

Szakály Ferenc

Építőmérnök hallgató (M.Sc.)

Emberi inak, ínszalagok numerikus modellezése

TDK Dolgozat

Konzulens: Dr. Bojtár Imre egyetemi tanár

Budapest, 2013 Október

<u>Tartalomjegyzék</u>

1. Bevezetés	1
2. A térd anatómiájának és az inak, ínszalagok mechanikai viselkedésének áttek	intése2
2.1. Az emberi térd alapvető anatómiája	2
2.1.1. Csontok	2
2.1.2. İzületi porc	4
2.1.3. Inak és ínszalagok	4
2.1.4. Meniscusok	6
2.1.5. Bursák	6
2.1.6. İzületi tok	7
2.1.7. Izmok	7
2.1.8. Idegek	7
2.1.9. Erek	8
2.2. Inak és ínszalagok felépítése	8
2.2.1. Kollagén	9
2.2.2. Elasztin	10
2.2.3. Alapállomány	11
2.2.4. Illeszkedési helyek	11
2.3. Az inak, ínszalagok mechanikai tulajdonságai	12
2.3.1. Az alapvető mechanikai jellegzetességek	12
2.3.2. Viszkoelasztikus tulajdonságok	13
2.3.3. Anyagmodellek	15
2.3.4. Napjaink numerikus modelljei	22
3. A laboratóriumi kísérletek feldolgozása, az alkalmazott anyagmodellek	27
3.1. A laboratóriumi kísérletek	27
3.1.1. Mintadarabok előkészítése	27
3.1.2. Az egytengelyű húzási kísérletek	
3.1.3. A kísérletek eredményei	
3.2. A laboratóriumi eredmények feldolgozása	29
3.1. Az alkalmazott anyagmodellek	31
3.1.1. Az anyagegyenletek levezetése	31
3.1.2. Az anyagmodellekben szereplő paraméterek meghatározása	34
4. Végeselemes modellezés, az anyagmodellek tesztelése	
4.1. A numerikus modell felépítése	

4.1.1. Uniaxiális modell	39
4.1.2. Biaxiális modell	40
4.2. Konvergencia vizsgálat	41
4.3. Szimulációk futtatása, tapasztalatok	42
4.3.1. Uniaxiális eset	
4.3.2. Biaxiális eset	46
4.4. Modellek javítása	47
5. Összefoglaló	50
6. Irodalomjegyzék	51
7. Függelék	53

1. <u>Bevezetés</u>

Az emberi ízületek megfelelő működésében mind az inak, mind az ínszalagok különösen fontos szerepet játszanak. Az előbbiek legfőbb feladata az izmok által generált erők továbbítása a csontok felé, míg az utóbbiak az ízületek stabilitásáért felelnek. Abban az esetben, ha ezek a szalagok különböző sérüléseket szenvednek, nem csak a sporttevékenységek, hanem a mindennapi élet is sokkal nehezebbé, fájdalmasabbá válhat. Sajnos ez a jelenség viszonylag gyakori a mai világban, ezért mind orvosi, mind a biomechanikai vizsgálatuk nélkülözhetetlen a sikeres helyreállításukhoz.

Dolgozatomban első lépésként áttekintem az inak és ínszalagok funkcióját (2. Fejezet), szerkezeti felépítését, majd a mechanikai tulajdonságaikat, melyeket az átlagos mérnöki szerkezeti anyagokéhoz képest jóval összetettebb viselkedés jellemez. Ezek a lágyszövetek egyszerre mutatnak anizotrop, inhomogén, nemlineárisan rugalmas/viszkoelasztikus viselkedést. Jelen munkában a *térdízületet* vizsgálom, mely az emberi test legnagyobb és legbonyolultabb ízülete. Mindennapi életünk során igen nagy terheknek van kitéve, így ez az egyik leggyakrabban sérülő ízületünk. A fizikailag aktív populációban évente nagyjából minden 1000 emberből kettő szenved valamilyen térdsérülést.

Az ízület komplexitásából fakadóan még jelenleg is sok a nyitott kérdés, feltáratlan terület. A pontos mechanikai viselkedés modellezéséhez nem elegendő a leggyakrabban használt lineárisan rugalmas anyagmodell használata, ennél egy komplexebb modell szükséges. Az inak, ínszalagok szálas felépítésűek, továbbá terheletlen állapotban ezek a szálak ernyedtek, irányuk nem egységes, teljesen szabálytalan. A terhelés növelésével viszont fokozatosan, egymás után kiegyenesednek, és részt vesznek a teherviselésben. Erre a bonyolult folyamatra nincs pontos matematikai leírás, többnyire csak egyszerűsített, kísérleti eredményeken alapuló tapasztalati egyenletek léteznek. A gyakorlatban legtöbbször hiperelasztikus anyagmodelleket alkalmaznak, melyek előállításához, paraméterezéséhez általában különféle laboratóriumi kísérleti eredményeket használnak. Lehetőségem nyílt részt venni a BME Biomechanikai Laboratóriumában egy inakkal foglalkozó kísérletsorozatban, ahol a mechanikai viselkedést egy univerzális szakítógép segítségével vizsgálták. Ezen eredményeket felhasználva állítom elő az ebben a munkában alkalmazott hiperelasztikus anyagmodelleket (*3. Fejezet*).

Ennek felhasználásával elkészítettem az egyik ín paraméteres végeselemes modelljét (4. *Fejezet*), a különféle anyagmodell-variánsok figyelembevételével elvégeztem a szükséges numerikus szimulációkat, végül a kapott eredményeket összehasonlítottam a kísérleti eredményekkel.

2. <u>A térd anatómiájának és az inak, ínszalagok mechanikai viselkedésének</u> <u>áttekintése</u>

A tanulmány fő célja az inak és ínszalagok mechanikai viselkedésének vizsgálata, ehhez azonban elengedhetetlen a szükséges biológiai háttér megismerése. Ennek érdekében először is áttekintem a térd alapvető anatómiáját és az inak, ínszalagok szerkezeti felépítését (2.1, 2.2 *Fejezet*), majd ezek után a mechanikai tulajdonságokat vizsgálom (különös tekintettel az anyagmodellekre), mely a megfelelő modellalkotás alapja (2.3 Fejezet).

2.1. Az emberi térd alapvető anatómiája

Első ránézésre a térd nem biztos, hogy túl bonyolultnak tűnik, de ez a legnagyobb és legösszetettebb ízület az emberi testben. A térd egy *szinoviális ízület*¹ (Knee Joint Anatomy, Function and Problems, 2013), ami a *femurt*² és a *tibiát*³ kapcsolja össze. Állás közben a teljes test súlya terheli, de ez az érték jelentősen megnövekedhet a különböző mozgások közben a dinamikus hatásoknak köszönhetően. A térd mechanizmusa szerint *trochoginglymusnak* tekinthető (Dr Gunther, 2001), ami azt jelenti, hogy képes flexió-extenzió mozgást végezni, valamint rotációt a lábszár tengelye körül. A térdizület mozgása egy három-dimenziós, *policentrikus rotáció*, folyamatosan változó helyzetű tengelyek körül. A térd bonyolultságából fakadóan biomechanikai modellje még ma sem egységes a különböző szakirodalmakban.

A térdízület legfontosabb összetevői a *csontok, ízületi porc, inak, ínszalagok, meniscusok, ízületi tok, bursák, izmok, idegek, erek.* A következő fejezetekben ezek az alkotórészek kerülnek tárgyalásra.

2.1.1. Csontok

Az emberi láb két legfontosabb csontja - név szerint a *femur* és a *tibia* - a térdben találkozik egymással (A Patient's Guide to Knee Anatomy, 2013). Itt helyezkedik el a méretben sokkal kisebb *patella*⁴ is, a lapos, háromszög alakú csont. Néhány irodalom a hosszú és vékony *fibulát*⁵ is a térdet alkotó csontok közé sorolja (Knee Joint Anatomy, Function and Problems, 2013) (2.1. Ábra).

¹ Az ilyen típusú ízületek egy ún. ízületi tokkal vannak körbevéve (2.1.6 Fejezet), és egy speciális folyadékot tartalmaznak (szinoviális folyadék), amely az ízület síkosításáért.

² Combcsont.

³ Sípcsont.

⁴ Térdkalács.

⁵ Szárkapocscsont.

2.1. Ábra A térdet alkotó csontok (Knee Anatomy, 2013)

A *femur* az emberi test leghosszabb és legerősebb csontja. A *disztális*⁶ végén két lekerekített bütyök található, a *laterális*⁷ és *mediális femurcondylus (2.2. Ábra)*.

Ez a két condylus egy speciális, üreges árkot formál, a *patellofemorális árkot*. A térdben a tibia felső felületén helyezkednek el, más szóval a *tibiális platón*, mely egy mediális és egy laterális részből tevődik össze (2.3. Ábra). A *patella* keresztülcsúszik a *patellofemorális árkon*, és nagyon fontos szerepe van a láb flexió-extenzió mozgásában, név szerint megkönnyíti a súrlódást a csontok és izmok között, és segít megvédeni a térdízületet az *anterior*⁸ sérülésekkel szemben.

⁶ Anatómiailag messze helyezkedik el egy referencia ponttól (a láb esetében ez a pont a csípő, ellentéte: proximális).

⁷ Az emberi test középvonalához közelebb (ellentéte: laterális).

⁸ A test elülső felületén, vagy ahhoz közel helyezkedik el (ellentéte: poszterior).

2.3. Ábra A laterális és mediális tibiális plató a tibia proximális végén tibia (Knee Anatomy, 2013)

2.1.2. Ízületi porc

Ahol két csontos felület egymással ellentétesen irányban mozog, ott egy vékony réteg borítja a csontok ízületi felületét, ez az ízületi porc *(2.4. Ábra)*. Ez az anyag fehér. fényes, és egy gumiszerű állag jellemzi (A Patient's Guide to Knee Anatomy, 2013).

2.4. Ábra Ízületi porc a térdízületben (Knee Anatomy, 2013)

Az ízületi porc legfontosabb feladata, hogy egy nagyon sima, egyenletes felületet biztosítson, így megkönnyítve a csontok közötti csúszó mozgást, elkerülve ezzel a kopásból származó sérüléseket (Knee Joint Anatomy, 2013). Rázkódást, ütközést elnyelő szerepe is van, ami szintén segít fenntartani a térd normális működését. A térdízületben három helyen találhatunk ízületi porcot, név szerint a *femur* disztális végén, a tibia tetején és a patella hátoldalán.

2.1.3. Inak és ínszalagok

Az *inak* és az ínszalagok nagyon hasonlóak egymáshoz, a különbség az, hogy az előbbiek a csontokat az izmokkal kapcsolják össze (gyakorlatilag az izom részei) (Knee Joint Anatomy, Function and Problems, 2013), míg az utóbbiak pedig a csontokat más csontokkal. Általánosan az inak legfontosabb feladata hogy továbbítsa az izmok által generált erőket a csontok irányába. A legfőbb inak (a térdben) a *quadriceps ín* és a *patella ín* (A Patient's Guide to Knee Anatomy, 2013). Az első ín összeköti a *femuron* elhelyezkedő *quadriceps izmot* a *patellával*, és biztosítja az erőt a térd extenziós mozgásához, valamint segít a *patellát* a *patellófemorális árokban* tartani. A második ín a *patellát* és a *tibiát* köti össze, és folytatódik felfelé a *femuron*.

A térdizület gyakorlatilag úgy néz ki, mintha egy lekerekített felület *(femur)* egy lapos felületen *(tibia)* helyezkedne el. Egy kis mechanikai zavaró hatás esetén könnyen elképzelhetjük, hogy ez a kerek felület (labda) bármerre kitérhet, a kapcsolat instabillá válhat. Ahhoz, hogy elkerüljük ezt a jelenséget, a két felületnek egymáshoz kell kapcsolódnia, ami tulajdonképpen az *ínszalagok* legfontosabb feladata: egymáshoz kötik a csontokat, a térdben a *femurt* a *tibiához*. Ezen szalagok lágyszövetből felépülő erős, szívós kötegek, és a térdízület stabilitásában a legfontosabb szerepet töltik be.

