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1. Introduction 

1.1. Background, motivation 

Nowadays, especially in the field of bridge construction there is an increasing interest 

about the high strength steels (HSS), but the currant European standard does not provide the 

sufficient basis to promote the spread of its application. The hollow sections are frequently used 

both at the territory of bridge and building construction, due to their good structure forming 

capabilities and easy assembly. In this study, firstly the brief review of design recommendations 

on these structures is considered, taking into account the restrictions coming from the 

application of HSS and the current research directions. After that the main purpose is to develop 

such design formulae, which –keeping the adequate level of safety -lead to more economical 

results, based on series of relevant numerical simulations. 

1.2. Problem statement, aims 

In the third Eurocode, the part 1-8 contains the design formulae correspond to the hollow 

section joints, but in many cases they result in a very conservative solution, especially with the 

prescriptions of HSSs, according to the part 1-12. Because of the continuously increasing 

interesting on this area, from economical point of view a less conservative design methodology 

would be highly beneficial. Unfortunately, the number of experiments on HSS steels are very 

low, and at the majority of the cases they focus on the fatigue behaviour instead of the static 

resistance, which is also valid for hollow section joint experiments, where in addition the 

sections are usually filled by concrete. These reasons lead to the necessity of the detailed static 

investigation of HSS hollow section joints, which involves the accuracy of the standard design 

formulae. 

1.3. Solution strategy 

For the mentioned purpose, after the review of the design recommendations I develop a 

parametric finite element model, which must be validated according to real experiments to 

obtain relevant results. During the numerical simulations, both axial and bending loads will be 

considered, and for several assemblies - covering a large field of applicable CHS sections - I 

determine the load-bearing capacity of the joint. By the comparison of the numerical and 

standard results, I suggest modified formulae for the characteristic value of the static 

resistances. After that, by taking into account the material and geometrical uncertainties, I 

perform Monte-Carlo simulations to determine a partial safety factor for the new resistance 

formulae, and compare the final results with the Eurocode. 
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2. Literature review 

2.1. Laboratory experiments 

Nowadays, in those studies which investigate the static behaviour, usually the results of 

quite old tests are used for the validation of the numerical model, performed in the previous 

century. The present laboratory experiments are mainly concentrates on the examination of the 

fatigue behaviour, the stress distribution around the weld. The other group of the experiments 

is investigate the mechanical response of the concrete filled sections, where the static and 

fatigue resistance are both considered. In this study, the utilized experimental results are the 

part of a very large test series, which was conducted between 1964 and 1991, resulted in a 

valuable tubular joint database (Lesani, Bahaari, & Shokrieh, 2013). At these tests, the 

geometry of the specimen, the material properties and load-bearing capacity were recorded, 

thus these will be the initial data for the validation.  

2.2. Failure modes 

Generally, in case of hollow section joints the EC distinguish six types of failure modes 

(Eurocode 3 EN 1993-1-8:2005 (E), 2005), the chord face failure [a], the chord side wall 

failure [b], the chord shear failure [c], the punching shear failure [d], the brace failure [e] and 

local buckling [f] (Figure 2.2). If we keep the prescribed geometric restrictions, only two failure 

modes should be considered, the chord face failure and the punching shear failure, beside the 

individual failure of the brace or chord. These modes can be seen on (Figure 2.1), where on the 

left figure instead of a T a K joint is represented, but it reflects very well the characteristics of 

this failure. 

 

Figure 2.1. Chord face failure (left) and punching shear failure (right) of hollow section 
joints (Wardenier, Kurobane, Packer, Vegte, & Zhao, 2008) 
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The chord face failure is the most usual failure mode for joints with a single bracing such 

as T-joints, and in case of K and N joints with a gap between the bracings if the bracing to chord 

width ratio is less than 0.85 (Tata Steel, 2011). It is practically the plastification of the chord 

cross-section. The punching shear failure usually caused by a crack initiation in the chord face, 

leading to the rupture of the chord. Generally it is not typical, only in the case when the chord 

width to thickness ratio is relatively small. Both failure modes can be the result of axial or (in 

plane or out of plane) moment loading, or of course the combination of them. 

 

Figure 2.2. The different failure modes of hollow section joints in general case  
(Eurocode 3 EN 1993-1-8:2005 (E), 2005) 
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2.3. Numerical analyses 

In the earlier decades, for the main failure modes (Chapter 2.2) different resistance 

models were developed based on mechanical simplifications and laboratory experiments. A 

typical example for this is the study of (H.S.Mitri, 1988), where the in plane moment resistance 

of tubular T and Y joints was investigated. As the punching shear is the typical failure for this 

loading case, a model for this have been built, where the yield stress developing through the 

thickness of the chord is equilibrated by the bending moment (Figure 2.3). It is worth to mention 

that the current EC formula is also based on this approach. After the model formulation, they 

compared the received results with the available laboratory results, taken from different 

database. 

 

Figure 2.3. Punching shear model for in plane bending (H.S.Mitri, 1988) 

Similarly to the previous simplified model, for the chord plastification the so called ring 

model was introduced, firstly in 1967 (Wardenier, Packer, Zhao, & Vegte, 2010). This model 

is based on the assumption that most of the loads is transferred at the saddles of the brace, since 

the chord is stiffer at these parts on the perimeter, thus here the stresses significantly larger 

comparing to the middle parts of the chord. According to (Figure 2.4), it is assumed that the 

axial load on the brace is transferred to the chord as two concentrated forces. At the 

development of the design formula, they calculated the plastic moment capacity (according to 

the model at point A and B the moment reaches this limit value), which was equilibrated by the 

bending moment coming from the axial forces at the saddles of the brace. 
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Figure 2.4. The ring model developed for the chord plastification  
(Wardenier, Kurobane, Packer, Vegte, & Zhao, 2008) 

In the recent past, (Lesani, Bahaari, & Shokrieh, 2013) presented their work about T and 

Y joints subjected to axil compressive loads. Here a parametric model, made of shell elements 

was developed to investigate the behaviour of the connection. Here, the angle between the brace 

and chord varied between 30° to 90°, and for the different geometries they determined the load-

displacement diagrams together with the study of the ovalization, which is the characteristic 

plastic deformation of the chord circumference at the brace intersection. The applied finite 

element model can be seen on (Figure 2.5).  

 

Figure 2.5. Numerical model of the investigated T and Y joints (Lesani, Bahaari, & Shokrieh, 2013) 
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2.4. Design methods 

The currant valid European standard, the Eurocode contains the necessary design 

formulae of hollow section joints in (Eurocode 3 EN 1993-1-8:2005 (E), 2005). At this part, a 

wide range of connections can be found. Before the calculation of the resistances, the EC 

prescribe some geometric restrictions corresponding to the hollow sections, but with this step 

the general six failure modes can be reduced to only two mode (Chapter 2.2). The design 

formulae are available for axial load, in plane and out of plane bending, furthermore it provides 

an interaction formula for the case of combined loading. It is very important that this part does 

not contain the necessary modifications for the case of high strength steels, it is in (Eurocode 3 

EN 1993-1-12:2007:E, 2007), the further details can be found in Chapter 3.1.2. Beside the 

Eurocode, in the practice the recommendations of the CIDECT (Construction with Hollow Steel 

Sections) design guide is also widely used, although this is not official, only a proposition. In 

case of hollow section T joints, practically it offers the same formulae for the design resistances 

as the Eurocode. 
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3. Design method according to the EC3-1-8 

In the Eurocode 3-1-8, Chapter 7 deals with the hollow section joints, involving many 

types of members (CHS, RHS, SHS, gusset plates, I girders, etc.). The purpose of this part is to 

give a brief review on the design aspects on these connections together with the resistance 

formulae, taking into account the specific limitations due to the high strength steel. Generally, 

if we consider the hollow section joints, we can distinguish many types, such as K, T, KT, N, 

X, etc. joints, but in this work, from this large set I will focus only to T connections made of 

CHS members. 

3.1. Review on the design of T joints according to the Eurocode 

It is worth to mention that this chapter of the standard provides design formulae to static 

resistance, but does deal with the fatigue problems, the high strength steels and the member 

resistances. The first one is not considered in this study, but if we apply HSS steels we must 

use the prescriptions of the EC-3-12, and in case of axially loaded members (chord or brace) 

the EC-3-1-1, beside the following design aspects, formulae. 

