
ij

  satisfy 

(5.46) 
,

ˆ 0  in 
ij j

D  , 

and the kinematically admissible displacements ˆ
i

u  satisfy 

(5.47) ˆ  on 
i ij j

u x S . 

5.2.2 Voigt upper bound and Reuss lower bound 

Let a heterogeneous body be subjected to the displacement boundary condition 

(5.48)  on 
i ij j

u x S , 

(5.49) ˆ  in 
i ij j

u x D , 

where 
ij

  is a given constant strain tensor which is, according to the average strain theorem 

equals to the average strain over body D . The kinematical admissible strain field 

corresponding to ˆ
i

u  is 
ij

 . For the boundary condition (5.48), any constant stress tensor ˆ
ij

  

would be statically admissible. Thus, we can write the inequality (5.45)  simplifying with D  

 in the form 

(5.50) ˆ ˆ ˆ2 2
R V

ij ij ijkl ij kl ijkl ij kl
M U L        , 

where  

(5.51) 
1V

ijkl ijkl

D

L L dV
D

  , 
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(5.52) 
1R

ijkl ijkl

D

M M dV
D

  . 

To obtain the optimal lower bound, we shall find the stress tensor ˆ
ij

  that maximizes 

ˆ ˆ ˆ2
R

ij ij ijkl kl ij
M    .  The solution is 

(5.53)  
1

ˆ
R R

ij ijkl kl ijkl kl
L M  



  . 

The following inequality holds for any constant strain tensor 
ij

 : 

(5.54) 
R V

ijkl ij kl ijkl ij kl ijkl ij kl
L L L       , 

thus, we can conclude 

(5.55) 
R V

ijkl ijkl ijkl
L L L  , 

where 

(5.56)  

1

1 1R R

ijkl klm n klm n

D

L M M dV
D



  
   

 
 . 

R

ijkl
L  is called the Reuss lower bound and 

V

ijkl
L  is the Voigt upper bound. When the stiffness 

tensor 
r

ijkl
L  ( 1, 2, ...,r N ) of the r -th inhomogeneity of volume 

r
  is uniform, the  upper 

and lower bound can be computed from 

(5.57) 
0

N

V r

ijkl r ijkl

r

L c L



  , 

(5.58) 

1

0

N

R r

ijkl r ijkl

r

L c M





 
  

 
 , 

(5.59) ,   0,  1,  ...,  r

r
c r N

D


  . 

Note that when determining the bounds of the effective moduli, only the volume fraction of 

the phases are taken into consideration, they are independent of the geometry and the 

distribution of the inhomogeneities. 

5.2.3 Hashin-Shtrikman variational principle under displacement boundary conditions 

In the previous section, we have seen that in order to find bounds for the elastic moduli, we 

have to find suitable admissible fields. In order to define tighter bounds, one must specify 

admissible fields that make explicit allowance for the microstructure of the composite. First, 

let us develop an alternative to the classical variational principles, then find a kinematically 

admissible displacement field instead of a constant tensor as seen at the Voigt upper bound, 

and a statically admissible stress tensor rather than a constant stress field as seen at the Reuss 

lower bound. The stiffness tensor ( )
ijkl

L x  of a heterogeneous material can be decomposed 



86 

 

into a constant tensor 
h

ijkl
L  representing the homogeneous ’comparison’ material and a 

stiffness tensor ( )
p

ijkl
L x  dependent on position x  which stands for the perturbation of the 

heterogeneous material from the homogeneous one: 

(5.60) ( ) ( )
h p

ijkl ijkl ijkl
L x L L x  . 

The body is under prescribed displacements as seen in (5.23). 

The corresponding stress field can be written in the form 

(5.61) ( ) ( ) ( )
h

ij ijkl kl ij
x L x x    , 

where the actual strain tensor in D  is 

(5.62) 
( )( )1

( )
2

ji

ij

j i

u xu x
x

x x


 
  

  
 

 

and the second-order, symmetric stress-polarization tensor is given by 

(5.63) ( ) ( ) ( )
p

ij ijkl kl
x L x x  . 

The equations of equilibrium can be written as 

(5.64) 
, ,

( ) ( ) 0  in 
h

ijkl k lj ij j
L u x x D  . 

Treating the first derivative of the stress polarization tensor as a body force, the solution of the 

boundary value problem can be computed with the help of Green’s functions: 

(5.65) 
( , ) ( )

( ) ( ) ( , ) ( )
ki m nh

i pjkl pq q j m i

l nS D

G x y y
u x L y n dS y G x y dV y

x y




 
 

 
  , 

where ( , )
ij

G x y  is Green’s function (see Appendix) in the homogeneous comparison material 

satisfying the conditions 

(5.66) 

2

,
( , )

( ) 0  in 
km ljh

ijkl im

l j

G x y
L x y V

x x
 


  

 
, 

(5.67) ( , ) 0
ij

x S
G x y


 . 

After some rearrangements, we can write the displacement field as 

(5.68) 
( ) ( , )

( ) ( , ) ( ) ( ) ( )
mn mi

i iq q mi iq q mn

n nD D

y G x y
u x x G x y dV y x y dV y

y y


  

 
   

 
    

and the strain tensor as  

(5.69) ( ) ( , ) ( ) ( )
ij ij ijkl kl

D

x x y y dV y     , 

where the second derivatives of the Green’s function are embedded into the fourth-order 

tensor 
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(5.70) 

2 2 2 2
( ) ( ) ( ) ( )1

( , )
4

ki kj li lj

ijkl

j l i l j k i k

G x y G x y G x y G x y
x y

x y x y x y x y

        
     

        
 

. 

Substituting (5.67) into (5.68) we have 

(5.71) 
( )

( ) ( , ) ( )
mn

i iq q mi iq qx S x S x Sx S
nD

y
u x x G x y dV y x

y


 

  


  


   

independently of the stress polarization tensor ( )
ij

y . Therefore for any given ˆ ( )
ij

y , the 

displacement field coming from (5.71) and the strain tensor 

(5.72) ˆ ˆ( ) ( , ) ( ) ( )
ij ij ijkl kl

D

x x y y dV y       

are kinematically admissible displacement and strain fields, respectively. According to the 

minimum potential energy theorem we have 

(5.73) ˆ ˆ ˆ ˆ ˆ ˆ2
h p

ijkl ij kl ijkl ij kl ijkl ij kl

D D D

DU L dV L dV L dV          . 

Making use of the properties of the integral operator ( , )
ijkl

x y  and carrying out some 

simplifications, we arrive at 

(5.74)   ˆ ˆ ˆ2 ( ) ( ) ( )
h p

ijkl ij kl

D

D U U H L dV         , 

where  

(5.75) 
1

2

h h

ijkl ij kl

D

U L dV
D

   , 

(5.76)  
1

ˆ ˆ ˆ( ) ( , ) ( ) ( )
p

ij ijkl kl ijkl kl ij

D

L x y y dV y    


    , 

(5.77) ˆ ˆ ˆ ˆ( ) ( )
ij ij ij ij

D D

H dV dV        . 

If the stress polarization tensor is the actual one of the problem, that is ˆ
ij ij

  , we have 

(5.78) ˆ( ) 0
ij

   , 

(5.79)    ( ) 2
h h

ij ij ij ijkl ijkl kl

D D

H dV L L dV D U U             , 

in other words, the right-hand side of (5.74) is minimized. 

From (5.74) follows the theorem: among all the symmetric second-order tensors, the real 

solution to the stress polarization tensor ˆ
ij

  renders the following functional minimum: 

(5.80) 
1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
2 2

h p

ijkl ij kl

D

I U H L dV
D D

         , 
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and the minimum value of the functional gives the strain energy density of the heterogeneous 

material under the displacement boundary condition (5.23): 

(5.81)  
1

ˆmin ( )
2

ijkl ij kl
I U L    . 

The Hashin-Shtrikman variational principle states that if 
p

ijkl
L  is negative semi-definite, the 

functional (5.80) simplifies to  

(5.82) 
1

ˆ ˆ( ) ( )
2

h
I U H

D
   , 

due to the attribute 

(5.83) ˆ ˆ( ) ( ) 0
p

ijkl ij kl

D

L dV     . 

Substituting (5.69) into (5.61) we have 

(5.84) ( ) ( , ) ( ) ( ) ( )
h h

ij ijkl kl ijkl klmn mn ij

D

x L L x y y dV y x       , 

and the divergence of the stress field is 

(5.85)      ( ) ( , ) ( ) ( ) ( )
h

ij ijkl klmn mn ij

D

x L x y y dV y x        . 

Therefore, for any statically admissible stress polarization tensor ˆ
ij

 , where  ˆ ( ) 0
ij

x  , the 

stress tensor ˆ
ij

  calculated from (5.84) will also be statically admissible, that is 

(5.86)      ˆ ˆ( ) ( ) ( ) ( ) 0
h h

ij ijkl kl ij ijkl kl
x L x x L x          . 

The following inequality for the complementary potential energy holds for the statically 

admissible stress field ˆ
ij

 : 

(5.87)  ˆ ˆ ˆ ˆ ˆ ˆ2 2 2
h p

ij ij ijkl ij kl ij ij ijkl ijkl ij kl

D D D D

DU dV M dV dV M M dV               , 

where the compliance tensor is decomposed into a constant part of the homogeneous 

’comparison’ material and a position-dependent perturbed part: 

(5.88) ( ) ( )
h p

ijkl ijkl ijkl
M x M M x  . 

Similarly as shown before, for any statically admissible tensor ˆ
ij

  holds that 

(5.89)   ˆ ˆ ˆ2 ( ) ( ) ( )
h h p h

ijkl ijkl ijkl ij kl

D

D U U H L M L dV         . 

If the stress polarization tensor is the actual one of the problem, that is ˆ
ij ij

  , the right-hand 

side of the (5.89) is maximized. 
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From (5.89) follows the theorem: among all the statically admissible stress fields, the real 

solution to the stress polarization tensor ˆ
ij

  renders the following functional maximum: 

(5.90) 
1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
2 2

h h p h

ijkl ijkl ijkl ij kl

D

I U H L M L dV
D D

         , 

and the maximum value of the functional gives the strain energy density of the heterogeneous 

material under the displacement boundary condition (5.23): 

(5.91)  
1

ˆmax ( )
2

ijkl ij kl
I U L    . 