A két legfontosabb *ínszalag* a térdízület külső részén a *mediális collaterális ínszalag* (MCL) és a *laterális collaterális ínszalag* (LCL) *(2.5. Ábra)*. Ezen szalagok összekapcsolják a *femur* mediális/laterális oldalát a *tibia* mediális/laterális oldalával. Az *MCL* és *LCL* legfontosabb feladata, hogy megvédjék a térdízületben elhelyezkedő csontokat a túlságosan nagy relatív oldalirányú mozgásoktól. A másik két fontos ínszalag a térdízületen belül helyezkedik el, az anterior keresztszalag (ACL) és a poszterior keresztszalag (PCL) *(2.6. Ábra)*, ezek a *femurt* és a *tibiát* belül kapcsolják egymáshoz.

2.5. Ábra A térdízület külső ínszalagjai, az LCL és az MCL (Knee Anatomy, 2013)

Legfontosabb feladatuk, hogy szabályozzák a térd előre-hátra mozgását. Az *ACL* a *tibia* előre mozgását és rotációját korlátozza a *femurhoz* képest, a *PCL* pedig a hátramozgásért felelős. (Arnheim & Prentice, 2010). Az *anterior keresztszalag* együttdolgozik a *femur* izmaival, név szerint a *hamstring izommal*, hogy nagyobb stabilitást biztosítson a térdnek.

2.6. Ábra A térdízület belső ínszalagjai, az ACL és a PCL (Knee Anatomy, 2013)

2.1.4. Meniscusok

A térdízületben elhelyezkedő két *meniscus* speciális ínszalag (Arnheim & Prentice, 2010), a *tibia* proximális végén helyezkednek el (2.7. Ábra). Ezek a lemez alakú "párnák" két fontos feladatot látnak el: egyrészt a *femur* disztális végéről átadódó erőt eloszlatják a *tibia* felszínén, elkerülve ezzel egy túlságosan nagy koncentrált erőt, mely az *ízületi porcok* sérüléséhez vezetne, másrészt segítik az ínszalagok térdstabilizáló funkcióját.

2.7. Ábra A mediális és a laterális meniscus (Knee Anatomy, 2013)

A *meniscusok* vastagabbak a szélső részeken, így egy ún. "ék hatást" fejtenek ki (A Patient's Guide to Knee Anatomy, 2013). Ennek lényege, hogy a *femur* lekerekített végeit (*femurcondylus*) a *tibiális platón* tartják, meggátolva ezzel, hogy a *femurcondylusok* gördülő mozgást végezzenek a *tibián*.

2.1.5. Bursák

A térdizület körül eddig nagyjából két tucat *bursát* (Arnheim & Prentice, 2010) azonosítottak. Ezek a *bursák szinoviális* szövetrétegekből tevődnek össze, melyeket vékony

hártya vagy folyadékréteg választ el. A folyadékkal telt "zsákok" legfontosabb feladata, hogy kipárnázzák a térdízületet, és csökkentsék a súrlódást az egyes anatómiai alkotóelemek között (*izmok, csontok, inak, ínszalagok*).

2.1.6. Ízületi tok

A térdízület porcos felszíneit a vékony, szálas felépítésű *ízületi tok* burkolja (2.8. Ábra) (Knee Joint Anatomy, Function and Problems, 2013), melynek belső felületét a *szinoviális membrán* határolja. A tok legfőbb feladata egy ún. *szinoviális folyadék* kiválasztása, mely kenést biztosít a térdízületnek.

2.8. Ábra Ízületi tok a térdben (Knee Anatomy, 2013)

2.1.7. Izmok

Két fontos izomcsoport helyezkedik el a térdizület környezetében, a *quadriceps* és a *hamstrings izmok* (A Patient's Guide to Knee Anatomy, 2013). A *quadriceps* négy izomból tevődik össze a *femur* anterior oldalán, melyek térd kinyújtásáért felelősek (extenzió közben összehúzódnak). A *hamstrings* három izomból áll a *femur* poszterior oldalán, és a térd hajlítását irányítja (flexió közben összehúzódnak).

2.1.8. Idegek

A térdízület körül a két legfontosabb ideg a *tibiális ideg* és a *peroneus ideg (2.9. Ábra)*, melyek az érzékelésért és az izmok irányításáért felelősek (A Patient's Guide to Knee Anatomy, 2013). A sciatic ideg - mely keresztül megy az egész femuron - válik szét erre a két idegre, ezek futnak utána egészen a lábfejig.

2.9. Ábra A térd körüli legfontosabb idegek (Knee Anatomy, 2013)

2.1.9. Erek

Két nagyon fontos ér helyezkedik el a térd körül, név szerint az artéria popliteal és a véna popliteal *(2.10. Ábra)*. Az első a lábat és a lábfejet látja el (ebből az érből négy ág szállít a térdbe), a második pedig visszaszállítja a vért a szívbe (A Patient's Guide to Knee Anatomy, 2013).

2.10. Ábra A legfontosabb erek a térdízelt körül (Knee Anatomy, 2013)

2.2. Inak és ínszalagok felépítése

Ha olyan lágyszöveteket szeretnénk modellezni, mint az inak és ínszalagok, akkor a teljes modellezési folyamat legfontosabb és legérzékenyebb része a megfelelő anyagmodellek használata. Annak érdekében, hogy olyan eredményeket kapjunk, melyek megfelelően tükrözik az anyagi viselkedést, először is meg kell ismernünk a modell összetevőinek szerkezeti felépítését. Ennek segítségével mikromechanikai anyagmodellek állíthatók elő, melyek laboratóriumi mérések segítségével pontosíthatóak (a kísérletek célja az anyagegyenletekben szereplő esetleges anyagi paraméterek meghatározása), vagyis a mechanikai tulajdonságok áttekintése előtt szükséges a lágyszövetek felépítésének vizsgálata.

Az inak legfőbb funkciója az izmok által generált erők továbbítása a csontok felé, így biztosítva a mozgás létrejöttét. Az ínszalagok elsősorban mechanikai funkciót töltenek be az emberi testben, ez nem más, mint az egyes ízületek stabilizálása. Fiziológiailag átlagos mozgástartományokban könnyű mozgást biztosítanak ezeknek a "kapcsolatoknak", míg az ezen kívül eső tartományok esetében növekvő ellenállást fejtenek ki a mozgással szemben-

Valójában ezek a lágyszövetek biológiai kompozitok, fő alkotójuk az ún. *alapállomány* (ground substance), amely *kollagén*nel (collagen) és *elasztin*nal (elastin) van megerősítve (*kötőszövetek*). Ez a massza *proteoglikán*ból (proteoglycan), *glikolipidek*ből (glycolipid), *fibroblast*okból (fibroblast) és *víz*ből tevődik össze (Vita, 2005). Az inak és szalagok felépítését a (2.11. Ábra) mutatja.

2.11. Ábra Inak és ínszalagok szerkezeti felépítése (Ligament, 2013)

Az inak és ínszalagok kisebb egységekre, ún. *fasciculus*okra (fascicle) válnak szét, amelyek az alapvető kollagén rostokat és fibroblastokat tartalmazzák (Structure and Function of Ligaments and Tendons, 2013). Ezen a szinten mechanikai szempontból *(2.3 Fejezet)* fontos megemlíteni, hogy ezek a szálak egy hullámos mintát (crimp pattern) mutatnak terheletlen állapotban (Ligament, 2013). Ez a különleges elrendezés nagyban hozzájárul a lágyszövetek nemlineáris viselkedéséhez, már kis feszültségek esetében is. Ezek a szálak további kisebb egységekre osztódnak, *fibrillium*okká (fibril), *al-fibrillium*okká (subfibril), *mikrofibrillium*okká (microfibril), és végül *kollagén rost*okká.

2.2.1. Kollagén

A kollagén a legfőbb teherviselő komponense a lágyszöveteknek, ezáltal mechanikailag nagyon fontos összetevő (Holzapfel, 2000). Valójában ez egy protein, és a legfontosabb

alkotója a kötőszövetekben elhelyezkedő *extracelluláris mátrix*nak (extracellular matrix), az ínszalagok száraz térfogatsúlyának nagyjából a 60-70 %-át teszik ki. A kollagén molekulák (melyből a kollagén fibrilliumok állnak) egy α–láncokból (aminosavak) felépülő, jobb kezes tripla-helix (triple helix) szerkezettel rendelkeznek (Weiss & Gardiner, Computational Modeling of Ligament Mechanics, 2001). A legtöbb kollagén molekula három típusú aminosavat tartalmaz: glicint (glycine), prolint (proline) és hydroxyprolint (hydroxyproline). Ezek a kollagén molekulák kovalens kötéssel kapcsolódnak egymáshoz, összeállva így kollagén fibrilliumokká, melyből a kollagén szálak épülnek fel (2.12. Ábra).

2.12. Ábra A kollagén szerkezete (Vita, 2005)

A kollagén fibrilliumok átmérőjének változtatásával különböző szilárdsági értékek érhetők el, mely természetesen függ az ín/ínszalag funkciójától is. Idáig több mint tizenöt típusú kollagén molekulát azonosítottak (Vita, 2005), de a legfőbb szálalkotó kollagének az I. típusú és a III. típusú kollagének (a két típus aránya pl. az ACL-ben 90-10 % (Function of Ligaments, 2013)). Ezek a molekulák a *fasciculus*okban olyan sejtekkel vannak elválasztva, mint a fibroblastok.

2.2.2. Elasztin

A kollagén mellett az *elasztin* a másik fontos *protein*, mely alkotóeleme az *extracelluláris mátrix*nak (Holzapfel, 2000). A szövet nedves térfogatsúlyának kevesebb, mint egy 1 %-át teszi ki, így a teherbírásra gyakorolt hatása nem túl jelentős. Alapvetően az *elasztin* lineárisan rugalmas anyag, tehát a legfőbb funkciója, hogy biztosítsa a szövetek rugalmasságát. A *kollagénnel* ellentétben az *elasztin* nem mutat jelentős relaxációs viselkedést. Terheletlen állapotban a hosszú és rugalmas *elasztin* molekulák egy meglehetősen rendezetlen, "tekeredett" állapotban vannak, mely szabályosabbá válik a terhelés (nyújtás) növelésével. Laboratóriumi

kísérletek segítségével a kutatók kimutatták, hogy a magasabb elasztin tartalommal rendelkező lágyszöveteknek magasabb a *szakadó nyúlása*⁹ (Weiss & Gardiner, Computational Modeling of Ligament Mechanics, 2001).

2.2.3. Alapállomány

A kollagén és az elasztin az ún. alapállományba van beleágyazódva (Vita, 2005). Ennek a határoló masszának a legfőbb funkciója, hogy egybetartsa a lágyszöveteket. A víz és a glikoproteinek (glycoprotein) mellett a fő összetevője a proteoglikán. Annak ellenére, hogy a glikoproteinek csak nagyjából az 1 %-át teszik ki a nedves térfogatsúlynak, nagyon fontos feladattal rendelkeznek, szabályozzák a víz mozgását az alapállományban. Általában a víz a 60-80 %-át teszi ki a nedves térfogatsúlynak (Ligament, 2013). Az alapállomány "olajozást" és térelhatárolást biztosít, valószínűleg az egyes szálak csúszását is elősegíti. A víz, a kollagén és az alapállomány interakciójának következtében az inak, ínszalagok rendelkeznek némi viszkoelasztikus tulajdonsággal (Weiss & Gardiner, Computational Modeling of Ligament Mechanics, 2001). A magas víztartalom miatt összenyomhatatlan viselkedést feltételezhetünk, mely bizonyos egyszerűsítésekhez vezet az anyagegyenletekben.

2.2.4. Illeszkedési helyek

Azt a helyet, ahol az inak, ínszalagok a csontokhoz kapcsolódnak, *illeszkedési hely*nek (insertion site) nevezzük. Ezek a lágyszövetek viszonylag nagy terheket közvetítenek, így a legfőbb feladata ennek a bonyolult csomópontnak az, hogy csökkentse a feszültségkoncentrációt a *lágy-* és *keményszövet*ek között (Weiss & Gardiner, Computational Modeling of Ligament Mechanics, 2001).