3.1.1. Geometric restrictions 

Before the actual design of the joints, the EC prescribes some geometric restrictions 

(Eurocode 3 EN 1993-1-8:2005 (E), 2005) on the shape of the members and connections, which 

provides the validity to the usage of the resistance formulae. Generally, these constraints are 

not so strict, the applicable dimensions are within a large scale. Now let us summarize the 

specific geometric restrictions: 

[1] the nominal wall thickness of the hollow sections should be larger or equal with 

2.5 mm, and in case of the chord less than 25 mm 

[2] the compressed members of the joint should satisfy the requirements for Class 1 

or Class 2 according to the (Eurocode 3 EN 1993-1-1:2005 (E), 2005) 

[3] the diameter of the brace to the chord ratio should be between 0.2 and 1.0:  

 0,2 ≤ ݀ଵ/݀ ≤ 1,0 (3.1) 

[4] the diameter to thickness ratio of the chord should be between 10 and 50: 

 10 ≤ ݀/ݐ ≤ 50 (3.2) 

[5] the diameter to thickness ratio of the brace should be less than 50: 

 ݀ଵ/ݐଵ ≤ 50 (3.3) 
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3.1.2. Design formulae 

As it was mentioned, beside the formulae of the Eurocode 3-1-8, the design resistances 

of the brace and chord members should be determined according to the (Eurocode 3 EN 1993-

1-1:2005 (E), 2005) for axial loading. In this work I consider only such assemblies which 

satisfies the geometric (in the engineering practice, usually these constraints are easy to keep) 

and section Class requirements, thus only the flexural buckling failure mode should be 

considered beside the following formulae in case of the compression members.  

According to the applied material grade, the static design resistance should be reduced by 

a factor prescribed in the standard. If it is between S355 and S460, this factor is 0.9 (Eurocode 

3 EN 1993-1-8:2005 (E), 2005), but if we apply HSS (greater than s460), according to 

(Eurocode 3 EN 1993-1-12:2007:E, 2007) this reduction factor changes to 0.8. This procedure 

takes into account the larger deformations in case of chord plastification (thus for the other 

failure modes this reduction is quite conservative). In 2004, the researchers verified the 0.9 

value by laboratory tests, and recommended the 0.8 value for higher steel grades, but it is only 

an assumption, it has not been proved yet (Gogou, 2012).  

Now, let us consider the different resistance formulae for the case of T joints, consist of 

Circular Hollow Section members, made of HSS. As it was mentioned in Chapter 1.2, only two 

failure modes are needed to be taken into account (if we keep the geometric prescriptions), 

namely the chord face failure and punching shear failure, thus only these modes are considered 

in this part. The notation of the joint can be seen on (Figure 3.1). 

 

Figure 3.1 Notation of a general T joint  
(Wardenier, Kurobane, Packer, Vegte, & Zhao, 2008) 

Axial resistances 

[1] In case of chord face failure, the axial resistance is: 

ଵܰ,ோௗ =
,ଶ݇ߛ ௬݂ݐ

ଶ

݊݅ݏ ଵ߆
(2,8 + (ଶߚ14,2

0,8
ெହߛ

 , (3.4)
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where γ is the half diameter to thickness ratio: 

ߛ =
݀

ݐ2
 , 

f୷ is the yield strength of the chord material, ݐ is the thickness of the chord, 0.8 is the reduction 

factor correspond to the high strength steel, γହ is the partial safety factor for hollow section 

joints (its value is 1.0), β is the ratio of the mean diameter of the brace to the chord: 

β =
݀ଵ

݀
 , 

and k୮ is the chord stress factor: 

k୮ = min൫1 − 0,3݊൫1 + ݊൯, 1൯ for compression, and 1 for tension, 

where ݊ is the ratio of the maximum compressive stress in the chord to the yield strength: 

݊ =
,ாௗߪ

f୷
 . 

[2] For the case of punching shear failure, the axial resistance formula: 

if ݀ଵ ≤ ݀ − ୢୖ,:   Nଵݐ2 =
f୷

√3
π݀ଵݐ

1 + sin ଵ߆

2 sinଶ ଵ߆

0,8
γହ

. 

In plane and out of plane moment resistances 

In case of T connections, the two types of moment loading can be seen on (Figure 3.2). 

 

Figure 3.2. In plane and out of plane moments in case of T connections (Wardenier, Kurobane, 
Packer, Vegte, & Zhao, 2008) 

[1] In plane moment resistance in case chord face failure: 

M୧୮,ଵ,ୖୢ = 4,85
f୷t

ଶ݀ଵ

sin ଵ߆
ඥߛβ݇

0,8
γହ

 . 

[2] Out of plane moment resistance in case chord face failure: 

M୭୮,ଵ,ୖୢ =
f୷t

ଶ݀ଵ

sin ଵ߆

2,7
1 + 0,81β ݇

0,8
γହ

 . 

(3.5)

(3.7)

(3.6)

(3.8)

(3.9)

(3.10) 

(3.11) 
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[3] In plane moment resistance for the case of punching shear failure: 

M୧୮,ଵ,ୖୢ =
f୷ݐ݀ଵ

ଶ

√3
1 + 3 sin ଵ߆

4 sinଶ ଵ߆

0,8
γହ

 , 

[4] Out of plane moment resistance for the case of punching shear failure 

M୭୮,ଵ,ୖୢ =
f୷ݐ݀ଵ

ଶ

√3
3 + sin ଵ߆

4 sinଶ ଵ߆

0,8
γହ

 . 

3.2. Design resistances of the investigated T joints according to the standard 

The object of this study is to improve the design resistance formula of these T joints, but 

for this purpose, a wide range of hollow section dimensions should be investigated. In the 

practice, there are only a few manufacturer, who produce high strength steel CHS sections, 

from them I chose the products of the Continental Steel Pte Ltd. From the homepage of this 

company, the available dimensions can be downloaded (Cold Formed Hollow Sections, 2013). 

According to this brochure, I composed fourteen assemblies (Table 3.1), applying four different 

chord sizes and five different brace sizes.  

  

Diameter of 
the chord 
(d0) [mm] 

Thickness of 
the chord (t0) 

[mm] 

Diameter of 
the brace  
(d1) [mm] 

Thickness of 
the brace  (t1) 

[mm] 

[1] 508 25 406 20 
[2] 508 25 323.9 14 
[3] 508 25 244.5 12 
[4] 508 25 168.3 8 
[5] 508 25 101.6 5 
[6] 406 20 323.9 14 
[7] 406 20 244.5 12 
[8] 406 20 168.3 8 
[9] 406 20 101.6 5 
[10] 323.9 14 244.5 12 
[11] 323.9 14 168.3 8 
[12] 323.9 14 101.6 5 
[13] 244.5 12 168.3 8 
[14] 244.5 12 101.6 5 

Table 3.1. The fourteen applied assemblies (own source) 

In the numerical model, I use relatively small brace lengths, thus in this way the flexural 

buckling failure mode can be avoided, only the compression/bending moment resistance of the 

brace cross section should be calculated. In the following, I will check the geometric restrictions 

(3.12) 

(3.13) 
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and calculate the design resistances for the first assembly in detail, after that I summarize the 

results in tabulated form for all the others. 

3.2.1. Checking of the geometric constraints for the first assembly 

Initial data

݀0 = 508 ݉݉ 

  ݀1 = 406 ݉݉ 

௬݂ =  ܽܲܯ 690

ߚ =
݀ଵ

݀
= 0,799 

ଵ߆ = 90° 

0ݐ = 25 ݉݉ 

1ݐ = 20 ݉݉ 

ெହߛ = 1 

ߛ =
݀

ݐ2
= 12,70 

ெߛ = 1 

Checking of the thickness of the chord and brace 

ଵݐ ≥ ݐ   ,݉݉ 2 ≥ ݐ ݀݊ܽ ݉݉ 2 ≤ 25 ݉݉, 

where all thicknesses are within the allowable range. 

Checking of the section Class 

The limit of the Class 2:  

70߳ଶ = 70
235

௬݂
= 23,841 >  

  ݀ଵ

ଵݐ
= 20,300, 

thus, this section is Class 3. 