The Hashin-Shtrikman variational principle states that if 
p

ijkl
M  is negative semi-definite, or, 

equivalently, 
p

ijkl
L  is positive semi-definite, the functional (5.90) simplifies to  

(5.92) 
1

ˆ ˆ( ) ( )
2

h
I U H

D
   , 

due to the attribute 

(5.93) ˆ ˆ( ) ( ) 0
h p h

ijkl ijkl ijkl ij kl

D

L M L dV     . 

5.2.4 Hashin-Shtrikman bounds 

In order to develop bounds specifically for heterogeneous materials, one must find an 

appropriate statically admissible stress tensor ˆ
ij

 . Instead of a uniform stress field throughout 

the whole composite material, let us consider a piecewise uniform field for ˆ
ij

 : 

(5.94) ˆ ˆ( ) ,  0,  1,  2,  ...,  
r

r

ij ij
x

x r N 


  , 

in other words, the stress tensor is uniform only inside the r -th phase individually. 

Substituting this piecewise constant stress polarization tensor into the Hashin-Shtrikman 

variational principle, we arrive at  ˆ( )H   being a quadratic function of 
r

ij
 . The required 

r

ij
  

gives the extreme value of ˆ( )H   which can be determined from the equation 
ˆ( )

0
r

ij

H 







. It 

results in a system of linear algebraic equations for 
r

ij
 : 

(5.95)  
1

,

0

,   0,  1,  ...,  

N

p r r rs s

ijkl kl s ijkl kl ij

s

L D c P r N  




   , 

where 

(5.96)    
1 1

, 1

r

p r p

ijkl ijkl

r

L L dV
 






 , 
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(5.97) 
1

( , ) ( ) ( )

r s

rs

ijkl ijkl

r s

P x y dV y dV x

 

 
 

  . 

The solution for stress tensor 
r

ij
  which gives extreme value for ˆ( )H   can be written in the 

form 

(5.98) 
r r

ij ijkl kl
R  . 

Substituting the solution (5.98) into (5.77) the extreme value of ˆ( )H   can be computed from 

(5.99)  
0

ˆ( )
r r

ij ijkl kl

N

r h

ij r ijkl kl ij ijkl ijkl kl
R

r

H D c R D L L
 

    




    , 

with 

(5.100) 
0

N

h r

ijkl ijkl r ijkl

r

L L c R



   . 

If 
p

ijkl
L  is negative semi-definite, substituting into (5.74) yields 

(5.101) 2
ijkl ij kl ijkl ij kl

U L L     , 

providing an upper bound for the effective stiffness tensor 

(5.102) 
0

N

h r

ijkl ijkl ijkl r ijkl

r

L L L c R



    , 

which is called the Hashin-Shtrikman upper bound. 

If 
p

ijkl
L  is positive semi-definite, substituting (5.99) into (5.89) we have the dual pair of the 

bound for the effective stiffness tensor 
ijkl

L , called as the Hashin-Shtrikman lower bound: 

(5.103) 
0

N

h r

ijkl ijkl ijkl r ijkl

r

L L L c R



    . 

In general the Hashin-Shtrikman bounds are more restrictive than the Voigt upper and Reuss 

lower bounds. 

When carrying out the double integral in (5.97) one might face some difficulties due to the 

large number of inhomogeneities and the statistical nature of their distribution. Willis (Willis, 

1981) proposed a good approximation by replacing the Green’s function in the finite domain 

D  by its counterpart in the infinite domain which yields 

(5.104) 
1

( , ) ( ) ( )

r s

rs

ijkl ijkl

r s

P x y dV y dV x


 

 
 

  , 

where ( , )
ijkl

x y


  is counterpart of the integral operator ( , )
ijkl

x y  in the infinite domain. For 

statistically homogeneous heterogeneous materials with isotropic distribution of 

inhomogeneities the integral can be written in the form 
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(5.105)  
1rs

ijkl rs s ijkl

s

P c P 


, 

where the following integral is carried out over a unit sphere 
2

Ŝ : 

(5.106) 
2

2

ˆ

ˆ( ) ( , ) ( ),  
ijkl ijkl

S

P x x y dV y x S


   . 

The tensor 
ijkl

P  is related to the Eshelby-tensor 
ijkl

S  through 

(5.107)  
1

h

ijkl ijmn klpq
P S L



 . 

The stress polarization tensor can be calculated from 

(5.108)   
1

1
,

0

,   0,  1,  ...,  

N

r p r s

mnrs ijkl klmn pqrs pqij s ijrs

s

L P P c r N  






 
    

 
 . 

The Hashin-Shtrikman bound therefore 

(5.109)    
1

1 1
,r ,r ,

0 0

N N

h p p p r

pqtv pqtv r ijmn ijkl klmn r ijrs ijkl klrs mntv

r r

L L c L P c L P L 



 

 

 
    

 
  . 

5.2.5 Hashin-Shtrikman variational principle under traction boundary conditions 

Similarly to the Hashin-Shtrikman variational principle under displacement boundary 

conditions, one can develop variational principles for a heterogeneous body under given 

traction boundary conditions 

(5.110) ( )
ij j ij j

x S
x n n 


 , 

where 
ij

  is a constant stress tensor. Let us introduce a strain polarization tensor 
ijkl




  that is, 

the uniform eigenstrain –  as 

(5.111) 
h

ij ijkl kl ij
M  


    

or 

(5.112)    
1

h

kl ijkl mn mn
M  




  , 

where 
h

ijkl
M  is defined in (5.88) and 

ij
  is the actual strain in the heterogeneous material. 

Substituting Hooke’s law into (5.111) we have 

(5.113) 
p

ij ijkl kl
M 


 . 

Substituting (5.112) into the equations of equilibrium yields 

(5.114)    
1 1

, ,
( ) ( ) 0  in 

h h

ijkl m nl ijkl mn l
M u x M x D

 


  . 

For the solution of this boundary value problem let us introduce the following Green’s 

function 
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(5.115)  
2

1 ( , )
( ) 0  in 

kmh

ijkl im

l j

G x y
M x y D

x x
 

 
  

 
, 

(5.116)  
1 ( , )

0
kmh

ijkl j
x S

l

G x y
M n

x









. 

Similarly to the problem with given displacement boundary conditions, one can derive the 

solution applying Green’s functions. In this case, the stress tensor simplifies to 

(5.117) 
 

1

( )( , )
( ) ( )

h

klm n pqm i

rs rs rsij

j nD

M yG x y
x L dV y

x y


 





 

 
 . 

Due to the properties of Green’s function the following equations hold: 

(5.118)  
1

, ,
( ) ( )

h

kp p ijkl mn l
x M x 




 , 

(5.119) ( )
pq q pq q

x S
x n n 


 . 

Therefore, independently from the eigenstrain 
ijkl




, the stress tensor computed from (5.117) is 

always statically admissible, satisfying the equations of equilibrium (5.114) and the traction 

boundary conditions(5.110). 

Let us introduce 

(5.120) 
 

1

( )( , )
( ) ( , ) ( ) ( )

h

klm n pqm i

rsij rspq pq

j nD D

M yG x y
L dV y x y y dV y

x y










 
 

  . 

The stress tensor can be written as 

(5.121) ( ) ( , ) ( ) ( )
ij ij ijkl kl

D

x x y y dV y  


   . 

From (5.113) the constant stress tensor is 

(5.122)  
1

( ) ( , ) ( ) ( )
p

kl ijkl mn klmn mn

D

M x x y y dV y  


 
   . 

Let ˆ ( )
ij

y


 be any strain polarization tensor, then the corresponding statically admissible stress 

field is 

(5.123) ˆˆ ( ) ( , ) ( ) ( )
ij ij ijkl kl

D

x x y y dV y  


   . 

The minimum complementary energy theorem yields 

(5.124) ˆ ˆ2 ( ) ( ) ( ) ( )
c ijkl ij kl

D

DU M x x x dV x    

with 
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(5.125) 
1 1

2 2
c ijkl ij kl ijkl ij kl

D

U M dV M
D

     . 

Substituting the statically admissible stress field into (5.124) we have 

(5.126)    ˆ2 ( ) ( ) ( ) ( )
h p

c ijkl ij kl

D

D U U H M x x x dV x  


     , 

where 

(5.127) 
1

2

h h

c ijkl ij kl
U M   , 

(5.128)    
1 1

ˆ( ) ( , ) ( ) ( ) ( )
h h

ijkl mn klmn mn ijkl mn kl

D

M x x y y dV y M x   
 

 
    , 

(5.129)    
1

ˆ ˆ ˆ( ) ( ) ( ) ( )
h

ij ijkl kl ij ij

D D

H x M x dV x x dV    


  
    . 

If the strain polarization tensor is the actual one of the problem, that is ˆ
ij ij

 
 

 , we have 

(5.130) ( ) 0
ij

x  , 

(5.131)      ( ) ( ) 2
h h

ij ij ijkl ijkl ij kl c c

D D

H x dV M x M dV D U U    
 

      , 

in other words, the right-hand side of (5.126) is minimized. 

From (5.126) follows the theorem: among all the symmetric second-order tensors, the real 

solution to the strain polarization tensor ˆ
ij



 renders the following functional minimum: 

(5.132)  
1 1 1

ˆ ˆ( ) ( ) ( ) ( ) ( )
2 2 2

h p

ijkl ij kl ijkl ij kl

D

J M H M x x x dV x
D D

     
 

    , 

and the minimum value of the functional gives the strain energy density of the heterogeneous 

material under the traction boundary condition (5.110): 

(5.133)  
1

ˆmin ( )
2

c ijkl ij kl
J U M  


  . 

The Hashin-Shtrikman variational principle states that if 
p

ijkl
M  is negative semi-definite, the 

functional (5.132) simplifies to  

(5.134)  
1 1

ˆ ˆ( )
2 2

h

ijkl ij kl
J M H

D
   

 
  , 

due to the attribute 

(5.135) ( ) ( ) ( ) ( ) 0
p

ijkl ij kl

D

M x x x dV x   . 
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Similarly as shown in ’Hashin-Shtrikman variational principle under displacement boundary 

conditions’, the dual pair of the Hashin-Shtrikman variational principle for given traction 

boundary conditions can be derived based on the minimum potential energy principle. 