A csatlakozás szempontjából megkülönböztetünk *direkt* (direct) és *indirekt* (indirect) *illeszkedési hely*eket. Az első esetben a különböző részek közötti átmeneti szakasz kevesebb mint 1 mm, ami azt jelenti, hogy a határok nagyon élesek a két csatlakozó rész között. (pl.: *MCL és ACL femorális csatlakozása*). *Indirekt illeszkedési hely*ek esetében az átmeneti zóna jóval nagyobb az előző típushoz képest (pl.: az MCL tibiális csatlakozása). Ezeket a helyeket gyakran érik sérülések, és a gyenge vérellátás miatt a felépülésük is hosszabb. Kísérletek segítségével a kutatók kimutatták, hogy az alakváltozás az *illeszkedési hely*eken és a *lágyszövet*ek belsejében eltérő.

⁹ A tönkremenetelt megelőzően mért alakváltozás.

2.3. Az inak, ínszalagok mechanikai tulajdonságai

Ebben a pontban áttekintem az érintett lágyszövetek anyagi tulajdonságait, viselkedését. Ahogy az előző fejezet is utalt rá, az inak, ínszalagok mechanikai viselkedésének pontos leírásához, vizsgálatához a legfontosabb a megfelelő anyagmodell alkalmazása. Általánosságban elmondható, hogy ezek az anyagok egyszerre mutatnak anizotrop, inhomogén és nemlineárisan rugalmas/viszkoelasztikus viselkedést, ráadásul nagy alakváltozásokat szenvednek. Ezeket az anyagi jellemzőket a numerikus modellben egyszerre nagyon nehéz figyelembe venni, ezért a gyakorlatban általában egyszerűsített anyagmodelleket használunk.

2.3.1. Az alapvető mechanikai jellegzetességek

Az inak, ínszalagok viselkedésének megértéséhez először is tekintsünk egy tipikus feszültség-alakváltozás diagramot (2.13. Ábra).

Ez az ábra kvázi-statikus terhelés esetén kiválóan tükrözi a lágyszövetekben lejátszódó szerkezeti változásokat. A görbe alakja nagyon jellegzetes, ez alapján három különböző régiót különböztetünk meg (Vita, 2005): a "kezdeti szakaszt" (toe region), a "lineáris szakaszt" (linear region) és a "tönkremeneteli szakaszt" (failure region).

Terheletlen állapotban a kollagén szálak "hullámos" elrendezést mutatnak (Ligament, 2013), melyet "ernyedt" állapotként is szokás nevezni. A *kezdeti szakasz*ban az eredetileg hullámos szálak fokozatosan elkezdenek kiegyenesedni és részt venni a teherbírásban. Mivel az inak, ínszalagok merevségét és szilárdságát ezek a szálak biztosítják, ez a szakasz nemlineáris (tipikusan ez a szakasz a jellemző a mindennapi életből adódó terhelések esetében) (Vita, 2005). A kiegyenesedés közben ezek a szálak interakcióba lépnek az *alapállománnyal*, így helyenként lokálisan nyomásnak is ki vannak téve. Ahogy növekszik a teher, a *lineáris*

*szakasz*ban a szálak teljesen kiegyenesednek és a feszültség-alakváltozás görbe gyakorlatilag lineárissá válik. Ernyedt állapotban a szálak elrendezése szabálytalan, de a fokozatos terhelés hatására a teherrel (és egymással) párhuzamos irányba rendeződnek. Az orientációban bekövetkező változás eredményeképpen a kiegyenesedés után az anizotropia transzverzális izotropiára redukálódik (ezzel a feltételezéssel az anyagegyenletben szereplő ismeretlen változók paraméterek száma csökkenthető). A *tönkremeneteli szakasz*ban a magas feszültségeknek köszönhetően a szálak fokozatosan elszakadnak (így a merevség folyamatosan csökken), mígnem a teljes ín/ínszalag elszakad.

A térdínszalag sérülések 90 %-ában az ACL és az MCL a sérült szalagok (Woo, Abramowitch, Kilger, & Liang, 2006), ezért a kutatók a laboratóriumi kísérletek nagy részében ezeket vizsgálják. Ezek során meghatározzák a legfontosabb anyagjellemzőket: a húzószilárdságot, a rugalmassági modulust és a határnyúlást. Ezek a tesztek nagyban szükségesek az orvostudomány fejlődéséhez, de az eredményeket nagyon körültekintően kell kezelnünk, mert változnak a szalag típusával, korával, nemmel, az esetleges sérüléssel, a kezelési eljárással és a kísérlet módszerével (Vita, 2005).

2.3.2. Viszkoelasztikus tulajdonságok

Az inak, ínszalagok jelentős idő- és történetfüggő viszkoelasztikus viselkedést mutatnak, jellemző rájuk a kúszás és relaxáció, alakváltozás-sebesség függés és a hiszterézis.

Az *inszalag* sérülések általában magasabb alakváltozás-sebességeken történnek, így az *alakváltozás-sebesség* fontos tényező a szalagok terhelési körülményeknél (Vita, 2005) (ez a hatás főként az inszalagok viselkedését befolyásolja). Ennek ellenére idáig kevés tanulmány foglalkozott ezzel a hatással. A kísérletek kimutatták, hogy magasabb alakváltozás-sebességek esetén az inszalag merevebben viselkedik, más szavakkal a feszültség-alakváltozás diagram meredeksége növekszik (2.14. Ábra).

Másrészt az alakváltozás-sebességnek abban az esetben is fontos szerepe van, ha figyelembe vesszük a csont-ínszalag-csont szerkezetek tönkremeneteli módját, a csontok nagy alakváltozás sebesség érzékenységének köszönhetően. Az ilyen szerkezeteknél alacsony alakváltozás sebességek esetén a csontos rész kiszakadása a jellemző, míg magasabb értékek esetében a csont erősebbé válik, és az ínszalag szakadása válik a tipikussá (Ligament, 2013).

A kúszást (állandó feszültség mellett az idővel növekvő alakváltozás) és a relaxációt (állandó alakváltozás mellett az idővel csökkenő feszültség) először laboratóriumi kísérletek segítségével vizsgálták (Haghpanahi & Jalayer, 2008) *(2.15. Ábra)*. A kúszás jelenségéből fakadóan az inak, ínszalagok a kúszás hatása alatt fokozatosan kiegyenesednek. Ezek a tanulmányok azt is kimutatták, hogy a kúszás nagysága feszültségfüggő, valamint a relaxáció alakváltozás-függő, továbbá a relaxáció gyorsabban zajlik le, tehát *nemlineáris viszkoelasztikus*¹⁰viselkedést mutat (Vita, 2005).

2.15. Ábra Inak, ínszalagok kúszása (felül) és relaxációja (alul) (Vita, 2005)

¹⁰ A feszültség és az alakváltozás közötti kapcsolat időben nemlineáris.

A terhelés-tehermentesítési folyamat közben - állandó alakváltozás-sebesség mellett - a feszültség alakváltozás diagramokon *hiszterézis hurkok* figyelhetők meg, az alakváltozási energia elnyelődésének köszönhetően a terhelési ciklusok növelésével a görbék jobbra tolódnak *(2.16. Ábra)*. Ennek a jelenségnek köszönhetően, a kísérleti mintadarabokat általában *prekondícionálják* (precondition) a valós terhelés megkezdése előtt (Weiss & Gardiner, Computational Modeling of Ligament Mechanics, 2001).

2.16. Ábra Hiszterézis hurkok kialakulása egymás utáni terhelés-tehermentesítés esetén (Vita, 2005)

A különböző kísérletek kimutatták, hogy a hiszterézis viselkedés csökken a terheléstehermentesítési ciklusok növelésével, és egy elégséges ismétlési szám után a mechanikai válasz megismételhetővé válik. A folyamat hátránya, hogy a mintadarab hossza megnövekszik. A *prekondícionálásnak* pozitív mellékhatásai is vannak, csökkenti a kúszást és relaxációt, valamint a csúcsfeszültségeket ciklikus terhelés esetén. Ezért valós kísérletek esetén a kívánt anyagi jellemzők kinyerése előtt szükséges lehet ennek a folyamatnak (módszernek) az alkalmazása.

2.3.3. Anyagmodellek

Általánosságban az anyagmodellek előállításának két típusát különböztethetjük meg: a *fenomenológiai* és a *mikromechanikai* modelleket (Bojtár, Mechanika MSc, 2013). Az első típus jellegzetessége, hogy nem veszi figyelembe az anyag mikroszerkezeti felépítését, nem vizsgálja az egyes komponensek és a mechanikai viselkedés közötti kapcsolatot, hanem egy matematikai formulát határoz meg a makroszintű kísérletek alapján, a modell paramétereinek pedig csak "általános" fizikai jelentése van. A második típus esetében az anyagmodell előállításánál az egyes szerkezeti komponenseket mindig figyelembe veszik, és a szükséges

anyagi paramétereket kísérletek segítségével határozzák meg (a változóknak általában igazi fizikai jelentésük van).

Az inak, ínszalagok összetett viselkedéséből fakadóan az anyagegyenletek előállítása szintén bonyolult. A leggyakrabban használt anyagmodellek a hiperelasztikus modellek (Neo– Hooke-modell, Mooney–Rivlin-modell, stb.), nagy alakváltozások figyelembe vételével. Általában, a véges elemes szimulációk előtt valós kísérletek szükségesek, hogy meghatározzuk az anyagi konstansokat (C_1 , C_2 , ..., C_n), majd más, független kísérletek segítségével validálható a numerikus modell. Az elmúlt évtizedekben a kutatók számos anyagmodellt készítettek, sokszor nagyon különböző megközelítésekkel. Először a *kezdeti szakasz* megfelelő leírására koncentráltak (több különböző alapötlettel) rugalmas és viszkózus modellekkel, a közelmúltban azonban a *tönkremeneteli szakasz* is a kutatók célpontjává vált.

Rugalmas modellek

Az első rugalmas modellek, melyek az ínszalagok (az inak és ínszalagok mechanikai viselkedése jellégen megegyezik) egytengelyű viselkedését leírták (*Viidik et al.* javasolták, majd *Frisen et al.* tovább fejlesztették) (Vita, 2005) számos, lineárisan rugalmas rugóból álltak (2.17. Ábra), melyek a fokozatosan kiegyenesedő kollagén szálakat helyettesítették. Ebben a modellben ernyedt állapotban a szálak hajlásszöge azonosnak feltételezett a lágyszövet mentén.

2.17. Ábra Nemlineáris viselkedés modellezése összekapcsolt rugók segítségével (Vita, 2005)

Az ún. SSL (sequential straightening loading) modellt *Kastelic et al.* javasolták (Weiss & Gardiner, Computational Modeling of Ligament Mechanics, 2001), melyben a hullámos szálaknak nincs húzómerevsége, csak a kiegyenesedettek hordják a terhet. A hullámos mintához tartozó hajlásszögek változnak a keresztmetszet mentén, így a szálak fokozatosan egyenesednek ki, ez biztosítja a *kezdeti szakasz* jellegzetes, nemlineáris alakját. *Decraemer et al.* olyan modellt javasoltak (Vita, 2005), melyben a rugalmas szálak egy zselatin-szerű

folyadékba vannak beleágyazva. Ebben a modellben a szálak azonos keresztmetszeti területtel és merevséggel rendelkeznek, de a kiegyenesítéshez szükséges nyúlások normál eloszlással rendelkeznek. Egy másik típusú modellt javasoltak *Diament et al.*, melyekben a kollagén szálakat közvetlenül - egymáshoz csuklósan kapcsolódó rugalmas - egyenes szelvényekkel modelleztek (Weiss & Gardiner, Computational Modeling of Ligament Mechanics, 2001). A modell fejlesztett változatában a csuklók mellett elfordulási rugókat is alkalmaztak *(Stouffer et al.)*. Ezek az egydimenziós modellek jól leírták az egytengelyű viselkedést, de a térbeli viselkedést és az *alapállomány* hatását nem tudták figyelembe venni.

Lanir három dimenziós modellje szerint (Vita, 2005) a teljes mechanikai válasz a szálak orientációjától és mechanikai tulajdonságaitól, valamint az *alapállomány*tól függ. Ez a modell alakváltozási energia alapú megközelítést alkalmaz, és feltételezi, hogy a teljes energia az egyes szálak alakváltozási energiájának összege. A szálak lineárisan rugalmasan viselkednek, és szintén csak kiegyenesedett állapotban képesek teherfelvételre, továbbá a kezdeti elhelyezkedésük sztochasztikusan definiált. Az alapállomány egy hidrosztatikus nyomással járul hozzá a mechanikai válaszhoz.