Checking the diameter of the brace to the chord 

0,2 ≤
݀ଵ

݀
= 0,799 ≤ 1,0. 

Checking the diameter to thickness ratio of the chord 

10 ≤
݀

ݐ
= 20,320 ≤ 50. 

Checking the diameter to thickness ratio of the brace 

݀ଵ

ଵݐ
= 20,300 ≤ 50. 

 

 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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3.2.2. Determine the static resistances for the first assembly 

Design axial resistance 

[1] Chord face failure 

As we can see from equation (3.7) and (3.8), ݇ is the function of the maximal 

compressive stress in the chord, thus the axial normal force, and in this case the design axial 

resistance. Practically, it means that we have to use an iterative method to calculate the 

resistance of the joint. Firstly, let us determine the maximal normal stress in the chord. The 

compression of the brace results in the bending of the chord, thus for this purpose the classical 

equation of the elementary strength of materials is used (of course, this is an approximation). 

The maximal bending moment from a concentrated load (applied at the middle of the girder), 

and the corresponding normal stress in the chord:  

,ாௗܯ =
݈ܨ
8 = ଵܰ,ோௗ݈

8 ,ாௗߪ              ,  =
,ாௗܯ

௫ܫ

݀

2  , 

where ݈ is the length of the chord1 and ܫ௫ is the secondary moment about any axis which passes 

through the centre of gravity:  

௫ܫ =
ቈ൬݀

2 ൰
ସ

− ቀ݀ଵ
2 ቁ

ସ


4  . 

From this, the value of ݇ and ݊ can be determined: 

݊ = ଵܰ,ோௗ݈
௫ܫ8

݀

2f୷
 , ݇ = min ቆ1 − 0,3 ଵܰ,ோௗ݈

௫ܫ8

݀

2f୷
ቆ1 + ଵܰ,ோௗ݈

௫ܫ8

݀

2f୷
ቇ , 1ቇ . 

Now, if we substitute (3.21) into (3.4):  

Nଵ,ୖୢ = ൭1 − 0,3 ଵܰ,ோௗ݈
௫ܫ8

݀

2f୷
ቆ1 + ଵܰ,ோௗ݈

௫ܫ8

݀

2f୷
ቇ൱

γ,ଶk୮f୷t
ଶ

sin Θଵ
(2,8 + 14,2βଶ)

0,8
γହ

 . 

By this step, we get an implicit formula for the axial resistance, thus we need to apply iteration 

technique. I solve this problem in MS Excel 2013, where the last value of the ݇ reduction 

parameter: 

݇.௦௧ = 0,9358. 

                                                             
1 In case of compression it is 5·d0. The reason and determination of this size can be found in Chapter 4., and of 
course the same dimensions are applied in the numerical simulations. 

(3.19) 

(3.20) 

(3.22) 

(3.23) 

(3.21) 
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Finally, the axial resistance, according to (3.4):  

Nଵ,ୖୢ,ୡ =
γ,ଶk୮f୷t

ଶ

sin Θଵ
(2,8 + 14,2βଶ)

0,8
γହ

= 6093,29 ݇ܰ. 

[2] Punching shear failure 

In this case, we do not need any special solution methodology, only the application of the design 

formula. Firstly, let us the check the necessity of this failure mode: 

݀ଵ = 406 mm ≤ ݀ − ݐ2 = 468 mm, 

thus we must take into account the punching shear failure:  

Nଵ,ୖୢ,୮ୱ =
f୷

√3
π݀ଵݐ

1 + sin ଵ߆

2 sinଶ ଵ߆

0,8
γହ

= 10162,35 ݇ܰ. 

[3] Normal resistance of the brace 

Because the flexural buckling is not considered, the compressive resistance of the brace is equal 

with the tensile resistance, namely: 

Nଵ,ୖୢ,୬୰ =
ቈቀ݀ଵ

2 ቁ
ଶ

− ቀ݀ଵ
2 − ଵቁݐ

ଶ
 ߨ

γ
f୷ = 16734,64 ݇ܰ. 

The final axial resistance is smallest one from the previously determined values:  

Nଵ,ୖୢ,ୡ = min൫Nଵ,ୖୢ,ୡ;  Nଵ,ୖୢ,୮ୱ;  Nଵ,ୖୢ,୬୰൯ = 6093,29 ݇ܰ. 

Design in plane moment resistance 

[1] Chord face failure 

Similarly to the previous case, this failure mode is also the function of the maximum 

normal stress in chord, so that I apply the same method to calculate the bending moment 

resistance. The in plane bending of the joint leads to the concentrated bending of the chord. The 

maximal bending moment from a concentrated moment (applied at the middle of the girder) 

and the corresponding normal stress in the chord:  

,ாௗܯ =
M୧୮,ଵ,ୖୢ

4 ,ாௗߪ              ,  =
,ாௗܯ

௫ܫ

݀

2  . 

 

 

(3.25) 

(3.26) 

(3.24) 

(3.27) 

(3.28) 

(3.29) 
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Now, the value of ݇ and ݊: 

݊ =
M୧୮,ଵ,ୖୢ

௫ܫ4

݀

2f୷
 , ݇ = min ቆ1 − 0,3

M୧୮,ଵ,ୖୢ

௫ܫ4

݀

2f୷
ቆ1 +

,ாௗܯ

௫ܫ

݀

2f୷
ቇ , 1ቇ . 

Now, if we substitute (3.23) into (3.10) the moment resistance, we get: 

M୧୮,ଵ,ୖୢ = 1 − 0,3
M୧୮,ଵ,ୖୢ

௫ܫ4

݀

2f୷
ቆ1 +

M୧୮,ଵ,ୖୢ

௫ܫ4

݀

2f୷
ቇ 4,85

f୷t
ଶ݀ଵ

sin ଵ߆
ඥߛβ

0,8
γହ

 . 

The final resistance after the iteration:  

M୧୮,ଵ,ୖୢ.ୡ = 4,85
f୷t

ଶ݀ଵ

sin ଵ߆
ඥߛβ݇

0.8
γହ

= 1730,58 ݇ܰ݉. 

[2] Punching shear failure 

The moment resistance for the case of punching shear:  

M୧୮,ଵ,ୖୢ.୮ୱ =
f୷ݐ݀ଵ

ଶ

√3
1 + 3 sin ଵ߆

4 sinଶ ଵ߆

0,8
γହ

= 1313,32 ݇ܰ݉. 

[3] Bending resistance of the brace 

The plastic section modulus of the brace:  

ݓ = 2 ൦
ቀܦଵ

2 ቁ
ଶ

ߨ
2

4 ଵܦ
2

ߨ3 −
ቀܦଵ

2 − ቁݐ
ଶ

ߨ
2

4 ቀܦଵ
2 − ቁݐ
ߨ3

൪ = 2982,59 ܿ݉ଷ, 

thus the bending resistance: 

M୧୮,ଵ,ୖୢ.ୠ୰ =
f୷ݓ

γ
= 2057,98 ݇ܰ݉. 

The final resistance is the smallest of these three resistances:  

M୧୮,ଵ,ୖୢ,ୡ = ݉݅݊൫M୧୮,ଵ,ୖୢ.ୡ;  M୧୮,ଵ,ୖୢ.୮ୱ;  M୧୮,ଵ,ୖୢ.ୠ୰൯ = 1313,32 ݇ܰ݉. 

Design out of plane moment resistance 

[1] Chord face failure 

In this case, I neglect the normal stresses coming from the warping of the chord due to 

the out of plane bending, and use 1 for the value of ݇. Thus, the out of plane moment 

resistancefor chord face failure: 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 
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M୭୮,ଵ,ୖୢ.ୡ =
f୷t

ଶ݀ଵ

sin ଵ߆

2.7
1 + 0,81β ݇

0,8
γହ

=  586,08 ݇ܰ݉. 

[1] Punching shear failure 

M୭୮,ଵ,ୖୢ.୮ୱ =
f୷ݐ݀ଵ

ଶ

√3
3 + sin ଵ߆

4 sinଶ ଵ߆

0,8
γହ

= 1641,65 ݇ܰ݉ . 

[2] Bending resistance of the brace 

The bending resistance of the section is exactly the same as in case of in plane bending: 

M୭୮,ଵ,ୖୢ.ୠ୰ =
ݓ f୷

γ
= 2057,98 ݇ܰ݉. 