Among all the kinematically admissible eigenstrain fields, the real solution to the strain 

polarization tensor ˆ
ij



 renders the following functional maximum: 

(5.136)  
1 1 1

ˆ ˆ( ) ( ) ( ) ( ) ( )
2 2 2

h p

ijkl ij kl ijkl ij kl

D

J M H L x x x dV x
D D

     
 

    , 

and the maximum value of the functional gives the strain energy density of the heterogeneous 

material under the traction boundary condition (5.110): 

(5.137)  
1

ˆmax ( )
2

c ijkl ij kl
J U M  


  . 

The Hashin-Shtrikman variational principle states that if 
p

ijkl
M  is positive semi-definite, or, 

equivalently, 
p

ijkl
L  is negative semi-definite, the functional (5.136) simplifies to  

(5.138)  
1 1

ˆ ˆ( )
2 2

h

ijkl ij kl
J M H

D
   

 
  , 

due to the attribute 

(5.139) ( ) ( ) ( ) ( ) 0
p

ijkl ij kl

D

L x x x dV x   . 

5.3 Determination of effective moduli 

In this chapter, several methods for determining the effective moduli of heterogeneous 

materials are presented. All of these approaches are based on Eshelby’s single inclusion 

method, though one can find multiple-inclusion methods also in the literature. 

5.3.1 Basic ideas of micromechanics for effective properties 

Our main goal is to find  the overall elastic moduli of a heterogeneous material based on 

known  values of the effective moduli of the matrix and of the inhomogeneities, and the 

volume fractions of them. In the previous section it was shown that the effective stiffness 

tensor can easily be obtained from the global or local concentration tensors. On the other 

hand, the exact values of these concentration tensors are not easy to obtain. In this chapter 

different methods are shown to evaluate approximations for the concentration tensors. 

When developing the concentration tensors, a common solution is to use Eshelby’s solution in 

conjunction with the equivalent inclusion method. First, let us assume that a composite 

material is subjected to either displacement boundary condition 

(5.140) 
0

S
u x , 

or traction boundary condition 
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(5.141) 
0

S
n n  , 

where 
0

  and 
0

  are constant second-order tensors and their Voigt forms  0 0
,   are 

related to the stiffness tensor  0
L  by 

(5.142) 
0 0

0
L  . 

If the material under consideration would completely filled with the matrix material with 

elastic stiffness 
0

L  and all the inhomogeneities were absent, the strain and stress field inside 

the material would equal to 
0

  and 
0

 , respectively. Once the inhomogeneities appear inside 

this material, the uniform strain field near the r-th inhomogeneity is perturbed because of the 

r -th inhomogeneity itself and the existence of the other inhomogeneities as well. This 

perturbation can be modelled as if the isolated r -th inhomogeneity were embedded into a 

matrix that already bears its own strain 
0

̂  and the influence of the other inhomogeneities 

that do not appear in our model any more can be accounted for by assuming that the 

matrix material is somewhat different from the actual matrix. The stiffness tensor of this 

fictitious matrix material will be denoted by 
0

L̂  (Figure 52). 

 

Figure 52   The strain field and the stiffness tensor of the fictitious matrix material around an isolated 

inhomogeneity 

The problem can be restated as follows: an ellipsoidal inhomogeneity 
r

  with stiffness 

tensor 
r

L  is embedded in a matrix with stiffness tensor 
0

L̂  which was subjected to a uniform 

strain 
0

̂  prior to the inhomogeneity was embedded. Proper values for 
0

L̂  and 
0

̂  shall be 

find such that the stress and strain in 
r

  are the same as that in the r -th inhomogeneity in the 

actual problem. The solution can be found using Eshelby’s solution for the equivalent 

inclusion problem. In this case the equivalent inclusion equation becomes 

(5.143)    0 0

0
ˆˆ ˆ

pt pt

r r r r
L L    


    , 

where, according to Eshelby’s solution 

(5.144) ˆpt

r r r
S 


 . 

V(0)

V(1)

V(r) V(N)

V(2)

V(r)

L
0

^

e=e
0^



96 

 

ˆ
r

S  is the Eshelby tensor calculated from the fictitious elastic stiffness tensor 
0

L̂  and the 

geometry of the r -th inhomogeneity 
r

 . Substituting the Eshelby solution into the 

equivalent inclusion equation results in the eigenstrain to simulate the effect of the 

heterogeneous material in the r -th inhomogeneity 

(5.145)     
1

0

0 0 0
ˆˆ ˆ ˆ ˆ

r r r r
L L S L L L 




    . 

Hence, the total strain in the r -th inhomogeneity is  

(5.146) 0 0 0ˆ ˆˆ ˆ ˆ
pt

r r r r r
S T     


      

with 

(5.147)   
1

1

0 0
ˆˆ ˆ ˆ

r r r
T I S L L L




   . 

The stress field in the r -th inhomogeneity is  

(5.148) 0ˆ ˆ
r r r r r

L L T    . 

The ultimate question, that differ in the following methods is how to determine the fictitious 

quantities 
0

L̂  and 
0

̂ . 

5.3.2 Eshelby method 

If the inhomogeneities in a composite are far from each other, in other words, the composite 

material is dilute, the interactions between the inhomogeneities can be neglected. Thus, the r -

th inhomogeneity can be treated as if it were embedded in the matrix material with its actual 

stiffness tensor 
0

L  which was previously subjected to a uniform strain 
0

  (Figure 53). 

Therefore, 

(5.149) 
0 0

L̂ L  

and 

(5.150) 
0 0

̂  . 

 

Figure 53   Eshelby’s estimation 

V(0)

V(1)

V(r) V(N)

V(2)

V(r)

L
0

e=e
0
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The Eshelby tensor computed from the actual properties of the matrix and the geometry of the 

r -th inhomogeneity 
r

  is  

(5.151) ˆ
r r

S S . 

The total strain inside the r -th inhomogeneity: 

(5.152) 
0 0 0pt

r r r r r
S T     


     , 

with 

(5.153)   
1

1

0 0r r r
T I S L L L




   . 

Assuming that the material is subjected to displacement boundary condition (5.140) and 

applying the average strain theorem (5.22) resulting in 
0

  , equation (5.152) can be 

rewritten in the form 

(5.154) 
r r

T  , 

where   is the average strain over the entire heterogeneous body.  Comparing this equation 

to (5.32) one can see that the global strain concentration tensor for 
r

  is 

(5.155) 
r r

A T . 

Substituting into (5.31) yields the Eshelby estimate of the effective stiffness tensor. Please 

note that this approximation is valid only for heterogeneous materials with very low volume 

fraction of inhomogeneities, that is why this estimation is called also as the dilute 

concentration method: 

(5.156)       
1

1

0 0 0 0 0 0

1 1

N N

r r r r r r r

r r

L L c L L A L c L L I S L L L




 

         . 

Now let us consider the case when the heterogeneous body is subjected to given traction 

boundary condition (5.141). In this case the average strain   is no longer equal to 
0

 , where 

(5.157) 
0 0

0
M  . 

However, the average stress theorem holds, therefore 
0

  . Substituting (5.157) into 

(5.154) yields 

(5.158) 
0r r r r r

L L T M    , 

where   is the average strain over the entire heterogeneous body. The global stress 

concentration tensor for the r -th inhomogeneity from (5.34): 

(5.159) 
0r r r

B L T M .  

The Eshelby estimate of the effective compliance tensor of the composite from (5.33): 
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 (5.160)    0 0 0 0 0

1 1

N N

r r r r r r r

r r

M M c M M B M c M M L T M

 

       . 

Finally, let us check the consistency of the Eshelby estimation by examining the connection 

between the stiffness and the compliance tensor, that is whether their product yields the 

identity matrix: 

(5.161) 
2

( )
r

ML I c   . 

The error of the estimation  is of order 2

r
c , which means the Eshelby approximation is 

consistent only up to the first order of the volume fraction of the inhomogeneities. Please note 

that not only the volume fraction but the geometry of the inhomogeneities is also taken into 

consideration through the Eshelby tensor, but the distribution and the interaction between 

them is neglected. 

5.3.3 Mori-Tanaka method 

Let us consider the r -th inhomogeneity in a composite material. The stiffness tensor
r

L  (

0r  ) is affected by the other inhomogeneities through the stress and strain field of the matrix 

material. Though the elastic field in the matrix changes from point to point, the averages 
0

  

and 
0

  represent a good approximation at each position inside the matrix if the 

inhomogeneities are randomly distributed and are of large number: 

(5.162) 
1

r

r

r

dV 






 , 

(5.163) 
1

r

r

r

dV 






 . 

Due to the random distribution and large number of inhomogeneities, we can assume that 

taking out the r -th inhomogeneity and substituting with the matrix material will not influence 

the averaged value of the elastic field over the matrix material, and therefore the overall 

mechanical behavior of the heterogeneous sample. Mori-Tanaka determined the concentration 

tensors of the r -th inhomogeneity by considering the heterogeneity in question as an 

ellipsoidal inhomogeneity 
r

  with stiffness tensor 
r

L  embedded in the matrix of stiffness 

tensor 
0

L  which had been previously subjected to uniform strain 
0

  before the 

inhomogeneity was embedded (Figure 54). Thus, 

(5.164) 
0 0

L̂ L  

and 

(5.165) 0

0
̂  . 
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Figure 54   The Mori-Tanaka approach 

The Eshelby tensor is computed with the actual stiffness tensor of the matrix, hence 

(5.166) ˆ
r r

S S . 

The only difference between the Eshelby and Mori-Tanaka methods is the value of the 

previously induced strain in the matrix. With the help of this strain tensor we can take into 

account the perturbing effect on the r-th inhomogeneity of the other inhomogeneities 

embedded in the matrix. The Eshelby method applies 
0 0

̂  , which is the strain in the 

matrix in the absence of any inhomogeneities. The Mori-Tanaka method assumes this strain 

field to be 0

0
̂  , where the averaged value of the strain is computed when all the 

inhomogeneities are present in the matrix. Otherwise, the latter method also does not take into 

account the other inhomogeneities, only the one in question. 

The total strain inside the r -th inhomogeneity: 

(5.167) 
0 0 0

pt

r r r r r
S T     


     , 

with 

(5.168)   
1

1

0 0r r r
T I S L L L




   . 