J. A. Weiss et al. 2001-ben javasoltak egy modellt, amely az ínszalagokat összenyomhatatlan (a magas folyadék-tartalom miatt), transzverzálisan izotrop (az ínszalagok szálerősítésű kompozitként is modellezhetők, és a "teherviselő" szálak párhuzamosak egymással), hiperelasztikus (segíti a modell véges elemes alkalmazhatóságát) anyagként veszi figyelembe (Weiss & Gardiner, Computational Modeling of Ligament Mechanics, 2001). A modellben a mechanikai viselkedést a kollagén szálak, az alapállomány és a kettejük közötti interakció határozza meg. Ezeket a feltételeket figyelembe véve modelljükben a teljes alakváltozási energia:

$$W = F_1(I_1, I_2) + F_2(\lambda) + F_3(I_1, I_2, \lambda).$$
(2.1)

Az F_1 függvény az izotrop alapállomány hatását, F_2 a kollagén szálak mechanikai válaszát és F_3 pedig a szálak és a mátrix közötti interakcióját, I_1 és I_2 a jobb Cauchy–Green alakváltozási tenzor¹¹ első és második invariánsa, és λ a szálak megnyúlása. Jelen esetben a II. Piola–Kirchhoff-feszültségtenzor a következőképpen írható fel:

$$\boldsymbol{S} = 2\frac{\partial W}{\partial \boldsymbol{C}} = \left[(W_1 + I_1 W_2) \boldsymbol{I} - W_2 \boldsymbol{C} \right] + \frac{1}{\lambda} W_\lambda \boldsymbol{a}^0 \otimes \boldsymbol{a}^0 + p \boldsymbol{C}^{-1}, \qquad (2.2)$$

¹¹ Nagy alakváltozásoknak kitett hiperelasztikus anyagmodellek esetében a mérnökök általában Green-Lagrange alakváltozás- és a jobb Cauchy-Green deformációs tenzort illetve a II. Piola-Kirchhoff feszültségtenzort alkalmazzák.

ahol a W_i alakváltozási energia deriváltjai:

$$W_1 = \frac{\partial F_1}{\partial I_1} + \frac{\partial F_3}{\partial I_1}; \qquad W_2 = \frac{\partial F_1}{\partial I_2} + \frac{\partial F_3}{\partial I_2}; \qquad W_\lambda = \frac{\partial F_2}{\partial \lambda} + \frac{\partial F_3}{\partial \lambda}$$
(2.3)

Itt \mathbf{a}^0 egységvektorokból álló vektormező, amely a szálak irányítottságát definiálja terheletlen állapotban, *p* pedig egy ismeretlen nagyságú nyomás. A mátrix és a szálak közötti kapcsolatot laboratóriumi tesztekkel nagyon nehéz meghatározni, így ezen a ponton egy egyszerűsítést alkalmaztak, mégpedig elhanyagolták az *F*₃ interakciós tagot. Ahhoz, hogy leírják az alapállomány hatását, a két paraméteres Mooney–Rivlin-modellt használták (az utolsó (harmadik) tag az eredeti egyenletben zérus az összenyomhatatlan feltételezés miatt):

$$F_1 = \frac{C_1}{2}(I_1 - 3) + \frac{C_2}{2}(I_2 - 3).$$
(2.4)

Az F_2 függvény előállításánál számos kísérlet eredményét figyelembe vették, nevezetesen azt hogy a kollagén szálaknak nincs nyomómerevsége, a feszültség-alakváltozás görbe *kezdeti szakasz*a exponenciális függvénnyel közelíthető és a *lineáris szakasz* pedig egy egyenessel. Ezeket felhasználva a szálak alakváltozási energiájának deriváltjai:

$$\begin{split} W_{\lambda} &= 0, & \lambda \leq 1 \\ W_{\lambda} &= C_3 \big(e^{C_4(\lambda - 1)} - 1 \big), & 1 < \lambda < \lambda^* \\ W_{\lambda} &= C_5 \lambda + C_6. & \lambda \geq \lambda^* \end{split}$$

Itt λ^* a szálak kiegyenesedéséhez szükséges nyúlás, C_3 az exponenciális szakasz feszültségeit skálázza, C_4 a szálak kiegyenesedésének sebessége, és C_5 pedig a kiegyenesedett szálak rugalmassági modulusa (C_6 meghatározható a második és harmadik egyenlet egyenlősége alapján, amikor $\lambda = \lambda^*$) (Weiss, A Constitutive Model and Finite Element Representation for Transversely Isotropic Soft Tissues, 1994). Az anyagi paraméterek laboratóriumi mérések segítségével határozhatók meg. Ezt a modellt sikerrel alkalmazták az MCL viselkedésének leírására.

Az előző modell jól leírja az ínszalagok viselkedését, továbbá összekapcsolja a szerkezeti felépítéssel, de a mérnöki gyakorlatban az esetek többségében olyan anyagmodelleket alkalmaznak, melyek "gyárilag" be vannak építve a véges elemes programokba. Ilyen típusú problémáknál a legelterjedtebb hiperelasztikus modellek a Neo-Hooke- és a Mooney-Rivlin-modellek. Valójában a *Neo-Hooke*-modell a klasszikus Hooke-modell kiterjesztése nagy alakváltozások esetére. Az energiafüggvény általános alakja:

$$W = \frac{\mu}{2}(\overline{I_1} - 3) + \frac{1}{d}(J - 1)^2.$$
(2.6)

Itt μ a nyírási modulus, $\overline{I_1}$ az első deviátoros alakváltozási invariáns, J a deformációgradiens tenzor determinánsa és d az összenyomhatatlansági paraméter, melynek kapcsolata a térfogatváltozási modulussal (Neo-Hookean Material Properties, 2013):

$$K = \frac{2}{d}.$$
 (2.7)

Ha elfogadjuk az összenyomhatatlansági feltételezést, az F deformációgradiens tenzor determinánsának értéke egy lesz, (így az első deviátoros alakváltozási invariáns egyenlő az első alakváltozási invariánssal, tehát $\overline{I_1} = I'_1$), és a kapcsolat az alábbi egyparaméteres egyenletté egyszerűsödik (Bojtár, Material Models, 2013): (2.8)

$$W = \frac{\mu}{2}(I_1' - 3).$$

A *Mooney–Rivlin-modell* az előző anyagmodell kiterjesztése, melyben a második alakváltozási invariáns - mint változó - hozzáadódik a modellhez. Több típussal rendelkezik, a gyakorlatban 2, 3, 5 és 9 paraméteres verziókat alkalmazzák. A két paraméteres változat általános energiafüggvénye:

$$W = c_1(\overline{I_1} - 3) + c_2(\overline{I_2} - 3) + \frac{1}{d}(J - 1)^2.$$
(2.9)

A három paraméteres változat energiafüggvénye:

$$W = c_1(\overline{I_1} - 3) + c_2(\overline{I_2} - 3) + c_3(\overline{I_1} - 3)(\overline{I_2} - 3) + \frac{1}{d}(J - 1)^2.$$
(2.10)

Az öt paraméteres változat energiafüggvénye:

$$W = c_1(\overline{I_1} - 3) + c_2(\overline{I_2} - 3) + c_3(\overline{I_1} - 3)^2 + c_4(\overline{I_1} - 3)(\overline{I_2} - 3) + (2.11)$$

$$c_5(\overline{I_2} - 3)^2 + \frac{1}{d}(J - 1)^2.$$

A kilenc paraméteres változat energiafüggvénye:

$$W = c_1(\overline{I_1} - 3) + c_2(\overline{I_2} - 3) + c_3(\overline{I_1} - 3)^2 + c_4(\overline{I_1} - 3)(\overline{I_2} - 3) + (2.12)$$

$$c_5(\overline{I_2} - 3)^2 + c_6(\overline{I_1} - 3)^3 + c_7(\overline{I_1} - 3)^2(\overline{I_2} - 3) + c_8(\overline{I_1} - 3)(\overline{I_2} - 3)^2 + c_9(\overline{I_2} - 3)^3 + \frac{1}{d}(J - 1)^2.$$

Összenyomhatatlan anyagok esetében az utolsó tag minden esetben eltűnik. A kezdeti nyírási modulus (Bojtár, Material Models, 2013):

$$\mu = 2(c_1 + c_2). \tag{2.13}$$

Viszkoelasztikus modellek

Az előzőekben említett *korábbi mikromechanikai modell*ek a viszkoelasztikus viselkedés leírására is alkalmasak lehetnek a megfelelő átalakításokkal (Weiss & Gardiner, Computational Modeling of Ligament Mechanics, 2001). *Viidik and Frisen et al.* a modelljükben alkalmazott rugókat viszkózus testekkel egészítették ki. *Decraemer et al.* belső súrlódást feltételeztek a szálak, valamint a szálak és a mátrix között. A csillapítást egy relaxációs függvény segítségével biztosították a modellben. *Lanir* a szálak mechanikai viselkedését változtatta meg, mégpedig lineárisan rugalmasról viszkoelasztikusra. Fenomenológiai modelleket is alkalmaznak, általában logaritmikus relaxációs függvénnyel.

Először írjuk fel a viszkoelasztikus lágyszövetek általános anyagegyenletét:

$$\boldsymbol{S}(t) = \boldsymbol{S}_{e}(\boldsymbol{C}(t)) + \boldsymbol{S}_{v}(\dot{\boldsymbol{C}}(t); \boldsymbol{C}(t)) + \int_{0}^{\infty} \sum (\boldsymbol{G}(t-s), s; \boldsymbol{C}(t)) ds. \qquad (2.14)$$

Ebben az egyenletben S(t) az időfüggő II. Piola–Kirchhoff feszültségtenzor, az első tag a *rugalmas válasz*, a második a *rövid-távú időfüggő hatásokat* írja le (alakváltozás-sebesség függő viselkedés), és az utolsó tag pedig *hosszú-távú időfüggő hatásokat* jellemzi (feszültségrelaxáció). Ezekben a képletekben $\dot{C}(t)$ a jobb Cauchy–Green deformációs tenzor anyagi idő szerinti deriváltja, G(t) pedig a relaxációs függvény (Weiss & Gardiner, Computational Modeling of Ligament Mechanics, 2001). Ahhoz, hogy figyelembe vegyük a relaxációs hatást, a *Y. C. Fung* által javasolt *kvázi - lineáris viszkoelasztikus* (QLV) elméletet alkalmazzuk (QLV quasilinear viscoelasticity, 2013). Ez az elmélet egyszerű módszert kínál a nemlinearitás és a lineáris viszkózus viselkedés figyelembe vételére. A QLV alapötlete, hogy az időfüggő feszültség felírható a rugalmas válasz és a relaxációs függvény *konvolúció*jaként¹² (Convolution, 2013), amely egy adott időpontban:

$$\mathbf{S}(t) = \mathbf{G}(t) * \mathbf{S}_e(\mathbf{E}). \tag{2.15}$$

Itt $S_e(E)$ a rugalmas válasz, G(t) a relaxációs függvény és "*" pedig a konvolúciót, mint matematikai műveletet jelöli. Általános esetben, ez az integrál a Green–Lagrange alakváltozástenzor és a II. Piola–Kirchhoff-feszültségtenzor segítségével az alábbi formában írható fel:

$$\boldsymbol{S}(t) = \int_{-\infty}^{t} \boldsymbol{G}(t-\tau) : \frac{\partial S_e(E)}{\partial E} : \frac{\partial E}{\partial \tau} d\tau .$$
(2.16)

¹² Két függvény konvolúciója a szorzatuk integrálja, miután az egyiket tükröztük és eltoltuk az adott tartományon, más szavakkal a függvények átfedése az eltolás függvényébe.