Finally, the out of plane moment resistance:  

M୭୮,ଵ,ୖୢ,ୡ = ݉݅݊൫M୭୮,ଵ,ୖୢ.ୡ;  M୭୮,ଵ,ୖୢ.୮ୱ;  M୭୮,ଵ,ୖୢ.ୠ୰൯ = 586,08 ݇ܰ݉. 

3.2.3. Tabulated results for all the assemblies 

Checking of the geometric constraints 

The proper geometric dimensions can be found in (Table 3.1), now only the results (Table 

3.2) of the geometric checking are presented: 

  
t1 ≥ 2 
mm 

t0 ≥ 2 
mm 

t0 ≤ 25 
mm  d1/t1 Class 2 0,2 ≤ 

d1/d0 ≤ 1 
10 ≤ 

d0/t0 ≤50 
d1/t1 ≤ 

50 

[1] Yes Yes Yes 20,30 Yes Yes Yes Yes 
[2] Yes Yes Yes 23,14 Yes Yes Yes Yes 
[3] Yes Yes Yes 20,38 Yes Yes Yes Yes 
[4] Yes Yes Yes 21,04 Yes Yes Yes Yes 
[5] Yes Yes Yes 20,32 Yes Yes Yes Yes 
[6] Yes Yes Yes 23,14 Yes Yes Yes Yes 
[7] Yes Yes Yes 20,38 Yes Yes Yes Yes 
[8] Yes Yes Yes 21,04 Yes Yes Yes Yes 
[9] Yes Yes Yes 20,32 Yes Yes Yes Yes 
[10] Yes Yes Yes 20,38 Yes Yes Yes Yes 
[11] Yes Yes Yes 21,04 Yes Yes Yes Yes 
[12] Yes Yes Yes 20,32 Yes Yes Yes Yes 
[13] Yes Yes Yes 21,04 Yes Yes Yes Yes 
[14] Yes Yes Yes 20,32 Yes Yes Yes Yes 

Table 3.2. Results of the geometric checking (own source) 

 

 

(3.38) 

(3.39) 

(3.40) 

(3.37) 



Design method according to the EC3-1-8
 

16 
 

Axial resistances 

  
NRd,cff [kN] NRd,psf [kN] NRd,nr [kN] NRd,Ec [kN] 

[1] 6093,29 10162,36 16734,64 6093,29 
[2] 4553,97 10134,20 9404,78 4553,97 
[3] 3275,47 7649,93 6047,88 3275,47 
[4] 2359,39 5265,78 2779,86 2359,39 
[5] 1829,00 3178,86 1047,00 1047,00 
[6] 3818,18 8107,36 9404,78 3818,18 
[7] 2691,34 6119,94 6047,88 2691,34 
[8] 1801,64 4212,62 2779,86 1801,64 
[9] 1276,96 2543,09 1047,00 1047,00 
[10] 1799,57 4283,96 6047,88 1799,57 
[11] 1139,39 2948,84 2779,86 1139,39 
[12] 729,31 1780,16 1047,00 729,31 
[13] 1105,25 2527,57 2779,86 1105,25 
[14] 641,16 1525,86 1047,00 641,16 

 Table 3.3. Axial resistances of the investigated assemblies (own source) 

In plane moment resistances 

  
MRd,cff [kNm] MRd,psf [kNm] MRd,mr [kNm] MRd,Ec [kNm] 

[1] 1730,58 1313,32 2057,98 1313,32 
[2] 1101,45 835,87 928,36 835,87 
[3] 627,63 476,30 447,98 447,98 
[4] 297,38 225,68 141,96 141,96 
[5] 108,38 82,24 32,22 32,22 
[6] 881,59 668,70 928,36 668,70 
[7] 502,35 381,04 447,98 381,04 
[8] 238,02 180,54 141,96 141,96 
[9] 86,74 65,80 32,22 32,22 
[10] 329,39 266,73 447,98 266,73 
[11] 156,07 126,38 141,96 126,38 
[12] 56,88 46,06 32,22 32,22 
[13] 142,55 108,32 141,96 108,32 
[14] 51,95 39,48 32,22 32,22 

Table 3.4. In plane moment resistances (own source) 
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Out of plane moment resistances 

  
MRd,cff [kNm] MRd,psf [kNm] MRd,mr [kNm] MRd,Ec [kNm] 

[1] 468,87 1313,32 2057,98 468,87 
[2] 359,42 835,87 928,36 359,42 
[3] 260,64 476,30 447,98 260,64 
[4] 172,35 225,68 141,96 141,96 
[5] 100,32 82,24 32,22 32,22 
[6] 239,31 668,70 928,36 239,31 
[7] 172,10 381,04 447,98 172,10 
[8] 112,81 180,54 141,96 112,81 
[9] 65,12 65,80 32,22 32,22 
[10] 87,60 266,73 447,98 87,60 
[11] 56,83 126,38 141,96 56,83 
[12] 32,47 46,06 32,22 32,22 
[13] 43,58 108,32 141,96 43,58 
[14] 24,52 39,48 32,22 24,52 

Table 3.5. Out of plane moment resistances (own source) 

In (Table 3.3), (Table 3.4) and (Table 3.5) the most critical failure modes are highlighted, 

because at the numerical simulations the purpose is to determine the resistance of the 

connection, but in many cases the strength failure of the brace overtakes the failure of the joint. 

Thus, in the finite element simulations only those assemblies are considered, where the 

resistance of the brace is larger than the other two resistances, or the difference is less than 25 

%. For example, in (Table 3.4) at the third assembly the brace failure precedes the punching 

failure, but they are very close to each other, the difference is about 1 %. In this case, the real 

failure mode cannot be predicted by the standard.  
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Taking into account this selecting process, in the numerical simulations the following 

assemblies will be considered during the different loading cases (N, Mip, Mop): 

  

Diameter of 
the chord 
(d0) [mm] 

Thickness of 
the chord (t0) 

[mm] 

Diameter of 
the brace  
(d1) [mm] 

Thickness of 
the brace  (t1) 

[mm] 
N Mip Mop 

[1] 508 25 406 20       
[2] 508 25 323,9 14       
[3] 508 25 244,5 12       
[4] 508 25 168,3 8     
[5] 508 25 101,6 5    
[6] 406 20 323,9 14       
[7] 406 20 244,5 12       
[8] 406 20 168,3 8      
[9] 406 20 101,6 5    

[10] 323,9 14 244,5 12       
[11] 323,9 14 168,3 8       
[12] 323,9 14 101,6 5      
[13] 244,5 12 168,3 8       
[14] 244,5 12 101,6 5       

Table 3.6. The selected for assemblies for the numerical simulations (own source) 
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4. Numerical modelling technique 

The aim of this study is to investigate HSS T joints, utilizing different geometrical 

dimensions, and compare the numerical results with the design resistances of the standard. For 

this purpose, a parametric numerical model is developed in Ansys 14.5, where the main 

constituents of the model are the chord, brace and the weld region. In this chapter, firstly the 

development of the geometry, after that a convergence test and the validation process are 

discussed. 

4.1. Development of the geometry 

4.1.1. Joint geometry 

For the creation of the geometry, instead of shell only volume elements are used, because 

in this way the weld region can be modelled correctly. The different constituent parts of the 

joint can be seen on (Figure 4.1). 

 

Figure 4.1. The basic constituents of the T joint (own source) 

Firstly, the geometry of the chord is created, after that perpendicular brace. Those parts 

of the brace, which were located inside the chord are deleted, but during this process, the chord 

remains intact. In this figure, we can see that the volume of the chord and brace are divided into 

some parts, because at the inner parts of the joint (closer to the intersection line) a finer mesh 

will be used in order to obtain adequate results, but at the outer parts only a coarse one to reduce 
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the computational time. The weld region is modelled separately after the tubes, and then added 

to the inner volumes. The geometry of the full joint can be seen on (Figure 4.2). 