There is a great difference between (5.152) and (5.167): the previous one relates the total 

strain in the r -th inhomogeneity to the averaged strain of the whole material, while the latter 

one connects the total strain in 
r

  with the averaged strain in the surrounding matrix. Thus, 

in case of the Eshelby method we get the global strain concentration tensor, while the Mori-

Tanaka yields the local strain concentration tensor: 

(5.169) 
r r

G T . 

From (5.37) the global strain concentration tensor: 

(5.170) 

1 1

0

1 0

N N

r r r r r r r

r r

A G c I c G T c T

 

 

   
     

   
  . 

Substituting into (5.31) yields the Mori-Tanaka estimate of the effective stiffness tensor: 

V(0)

V(1)

V(r) V(N)

V(2)

V(r)

L
0

e=e
0
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(5.171)  
1

0 0

1 0 0

N N N

r r r r r r r r

r r r

L L c L L A c L T c T



  

 
     

 
   . 

In order to determine the effective compliance tensor with the help of the Mori-Tanaka 

method, substituting 

(5.172) 
0 0 0

M   

into (5.167) yields 

(5.173) 
0 0r r r r r

L L T M     

The local stress concentration tensor for the r -th inhomogeneity from (5.36): 

(5.174) 
0r r r

H L T M .  

The global stress concentration tensor from (5.38) is therefore 

(5.175) 

1 1

0 0 0

1 0

N N

r r r r r r n n n

r n

B H c I c H L T M c L T M

 

 

   
     

   
  . 

The Mori-Tanaka estimate of the effective compliance tensor of the composite from (5.33): 

 (5.176)  
1

0 0

1 0 0

N N N

r r r r r n n n

r r n

M M c M M B c T c L T



  

 
     

 
   . 

Examining the consistency of the Mori-Tanaka method yields 

(5.177) M L I  

for any 
r

c . 

5.3.4 Self-consistent methods for composite materials 

Let us assume that we know the effective properties L  and M  of the composite material 

under consideration. In case of heterogeneous materials with large number of 

inhomogeneities, if one inhomogeneity is removed from the matrix, the overall mechanical 

properties of the material will remain the same. It is conceivable that the effect of the applied 

loads and the other inhomogeneities on the r -th heterogeneity can be interpreted as if the r -

th inhomogeneity was embedded in the matrix with stiffness tensor L  that had been subjected 

to the uniform strain   previously (Figure 55). Hence, the solution will be computed from the 

values 

(5.178) 
0

L̂ L , 

(5.179) 
0

̂   

and 

(5.180) ˆ
r

S S , 
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where the Eshelby tensor is dependent on the overall elastic properties of the composite 

material. 

 

Figure 55   The self-consistent method 

The total strain in the r -th inhomogeneity: 

(5.181) 
pt

r r r r
S T     


     , 

with 

(5.182)   
1

1

r r
T I SL L L




   . 

The stress field in the r -th inhomogeneity becomes 

(5.183) 
r r r r r r r

L L T L T M      . 

It is easy to see that the global strain and stress concentration tensors, respectively, are the 

following: 

(5.184) 
r r

A T , 

(5.185) 
r r r

B L T M . 

The improved values of the elastic stiffness and compliance tensors are, respectively: 

(5.186)    0 0 0 0

1 1

N N

r r r r r r

r r

L L c L L A L c L L T

 

       , 

(5.187)    0 0 0 0

1 1

N N

r r r r r r r

r r

M M c M M B M c M M L T M

 

       . 

The self-consistent method is therefore an implicit method, which results in a better 

approximation but it requires some numerical iterative technique. 

Checking the consistency of this method yields 

(5.188) M L I  

for any 
r

c . 

V(0)

V(1)

V(r) V(N)

V(2)

V(r)

L

e=e
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In the previous sections we considered only composite materials, that is there was a distinct 

matrix material in which the inhomogeneities were embedded. In case of polycrystalline 

materials, there is no such matrix phase, therefore all the inhomogeneities are of the same 

significance. There is a self-consistent method developed for polycrystalline materials, which 

can be found in the literature that also yields implicit equations for the effective properties of 

the heterogeneous material, applying Hill’s constraint tensor for the solution. 

5.3.5 Differential schemes 

There is another approach to determine the effective properties of a relatively dilute composite 

material with quite high accuracy. Let us consider first the matrix material with stiffness 

tensor 
0

L . Add a small amount (of volume fraction c ) of inhomogeneities with elastic 

stiffness 
1

L . The effective stiffness tensor  (1)

0
,L c L  can be computed from the elastic 

properties of the matrix (
0

L ) and the volume fraction of the inhomogeneities ( c ). In the 

next step add a small amount ( c ) of inhomogeneities to the composite material gained in the 

first step, but now the matrix material will bear the stiffness tensor  (1)

0
,L c L . Thus, one 

can compute the elastic stiffness tensor  ( 2 ) (1)
,L c L  of the newly created composite material 

with the volume fraction 2 c   of inhomogeneities. These steps are to be continued until the 

actual volume fraction of inhomogeneities is reached. This method yields differential 

equations for the effective properties of the composite material as functions of the volume 

fraction of the inhomogeneities. This is the so-called differential method. 

Assuming that the heterogeneous material consists only of two phases ( 1N  ): one kind of 

inhomogeneities embedded into the matrix phase, the effective stiffness tensor can be written 

in the form 

(5.189)    1 0 1 1 0 1 0
( ) :L c L c L L A L   , 

where  1 0
A L  indicates the dependence of the global strain concentration tensor on the elastic 

stiffness of the matrix phase and the symbol :  denotes the tensor product
11

. The connection 

between the average strain in the inhomogeneities and the entire composite material: 

(5.190)  1 1 0
:A L  . 

Assuming that the effective stiffness tensor 
1

( )L c  is known at the volume fraction 

(5.191) 1

1

0 1

c



  

, 

                                                 
11

 The tensor product is defined in case if fourth-order tensors A  and B  as :
ijm n nm kl ijkl

A B A B C  . 
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where 
0

  and 
1

  are the volumes of the matrix and the inhomogeneities, respectively. Now, 

let us consider a fictitious matrix with stiffness tensor 
1

( )L c  and add to this matrix a small 

amount 
1

  of inhomogeneities with the volume fraction 1

0 1 1

 

    
. 

For such small amount of additional inhomogeneities  the effective stiffness tensor can be 

determined from (5.189): 

(5.192)    1

1 1 1 1 1 1 1

0 1 1

( ) ( ) ( ) : ( )L c c L c L L c A L c


    
    

, 

where 
1

c  denotes the increment of the volume fraction in the composite material due to the 

addition of inhomogeneities of volume 
1

 . The total volume fraction in the composite 

material at this step is 

(5.193) 1 1

1 1

0 1 1

c c
  

  
    

, 

therefore the increment is 

(5.194) 
 1 1

1

0 1 1

1 c
c

 
 

    
. 

Substituting into (5.192) yields 

(5.195)    
1 1 1

1 1 1 1

1 1

( ) ( ) 1
( ) : ( )

1

L c c L c
L L c A L c

c c

  
 

 
. 

In the limit of 
1

0c  , a first-order differential equation is derived: 

(5.196)    
1

1 1 1 1

1 1

( ) 1
( ) : ( )

1

dL c
L L c A L c

dc c
 


, 

with the initial condition 

(5.197) 
1

1 0
0

( )
c

L c L


 . 

The dual pair of the above differential equation and initial condition consists of the elastic 

compliance tensor of the composite material: 

(5.198)    
1

1 1 1 1

1 1

( ) 1
( ) : ( )

1

dM c
M M c B M c

dc c
 


, 

(5.199) 
1

1 0
0

( )
c

M c M


 , 

where the global stress concentration tensor of the inhomogeneity 
1

B  is defined as 

(5.200)    1 0 1 1 0 1 0
( ) :M c M c M M B M   . 
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Making use of the Eshelby estimation yields 

(5.201)     
0 1

1
1

1 1 1 1 1
( )

( )
L L c

A L c T I S L L I





    , 

where all the quantities with an overbar are dependent on the volume fraction c . 

The differential equation becomes 

(5.202)     
1

1

1 1 1

1 1

1

1

dL
L L I S L L I

dc c




   


, 

with the initial condition 

(5.203) 
0

(0)L L . 

The Mori-Tanaka method combined with the differential approach defines the global strain 

concentration tensor of the inhomogeneities as 

(5.204)     
0 1

1

1 1 1 1 1 1
( )

( ) 1
L L c

A L c T c I c T




   . 

The differential equation at the Mori-Tanaka approach: 

(5.205)     
0 1

1

1 1 1 1 1
( )

1 1

1
1

1 L L c

dL
L L T c I c T

dc c





   


, 

with the initial condition (5.203). 

It is clearly visible that the differential schemes yield a set of highly nonlinear ordinary 

differential equations, which can only be solved with the help of numerical techniques. 

6  Analytical and numerical homogenization 

6.1 Analytical homogenization 

In this section, I compute the effective stiffness tensor and therefore, the effective Young’s 

modulus and Poisson’s ratio of a heterogeneous material consisting of a distinct matrix 

material in which ellipsoidal inhomogeneities are embedded. The calculation is based on 

some of the analytical homogenization methods presented in the previous sections, namely I 

applied the Voigt upper (5.57) and Reuss lower bounds (5.58), and the Eshelby (5.156) and 

Mori-Tanaka estimations (5.171). 

In order to compute the effective material properties for any given input parameter, I wrote a 

Matlab™ code with input data including the volume fraction 
i

c , Young’s modulus 
i

E  and 

Poisson’s ratio 
i

  of phases 0, ...,i N , where 0i   always refers to the matrix phase. The 

Eshelby and Mori-Tanaka estimations take into account the geometry of the inhomogeneities 

by involving the fourth-order Eshelby-tensor 
ijkl

S  in the analytical methods. Formulae for the 

Eshelby tensor (3.33) for specially shaped inhomogeneities are given in function of the I -

integrals (3.42)-(3.44) in (Mura, 1987). My analytical results are based on the Eshelby tensor 

computed with the help of a Matlab™ code developed by Chunfang Meng (Meng, Heltsley, 
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& Pollard, 2012; Meng & Pollard, 2014). This code evaluates the solutions by Eshelby  for 

the quasi-static elastic fields inside an ellipsoidal inhomogeneity with arbitrary semi-axial 

lengths  1 2 3 1 2 3
, ,  a a a a a a   and in the surrounding infinite elastic body. The 

inhomogeneity and the matrix are both of homogeneous and isotropic materials, and the 

interface between them is perfectly bonded. 