Ezt a módszert sok kutató sikerrel alkalmazta lágyszövetek viselkedésének modellezésére. A QLV elmélet megszületése után a tudósok számos relaxációs függvényt javasoltak, melyek megtalálhatóak az egyes szakirodalmakban (általában ez a függvény skalár alakú, kihasználva azt a feltételezést, hogy minden irányban azonos az anyagi viselkedés)

Raffaella De Vita 2005-ben javasolt egy alakváltozás-sebesség függő, hiperelasztikus anyagmodellt, melyben figyelembe vette a kollagén szálak irányítottságát, hullámosságát és viszkoelasztikus viselkedését (Vita, 2005). Habár néhány hiperelasztikus viszkózus modell alkalmas volt az alakváltozás-sebesség függő viselkedés figyelembe vételére, nem tudták összekapcsolni az anyag felépítését a mechanikai válasszal (többnyire fenomenologikus modellek esetén). Ezért a modell készítése közben ez volt az egyik legfőbb szempont. Gyakorlatilag ugyanazok a feltételezések jelennek meg itt is, mint az előző modelleknél, név szerint az összenyomhatatlanság, és az ernyedt szálak zéró húzómerevsége. Általában elhanyagolják az alapállomány hozzájárulását a mechanikai válaszhoz. A szálak térbeli elhelyezkedését és hullámosságát sztochasztikusan definiálták, módosított *Weibull* eloszlással. A három dimenziós anyagmodell kiindulási alakja:

$$\boldsymbol{P} = -p\boldsymbol{F}^{-T} + 2\boldsymbol{F} \cdot \left(\frac{\partial W_e(\boldsymbol{C})}{\partial \boldsymbol{C}} + \frac{\partial W_v(\boldsymbol{C}, \dot{\boldsymbol{C}})}{\partial \boldsymbol{C}}\right).$$
(2.17)

Itt *P* az I. Piola–Kirchhoff feszültségtenzor, *F* a deformációgradiens tenzor, W_e és W_v a rugalmas és viszkózus potenciálok, és *p* pedig az ismeretlen nagyságú nyomás. Ha a viszkózus potenciál zérus, az egyenlet alakja nagyban hasonlít az előzőhöz. Az elméleti sztochasztikus modell levezetése után (megtalálható (Vita, 2005) munkájában) néhány további feltételezés és egyszerűsítés vált szükségessé annak érdekében, hogy a modellt validálni lehessen a rendelkezésre álló kísérleti adatok alapján (egytengelyű húzókísérletek különböző alakváltozás sebességek mellett). Így a modellben homogén, tengelyszimmetrikus deformációt feltételeztek, ahol a kiegyenesedett szálak párhuzamosak egymással, továbbá a kiegyenesedési folyamatot egy módosított Weibull eloszlással definiálták. Annak a peremfeltételnek köszönhetően, hogy a minta felületén nincs húzóerő (nincs érintőirányú feszültségkomponens), az ismeretlen nyomási tagnak zérusnak kell lennie (p = 0). Ennek következtében a *sugár*- és érintőirányú feszültségkomponens a *tengelyirányú* feszültség lesz. A feltételezett eloszlást figyelembe véve a hosszirányú feszültségkomponens végső alakja:

$$P_{z} = \int_{0}^{\varepsilon} \alpha \beta^{-\alpha} \varepsilon_{s}^{\alpha-1} e^{-\left(\frac{\varepsilon_{s}}{\beta}\right)^{\alpha}} [K(\varepsilon - \varepsilon_{s}) + \eta \dot{\varepsilon}] d\varepsilon_{s}.$$
(2.18)

Itt az α és β paraméterek a módosított Weibull eloszláshoz tartoznak, *K* a rugalmassági modulus és η a viszkózus tényező. Az anyagi paraméterek meghatározása után ezt a modellt sikeresen validálták a kísérleti adatok alapján. Az eredményekből levonható az a következtetés, miszerint az alakváltozás-sebesség főként a *kezdeti* szakaszt befolyásolja (minél nagyobb az alakváltozás-sebesség, annál merevebben viselkedik az anyag), a *lineáris* szakasz meredeksége közel változatlan.

2.3.4. Napjaink numerikus modelljei

Ennek a pontnak a célja, hogy tömör áttekintést adjon a manapság készített véges elemes modellekről, beleértve a különböző modellépítési módszereket, anyagmodelleket, terhelési típusokat és céljaikat. Mivel orvosi szempontból az ACL a legkritikusabb szalag, a kutatók többsége ezt vizsgálja, de az MCL és LCL szalagokról is több modell található. Az inak esetében a leggyakoribb célpont az Achilles ín, szintén az orvosi fontosságának köszönhetően. A három dimenziós modellekben a geometriai pontosság is nagyon fontos, mivel ezeknek a szalagoknak és csontos mintadaraboknak nagyon bonyolult az alakja. Ezért a legtöbb esetben a végeselemes geometriát lézer szkenner és orvosi képalkotó eszközökkel állítják elő (CT¹³, MRI¹⁴). Az ínszalagokat alapvetően két különböző módon szokták modellezni, az elsőben csak egy önálló darab szalagot, a második esetben pedig a környező csontokkal együtt (pl. femur-ACL-tibia csoport) modellezzük. Természetesen a módszer függ a vizsgálat céljától és az elérhető forrásoktól. Az alkalmazott anyagmodellek általában VEM programokba beépített hiperelasztikus modellek, kísérletek alapján meghatározott paraméterekkel.

Az első modellben (Haghpanahi & Jalayer, 2008) a kutatók az emberi ACL-ben vizsgálták a feszültségeloszlást. Az MRI képeket egy fiatal lány sértetlen térdéről készítették (teljesen kinyújtott állapotban), majd ennek felhasználásával felépítették a 3D-s geometriát *(2.18. Ábra)*. A klasszikus hiperelasztikus, összenyomhatatlan, izotrop Neo-Hooke-modellt használták az ínszalaghoz (az anyagmodell a külső és belső területeken ugyanaz), az illeszkedési helyeknél pedig a csont anyagmodelljét alkalmazták a viszkoelasztikus tulajdonságok elhanyagolásával. A véges elemes programban (Ansys) 8 csomópontú hexahedral testelemeket használtak, az illeszkedési helyeknél merev megtámasztással. A szimulációkban négy terhelési esetet alkalmaztak, anterior és poszterior tibiális terhelést (134 N) 1 %-os kezdeti alakváltozással.

¹³ Computed tomography, lágyszövetek és csontok esetében is jellemző módszer.

¹⁴ Magnetic resonance imaging, általában lágyszövetek esetében alkalmazzák.

A tanulmány célja, hogy megvizsgálják a különböző terhelési esetekből származó feszültségeloszlásokat és összehasonlítsák azokat az elérhető kísérleti eredményekkel. A vizsgálat eredményeképp megállapították, hogy a modell jól tükrözi az ínszalag kritikus tartományait.

2.18. Ábra Az ACL három dimenziós modellje (Haghpanahi & Jalayer, 2008)

Feng Xie et al. szintén az ACL-t vizsgálták az ABAQUS program segítségével (Xie, Yang, Guo, Wang, & Dai, 2009), de több szempontból is eltérően. A geometriát egy 3D-s lézerszkenner segítségével építették fel a kinyert térbeli pontok alapján. Ez a modell a femur disztális végét, a tibia proximális végét, az ACL-t és a csatlakozási pontokat tartalmazza. A véges elemes modellben tetrahedral testelemeket alkalmaztak, a csontok esetében rugalmas, a szalag esetében pedig hiperelasztikus (polinom alakú energiafüggvénnyel) anyagmodellel. A femur disztális végén merev megtámasztást használtak, a tibia proximális végén pedig egy anterior-poszterior tengelyirányú elmozdulást, tíz lépcsőben (1-től 10 mm-ig). A tizedik lépés végén kapott egyenetlen feszültségeloszlás a *2.19. Ábraán* látható. A modellt laborkísérletek eredményei alapján validálták.

2.19. Ábra Feszültségeloszlás az ACL-ben, 10 mm-es elmozdulás hatására (Xie, Yang, Guo, Wang, & Dai, 2009)

Általánosságban elmondható, hogy az ínszalagokkal gyakrabban foglalkoznak a kutatók, mert gyakoribbak a szalagsérülések. Az inak esetében főként az Achilles ínt vizsgálják, mert ott is igen gyakoriak a sportsérülések. A különböző mozgások közben igen nagy terheléseknek van kitéve, *Yaodong Gu et al.* ezért ezt az ínt vizsgálták (Gu, Li, Ren, & Lake, 2007). Terhelésként az egy lábas lépést, ugrást szimulálták, amihez egy egészséges boka CT felvételein alapuló 3D-s modellt építettek. A csont és az ín között merev-rugalmas kapcsolatot használtak, a csatlakozó felületeken a porchoz hasonló nyomómerevséget előírva. A csonthoz és a porchoz lineárisan rugalmas anyagmodellt használtak, az ín esetében azonban a két paraméteres Mooney-Rivlin-modellt, melyhez az anyagi konstansokat a szakirodalmi ajánlások alapján vették fel. A modellt különböző mozgások esetére vizsgálták, eredményként a feszültségeket és alakváltozásokat eltárolva. Lépcsőn lelépés esetén a von Mises feszültségek a *2.20. Ábraán* láthatók.

2.20. Ábra Von Mises feszültségek lelépés esetén (Gu, Li, Ren, & Lake, 2007)

A negyedik tanulmányban az MCl-t vizsgálták, mert a keresztirányú hatások (lökésterhek) esetében ez a leggyakrabban sérülő ínszalag (Untaroiu, Darvish, Crandall, Bing Deng, & Wang, 2005). A femur-MCL-tibia csoport geometriájának elkészítéséhez CT és MRI felvételeket is használtak *(2.21. Ábra)*. A kvázi-statikus és dinamikus szimulációkhoz hiperelasztikus és hiperelasztikus viszkózus (QLV elmélet alapján) anyagmodelleket alkalmaztak. Az anyagi paramétereket mindkét modellhez laboratóriumi tesztek alapján a véges elemes program optimalizálójának segítségével határozták meg. Végül a kapott eredményeket korábbi kísérletek eredményeivel vetették össze, majd kimutatták, hogy az ínszalagok időfüggő tulajdonságai fontos szerepet játszanak lökésszerű terhelések esetében.

2.21. Ábra A femur-MCL-tibia csoport 3D-s modellje (Untaroiu, Darvish, Crandall, Bing Deng, & Wang, 2005)

A közelmúltban számos numerikus modell készült az ACL és az MCL vizsgálatára, de az LCL-ről csak néhány beszámoló található a szakirodalmakban. *Zhong Yan-lin et al.* ezért erre a szalagra koncentráltak, és több 3D-s modellt készítettek (2.22. Ábra), a térdet különböző hajlásszögekben vizsgálva (Yan-lin, You, Hai-peng, Ke, & Le, 2011). Első lépésként CT felvételeket készítettek behajlított térdekről, amik a femur disztális végét, a tibia proximális végét, valamint a négy fő ínszalagot tartalmazták, 0°, 30°, 60°, 90° és 120°-os hajlított pozícióban. A 3D-s modellt Ansys-ban készítették, ahol a csontokat merev elemként, az ínszalagokat (és az illeszkedési helyek) pedig izotrop, lineárisan rugalmas anyagként modellezték a viszkoelasztikus tulajdonságok elhanyagolásával. A modell validálásához a gyakran használt anterior és poszterior tibiális terhelést alkalmazták (134 N), és a kapott elmozdulásokat összehasonlították más tanulmányokkal. Ezután különböző térdmozgásokat vizsgáltak, név szerint a tibia 5 mm-es anterior és poszterior eltolódását, 5°-os tibiális v*arus*¹⁵ rotációt, valamint a tibia 5°-os rotációját befelé és kifelé. A szimulációk elvégzése után a különböző modellekhez és terhelési esetekhez tartozó maximális feszültségeket vizsgálták.

2.22. Ábra 3D-s modellek különböző hajlítási szögek esetében (Yan-lin, You, Hai-peng, Ke, & Le, 2011)

¹⁵ Varus mozgás esetében, a disztális szegmens mediális irányban tolódik el a proximális szegmenshez képest (ellentéte: valgus).

J.A. Weiss and J.C. Gardiner a csontos MCL csoportot tanulmányozták, *valgus* mozgás esetére, az *in situ alakváltozás*ok¹⁶ figyelembevételével (Weiss & Gardiner, Subject - specific Finite Element Analysis of the Human Medial Collateral Ligament during Valgus Knee Loading, 2003). A problémát kísérletek és numerikus modellek segítségével is vizsgálták, melyhez nyolc férfi térdének CT adatait használták, 0°, 30° és 60°-os varus-valgus terhelésnek megfelelő hajlásszögekben. A 3D-s modell a *(2.23. Ábra)*-n látható, ahol az ínszalagokhoz a saját fejlesztésű transzverzálisan izotrop, összenyomhatatlan, hiperelasztikus anyagmodelljüket használták *(2.3.3 Fejezet)* (a csontokat itt szintén merev elemként kezelték).