 

Figure 4.2. The full geometry of the joint (own source) 

4.1.2. Modelling of the weld 

Basically, in case of tubular joints two welding methods are utilized in the practice. The 

most widely spread type is the full penetration weld (for example in (API, 2005)), which means 

that the weld around the intersection of the chord and brace should be fully penetrated. Another 

option is when the weld starts with full penetration at the crown toe and gradually becomes a 

fillet weld at the crown heel. In this study, the first methodology is considered, where the weld 

region which locates outside of the brace is very small, thus it has no significant effect on the 

static strength. The effect of the weld size on the resistance is not part of this work, thus a 

uniform throat thickness is applied during the simulations (a=5 mm). 

At the creation of the weld, firstly I calculate the intersection point of the weld and chord, 

obtaining symbolic results (in the function of throat thickness and the angle between the weld 

and brace). After that, the three lines which enclose the weld as a volume region are created. 
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Now, the areas between the lines are easy to create, and finally the volume, which is the weld 

region itself. The final shape of the weld can be seen on (Figure 4.3). 

 

Figure 4.3. The final form of the region with two sections (own source) 

4.1.3. Applied material model 

In case of these steel structures the basic material models are the linear elastic, linear 

elastic-perfectly plastic and the linear elastic-isotropic hardening models. In this work the 

second model is utilized (Figure 4.4), but with a very small slope on the plastic region 

(E1/10000) in order to promote the numerical convergence. The Young’s modulus on the elastic 

part is 200000 N/mm2, and Poisson’s ratio is 0,3 (Eurocode 3 EN 1993-1-1:2005 (E), 2005). 

 

Figure 4.4. The applied material model (own source) 
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4.2. Convergence test, the finite element mesh generation 

In this numerical model only volume elements are applied, namely SOLID187 3D 10-

Node Tetrahedral Structural Solid Elements. The geometry of this finite element can be seen 

on (Figure 4.5). 

 

Figure 4.5. The applied SOLID187 finite element (SOLID187 Element Description, 2013) 

At the territory of finite element modelling, the applied mesh size is always a critical point. To 

determine the adequate sizes, I perform a convergence test, which means that I utilize different 

mesh sizes, practically finer and finer mesh, till the mechanical response of the structure 

becomes repeatable. Because this model needs a very large number of elements for the correct 

modelling, I do not use uniform mesh size, since it would lead to an uneconomical solution 

(requires larger computer capacity and computational time). At this model, two different mesh 

sizes are applied, according to (Figure 4.6).  

 

Figure 4.6. The different mesh size regions (own source) 
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At the middle parts of the joint, such as the weld region and some parts of the chord and 

brace a finer mesh is used, and the outer regions have a coarser mesh size. In the convergence 

test, five different mesh size sets are applied (Table 4.1). 

First set Second set Third set Fourth set Fifth set 

I.  II. I.  II. I.  II. I.  II. I.  II. 
17,5 52,5 15 45 12,5 37,5 10 30 7,5 22,5 

Table 4.1. The applied mesh size sets during the convergence test (own source) 

During this procedure, the brace of the T joint is subjected to compressive force, and at 

every timestep, the value of the force and axial displacement (parallel with the axis of the brace) 

are recorded. In this case, the actual values are not important, only the characteristic of the 

curves, which reflect the mechanical response. If the difference between the “current” and the 

“previous” diagrams is relatively small, the “previous” mesh size is adequate for the following 

numerical simulations. The force-displacement diagrams, originated from the different mesh 

sizes can be seen on (Figure 4.7). 

 

Figure 4.7. The results of the convergence, the force-displacement diagrams (own source) 

From this diagram, we can see that the first and second (fourth and fifth set) curve are practically 

the same, thus the fourth mesh size set is used in the further calculations, namely 10 mm at the 
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inner parts and 30 mm at the outer regions. After this testing method, the finite element mesh 

can be created, (Figure 4.8) shows the result of this process, the applied mesh. 

 

Figure 4.8. The finite element mesh of the investigated T joint (own source) 

4.3. Boundary conditions 

In the numerical simulations, at the ends of the chord I supported the nodes against 

translational motion in X, Y and Z directions, which results in a clamped support (Figure 4.9). 

 

Figure 4.9. The applied clamped support at the ends of the chord (own source) 

At the end of the brace, according to the applied external force system, different boundary 

conditions are applied. In case of compression, the end of the brace is restrained against in and 

out of plane translations, furthermore, in case of in plane bending the out of plane motions and 

in case of out of plane bending the in plane motions are inhibited. This type of support system 
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helps to avoid the local buckling failure of the brace, which would lead to wrong results if our 

aim is to determine the resistance of the joint. The applied external loads together with the 

boundary conditions at the end of the brace can be seen on (Figure 4.10). 

 

Figure 4.10. The applied boundary conditions at the end of the brace (own source) 

The length of the chord has an influence on the internal forces at the intersection of the brace 

and chord. To obtain correct results, this phenomena should be investigated, and then minimize 

its effect. For this purpose, the stresses in a point, which locates on the top surface of the chord 

(according to (Figure 4.9)) and near to the intersection line is studied for the case of different 

chord lengths. The results of this parametric simulation can be seen on (Figure 4.11), where the 

von Mises stresses are illustrated in the function of chord length. Of course, the magnitude of 

the stresses is not relevant in this case, only the characteristic of the received curves. From this 

figure, we can see that in case of bending this effect tends to zero after a certain value of the 

length, in this study it is chosen to 9·d0 according to the diagram (in this test, the diameter of 

the chord was 500 mm, thus the 4500 mm corresponds to this size). If we consider the 

compression force, the stress is increasing linearly with the chord length, thus in this case the 

lower length is the more advantageous to reduce this effect. On the other hand, below a certain 

(small) size we eliminate the developing of the chord face failure, so taking into account these 
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aspects the applied length size is 5·d0 for the case of compression (it corresponds to the 2500 

mm on the figure).  

 

Figure 4.11. The effect of the chord length (own source) 

The length of the brace should be relatively small, because in this way we can avoid the flexural 

buckling of this member. This length is set to 2·d1 during the numerical analyses. The applied 

dimensions can be seen on (Figure 4.12). 

 

Figure 4.12. The length of the chord and brace in case of compression (bending) (own source) 

4.4. Validation of the finite element model 

The validation of the finite element model is based on (Lesani, Bahaari, & Shokrieh, 

2013), where the results of earlier experiments are utilized. A very large number of tests were 

performed between 1964 and 1991 on tubular joints, and stored in database. In this case beside 
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the experimental, the numerical results of the article are also available. The investigated 

specimen was subjected to compressive force during the experiment, and had hinged supports 

at the ends of the chord. The proper geometric dimensions and the yield strength are listed in 

(Table 4.2), where the original numbering of the joints is applied. 

Joint I.D. d0 [mm] t0 [mm] d1 [mm] t1 [mm] Lchord [mm] Fy [Mpa] 

J10 457,6 4,9 165,2 4,7 2286 392 

Table 4.2. The main geometric sizes and material properties of the specimen  
(Lesani, Bahaari, & Shokrieh, 2013) 

The length of the brace is the half of the chord, and during the experimental and numerical tests 

the in and out of plane translations of the brace end were restrained, such as in this study. I 

applied the same material model as in the article, namely linearly elastic-perfectly plastic with 

200000 N/mm2 Young’s modulus and 0,3 Poisson’s ratio. At the end of the chord, in this 

simulation instead of the fixed support a hinged one is used (as in the experiments). Because I 

use volume elements, which only have translational degree of freedoms, I supported only a few 

nodes to allow the rotation of the model. The exact finite element model together with the 

boundary conditions, which are used during the validation process can be seen on (Figure 4.13). 

 

Figure 4.13. The applied finite element model for the validation (own source) 

As a result of the laboratory experiments, the load bearing capacity is available, thus this 

value is the base of the validation. In the finite element software, the arc-length method is used 

to calculate the capacity for the nonlinear analysis. The failure criteria is based on the force-
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displacement diagram, namely the load-bearing capacity is defined as the peak load on the 

diagram, after this value the curve starts to decrease, and that is why this method is utilized, 

because it is able to determine this region. The result of the simulation can be seen on (Figure 

4.14), where the displacement values correspond to the end of the brace. 

 

Figure 4.14. The force-displacement diagram of the validation (own source) 

Now let us compare the load-bearing capacities coming from the different sources (Table 

4.3). We can see that the difference between the experimental and my numerical result is about 

14 %, but the exact material properties were not recorded during the experiments. 