6.1.1 Two-phase heterogeneous material 

First, I examine a block of concrete with the size of 

100 100 100 mm  , that is, I consider the RVE of concrete (Bojtár, 

2014) consisting of two different phases (Figure 56). The matrix 

material is portland cement and the inhomogeneities are ellipsoidal-

shaped aggregates with 10 mm  average length of semi-axes. 

Therefore, the condition on the ratio between the micro- and 

macroscale length to be sufficiently small is satisfied: 

20
0.2

100

d

D
  . 

The known material properties E  (Young’s modulus) and   

(Poisson’s ratio) of the individual phases must be converted into a 6-by-6 elastic stiffness 

matrix of isotropic material: 

(6.1) 
   

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 1 2 0 01 1 2

0 0 0 0 1 2 0

0 0 0 0 0 1 2

ijkl

E
L

  

  

  

 





 

 


 

 
  

   

 
 

 

. 

Hence, the two individual elements of the matrix can be computed from 

(6.2) 
   

12
1 1 2

E
L



 


 
, 

(6.3) 
11 12

1
L L






 . 

We talk about particle-reinforced materials if the ratio of the semi-axes of ellipsoids are not 

too high:  1 10 
i

j

a
i j

a
   . Isotropic materials have infinite planes of symmetry, that is, the 

material properties are independent of the orientation. Particle-reinforced materials are 

assumed to be isotropic materials. This behaviour is not to be mistaken with the different 

strengths (compressive and tensile strength) of concrete with respect to the type of loading. 

Though, in general, concrete without any reinforcement is a particle-reinforced material, in 

my calculations, I also applied ellipsoids with high semi-axes ratio acting as small fibers, 

which resulted in a fiber reinforced composite. According to (Barbero, 2014), a transversely 

d

D

Figure 56   Representative 

volume element of concrete 
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isotropic material has one axis of symmetry, and in case of a unidirectional fiber reinforced 

composite, the fiber direction can be considered as an axis of symmetry if the fibers are 

randomly distributed in the cross-section. Since the Eshelby-tensor cannot take into account 

the orientation of the inhomogeneity, only the shape of it, let us suppose that all the fibers 

have the same orientation. The basic assumption of the presented homogenization methods 

was the random distribution of inhomogeneities in the matrix material, therefore, both 

requirements are satisfied to consider the investigated concrete as a transversely isotropic 

material. The only problem is the fact, that homogenization methods work with the given 

material stiffness matrices of the individual phases, which were originally considered to be 

isotropic materials. Furthermore, the Eshelby-tensor is also calculated for isotropic materials. 

First, I have to convert the fourth-order material stiffness tensor 
ijkl

L  into a 6-by-6 elastic 

stiffness matrix such that 

(6.4) 
ij ijkl kl

L  , 

where 
ij

  and 
ij

  are the stress and strain tensors, respectively. Due to the minor symmetry 

of the material stiffness tensor 
ijkl jikl ijlk jilk

L L L L    and the symmetry of the stress and 

strain tensors 
ij ji

   and 
ij ji

  , the fourth-order tensor can be converted into a 6-by-6 

matrix and the second-order tensors can be written in vectorial form following Voigt notation. 

The equation (6.4) can be rewritten as 

(6.5) L  . 

The indices of the second-order tensors  ij  and the fourth-order tensors  ijkl  in contracted 

form: 

(6.6) 

 

 

 

 

 

 

           

           

           

           

           

           

 11 1111 1122 1133 1123 1113 1112 11

22 2211 2222 2233 2223 2213 2212 2

33 3311 3322 3333 3323 3313 3312

23 2311 2322 2333 2323 2313 2312

13 1311 1322 1333 1323 1313 1312

12 1211 1322 1333 1323 1313 1312

   

   

   

   
   

   

   

   

      

 

 

 

 

 

2

33

23

13

12

 

 

 

 

 

 

 

 

  

, 

which I applied in the Matlab™ code as well. 

The elastic stiffness matrix of isotropic materials : 
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(6.7) 

11 12 12

12 11 12

12 12 11

11 12

11 12

11 12

0 0 0

0 0 0

0 0 0

0 0 0 0 0
2

0 0 0 0 0
2

0 0 0 0 0
2

L L L

L L L

L L L

L L

L

L L

L L

 

 

 

 

 
 

  

 


 

 

 
 
 

. 

Therefore, the elastic modulus of an isotropic material: 

(6.8) 
2

12

11

11 12

2 L
E L

L L
 


, 

the Poisson’s ratio: 

(6.9) 12

12

11 12

L

L L
 


, 

and the shear modulus: 

(6.10) 11 12

2

L L
G


 . 

It is very important that the formulae for effective properties in homogenization methods are 

given in function of fourth-order tensors. Thus, when calculating the inverse of 6-by-6 

matrices in contracted form, one has to apply the formula given in footnote ’4’ on page 34. 

About the geometry of the inhomogeneities, I applied both spheres, where the radius equals to 

the semiaxes of an ellipsoid  1 2 3
a a a   and spheroids, that is, such ellipsoids, that are 

generated from rotating an ellipse about one of the axes of the ellipsoid. There are two types 

of spheroids: the oblate spheroid (Figure 57), where the axis of rotation is the minor axis, 

hence its size is 
1 2 3

a a a  , and it is a flat ellipsoid. The other type is the prolate spheroid 

(Figure 58), where the ellipse is rotated about the major axis of the ellipsoid, therefore 

1 2 3
a a a   producing an elongated ellipsoid. The sections with normal vector parallel to the 

axis of rotation are always circles (disks). 



108 

 

 

Figure 57   Oblate spheroid 

 

Figure 58   Prolate spheroid 

When the ratio of major to minor semi-axes 1

3

a

a
 tends to infinity, the oblate spheroid becomes 

a penny-shape inhomogeneity (Figure 59), which is the usual geometric model of cracks, and 

the prolate spheroid becomes a needle-type inhomogeneity (Figure 60), that can be interpreted 

as fiber reinforcements (steel, carbon, glass, etc.). 
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Figure 59   Penny-shape spheroid 

 

Figure 60   Needle-type spheroid 

When examining spheres, the Matlab™ code computing the Eshelby tensor only works with 

different lengths of semi-axes 
1 2 3

a a a  , and calculates the I -integrals for spheres, if both 

61 2

1

10
a a

a


  and 62 3

1

10
a a

a


  are satisfied. 

With the help of analytical methods, I investigate the change in the effective elastic modulus, 

Poisson’s ratio and shear modulus of the heterogeneous material by varying one of the input 

data while fixing the others. 
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The material properties I applied in case of portland cement: 20 35 GPaE   , 0.15  . As 

for the aggregates, the engineering properties are dependent on the type of the applied 

material. From common gravel to basalt, the Young modulus can be 1 100 GPaE    and the 

Poisson’s ratio 0.1 0.4   . In most of my calculations, I set the properties of aggregates to 

result in a strong inhomogeneity, i.e. 
m atrix inhom ogeneity

20  G Pa 30  G PaE E   . In general, the 

volume fraction of cement is 20 40%, thus, the volume fraction of aggregates is 80 60% , 

which means the dominant phase in the heterogeneous material is the aggregate. One might 

expect that the Poisson’s ratio of the examined concrete to be 0.1 0.2    and the Young’s 

modulus to be 17 25 (35) GPaE   , where the highest values are reached in case of very 

stiff aggregates. 

6.1.1.1 Effect of volume fraction 

The fixed input data: 

1 2 3
10 mm, 9.999999 mm, 9.999998 mma a a   , 

0 0
20 GPa, 0.15E   , 

1 1
30 GPa, 0.2E   , 

where the conditions to calculate with I -integrals for spheres are satisfied. The initial volume 

fractions: 

0 1
0.2,  0.8c c  . 

In all the calculations, the subscript ‘0’ refers to the matrix phase, and ‘1’ to the 

inhomogeneity, i.e. to the cement and aggregates, respectively. 

The results can be seen in Figure 61: 

 

Figure 61   Effective properties in case of spherical inclusions 

The Eshelby and Mori-Tanaka methods are suspected of yielding bad results, since the Reuss 

estimations produces a lower bound of the effective Young’s modulus, and the volume 

fraction of the strong inhomogeneities are four times greater, than that of the softer matrix, so 

the overall elastic modulus should be closer to 30 GPa, than to 20 GPa. Since the Eshelby and 

28,0216 27,2727 

20,0053 20,0264 

Voigt Reuss Eshelby Mori-Tanaka

Effective Young's modulus [GPa] 
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Mori-Tanaka method uses the Eshelby-tensor dependent on the geometry of the 

inhomogeneity, let us approximate the sphere by an ellipsoid: 

1 2 3
10 mm, 9.9  mm, 9.8 mma a a   , 

and the results (Figure 62): 

 

 

Figure 62   Effective properties in case of ellipsoidal inclusions 

It is clearly visible, that the Eshelby tensor for spheres does not yield correct results, hence, I 

will concentrate only on ellipsoidal inhomogeneities. The Mori-Tanaka estimation is between 

the permitted bounds, yet the Eshelby approximation still falls behind the Reuss lower bound. 

Anyhow, let us increase the volume fraction of the matrix while fixing the geometry and the 

engineering constants of the composite (Figure 63): 

 

Figure 63   Effect of volume fractions on overall material properties 

Due to the increase of the volume fraction of the softer material to twice of its original value, 

the overall elastic modulus decreases to approximately 90% of its initial value. What is quite 

28,0216 

27,2727 

26,4308 

27,6425 
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Effective Young's modulus [GPa] 
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interesting is that the difference between the Reuss lower bound and the Eshelby estimate 

decreases from 3.2% to 0.7%, which means that the Eshelby method yields better results in 

case of dilute composites. Apart from concrete, if the volume fractions of each phase were 50-

50%, the effective modulus resulted by the Eshelby method would already exceed the Reuss 

lower bound. 

The other engineering constant, Poisson’s ratio follows the same tendency as Young’s 

modulus. Since the shear modulus can be calculated from these two as 

(6.11) 
 2 1

E
G





, 

and the change in the elastic modulus is ‘faster’ than that of the Poisson’s ratio, the shear 

modulus will also be linearly dependent on the elastic modulus. In other words, if the Young’s 

modulus increases, then the Poisson’s ratio and hence, the shear modulus increase as well. 