 2.23. Ábra A csontos geometria 3D-s modellje
 (Weiss & Gardiner, Subject - specific Finite Element Analysis of the Human Medial Collateral Ligament during Valgus Knee Loading, 2003)

A CT felvételek előtt a kinematikus tesztek segítségével meghatározták az anyagi paramétereket (külön-külön minden mintadarabhoz), majd egy statisztikai analízis segítségével megvizsgálták, hogy milyen eltérést eredményez, ha az egyes anyagi konstansok helyett az átlagos értéket használjuk a szimulációk során. A feszültségek és alakváltozások meghatározása mellett kimutatták, hogy az anyagi konstansok különböző használata (az egyes mintákhoz tartozó és az átlagos) nem okoz jelentős eltérést, azonban a különböző *in situ alakváltozás*okra ez már nem igaz (a véges elemes modellben ezeket az alakváltozásokat az ún. "*augmented Lagrangian" módszer* segítségével vették figyelembe, további részletek: (Weiss, Gardiner, Ellis, Lujan, & Phatak, 2005)), az átlagos értékek nem szolgáltattak megfelelően pontos eredményeket.

¹⁶ Miután a csonthoz tapadt ínszalagot leválasztjuk a csontról, a szalag összehúzódik, az ehhez tartozó alakváltozásokat pedig in situ alakváltozásoknak nevezzük.

3. A laboratóriumi kísérletek feldolgozása, az alkalmazott anyagmodellek

3.1. A laboratóriumi kísérletek

Az ínszalagokhoz hasonló lágyszövetek esetében a valós kísérletek nélkülözhetetlenek a megfelelő anyagmodell paraméterezéshez. Lehetőségem nyílt részt venni ilyen kísérletekben a BME Biomechanikai Laboratóriumában, és az így kapott eredményeket fel tudtam használni az anyagmodellek elkészítéséhez. Ezekben a tesztekben olyan *inakat* vizsgáltak (lábban elhelyezkedő inak), melyek alkalmasak lehetnek a keresztszalagok (ACL, PCL) helyettesítéséhez (*anterior* és *poszterior keresztszag*). A kísérletek elsősorban orvosi kutatásokhoz készültek, a mérnöki szempontból fontos eredmények a kapott erő-elmozdulás görbék.

3.1.1. Mintadarabok előkészítése

A vizsgált inakat emberi testekből preparálták ki, a haláltól számítva 24 órán belül, majd a kísérletekig az orvosok gondoskodtak a megfelelő konzerválásról. A tesztek során első lépésként a mintákat merev pofák közé szorították, ami egy merev, súrlódásmentes kapcsolatot eredményez ideális esetben. A *3.1. Ábraán* bal oldalt az ín és a befogó pofák, jobb oldalt pedig a mintadarab összeszerelése látszik.

3.1. Ábra Mintadarab az előkészületek előtt és közben (saját forrás)

A megfelelő rögzítések után a húzási kísérletek megkezdődhettek. Alapvetően kétféle terhelési sémát alkalmaztak, az első esetben csak kvázi-statikus terhelést alkalmaztunk az ín teljes vagy részleges szakadásáig, a második esetben ezt azonban megelőzte egy dinamikus terhelés, ami gyakorlatilag az ín *prekondícionálása (ld.: 2.3.2 Fejezet)*. Ez a típusú előkészítés nagyon fontos

a pontos eredmények kinyeréséhez, jelen esetben 1000-es ismétlési számot¹⁷ alkalmaztak a későbbi szakítóerőhöz képest viszonylag kicsi amplitúdóval. A prekondícionálás számos előnye miatt azon minták eredményét használtam fel, melyeket dinamikusan előterheltek.

3.1.2. Az egytengelyű húzási kísérletek

Az egydimenziós húzóteszteket egy számítógép vezérelt univerzális szakítógéppel végezték, a gép típusa Instron 8872. Mivel az alkalmazott terhelésnek kvázi-statikusnak kéne lennie, a terhelés sebessége nagyon lassú, név szerint 20 mm/perc-re lett beállítva. A *3.2. Ábraán* a terhelési folyamat különböző fázisaiban lévő mintadarab látható. A képek nagyon jól tükrözik az inak, ínszalagok nagy alakváltozó képességét, néhány esetben az eredeti méretük két-háromszorosára is képesek megnyúlni.

3.2. Ábra A mintadarab alakváltozása a terhelési folyamat során (saját forrás)

3.1.3. A kísérletek eredményei

A szakítógép a kísérlet közben regisztrálja az alkalmazott teher és a mért elmozdulás értékét minden másodpercben tízszer, tehát a tesztek közvetlen eredményei az így kapott erőelmozdulás diagramok. A kísérletek során öt különböző ínt¹⁸ vizsgáltak, ebben a tanulmányban a *(jobb) quadriceps ín* eredményeit használom. A kísérletek még nem értek véget, eddig két

¹⁷ Ez a ciklusszám nem általános, ebben az esetben a kísérlet vezetője által lett meghatározva.

¹⁸ Quadriceps, Patellar, Semitendinosus és Gracilis, Peroneus Longus és az Achilles inak.

teszt eredményével rendelkezem, így ezek alapján állítom elő az anyagmodelleket. Először is tekintsük a két erő-elmozdulás diagramot *(3.3. Ábra)*. Annak ellenére, hogy a mérések ugyanarra (és ugyanarról az oldalról kivett) ínra vonatkoznak, a két görbe között igen jelentős az eltérés. Ez különösen igaz a határerőre, ahol az első minta nagyjából kétszer akkor terhet visel, bár a mindennapi életre jellemző kezdeti szakaszban ez az eltérés még sokkal kisebb.

3.3. Ábra A quadriceps inak erő-elmozdulás digramja (saját forrás)

A szerkezeti anyagokkal (pl.: acél) ellentétben, ezek a lágyszövetek egy sokkal kevésbé egyenletes, és kevésbé megjósolható mechanikai viselkedést mutatnak, így a leírásuk és alkalmazásuk is komplikáltabb.

3.2. A laboratóriumi eredmények feldolgozása

Mechanikai szempontból a kísérletek célja az anyagegyenletek paramétereinek meghatározása. A közvetlen eredmények az előbb említett idő-erő-elmozdulás értékpárok, a minták szélessége (a helyszínen mérve) és a befogó pofák közötti távolság. A főbb kiindulási geometriai adatokat a *3.1. Táblázat* tartalmazza.

		Szélesség [mm]	Hossz [mm]	Vastagság [mm]	Térfogat [mm ³]
_	1. minta	18	12,20	2	439,26
	2. minta	14	19,20	2	537,63

3.1. Táblázat A minták legfontosabb geometriai adatai (saját forrás)

Ezek mellett a Cauchy-feszültségek korrekt meghatározásához a minták vastagsága is szükséges, de a kísérletek során sajnos ezt nem jegyezték fel. A számításokban így egy közelítő értéket (2 mm) használok, mely a kísérletek vezetőjének, Dr. Szebényi Gábornak becslésére épül. Az előbbi adatokból és F-e diagramokból a *feszültség-alakváltozás* görbék már számíthatóak. A *Cauchy feszültség* a következő képlet alapján számolható:

$$\sigma = \frac{F}{A} \left[\frac{N}{mm^2} \right],\tag{3.1}$$

ahol az erő értéke adott, és a keresztmetszeti terület is folyamatosan változik, ahogy nyúlik a mintadarab, ezért minden idő-erő-elmozdulás értékpárhoz ki kell számolni a pillanatnyi területet. Felhasználva az összenyomhatatlanság feltételezését, az ín térfogata nem változik a kísérlet során (elméletileg), így a pillanatnyi területek a következőképpen számíthatók:

$$A = \frac{V}{l} \left[\frac{mm^3}{mm^2} \right], \tag{3.2}$$

ahol *l* a pillanatnyi távolság:

$$l = l_0 + \Delta l \ [mm]. \tag{3.3}$$

Ezekben a közelítő formulákban l_0 a kezdeti hosszúság (a befogó pofák közötti távolság), Δl pedig a kezdeti állapothoz képesti távolság növekmény. A számítások elvégzése után a kívánt diagramok előállíthatóak (3.4. Ábra).

3.4. Ábra Cauchy feszültség-alakváltozás diagramok (saját forrás)

3.1. Az alkalmazott anyagmodellek

3.1.1. Az anyagegyenletek levezetése

A numerikus modell célja, hogy ugyanazt a modellt több különböző anyagmodellel vizsgáljuk, ehhez pedig a leggyakrabban alkalmazott hiperelasztikus modelleket alkalmazom, név szerint a Neo-Hooke- és a 2, 3, 5, 9 paraméteres Mooney-Rivlin-modellt. Az anyagi paraméterek meghatározása előtt azonban szükséges a fizikai egyenletek levezetése, figyelembe véve az egyes anyagtulajdonsági jellegzetességeket és a kísérlet körülményeit, típusát. Ebben a fejezetben a 9 paraméteres változatot vezetem le, mivel ebből a többi modell könnyen származtatható a megfelelő tagok elhagyásával. A 9 paraméteres verzió általános energiafüggvénye:

$$W = c_1(\overline{I_1} - 3) + c_2(\overline{I_2} - 3) + c_3(\overline{I_1} - 3)^2 + c_4(\overline{I_1} - 3)(\overline{I_2} - 3) + (3.4)$$

$$c_5(\overline{I_2} - 3)^2 + c_6(\overline{I_1} - 3)^3 + c_7(\overline{I_1} - 3)^2(\overline{I_2} - 3) + c_8(\overline{I_1} - 3)(\overline{I_2} - 3)^2 + c_9(\overline{I_2} - 3)^3 + \frac{1}{d}(J - 1)^2.$$

Az itt felírt alakváltozási energia függvény a *jobb Cauchy-Green deformációs tenzor (C)* invariánsainak függvénye (Zheng, 2004), melyek ebben az esetben viszonylag könnyen kifejezhetőek. Ha a *deformációgradiens tenzort (F)* a főnyúlások irányaiban írjuk fel, akkor

$$\boldsymbol{F} = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{bmatrix}, \tag{3.5}$$

és jobb Cauchy-Green tenzor ekkor kifejezhető a főnyúlások segítségével:

$$\boldsymbol{C} = \boldsymbol{F}^{T} \boldsymbol{F} = \begin{bmatrix} \lambda_{1}^{2} & & \\ & \lambda_{2}^{2} & \\ & & \lambda_{3}^{2} \end{bmatrix}.$$
(3.6)

A szükséges deviátoros és "teljes" alakváltozási invariánsok (Mooney-Rivlin Models, 2013):

$$\overline{I_1} = J^{-2/3} I_1' = J^{-2/3} (\lambda_1^2 + \lambda_2^2 + \lambda_3^2)$$

$$\overline{I_2} = J^{-\frac{4}{3}} I_2' = J^{-\frac{4}{3}} (\lambda_1^2 \lambda_2^2 + \lambda_2^2 \lambda_3^2 + \lambda_1^2 \lambda_3^2),$$
(3.7)

ahol J a *deformációgradiens tenzor* determinánsa ($J = \det(F)$), és $\lambda_1, \lambda_2, \lambda_3$ pedig az egyes főnyúlások. Ha figyelembe vesszük, hogy az anyag *összenyomhatatlan*, az előbbi determináns értéke egyre redukálódik (J = 1), és a deviatorikus alakváltozási invariánsok megegyeznek az alakváltozási invariánsokkal, így az energiafüggvény új alakja:

$$W = c_1(l'_1 - 3) + c_2(l'_2 - 3) + c_3(l'_1 - 3)^2 + c_4(l'_1 - 3)(l'_2 - 3)$$
(3.9)
+ $c_5(l'_2 - 3)^2 + c_6(\overline{l_1} - 3)^3 + c_7(\overline{l_1} - 3)^2(\overline{l_2} - 3) + c_8(\overline{l_1} - 3)(\overline{l_2} - 3)^2$
+ $c_9(\overline{l_2} - 3)^3$.