Consequently, the assumed values of the validated finite element model were used in my 

simulation, which resulted in a very low (about 4 %) deviation between the numerical models, 

thus this model has been successfully validated. 

Joint 
I.D. 

Test result 
[kN] 

Result of M. 
Lesani et al. [kN]

FEM result 
[kN] 

J10 98,1 109,28 114,83 

Table 4.3. Comparing the results of the validation process (own source) 
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5. Development of design formulation 

The aim of this chapter is to propose a modified design formula for the joint resistance, 

taking into account the different loading conditions. For this purpose, firstly I perform 

numerous parametric simulations for compression, in plane and out of plane bending utilizing 

the selected assemblies (Table 3.6), after that I evaluate the results and determine the modified 

resistance formulae. 

5.1. Parametric simulations 

5.1.1. Analysis methodology 

Similarly to the validation process, the arc-length method is used for the nonlinear 

analysis. In this study, the material and geometrical nonlinearities are considered. To reduce 

the computational time, the solver is terminated after the first limit point is reached, thus the 

force applied before the termination will be the load-bearing capacity. 

5.1.2. Results for the first assembly 

For the first assembly, I show the results in details, after that I summarize them in 

tabulated form. In case of compression, the characteristic of the failure process is the force-

displacement diagram, which can be seen on (Figure 5.1), where the received curve reflects 

very well the linearly-elastic behaviour in case of lower loads, and after that the development 

of the plastic mechanisms. The investigated point here also the end of the brace. The load-

bearing capacity is 8706,1 kN, which is about 42 % higher comparing to the EC resistance. 

 

Figure 5.1. The load-displacement curve for the first assembly (own source) 
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The deformation and plastic strains can be seen on (Figure 5.2), where the left figure 

(deformation) shows properly the plastification of the chord (chord face failure), but at the 

failure only the close region around the intersection line is in plastic state.  

 

Figure 5.2. The deformation (left) and plastic strain (right) figures for compression  
(own source) 

In case of bending, instead of the force-displacement diagram I represent the moment-

rotation curves (Figure 5.3). In both cases (in and out of plane bending), the rotation is based 

on the displacement of the middle line of the brace, which is calculated from the average of two 

point locate on the diameter of the brace (we get these points at the end cross section of the 

brace if we intersect it with the axis of the moment vector). 

 

Figure 5.3. Moment-rotation curves for the first assembly (own source) 

In case of these figures, we can recognize the characteristic linear-elastic-perfectly plastic 

behaviour again, and of course for out of plane bending the resistance is lower, in this case 

about with 25 %. The in plane moment resistance is 2114,31 kNm (about 61 % higher than EC 
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resistance), and out of plane moment resistance is 1620,22 kNm, which is about 245 % higher 

comparing to the standard resistance (the necessary conclusion is at the end of the Chapter 

5.1.2). The deformation and plastic strains of the first assembly can be seen on (Figure 5.4) and 

(Figure 5.5). 

 

Figure 5.4. The deformation (left) and plastic strain (right) figures for in plane bending  
(own source) 

In case of the first figure, the punching shear failure mode appears, as the Eurocode 

predicted by the resistance formulas, but in case of the out of plane bending we can also 

recognize the punching shear failure, in contract to the EC chord face failure prediction. The 

resistance according to the Ansys also much closer to the this resistance, which means that 

either the chord face failure formula is too conservative, or the model is wrong, although in 

case of the compression and in plane bending it reflects well the failure modes, thus this problem 

needs further investigation.  

 

Figure 5.5. The deformation (left) and plastic strain (right) figures for out of plane bending  
(own source) 
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5.1.3. Tabulated results for all the assemblies 

For the selected assemblies I summarized the results in (Table 5.1), (Table 5.2) and (Table 

5.3) together with over-capacity, according to the simulations. 

Axial resistances 

  
NRd,Ec [kN] NR,FEM [kN] NRd,Ec/NR,FEM [-] 

[1] 6093,29 8706,10 1,43 
[2] 4553,97 6359,78 1,40 
[3] 3275,47 4591,88 1,40 
[4] 2359,39 2630,80 1,12 
[5]  -  
[6] 3818,18 5622,79 1,47 
[7] 2691,34 3815,41 1,42 
[8] 1801,64 2558,63 1,42 
[9]  -  
[10] 1799,57 2694,64 1,50 
[11] 1139,39 1667,97 1,46 
[12] 729,31 1034,28 1,42 
[13] 1105,25 1679,43 1,52 
[14] 641,16 962,51 1,50 

Table 5.1. Results of the parametric simulations for compression (own source) 

In plane moment resistances 

  
MRd,Ec [kNm] MR,FEM [kNm] NRd,Ec/NR,FEM [-] 

[1] 1313,32 2114,31 1,61 
[2] 835,87 1322,98 1,58 
[3] 447,98 735,98 1,64 
[4]  -  
[5]  -  
[6] 668,70 1091,35 1,63 
[7] 381,04 635,03 1,67 
[8]  -  
[9]  -  
[10] 266,73 431,42 1,62 
[11] 126,38 214,21 1,70 
[12]  -  
[13] 108,32 186,92 1,73 
[14] 32,22 58,77 1,82 

Table 5.2. Results of the parametric simulations for in plane bending (own source) 
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Out of plane moment resistances 

  
MRd,Ec [kNm] MR,FEM [kNm] NRd,Ec/NR,FEM [-] 

[1] 468,87 1620,22 3,46 
[2] 359,42 1028,91 2,86 
[3] 260,64 654,21 2,51 
[4]  -  
[5]  -  
[6] 239,31 827,93 3,46 
[7] 172,10 554,50 3,22 
[8] 112,81 247,08 2,19 
[9]  -  
[10] 87,60 550,83 6,29 
[11] 56,83 204,64 3,60 
[12] 32,22 65,42 2,03 
[13] 43,58 166,12 3,81 
[14] 24,52 57,79 2,36 

Table 5.3. Results of the parametric simulations for out of plane bending (own source) 

First of all, in case of compression the over-capacity of the fourth assembly is very small 

comparing to the other ones, thus this one needs more analysis. From the plastic strain figure 

(Figure 5.6), we can recognize the failure of the brace, thus this result should not be used for 

the further investigations. 

 

Figure 5.6. Plastic deformations of the fourth assembly (own source) 

Furthermore, in case of out of plane bending, the deviations between the numerical and 

standard results are very large (in all cases the over-capacity is higher than 100 %), thus this 

loading case is not considered at the modification of the design formulae. 
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5.2. Modification of the design formulae 

As it was mentioned in the previous chapter, only the axial and in plane bending is 

considered here. At the modifications, firstly I analyse the standard design formulae, then 

propose some modifications in that, and finally determine the introduced parameters with an 

optimization process, taking into account my numerical results. 

5.2.1. Axial resistance 

In case of compression, for all the assemblies the chord face failure is the critical, thus 

only this resistance formula can be modified according to the finite element results. The original 

standard formula, without the partial safety factor and reduction factor:  

ோܰௗ =
,ଶ݇ߛ ௬݂ݐ

ଶ

݊݅ݏ ଵ߆
ቆ2,8 + 14,2 ൬

݀ଵ

݀
൰

ଶ

ቇ. 

The common in this formula, and the formulae for X, K and N joints is the following term: 

݇ ௬݂ݐ
ଶ

݊݅ݏ ଵ߆
 , 

thus in the modified formula I keep this term in this form. If we take a look at the actual failure 

mode (according to the experiments, for example on (Figure 2.1), it comes off around the weld, 

not around the brace, as the design formula implies. In this study a weld with a=5 mm was 

applied during the numerical simulations, which angle (α) to the brace is 30°, so its length 

parallel with the chord (Figure 5.8):  

ܽ =
ܽ

cos (ߙ). 

Besides taking into account this modified size I introduce some parameters in the original 

formula in the following way:  

ோܰௗ,ௗ = ௫భߛ ቆ
݇ ௬݂ݐ

ଶ

݊݅ݏ ଵ߆
ቇ ቆݔଶ + ଷݔ ൬

݀ଵ + 2ܽ

݀
൰

௫ర

ቇ. 