6.1.1.2 Effect of Young’s modulus 

The fixed input data: 

1 2 3
10 mm, 9.9  mm, 9.8 mma a a   , 

1 1 0
30 GPa, 0.2,  0.15E     , 

0 1
0.4,  0.6c c  . 

Since the most accurate results of the Eshelby approximation come from a dilute 

concentration of inhomogeneities, I set their volume fraction to be the smallest possible. By 

increasing the value of the elastic modulus of cement, the change in the overall modulus can 

be seen in Figure 64. 

 

Figure 64   Effect of elastic modulus of matrix material on effective material properties 

20

22

24

26

28

30

32

34

20 25 30 35

Voigt 26,04 28,04 30,05 32,05

Reuss 25 27,78 30 31,82

Eshelby 24,83 27,73 29,99 31,76

Mori-Tanaka 25,49 27,91 30,02 31,94

E
ff

ec
ti

v
e 

Y
o

u
n

g
's

 m
o

d
u

lu
s 

[G
P

a
] 

Young's modulus of matrix [GPa] 

Effect of elastic modulus of matrix material 



113 

 

It is clearly visible that the smaller the difference in the material property of the distinct 

phases, the closer the estimations are. For example, in case of homogeneous material, when 

both the inhomogeneities and the matrix bear the elastic modulus of 
0 1

30 GPaE E  , the 

0.2% difference between the Voigt upper bound and the Eshelby estimation is due to the 

rounding errors of the computation. 

The same tendency can be seen when fixing the material properties 

0 0 1
20 GPa, 0.15,  0.2E     , 

Increasing the Young’s modulus of the heterogeneity in the interval 
1

10 50 GPaE    (Figure 

65): 

 

Figure 65   Effect of elastic modulus of inhomogeneity on effective material properties 

It is also to be noticed, that the quality of the applied aggregates have great effect on the 

overall material properties of the heterogeneous material. A stiff aggregate like crushed rock 

 1
50  GPaE   contributes to the macroscale behavior of the concrete as it will bear 2.5 times 

larger stresses with the same deformations than a concrete with five times softer aggregates 

 1
10 GPaE  . In this configuration, the connection between the changes in the elastic 

modulus of inhomogeneity and the heterogeneous material: effective

1

1
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E

E


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
. 

On the other hand, the difference between the estimated overall moduli at a particular value of 

Young’s modulus of inhomogeneity is quite large. In the last column, the Voigt upper bound 

shows an overall elastic moduli 25% larger than the Eshelby approximation. 

6.1.1.3 Effect of size of inhomogeneity 

The Eshelby- and Mori-Tanaka approximation needs the geometry of the inhomogeneity as an 

input data, therefore let us investigate the effect of the size of inhomogeneity on the overall 

elastic modulus (Figure 66) of the material, when 
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0 0
20 GPa, 0.15E   , 

1 1
30 GPa, 0.2E   , 

0 1
0.4,  0.6c c  , 

and the ratio between the semi-axes are held to be constant. 

 

Figure 66   Effect of size of inhomogeneity at constant value of volume fractions 

Since the Eshelby tensor is only dependent on the shape of the inhomogeneity, that is, on the 

ratio between the semi-axes, the overall properties does not change when we consider the 

same volume fraction of larger and smaller inhomogeneities of the same shape. 

Now, let us see the change in the effective material properties (Figure 67) when decreasing 

the size of the inhomogeneities while fixing their shape, but this time, the volume fraction of 

them shall be decreased simultaneously, while the volume fraction of the matrix is increased: 

 

Figure 67   Effect of size of inhomogeneity while varying the value of volume fractions 
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As it can be seen in Figure 63, the change in the volume fraction yields an approximately 

linearly dependent change in the effective properties. Since the volume fraction is a cubic 

function of the length of semi-axes, the function in Figure 67 can be estimated by a higher-

order polynomial. 

6.1.1.4 Effect of shape of inhomogeneity 

Let us consider an initial configuration with properties 

0 0
20 GPa, 0.15E   , 

1 1
30 GPa, 0.2E   , 

0 1
0.4,  0.6c c  , 

and follow the changes in the overall elastic modulus by varying the shape of the 

inhomogeneity. First, the heterogeneity is an oblate spheroid (Figure 57) with lengths of semi-

axes 

1 2 3
10 mm, 9.9  mm, 8 mma a a   . 

By increasing the ratio of major to minor semi-axes 1

3

1.25
a

a
  to 1

3

100
a

a
 , the oblate 

spheroid becomes a penny-shaped inhomogeneity (Figure 59). During the calculations, I 

change the length of the minor axis only, and hence, the volume fractions as well (Figure 68). 

In case of 1

3

100
a

a
 the volume fractions become 

0 1
0.994,  0.006c c  . This cannot be a 

possible model for real concrete, still the changes in the effective properties can be observed. 

 

Figure 68   Changing the shape of inhomogeneities at constant number of heterogeneities 

I also examine prolate spheroids (Figure 58) with initial size of 

1 2 3
10 mm, 8 mm, 7.9  mma a a   . 

The change in the ratio 1

3

a

a
 is the same as in case of oblate spheroids, but this time, 1

3

100
a

a
  

results in needle-type inhomogeneities (Figure 60). 
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Figure 69   Effect of shape of inhomogeneity on the effective material properties 

The first column in Figure 69 shows the heterogeneous material with the spherical-shaped 

inhomogeneities as a guideline. The upper part of the chart consists of the results coming 

from the heterogeneous material with oblate-spheroids, and the lower part from that with 

prolate-spheroids. Both of them tend to the value of the elastic modulus of the matrix 

 0
20  GPaE  , since the volume fraction of the inhomogeneities tends to zero. The diagram 

in Figure 70 shows that the change can be approximated by a higher-order polynomial. The 

solid lines indicate the lower and upper bounds for the oblate (o) and prolate (p) cases. 

Excluding the spherical-shaped heterogeneities, the Eshelby and Mori-Tanaka methods yield 

values between these bounds, hence they work properly. According to these results, 

considering a constant number of inhomogeneities, those who have an almost spherical shape, 

yield the highest overall elastic modulus. Please note, that in this case, the number of the 

inhomogeneities were fixed, hence, by having smaller and more distorted heterogeneities, 

their volume fraction will decrease strongly. 
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Figure 70   Effect of oblate (o) and prolate (p) spheroidal inhomogeneities 

 

 

Figure 71   Changing the shape of inhomogeneities at constant value of volume fraction of heterogeneities 
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Figure 72   Effect of shape of inhomogeneity at constant value of volume fractions 

It is quite interesting, that in case of given volume fraction of aggregates, the penny-shaped 

and needle-type heterogeneities yield the stiffest concrete. On the other hand, the difference 

between the cases when 1

3

1.25
a

a
  and 1

3

100
a

a
  is only 4.5% at the Eshelby method and 2% 

at the Mori-Tanaka approximation. It can also be seen that the prolate spheroids result in 

higher values of macroscale properties. 

6.1.2 Three- and four-phase heterogeneous material 

With the help of three-phase model (Figure 73), I will consider the effect of voids inside the 

concrete. Phase ‘0’ refers to portland cement, phase ‘1’ to ellipsoidal shaped aggregates and 

phase ‘2’ to spherical voids. The size of aggregates: 

1 2 3
10 mm, 6.1 mm, 6  mma a a   , 

and that of voids: 

1 2 3
0.5 mm, 0.49  mm, 0.48 mma a a   . 

The material properties and volume fractions: 

0 0
20 GPa, 0.15E   , 

1 1
30 GPa, 0.2E   , 

0 1 2
0.4,  0.55,  0.05c c c   . 

24

24,5

25

25,5

26

26,5

1,25
1,67

2,5
5

100

E
ff

ec
ti

v
e 

Y
o

u
n

g
's

 m
o

d
u

lu
s 

[G
P

a
] 

Ratio of major to minor semiaxes [-] 

1,25 1,67 2,5 5 100

Eshelby (o) 24,89 24,99 25,15 25,42 25,92

Mori-Tanaka (o) 25,52 25,57 25,65 25,77 25,98

Eshelby (p) 24,98 25,19 25,48 25,87 26,15

Mori-Tanaka (p) 25,56 25,67 25,81 25,98 26,09



119 

 

In case of voids, the Reuss lower bound cannot be calculated, since it needs the inverse of the 

material stiffness matrix of each phase, therefore the existence of voids leads to singularities. 

The difference between the two-phase model and the three-phase model can be seen in Table 

1: 

Table 1   Results of a three-phase model 

  
Effective elastic modulus (GPa) 

  
Voigt Eshelby Mori-Tanaka 

c2 
0 26,04 25,19 25,67 

0,05 24,53 22,84 22,94 

 

When considering 5V% of voids in concrete, the effective Young’s modulus decreases to 

90% of its original value. 

 

Figure 73   Three- and four-phase models of heterogeneous materials 

Finally, I examine the overall material property of a steel fiber-reinforced concrete as a four-

phase heterogeneous model (Figure 73) with the same input data presented above, 

complemented by 

3 3
200 GPa, 0.3E   , 

3
0.03c  , therefore 

1
0.52c  , 

1 2 3
1 mm, 0.002 mm, 0.001 mma a a   . 

The steel fibers are modelled as needle-type inhomogeneities. The results (Table 2): 

Table 2   Results of a four-phase model 

    
Effective elastic modulus (GPa) 

    
Voigt Eshelby Mori-Tanaka 

c2 

0 

c3 

0 26,04 25,19 25,67 

0,05 0 24,53 22,84 22,94 

0,05 0,03 29,86 28,78 29,03 

 

Adding 3V% of steel fibers to the concrete results in approximately 25% increase in the value 

of the overall elastic modulus. 
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Summarizing the results of analytical homogenization, the problem of all methods is the lack 

of ability to take into account the orientation and the real distribution of the inhomogeneities 

inside the RVE. The size of the heterogeneities (Figure 66) is considered only by the 

condition between the micro-length d  and macro-length D  as 1
d

D
. Neither can the 

analytical solution take into account the number of inhomogeneities and the distance between 

them. These methods assume the heterogeneities to be normally distributed throughout the 

RVE, hence, for example the problem of segregation in concrete cannot be investigated. 