Ha azt is figyelembe vesszük, hogy a kísérlet egy *egytengelyű húzás*i teszt, a főnyúlások a következőképpen alakulnak:

$$\lambda_1 = \lambda \text{ \'es } \lambda_2 = \lambda_3 = \frac{1}{\sqrt{\lambda}}, \text{tov} \text{\'abb} \text{\'a} \ \sigma_{11} = \sigma \text{ and } \sigma_{22} = \sigma_{33} = 0.$$
(3.8)

Így az alakváltozási invariánsok:

$$I'_{1} = \lambda^{2} + \frac{2}{\lambda} \text{ és } I'_{2} = 2\lambda + \frac{1}{\lambda^{2}}.$$
 (3.10)

Ebből az energiafüggvényből a *mérnöki feszültségek* (σ_{Eng}) kifejezhetőek egy λ szerinti deriválás segítségével, és a *Cauchy feszültségek* (σ) pedig egy további, λ -val való szorzással (az összenyomhatatlansági feltételből következik):

$$\sigma = \sigma_{Eng}\lambda = \lambda \frac{\partial W}{\partial \lambda} = \lambda \left(\frac{\partial W}{\partial I_1'} \frac{\partial I_1'}{\partial \lambda} + \frac{\partial W}{\partial I_2'} \frac{\partial I_2'}{\partial \lambda} \right).$$
(3.11)

Első lépésként képezzük az alakváltozási invariánsok első deriváltjait:

$$\frac{\partial I_1'}{\partial \lambda} = 2\lambda - \frac{2}{\lambda^2} , \frac{\partial I_2'}{\partial \lambda} = 2 - \frac{2}{\lambda^3}, \qquad (3.12)$$

majd az alakváltozási energiafüggvény deriváltjait:

$$\frac{\partial W}{\partial l'_1} = c_1 + c_3(2l'_1 - 6) + c_4(l'_2 - 3) + 3c_6(l'_1 - 3)^2 + (3.13)$$

$$c_7(l'_2 - 3)(2l'_1 - 6) + c_8(l'_2 - 3)^2,$$

$$\frac{\partial W}{\partial l'_2} = c_2 + c_4(l'_1 - 3) + c_5(2l'_2 - 6) + c_7(l'_1 - 3)^2$$

$$+ c_8(l'_1 - 3)(2l'_2 - 6) + 3c_9(l'_2 - 3)^2.$$

Ha behelyettesítjük ((3.10)-t (3.13)-ba, akkor a következő egyenletekhez jutunk:

$$\frac{\partial W}{\partial l_1'} = c_1 + c_3 \left(2 \left(\lambda^2 + \frac{2}{\lambda} \right) - 6 \right) + c_4 \left(\left(2\lambda + \frac{1}{\lambda^2} \right) - 3 \right)$$

$$+ 3c_6 \left(\left(\lambda^2 + \frac{2}{\lambda} \right) - 3 \right)^2 + c_7 \left(\left(2\lambda + \frac{1}{\lambda^2} \right) - 3 \right) \left(2 \left(\lambda^2 + \frac{2}{\lambda} \right) - 6 \right)$$

$$+ c_8 \left(\left(2\lambda + \frac{1}{\lambda^2} \right) - 3 \right)^2,$$

$$(3.14)$$

$$\begin{aligned} \frac{\partial W}{\partial I_2'} &= c_2 + c_4 \left(\left(\lambda^2 + \frac{2}{\lambda} \right) - 3 \right) + c_5 \left(2 \left(2\lambda + \frac{1}{\lambda^2} \right) - 6 \right) \\ &+ c_7 \left(\left(\lambda^2 + \frac{2}{\lambda} \right) - 3 \right)^2 + c_8 \left(\left(\lambda^2 + \frac{2}{\lambda} \right) - 3 \right) \left(2 \left(2\lambda + \frac{1}{\lambda^2} \right) - 6 \right) \\ &+ 3 c_9 \left(\left(2\lambda + \frac{1}{\lambda^2} \right) - 3 \right)^2. \end{aligned}$$

Most már a feszültség számítható, ha behelyettesítjük (3.12)-t és (3.14)-t (3.11)-be. A lehetséges egyszerűsítések elvégzése után végül megkapjuk a *9 paraméteres Mooney-Rivlin-modell* egyenletét a főnyúlások függvényében:

$$\sigma = c_1 \left(2\lambda^2 - \frac{2}{\lambda} \right) + c_2 \left(2\lambda - \frac{21}{\lambda^2} \right) + c_3 \left(4\lambda^4 - 12\lambda^2 + 4\lambda - \frac{8}{\lambda^2} + \frac{12}{\lambda} \right) +$$
(3.15)

$$c_4 \left(6\lambda^3 - 6\lambda^2 - 6\lambda - \frac{6}{\lambda^3} + \frac{6}{\lambda^2} + \frac{6}{\lambda} \right) + c_5 \left(8\lambda^2 - 12\lambda - \frac{4}{\lambda^4} + \frac{12}{\lambda^2} - \frac{4}{\lambda} \right) +$$

$$c_6 \left(-\frac{54}{\lambda} + \frac{72}{\lambda^2} + 54\lambda^2 - \frac{24}{\lambda^3} + 18\lambda^3 - 36\lambda^4 + 6\lambda^6 - 36\lambda \right) +$$

$$c_7 \left(-\frac{48}{\lambda} + \frac{6}{\lambda^2} + 54\lambda^2 + \frac{36}{\lambda^3} - 36\lambda^3 - \frac{16}{\lambda^4} - 12\lambda^4 + 10\lambda^5 + 6\lambda \right) +$$

$$c_8 \left(-\frac{6}{\lambda} - \frac{54}{\lambda^2} - 6\lambda^2 + \frac{36}{\lambda^3} - 36\lambda^3 + \frac{12}{\lambda^4} + 16\lambda^4 - \frac{10}{\lambda^5} + 48\lambda \right) +$$

$$c_9 \left(\frac{36}{\lambda} - \frac{54}{\lambda^2} - 72\lambda^2 - \frac{18}{\lambda^3} + 24\lambda^3 + \frac{36}{\lambda^4} - \frac{6}{\lambda^6} + 54\lambda \right)$$

A (3.15) egyenlet felhasználásával a többi anyagegyenlet is előállítható a megfelelő tagok elhagyásával, így az 5 paraméteres Mooney-Rivlin-modell (c_6 , c_7 , c_8 és c_9 zérus):

$$\sigma = c_1 \left(2\lambda^2 - \frac{2}{\lambda} \right) + c_2 \left(2\lambda - \frac{21}{\lambda^2} \right) + c_3 \left(4\lambda^4 - 12\lambda^2 + 4\lambda - \frac{8}{\lambda^2} + \frac{12}{\lambda} \right) +$$
(3.16)
$$c_4 \left(6\lambda^3 - 6\lambda^2 - 6\lambda - \frac{6}{\lambda^3} + \frac{6}{\lambda^2} + \frac{6}{\lambda} \right) + c_5 \left(8\lambda^2 - 12\lambda - \frac{4}{\lambda^4} + \frac{12}{\lambda^2} - \frac{4}{\lambda} \right)$$

A 3 paraméteres Mooney-Rivlin-modell (c_3 és c_5 is zérus):

$$\sigma = 2c_1\left(\lambda^2 - \frac{1}{\lambda}\right) + 2c_2\left(\lambda - \frac{1}{\lambda^2}\right) + 6c_4\left(\lambda^3 - \lambda^2 - \lambda - \frac{1}{\lambda^3} + \frac{1}{\lambda^2} + \frac{1}{\lambda}\right).$$
(3.17)

A 2 paraméteres Mooney-Rivlin-modellben csak a c_1 és c_2 nem zérusok:

$$\sigma = 2c_1 \left(\lambda^2 - \frac{1}{\lambda}\right) + 2c_2 \left(\lambda - \frac{1}{\lambda^2}\right). \tag{3.18}$$

A *Neo-Hooke-modell*ben csak az első alakváltozási invariáns szerepel változóként, a végső alakja az előző módszerrel könnyen előállítható:

$$\sigma = 2c_1 \lambda^2 \tag{3.19}$$

3.1.2. Az anyagmodellekben szereplő paraméterek meghatározása

Az anyagmodell paramétereinek meghatározása előtt a kapott feszültség-alakváltozás diagramokból egy "átlagolt" diagramot kell készítenünk. Általában a mért görbék súlyozottak az eredmények megbízhatósága és a kísérletek pontossága alapján, de ebben az esetben, amikor az "átlagolt" görbe elkészítéséhez csak két méréssorozat áll rendelkezésünkre, nincs elég információnk a súlyozási szempontokról. Fontos megemlíteni, hogy valós helyzetekben nagyjából száz kísérlet lenne szükséges az anyagegyenletek megfelelő előállításához. Az átlagolásnál fontos szempont még a függvény határa (a nullán kívül), az értelmezési tartományt itt 0,4-re veszem fel (az élettanilag valóságos helyzetekben ennél jóval kisebb értékek fordulnak elő). Ezek alapján az átlagolt feszültség-alakváltozás diagram a *3.5. Ábraán* látható.

3.5. Ábra Az átlagolt feszültség-alakváltozás diagram (saját forrás)

A paraméterek meghatározása gyakorlatilag egy feltételes optimalizálási probléma, ahol van egy közelítő függvényünk (W) néhány paraméterrel (c_1 , c_2 , ..., c_n), és a célunk hogy minimalizáljuk az eltérést a közelítő függvény és a kísérleti görbe között az anyagi konstansok optimális megválasztásával. A probléma matematikai leírása:

$$f(c_1, c_2, \dots, c_n) = W(c_1, c_2, \dots, c_n) - S \to min!$$

$$c_1 + c_2 \ge 0.$$
(3.20)

Ebben (az első) a képletben *f* a minimalizálandó függvény, *W* az alakváltozási energia függvény, *S* pedig a mért Cauchy-feszültségek értékeit tartalmazza. Az egyenlőtlenségi feltétel mechanikai szempontból szükséges, ugyanis ha ez nem teljesülne, akkor a meghatározott görbe negatív meredekséggel indulna, ami ellentmond a valóságnak. A probléma megoldására több módszer is létezik, ebben a tanulmányban ezt a feladatot a *nemlineáris legkisebb négyzetek módszer* segítségével oldom meg, a *Matlab R2013a* matematikai programmal. A paraméterek meghatározása után kiszámítom az egyes modellekhez tartozó *determinációs együtthatókat* (CoD), amely az illesztés pontosságának mérőszáma. A CoD általános képlete (Dufour, 2011):

$$R^{2} = 1 - \frac{\sum (y - \hat{y})^{2}}{\sum (y - \bar{y})^{2}}.$$
(3.21)

Ebben az egyenletben y a mért adat, \hat{y} az illesztett adat és \bar{y} pedig a megfigyelt (mért) adat átlaga. Az R² mérőszám mindig nulla és egy között van, és minél jobban közelít az egyhez, annál pontosabb a regresszió. A kapott anyagi konstansok és CoD számok a *3.2. Táblázatban* vannak összefoglalva.

	Neo-Hooke	2 PM Mooney- Rivlin	3 PM Mooney- Rivlin	5 PM Mooney- Rivlin	9 PM Mooney- Rivlin
c ₁	4,1021	25,7161	41,8743	-31,3324	6,8652
c ₂		-21,2282	-39,1724	37,7370	-1,9804
C 3				172,3839	-12,2147
c ₄			-6,0628	-531,1455	14,0438
c 5				435,0568	19,5510
c ₆					-6,0385
c ₇					7,3951
C 8					3,9167
C 9					-17,5500
Cod	0,479862	0,998513	0,999361	0,999858	0,999813

3.2. Táblázat Az egyes modellekhez meghatározott anyagi paraméterek és determinációs együtthatók (saját forrás)

Ebben az esetben a mért (a mérési adatokból kapott feszültség-alakváltozás) függvényt a Mooney-Rivlin függvény általános alakjából fakadóan jól lehet közelíteni, láthatjuk, hogy már a 2 paraméteres modell esetén is szinte teljes az egyezés (99,85 %), így az ilyen típusú anyagokra (mint az inak és ínszalagok) ez a variáns kiválóan használható. Ezzel ellentétben, a Neo-Hooke-modell csak 47,99 %-os egyezést mutat, így ennek a használata a valóságban **nem ajánlott** erre a feladatra (más a helyzet, ha a Neo-Hooke-modellel az alapállományt kell figyelembe venni, mely közel lineáris viselkedést mutat, ilyenkor már eredményesen

alkalmazható). Végül, a kapott feszültség-alakváltozás görbéket a 3.6. *Ábra, 3.7. Ábra, 3.8. Ábra, 3.9. Ábra* és a 3.10. *Ábra* tartalmazza.