Practically, this is an optimization problem, where the optimal value of the x1, x2, x3 and x4 

parameters should be determined, taking into account the numerical results:  

,ଵݔ)݂ ,ଶݔ ,ଷݔ (ସݔ = ோܰௗ,ௗ(ݔଵ, ,ଶݔ ,ଷݔ (ସݔ − ோܰௗ,ிாெ = ݉݅݊!. 

In this formula, f is the function to be minimized, ோܰௗ,ௗ is the modified axial resistance 

function and ோܰௗ,ிாெ  represents the results obtained by the numerical simulations. There are 

(5.1)

(5.2)

(5.3)

(5.5)

(5.4)
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different ways to solve this problem, now the nonlinear least squares method is applied in the 

Matlab R2013a mathematical software. The received parameters are shown in (Table 5.4).  

x1 x2 x3 x4 
0,0999 4,8827 20,0093 2,4558 

Table 5.4. The received parameters to the modified axial resistance formula (own source) 

Thus, the proposed modified formula for axial compression:  

ோܰௗ,ௗ = ,ଽଽଽߛ ቆ
݇ ௬݂ݐ

ଶ

݊݅ݏ ଵ߆
ቇ ቆ4,8827 + 20,0093 ൬

݀ଵ + 2ܽ

݀
൰

ଶ,ସହହ଼

ቇ. 

After this, the coefficient of determination (Cod) are calculated so that to characterize the 

exactness of the approximation functions. The general formula of this index-number: 

ܴଶ = 1 −
ݕ)∑ − ො)ଶݕ

ݕ)∑ −  . ത)ଶݕ

In this equation, y refers to the measured data, ݕො is the fitted data and ݕത is the mean of the 

observed data. This R2 index-number is always between zero and one, and the closer to the one 

this number the more exact the regression. Now, the received resistances (from the EC, Ansys 

and the modified formula) and Cod value are summarized in (Table 5.5). 

  NRd,Ec [kN] NR,FEM [kN] Nr,mod [kN] CoD 

[1] 6093,29 8706,10 8773,65 

0,9996 

[2] 4553,97 6359,78 6372,49 
[3] 3275,47 4591,88 4586,10 
[6] 3818,18 5622,79 5564,10 
[7] 2691,34 3815,41 3802,85 
[8] 1801,64 2558,63 2587,21 

[10] 1799,57 2694,64 2605,11 
[11] 1139,39 1667,97 1613,20 
[12] 729,31 1034,28 1087,02 
[13] 1105,25 1679,43 1642,98 
[14] 641,16 962,51 955,44 

Table 5.5. The standard, Ansys and modified axial resistances (own source) 

For the graphical representation of the received results a column diagram is utilized (Figure 

5.7), where the Ansys resistances have unit values, and the others are compared to this one: 

(5.7)

(5.6)
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Figure 5.7. The received axial resistances, comparing to the numerical results (own source) 

5.2.2. In plane bending resistance 

In this case, contract to the compression the punching shear failure is the dominant. 

Utilizing the previously applied procedure, firstly let us consider the general formula for this 

failure (without the partial safety factor):  

M୧୮,ୖୢ =
f୷ݐ݀ଵ

ଶ

√3
1 + 3 sin ଵ߆

4 sinଶ ଵ߆
0,8 =

f୷ݐ݀ଵ
ଶ

√3
 .(ݏݐ݆݊݅ ܶ ݎ݂) 0,8

This formula does not contain experimentally determined parameters, thus we cannot apply the 

previous train of thought, namely the introduced parameters. In this case, the increased size of 

the brace by the ac is utilized, because the actual failure occurs around the weld again, as (Figure 

5.8) shows. Furthermore, the reduction factor refers to the chord face failure, thus we can obtain 

such results which are closer to the reality if we neglect it. 

On these basis, the proposed modified formula:  

M୧୮,ୖୢ.୫୭ୢ =
f୷ݐ(݀ଵ + 2ܽ)ଶ

√3
. 
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Figure 5.8. The shape of the actual failure in case of punching shear  
(Wardenier, Kurobane, Packer, Vegte, & Zhao, 2008) 

The received moment resistances together with standard and numerical results (Table 5.6): 

  
MRd,Ec [kNm] MR,FEM [kNm] MR,mod [kNm] 

[1] 1313,32 2114,31 1736,36 
[2] 835,87 1322,98 1120,67 
[3] 447,98 735,98 652,93 
[6] 668,70 1091,35 896,53 
[7] 381,04 635,03 522,35 
[10] 266,73 431,42 365,64 
[11] 126,38 214,21 180,39 
[13] 108,32 186,92 154,62 
[14] 32,22 58,77 61,20 

Table 5.6. The standard, Ansys and modified in plane moment resistances (own source) 

Now, the resistances are still below the numerical results (except the last assembly, where 

the difference is very small), but significantly closer to them, which results more economical 

design according to the utilized material quantity. Of course, this modification is also seems to 

a good choice in case of the punching shear failure formula corresponding to compression, but 

in this study I cannot support this theory with numerical results (since in all cases the failure 

mode was chord face failure for compression) 
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The graphical representation of the received results from the three sources (Figure 5.9): 

 

Figure 5.9 The received in plane bending resistances, comparing to the numerical results 
(own source) 
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6. Design method calibration 

In this chapter, the aim is to allocate a safety factor for the previously determined axial 

design formula, based on stochastic analysis. For this purpose, I determine the number of 

necessary repetition number for the Monte-Carlo analysis, and perform the simulation in 

Matlab and Ansys. If the results show sufficiently correspondence, I repeat the simulation for 

all the assemblies in Matlab, and determine the final value of the partial factor. 

6.1. Stochastic modelling 

During these simulations, both geometric and material uncertainties are taken into 

account, where the exact mean values, standard deviations and distribution types are taken from 

(JCCS, 2000). At the material uncertainties the yield strength of the S690 HSS, and at the 

geometric uncertainties the thickness of the chord is set to stochastic variable, since it has the 

largest effect on the load-bearing capacity due to its quadratic form. In the Ansys simulations I 

use the twelfth assembly, because its running time is quite low (about four minutes) comparing 

to the first few assemblies, where the geometry is significantly larger, thus the necessary 

computational time also very high (about two hours). Unfortunately, the advised stochastic 

material properties are not valid for high strength steels, practically there are no available 

laboratory experiments on them. In this study, the necessary sources are missing to perform 

such tests, thus the recommendations correspond to the reinforcing steel bars are utilized. The 

proposed (Table 6.1) distributions for the chord thickness and yield strength: 

  Mean value Standard deviation Distribution 

t0 14 mm 1 mm Gauss 

fy0 750 MPa 30 MPa Gauss 

Table 6.1. The applied stochastic variables (own source) 

In case of the chord thickness, at the calculation of the mean value the (JCCS, 2000) allows the 

increasing or decreasing of the characteristic value with 1 mm, but in this case there is no 

specific reason to change it, thus I apply the characteristic one.  

6.2. Determination of the necessary repetition number 

This number is always a sensitive point in the Monte-Carlo analysis, thus we have to 

determine it very circumspectly. The main object is to test the modified resistance formula, and 

determine a safety factor for that. In the Ansys it would take a lot of time to investigate all the 

assemblies in stochastic way, thus I would like to perform the necessary simulations in Matlab, 

where this time reduces to a few minutes instead of numerous days. For this purpose, firstly 
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with the help of the Matlab I determine a characteristic curve for the standard deviation of the 

normal resistance (all simulations in Chapter 6.2 refers to the twelfth assembly). At this curve, 

I consider several repetition numbers, and for these numbers I repeat the Monte-Carlo 

simulation 100 000 times (in this case there were not differences in the output if I repeated this 

test again), and record the standard deviation of the axial resistance for each repetition number 

(this is very similar to the convergence test applied at the determination of the necessary mesh 

size). The results of these tests can be seen on (Figure 6.1). Practically this curve represents 

that if we apply a repetition number, than how much can we rely on the obtained results. 

 

Figure 6.1. Variation of the standard deviation in the function of the repetition number  
(own source) 

The aim of this curve is to select such a number, which provide sufficiently reliable results. 