The Eshelby estimation can only be used in case of dilute concentration of heterogeneities, 

otherwise it falls behind the lower bound predicted by the Reuss approximation. Moreover, 

the higher the ratio of the elastic moduli of individual phases, the larger the difference 

between the results of the analytical methods. Hence, better bounds would be useful when 

predicting the overall material properties of heterogeneous materials. 

 

Figure 74   Expected effective material properties of concrete with given volume fractions of cement, 

aggregates and voids 

The advantage of the analytical solutions is obtaining quick results from few input data. There 

is no need to build a numerical model, which is quite time-consuming, not to mention the 

computational time of a three-dimensional finite element calculation. A lot of phases can be 

incorporated in one model, with different material properties and/or shapes. It can be applied 

at preparing laboratory experiments (Figure 74), at designing new materials or developing 

already existing ones. Semi-empirical analytical homogenization methods would also be 

reasonable, by fitting them to results coming from experiments. 

6.2 Numerical homogenization 

In the previous section I computed the overall material properties of a heterogeneous material 

based on analytical formulae derived in (Qu & Cherkaoui, 2006). In the following, I show the 

calculation of overall material stiffness matrix L  using finite element software (Barbero, 

2014). The results will be compared to that of the analytical homogenization. 
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6.2.1 Derivation of overall material properties by numerical homogenization 

The effective material stiffness matrix of a transversely isotropic composite material can be 

derived from column to column. As it was shown at the analytical homogenization, due to the 

random microstructure of a heterogeneous material, the behaviour of the material is presumed 

to be transversely isotropic. 

Obviously, I could examine anisotropic materials as well, but in numerical homogenization, I 

could not derive its material stiffness matrix because of the large number of unknowns. 

Furthermore, anisotropic materials provide greater strength and stiffness than isotropic 

materials, but the extra strength gained in one direction results in weaker material in other 

directions. Regarding concrete ‒ that I have already investigated ‒, this behaviour does not 

hold. 

In case of numerical homogenization, the heterogeneous material is the same concrete as 

before, with phase ’0’ referring to the matrix, i.e. portland cement, ’1’ to the aggregates, ’2’ to 

the microvoids and ’3’ to the steel fibers. The applied material properties: 

0 0 1 1 3 3
20 GPa, 0.15,  E 30 GPa, 0.2,  E 200 GPa, 0.3E         . 

When studying the behaviour of concrete, considering the existence of microvoids as well, 

any discontinuities shall be avoided, therefore voids are assumed to be very weak 

inhomogeneities and the engineering constants are set to be 

2 2
0.01 GPa, 0.01E   . 

The geometry of the investigated material is the same block of 100 100 100 mm  , that is the 

RVE of concrete. The random microstructure can be modeled as a fictitious periodic 

microstructure. 

 

Figure 75   The symmetry of the RVE 

Due to this fictitious periodicity and the overall geometry of the RVE, there are three 

symmetry planes that cut the RVE into 8 blocks of 50 50 50 mm  (Figure 75). Hence, it is 

convenient to model only this smaller block of composite material by applying symmetry 

boundary conditions on the surfaces connecting to the other blocks. 

The connection between the averaged stresses 
ij

  and strains 
ij

  over the RVE are given with 

the help of the effective elastic stiffness matrix of transversely isotropic materials as 
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(6.12) 
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, 

where the symmetry axis is axis ’3’ and the stresses and strains are in Voigt form. 

Therefore, the transverse elastic modulus: 

(6.13)  
 

 

2

11 33 12 33 13

1 2 11 12 2

11 33 13

2

T

L L L L L
E E E L L

L L L

 
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
, 

the longitudinal elastic modulus: 

(6.14) 
2

13

3 33

11 12

2
L

L
E E L

L L
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
. 

The longitudinal Poisson’s ratio: 

(6.15) 13

13

11 12

L

L L
 


, 

and the transversal Poisson’s ratio: 

2

12 33 13

12 2

11 33 13

L L L

L L L






. 

The shear modulus in transversal plane: 

(6.16) 11 12

12
2

L L
G


 . 

In this paper, I will not compute the longitudinal shear modulus, but it is defined by 

(6.17) 
13 23 44

G G L  . 

The basic idea of evaluating the effective stiffness matrix using numerical homogenization is 

to subject the RVE of an applied strain 
0

ij
 , and from the resulting stress field, the elements of 

the elastic stiffness matrix can be calculated. The boundary conditions on displacements: 

(6.18)    
20

1 1 1

3

0
, , 0, , ,  

0
i i i

y a
u a y z u y z a

z a


 
  

 

, 

(6.19)    
10

2 2 2

3

0
, , , 0, ,  

0
i i i

x a
u x a z u x z a

z a
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 
  

 
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(6.20)    
10

3 3 3

2

0
, , , , 0 ,  

0
i i i

x a
u x y a u x y a

y a


 
  

 

. 

In (6.18)-(6.20) 
0

j ij
a   is the displacement needed to produce strain 

0

ij
  over distance 

j
a . 

According to the average strain theorem given in (5.22), the applied strain 
0

ij
  on the 

boundary of the RVE equals to the volume average of the resulting strain field inside the 

RVE: 

(6.21) 
01

d
ij ij ij

V

V
V

    . 

Since the connection between the average stresses and strains are given as (6.12), the effective 

material stiffness tensor can be generated by solving four elastic models of the RVE subjected 

to the displacement boundary conditions given in (6.18)-(6.20). If the applied strain 
0

ij
  is of 

unit magnitude, the i -th element of averaged stress   computed by the finite element 

software determines directly the  ,i j -th element of the effective material stiffness matrix: 

(6.22)        
01

, , , d  w ith 1
j

V

L i j i i x y z V
V

     , 

where the applied strain 
0

ij
  is also converted into Voigt form 0

i
 . 

The integrals (6.22) are evaluated in each element of the numerical model of RVE using the 

Gauss-Legendre quadrature. The finite element software computes the average stresses and 

the volumes for every element. From (6.22), applying 0

1
1   determines  ,1L i , i.e. the first 

column of L . Taking into account the symmetry of the RVE, the boundary conditions of the 

first load set: 

(6.23) 
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The displacement boundary conditions of computing the second column  , 2L i  by applying 

0

2
1  : 

(6.24) 
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1 2 3

, , 0 , , , , 0
,  ,  

0, , 0 , 0, 0 , , 0 0

u a y z u x a z a u x y a

u y z u x z u x y

      
  

      

  

 and that of computing the third column  , 3L i  by applying 0

3
1  : 
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(6.25) 
 

 

 

 

 

 

1 1 2 2 3 3 3

1 2 3

, , 0 , , 0 , ,
,  ,  

0, , 0 , 0, 0 , , 0 0

u a y z u x a z u x y a a

u y z u x z u x y

      
  

      

 

The fourth and fifth columns are not considered here, and the sixth column can be calculated 

from the elements of the first three columns. 

6.2.2 The applied numerical model 

During numerical homogenization, I use the finite element software Mechanical APDL 

version 14.5 by Ansys™. I write macrofiles in which the input parameters can be changed 

regarding the size of the concrete block, the size of the inhomogeneities, the shape of the 

inhomogeneities and the material properties.  

In details, the input parameters are the size of the inhomogeneities, namely the radius of 

sphere, and in case of ellipsoids, the ratio between major and minor semi-axes. The size of the 

concrete block is 50 50 50 mm   in every case. The material properties are given with their 

material stiffness matrices, which were computed from the engineering constants using the 

Matlab™ code I generated at the analytical homogenization. 

I applied element type SOLID186 (Figure 76), which is a higher-order 20-node solid element. 

At every nodes, the degrees of freedom are the translations in the nodal , ,x y z  directions. It is 

suitable for structural solids with irregular mesh, hence, it is convenient to apply in the 

numerical homogenization of composite materials. 

 

Figure 76   SOLID186 element type 

When creating the geometry, first I generated eight pieces of quarter-spheres in the corners of 

the block of concrete, and one sphere in the middle of the block, then I created the block 

itself, intersecting the quarter-spheres that resulted in one-eighth of spheres in the corners. If 
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the inhomogeneities are of ellipsoidal shape, the spheres have to be rescaled by altering the 

position of their surrounding areas. 

First, I divide the lines into six sections, which will be the starting point of meshing the 

volumes. The difficult geometry of the matrix can only be meshed by applying free meshing 

with tetrahedral shaped elements. The meshing of the volumes of inhomogeneities are done 

next. The material properties are rendered to each phase in this step of modelling. 

The three different sets of boundary conditions are defined as three loadsteps, and finally, a 

static analysis is carried out for each loadstep. An additional macro file calculates the 

effective stiffness matrix based on (6.22). It reads the element volumes and element stresses 

of the fininte element analysis, multiplying them and integrating along the total volume, and 

finally dividing by the total volume of the concrete block. 

6.2.3 Two-phase model 

6.2.3.1 Effect of volume fraction 

In this section, I examine the behavior of a heterogeneous material considering spherical 

inhomogeneities. The radii of the spheres are set to result in volume fractions of 

inhomogeneities 
1

0.6,c   
1

0.7c   and 
1

0.8c  , respectively. The geometry of the block 

(Figure 77) and the heterogeneities (Figure 78): 

 

Figure 77   The examined block of composite material 
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Figure 78   The fictitious distribution of spherical inhomogeneities 

The results coming from finite element analysis (FEA) are compared to that of the analytical 

homogenization (Figure 79): 

 

Figure 79   Effect of volume fraction of inhomogeneities on overall elastic modulus of heterogeneous 

material 
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The analytical results overestimate the effective engineering properties of the composite 

material under consideration. The numerical analysis can take into account the whole set of 

inhomogeneities, including their positions, their sizes and shapes, therefore their effect on 

each other, the interaction between them when examining the behaviour of the heterogeneous 

material under prescribed boundary conditions. In Figure 80, we can see the , ,x y z  

components of the resulting stress field of the three loadsteps, i.e. unit displacements in , ,x y z  

directions, respectively (
1

0.8c  ). The stress field characterizes the stiffness of the material. 

 

 

Figure 80   The , ,x y z  components of stress field inside RVE under unit displacements in , ,x y z  directions, 

respectively 
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Between the particles, parallel to the applied displacements, there is a ‘bridging’ effect that 

stiffens the cement material. Otherwise, inside the matrix the governing value is close to the 

value of the elastic modulus of cement, meaning the particles have no stiffening effect in this 

part of the composite material. Inside the inhomogeneities, some softening can be observed, 

and these effects considered in the numerical solution result in an overall Young’s modulus 

smaller than in case of analytical homogenization. 

6.2.3.2 Effect of shape of inhomogeneities 

In the following, I compare results coming from heterogeneous materials with 

inhomogeneities of spherical (
1 2 3

a a a  ), oblate spheroidal (
1 2 3

a a a  ) and prolate 

spheroidal (
1 2 3

a a a  ) shapes. The volume fraction of heterogeneities 
1

0.6c   is held 

constant, while the ratio of major to minor semi-axes is 1

3

1.25
a

a
 , 1

3

1.67
a

a
  and 1

3

2.5
a

a
 , 

respectively. With this size of RVE and volume fraction of heterogeneities, larger values of 

ratio 1

3

a

a
 cannot be investigated, since they simply cannot fit into this RVE. 

 

Figure 81   Effect of shape of inhomogeneities on overall Young’s modulus of heterogeneous material 

In Figure 81, the numerical homogenization results of a material containing oblate (o) and 

prolate (p) spheroidal heterogeneities can be seen. The major axes of the spheroids are parallel 

to the global x  axis and the longitudinal (EL) elastic modulus belongs to the global z  axis 
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(Figure 82). When the major to minor axis ratio is of unit magnitude, the spheroids become 

spheres and all four values of Young’s modulus are the same. It is obvious that when 

changing the shape of the spheroids, a decrease in the value of the longitudinal elastic 

modulus implies an increase in that of the transversal elastic modulus. The difference between 

an oblate and a prolate spheroid at small 1

3

a

a
 ratios, like the applied ratios, is negligible. 

 

Figure 82   Oblate and prolate spheroidal inhomogeneities 

 

The last columns of the diagram (Figure 81) at prolate spheroids show discrepancy in the 

behaviour of the model. It can be explained by the fact that prolate spheroids of volume 

fraction 
1

0.6c   and ratio 1

3

2.5
a

a
  do not fit inside the block of 50 50 50 mm   of the 

heterogeneous material. Hence, I had to modify the geometry by generating only four pieces 

of one-eighth of spheroids in the four corners at the ends of two space diagonals of the block 

(Figure 83). 
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Figure 83   Modified geometry of spheroids with large major-to-minor axis ratio 

We can see in Figure 84, that due to this necessary modification of geometry, the numerical 

model cannot take into account the stiffening effect between the particles parallel to the 

applied displacements (Figure 85) which explains the incorrect results in Figure 81. 

I note that the numerical homogenization can take into account the interaction of the particles, 

but only if their positions and distribution over the volume is set properly, otherwise they 

yield poor results comparing to the analytical methods. In order to correct the results, a 

completely different geometric model regarding the distribution of inhomogeneities would be 

necessary. 

 

Figure 84   The inaccuracy of the modified geometry 
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Figure 85   The modified numerical model under unit displacements parallel to the minor axes of spheroid 

6.2.4 Three- and four-phase model 

In the three-phase model, I consider spherical voids as inhomogeneities embedded in a matrix 

with material properties originated from the results of two-phase models in the previous 

section. In other words, the three-phase numerical model is a two-phase model, where the 

material properties of the matrix are the overall material properties of a two-phase composite 

consisting of cement and aggregates. The original two-phase model consists of prolate 

spheroidal inhomogeneities with major-to-minor ratio of semi-axes of 1.67 and their volume 

fraction is 60V%. The three-phase model considers the microvoids in concrete by applying 

very weak inhomogeneities (
3 3

0.01 GPa ,  0.01E   ). The volume fraction of microvoids is 

2
0.05c   and the results are compared to that of the analytical homogenization in Table 3: 

Table 3   Effective elastic modulus of a three-phase model 

  

Effective elastic modulus (GPa) 

  
FEA (l) FEA (t) Voigt Eshelby Mori-Tanaka 

c2 
0 23,29 23,69 26,04 25,19 25,67 

0,05 21,96 21,96 24,53 22,84 22,94 

 

Due to the existence of microvoids, the effective elastic modulus of concrete decreases by 

5.7%, 7.3%, 6.5%, 5.8%, 9.3%, 10.6% according to the finite element analysis (longitudinal 

and transversal values), and to the Voigt-, Eshelby- and Mori-Tanaka estimation, respectively. 

Hence, the latter two analytical methods overestimate the deteriorating effect of microvoids. 

The four-phase model ‒ similarly to the three-phase model ‒, applies inhomogeneities in a 

matrix material, i.e. it is a special type of two-phase model, where the material properties of 

the matrix come from the results of the three-phase model presented above. Phase ‘3’ refers to 

the steel reinforcing fibers with volume fraction of 
3

0.03c  , and with a prolate spheroidal 

shape where the ratio of major to minor axis is 10. The numerical results can be compared to 

the effective properties of the same heterogeneous material computed from analytical 

homogenization methods (Table 4): 
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Table 4   Effective elastic modulus of a four-phase model 

    

Effective elastic modulus (GPa) 

    
FEA (l) FEA (t) Voigt Eshelby Mori-Tanaka 

c2 

0 

c3 

0 23,29 23,69 26,04 25,19 25,67 

0,05 0 21,96 21,96 24,53 22,84 22,94 

0,05 0,03 23,94 24,09 29,86 28,78 29,03 

 

The geometry had to be modified again, since the fibers are needle-type inhomogeneities, but 

it resulted again in an inaccurate behaviour of the numerical model (see Figure 84). The 

increase in the elastic modulus compared to the three-phase model: 9.0%, 9.7%, 21.7%, 

26.0%, 26.5%; and to the two-phase model: 2.8%, 1.7%, 14.7%, 14.25%, 13.1%, according to 

the finite element analysis (longitudinal and transversal values), and to the Voigt-, Eshelby- 

and Mori-Tanaka estimation, respectively. Clearly, the numerical homogenization yields 

incorrect results, since the fibers should be of larger number and be distributed over the whole 

volume in a more realistic way. 

In numerical homogenization, the real distribution and shape of inhomogeneities can be 

modelled quite precisely, however, the definition of geometry is extremely time-consuming. 

In general, the analytical methods overestimate the effective properties, but they yield a 

steady, therefore reliable set of effective properties. 
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7  Summary 

The aim of this work was to introduce the mesolevel mechanical modeling of heterogeneous 

materials by understanding its mathematical and micromechanical background. Furthermore, 

another purpose of this paper was presenting examples for both analytical and numerical 

solutions of the disturbing effect of the presence of inhomogeneities in the elastic field of a 

heterogeneous material and of homogenization methods. 

The mathematical background is based on the application of integral theorems and Green’s 

functions which is useful at the solution of inhomogeneous boundary value problems. The 

main idea of the mechanical background of mesolevel modeling is to take into account the 

disturbing effect of distinct phases of a heterogeneous material in the elastic field of the 

material. 

The comparative study of the analytical and numerical results of the elastic field of a 

heterogeneous material containing an ellipsoidal shaped inhomogeneity under applied loading 

showed that the analytical solution based on the application of Green’s functions, and on 

Eshelby’s equivalent inclusion method yields surprisingly exact results without the time-

consuming process of building a numerical model. Of course, the correctness of the resulting 

elastic field is dependent on the mesostructure of the heterogeneous material, i.e. it varies in 

case of particle- and fiber-reinforced materials. 

With the help of homogenization methods, I computed the effective material properties of 

concrete given that the material properties and the volume fractions of the additives are 

known. Comparing the analytical and numerical solutions, I observed that the analytical 

methods cannot take into account the interaction between the individual phases of the 

heterogeneous material, thereby they need some further improvement. On the other hand, they 

give an extremely fast result from very few input data, hence I would recommend to use them 

for example at concrete plants to predict the strength of concrete based on the always 

changing quality of applied additives. 

Summarizing my experiences described above, the scope of this paper was satisfactorily 

achieved, moreover, such questions arised during this work that I would like to answer 

hereafter. In the future, I would like to address my studies to higher-order computational 

homogenization (Geers, Kouznetsova, & Brekelmans, 2011). 

The development of computational methods allows us to apply so-called unit cell methods in 

multiscale modeling. These methods provide information on the effective material properties 

by fitting the averaged microscopical elastic fields, resulting from the analysis of a 

microstructural representative unit cell subjected to prescribed loading, on macroscopic 

phenomenological constitutive equations. When a macroscopic behaviour becomes non-

linear, this approach face great difficulties, therefore the presented homogenization techniques 

cannot be applied in case of large deformations or complex loading paths, moreover they 

cannot account for the geometrical and physical changes in the microstructure. 

Another type of modelling techniques is the variational multi-scale method. The weak form 

of the governing equations is separated into a coarse (macro-) and fine (micro-) scale part on 

the basis of suitable assumptions on the fine scale field.  The point of this method is to 
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eliminate the fine scale part from the obtained formulation, but it is highly dependent on the 

assumptions made a priori. 

The most recent technique is the two-scale computational homogenization, based on the 

solution of a nested boundary problem on both scale. First-order computational 

homogenization includes the first-order gradients of the macroscopic displacement field, 

hence, they can take into account large displacements as well. At this technique, assumptions 

for the macroscopic constitutive behaviour are not required, they are obtained from the 

solution of the microscopic boundary value problem. Since the microscale problem is a 

classical boundary value problem, any of the known appropriate methods (finite element 

method, boundary element method, etc.) can be used. 

The second-order computational homogenization can take into account the size-effects of 

microstructural constituents, and can deal with more than simple first-order deformation 

modes (tension, compression, shear and their combinations) of microstructural cells. The 

basic idea is to use the Taylor-series expansion of a classical nonlinear deformation map to 

determine the macroscopic kinematics through not only its deformation gradient tensor, but 

also the Lagrangian gradient of the deformation gradient tensor. Hence, this method is 

‘deformation driven’, since the macroscopic stresses are ensued from the macroscopic 

deformation-gradient tensor. After solving the classical boundary value problem obtained at 

the microscale, the results can be transformed back to the structural level with the help of 

averaging theorems. 
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