From this figure, we can see that in case of low values the connection is exponential, but after 

a certain value it becomes approximately linear. For the Ansys simulation, I chose 500, because 

after this value the slope of the curve significantly decreases. The purpose of the probabilistic 

finite element simulation is to validate my Matlab algorithm. Fortunately, probabilistic design 

is available in Ansys, thus after the proper definition of the stochastic variables I perform the 

Monte-Carlo analysis, utilizing the Latin Hypercube Sampling technique (LHS) (in this case, 

the program check the stochastically generated values before each simulation, and generates a 

new one if it is very close to a previously generated value, because in that case practically it 
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will not provide new results). The results of the MC simulation in Ansys are represented on the 

following figures, where the histogram of the chord thickness (Figure 6.2), the yield strength 

(Figure 6.3) and the axial resistance (Figure 6.4) can be seen (similarly to the previous Chapter, 

the load-bearing capacity is based on the arc-length method). 

 

Figure 6.2. The histogram of the chord thickness obtained by the Ansys (own source) 

 

Figure 6.3. The histogram of the yield strength obtained by the Ansys (own source) 
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From the two figures above we can see that the input parameters follow correctly the given 

normal distribution for the case of the applied repetition number. 

 

Figure 6.4. The histogram of the axial resistance obtained by the arc-length method in Ansys 
(own source) 

On the last figure, the resistance histogram shows the characteristic shape of the normal 

distribution, but do not follow it as well as the chord thickness and the yield strength. Practically 

it means that the obtained results not sufficiently accurate, for that we would need more 

simulations, but they will not be used for any further purposes, only for the validation. 

After the finite element simulation, I perform the Monte-Carlo analysis in Matlab for the 

same repetition number. Now, let us compare the results obtained by Ansys and Matlab. On the 

following chart (Table 6.2), beside the received resistances I represent the deviations for the 

deterministic (it was determined in Chapter 5.2.1, when the modified design formula was 

created) and stochastic case. 

Probabilistic results Deviation 

NR,FEM [kN] NR,mod [kN] Probabilistic Deterministic 
1059,30 1159,60 8,65 % 5,10 % 

Table 6.2. Comparison of the different probabilistic results (own source) 

The deviation even in the stochastic case is low, but if we compare it with the original 

deterministic case, it is almost negligible, thus my Matlab algorithm has been successfully 

validated. 
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6.3. Identification of the safety factor 

In this part, firstly I determine the value of the safety factor for the first assembly in the 

Matlab, applying very large repetition number and the principles of the Eurocode, after that I 

summarize the obtained results for all the assemblies in tabulated form. Eventually, I make a 

suggestion on the final value of this factor.  

6.3.1. Partial safety factor for the first assembly 

The geometry of the considered assemblies can be found in (Table 3.1), and the input 

stochastic variables in (Table 6.1), but of course in this case the mean value of the chord 

thickness is different. At the Monte-Carlo simulation, in Matlab the repetition number is chosen 

to 100 000, and the probability density function of the axial resistance according to the modified 

formula obtained in this way can be seen on (Figure 6.5), which reflects very well the 

characteristic shape of the normal distribution. At the creation of this function, the Matlab firstly 

represent the histogram of the compression resistance, after that fits a density function to the 

data. 

 

Figure 6.5. The probability density function of the axial resistance for the first assembly  
(own source) 

Before the determination of the safety factor, we must determine the characteristic value 

of the resistance (at the middle of this function the mean value of the resistance can be found), 

corresponds to the different assemblies. Generally, the Eurocode prescribe 95 % confidence 

level for the design values, which means that in the 5 % of the cases it allows the failure due to 

the different uncertainties (for example the real yield strength of the S690 steel grade is allowed 
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to be less than 690 MPa in the 5 % of the cases). For the determination of the characteristic 

resistance I apply the same methodology, so that firstly I represent the cumulative distribution 

function, then calculate the value which corresponds to 0,05. This procedure can be seen on 

(Figure 6.6). 

 

Figure 6.6. Determination of the characteristic value from the distribution function (own source) 

For the first assembly, the characteristic resistance obtained by this way:  

ோܰ, = 8198,00 ݇ܰ 

The design resistance is obtained by using the modified formula with the deterministic value 

of the chord thickness and yield strength (Table 5.5):  

ோܰ,௦ = 8773,65 ݇ܰ 

Finally, the safety factor can be calculated by dividing the design resistance with the 

characteristic resistance:  

ߛ = ோܰ,௦

ோܰ,
= 1,07 

We can see that in this case the difference is quite small, thus the value of the safety factor is 

also low, although it corresponds only to the first assembly, and it is not the final value yet. 

6.3.1. Tabulated results for all the assemblies 

Now, applying the same procedure, I determine the characteristic values and the safety 

factors for all the assemblies, which are summarized in (Table 6.3). 

(6.1)

(6.2)

(6.3)
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  NR,Design [kN] NR,Char [kN] γ [-] 

[1] 8773,65 8198,00 1,07 
[2] 6372,49 5396,00 1,18 
[3] 4586,10 3581,00 1,28 
[6] 5564,10 4449,00 1,25 
[7] 3802,85 3438,00 1,11 
[8] 2587,21 2339,00 1,11 

[10] 2605,11 2179,00 1,20 
[11] 1613,20 1352,00 1,19 
[12] 1087,02 911,00 1,19 
[13] 1642,98 1315,00 1,25 
[14] 955,44 765,00 1,25 

Table 6.3. The characteristic and design resistances with the safety factors for all the 
assemblies (own source) 

Because these assemblies cover a very large field from the applicable sections, these 

results can be relevant in the practice. The value of the safety factor varies from 1,07 to 1,28, 

thus for the benefit of  safety this study propose the largest received value, namely:  

ߛ = 1,28 

Finally, let us compare the design values obtained by the modified formula (taking into 

account the safety factor) and the Eurocode (Table 6.4): 

  NRd,Ec [kN] NRd,mod [kN] NRd,mod/NRd,Ec [-] 

[1] 6093,29 6854,41 1,12 
[2] 4553,97 4978,51 1,09 
[3] 3275,47 3582,89 1,09 
[6] 3818,18 4346,95 1,14 
[7] 2691,34 2970,98 1,10 
[8] 1801,64 2021,25 1,12 

[10] 1799,57 2035,24 1,13 
[11] 1139,39 1260,31 1,11 
[12] 729,31 849,24 1,16 
[13] 1105,25 1283,58 1,16 
[14] 641,16 746,44 1,16 

Table 6.4. Comparing the design axial resistances (own source) 

Form this table we can see that the obtained design resistances are still above the standard 

resistances, thus the application of the modified formula leads to more economical design 

besides keeping the safety prescriptions of the Eurocode. 

 

(6.4)
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7. Conclusions 

In this study, numerous welded steel T joints made of high strength steel were investigated 

for axial compression and bending. After a brief review on the design recommendations of the 

Eurocode, a parametric numerical model was developed in Ansys to determine the load-bearing 

capacity of the connection, utilizing a very large field of applicable sections with the help of 

fourteen assemblies. After the convergence test, the successful validation of the finite element 

was followed, based on the results of a real experiment, and the corresponding validated 

numerical model. According to the failure mode, a few assemblies were excluded due to the 

early failure of the member, which overtook the failure of the connection. The results of the 

materially and geometrically nonlinear numerical simulations implies that the standard design 

formulae are rather conservative, thus an improvement can be beneficial from economical point 

of view. With the help of the nonlinear least squares method, new design formulae have been 

developed by an optimization according to the received results. After obtaining the formulae of 

the characteristic axial and in plane bending resistance, the determination of the partial safety 

factor was succeeded. For this purpose, both the material and geometric uncertainties were 

taken into account in the stochastic model, where at the structural steel as an assumption the 

stochastic properties of the reinforcing bars were utilized, due to the lack of real test results, 

thus in the future the experimental investigation of HSS material is really important, to specify 

the calibration. For one assembly, a Monte-Carlo simulation was performed in Matlab and 

Ansys. Due to the fact that the results showed sufficient correspondence, henceforth only the 

Matlab was used to determine the partial safety factors for all cases. After the stochastic 

simulations, a recommendation on the final value of the safety factor was given. Eventually, 

the design resistances obtained by the proposed formula and the Eurocode were compared, 

where the new resistances - besides keeping the adequate level of safety - indicates a more 

economical design solution, besides the assumptions of this study. In the future, the necessary 

laboratory investigations on T joints could support the validity of the received results. 
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