Az illesztett Neo-Hooke-modell:

3.6. Ábra A mért görbe és az illesztett Neo-Hooke-modell (saját forrás)

Az illesztett két paraméteres Mooney-Rivlin-modell:

3.7. Ábra A mért görbe és az illesztett két paraméteres Mooney-Rivlin-modell (saját forrás)

Az illesztett három paraméteres Mooney-Rivlin-modell:

3.8. Ábra A mért görbe és az illesztett három paraméteres Mooney-Rivlin-modell (saját forrás)

Az illesztett öt paraméteres Mooney-Rivlin-modell:

3.9. Ábra A mért görbe és az illesztett öt paraméteres Mooney-Rivlin-modell (saját forrás)

Az illesztett kilenc paraméteres Mooney-Rivlin-modell:

3.10. Ábra A mért görbe és az illesztett kilenc paraméteres Mooney-Rivlin-modell (saját forrás)

A kapott diagramokból láthatjuk, hogy a determinációs együttható jól jellemzi az illesztés pontosságát, a két paraméteres modell esetén is már nagyon nagy az egyezés, a magasabb paraméteres esetekben pedig a két görbe gyakorlatilag egybevágó.

4. Végeselemes modellezés, az anyagmodellek tesztelése

Ebben a fejezetben a legfőbb cél az anyagmodellek tesztelése, numerikus használhatóságuk ellenőrzése. Ehhez elkészítettem az ín egyszerű végeselemes modelljét az *Ansys 14.5* program segítségével, és vizsgáltam a modell válaszát a különböző külső terhelésekre (uniaxiális és biaxiális) az öt anyagmodell felhasználásával. Végül a tesztelés közben összegyűjtött tapasztalatokat, következtetéseket foglalom össze.

4.1. A numerikus modell felépítése

4.1.1. Uniaxiális modell

A modell felépítésénél a második minta geometriai méreteit alkalmazom, valamint kihasználva a szimmetriát, csak az ín felét vizsgálom. A véges elemes háló elkészítéséhez SHELL281 8 csomópontú héjelemet használok (4.1. Ábra). Az alkalmazott véges elemek számát később, a 4.2 Fejezetben határozom meg, konvergencia vizsgálat segítségével.

4.1. Ábra Az uniaxiális modell végeselemes modellje (saját forrás)

A peremfeltételek megadásánál nagyon fontos, hogy ne gátoljuk meg a modell keresztirányú alakváltozását (ezzel elkerülve egyes csomópontokban a többtengelyű feszültségállapot kialakulását), hiszen az anyagmodellünket egytengelyű húzásra határoztuk meg. Így a *4.2. Ábra* alapján egy sarokpontot minden eltolódás ellen, és a belőle kiinduló éleken lévő csomópontokat pedig csak az élre merőleges eltolódások ellen támasztom meg (lehetővé téve az él menti szabad alakváltozást). A terhelés megadásánál a program felületi teher parancsát alkalmaztam, kiválasztva a megfelelő éleket, ami egy él menti megoszló terhelést eredményez. A futtatások során alapvetően kétféle alakváltozási tartományt vizsgálok. Az első az ín fiziológiai határain belül helyezkedik el, mely nagyjából 10-20 %-os alakváltozást jelent, a második esetben pedig igen nagy alakváltozásoknak vetem alá a modellt (50 % feletti). Itt azonban fontos megemlíteni,

hogy a paraméterezés során a mért feszültség-alakváltozás diagramot 40 %-os alakváltozásig vettem figyelembe, így ezek az eredmények már várhatóan nem követik a valós viselkedést.

4.2. Ábra Az unaiaxiális modell alkalmazott peremfeltételei (saját forrás)

4.1.2. Biaxiális modell

Mivel a kísérletek során biaxiális mérés nem történt, így itt egy nagyságrendben azonos, pontos méretekben azonban egy "fiktív" geometriát veszek figyelembe, 10 mm-es oldalhosszúsággal, a *4.3. Ábra* szerint. Az elemek számának meghatározásához itt is konvergencia vizsgálatot alkalmazok.

4.3. Ábra A biaxiális modell végeselemes modellje (saját forrás)

Az alkalmazott peremfeltételeknél (4.4. Ábra) ugyanolyan megtámasztást használok, mint az uniaxiális modell esetében, azonban a terhelés most kéttengelyű (az egyes irányokban azonos nagyságú).

4.4. Ábra A biaxiális modell alkalmazott peremfeltételei (saját forrás)

4.2. Konvergencia vizsgálat

Mindkét modell esetében a terhelést lépcsőzetesen alkalmazom, és regisztrálom az erőelmozdulás értékpárokat, folyamatosan sűrítve a hálót (a konkrét értékeknek itt nincs szerepe, csak a görbék alakjának). Abban az esetben, ha a kapott görbe a "jelenlegi" hálóval megegyezik az "előző" hálóval, akkor az "előző" háló megfelelő a további vizsgálatokhoz. Mindkét esetben a háló méretét a hosszabbik oldal felosztásával definiálom. A vizsgált modellek a *4.5. Ábraán* láthatóak az unixiális esetben.

4.5. Ábra A konvergencia vizsgálat során figyelembe vett uniaxiális modellek (saját forrás)

Végül, kapott erő-elmozdulás diagram az egytengelyű esetre (4.6. Ábra):

A vizsgálat egy elemre nem futott le, azonban kettő és hat elem alkalmazása esetén a kapott görbék egybevágóak, így elegendő két (SHELL281) végeselem használata. A biaxiális esetben hasonlóan jártam el, az oldallap felével egyenlő hálóméret már ott is elegendően pontos eredményt ad.

4.3. Szimulációk futtatása, tapasztalatok

Az egyes futtatásoknál figyelembe veszem az anyagi és geometriai nemlinearitásokat, a terhet pedig több lépcsőben teszem rá a modellre. Továbbá minden anyagmodell esetében a *d* összenyomhatatlansági paraméter értékét zérusra állítottam be, így a modell nem változtatja a térfogatát a terhelés során.

4.3.1. Uniaxiális eset

A 10-20 %-os alakváltozás eléréséhez nagyjából 400 N-os terhelés elegendő (200 N az alkalmazott fél modellre). A kapott (tengelyirányú) feszültség-alakváltozás értékeket regisztráltam, mely a 2 paraméteres esetre, az eredetileg kiszámolt és a kísérletből kapott diagramokkal együtt a 4.7. Ábraán látható. A többi esetre kapott görbéket az (Függelék) tartalmazza. Jól látható a geometriai nemlinearitás hatása, minél nagyobbak az alakváltozás értékek, annál nagyobb a különbség a beadott (3.1.2 Fejezetben meghatározott) és a kapott

feszültség értékek között. Ennek oka, hogy az ott levezett anyagmodelleknél a nyúlást használtuk fel, mint alakváltozási "jellemzőt", mely a mérnöki alakváltozásból származtatható. Az *Ansys* azonban az alakváltozások definiálására *a valós alakváltozást* használja (ANSYS, 1999), mely mindig a pillanatnyi hosszból származtatható, így ugyanazon feszültségek relatíve kisebb alakváltozási értékekhez tartoznak.

Ahhoz, hogy megkapjuk a program által használt alakváltozást, először is a deformációgradiens tenzort kell poláris felbontással két speciális tenzor szorzatára bontanunk:

$$\boldsymbol{F} = \boldsymbol{R} \cdot \boldsymbol{U}, \tag{4.1}$$

ahol **R** a rotációs tenzor **U** pedig az ún. jobb nyúlási tenzor. Az utóbbi kapcsolata jobb Cauchy-Green deformációs tenzorral, a *3.1.1 Fejezetben* használt jelölésrendszerrel (Bojtár, Mechanika MSc, 2013):

$$\boldsymbol{C} = \begin{bmatrix} \lambda^2 & & \\ & \frac{1}{\lambda} & \\ & & \frac{1}{\lambda} \end{bmatrix} = \boldsymbol{U}^2.$$
(4.2)

Ebből a *C* tenzor spektrál-felbontásának segítségével a nyúlási tenzor meghatározható, mely jelen esetben megegyezik (az egytengelyű húzás következményeképpen) a deformációgradiens tenzorral:

$$\boldsymbol{U} = \begin{bmatrix} \lambda & & \\ & \frac{1}{\sqrt{\lambda}} & \\ & & \frac{1}{\sqrt{\lambda}} \end{bmatrix}.$$
 (4.3)

Így, a program által használt logaritmikus alakváltozás már számítható:

$$\boldsymbol{\varepsilon} = \ln(\boldsymbol{U}) \tag{4.4}$$

Ezt felhasználva, a két paraméteres változat feszültségei a mérnöki és a logaritmikus alakváltozás függvényében, valamint a program által szolgáltatott feszültség-alakváltozás függvények:

4.8. Ábra Az Ansysból kapott valamint a két paraméteres logaritmikus és mérnöki feszültségalakváltozás görbék (saját forrás)

Az új és az Ansysból kapott görbéket szaggatott vonallal ábrázoltam, mert teljesen egybevágóak, a modell kiválóan követi a megadott anyagmodellt.

Ha nagyobb alakváltozásokat szeretnénk vizsgálni (a továbbiakban csak a Mooney-Rivlin-modellek felhasználásával), sok esetben már problémába ütközünk. Ha a fél modellre 1000 N-os erőt teszek rá (mely jóval nagyobb az előző 200 N-hoz képest), akkor a 3 és 9 paraméteres modellek nem futnak le (tovább növelve az erőt már egyik modell sem fut le), egy bizonyos erő után a megoldások már nem konvergálnak. Ennek oka, hogy a térfogat-állandósági feltétel miatt a *vastagság nagymértékben csökken* (nagyon közel kerül a zérushoz), és ez egyes modelleknél numerikus problémákat okoz a megoldás során. Ahhoz, hogy ezt elkerüljük, vagy a *vastagságot kell megnövelnünk*, vagy az *összenyomhatatlansági paramétert* kell zérustól eltérő értékkel figyelembe venni.

Első lépésben a *vastagság hatását* vizsgálom. Ehhez a 9 paraméteres Mooney-Rivlinmodellt felhasználva megvizsgálom, hogy jelen modell esetében a vastagság változtatása milyen hatással van a felvehető teherre. Ehhez 2000 N-os (20 lépcsőben alkalmazott) erő mellett a vastagságot 2-16 mm-ig változtatom, és regisztrálom azt a legnagyobb erőt, melyre még lefut a modell. Ennek eredménye a *4.9. Ábraán* látható.

4.9. Ábra A vastagság és az alkalmazható erő közötti összefüggés, 9 paraméteres modell esetére (saját forrás)

A diagram alapján az összefüggés közelítőleg lineáris, 14 mm felett már stabilan képes a 2000 N-os (fél modellre vonatkozó) teher felvételére.

Második lépésben nézzük meg az *összenyomhatatlansági paraméter* (*d*) változtatásának hatását. Ehhez 0-tól 0,3-ig, 0,01-es lépcsőkben növelve *d* értékét, ismét a felvehető teher értékét vizsgálom (4.10. Ábra).

4.10. Ábra Az összenyomhatatlansági paraméter és az alkalmazható erő közötti összefüggés, 9 paraméteres modell esetére (saját forrás)

A kapott ábra alapján, a várttal ellentétben, a maximális erő nagysága csökken, a vastagság szempontjából kedvezőbb alakváltozások ellenére. Ennek oka, hogy mivel a modell térbeli deformációja már nem egyértelmű a megadott egytengelyű anyagmodell alapján, egyes pontok többtengelyű feszültségállapotba kerülhetnek. Ez azért probléma, mert az Ansys az egytengelyű kísérlet alapján megadott görbe mellé *becsül* egy biaxiális és egy nyíró igénybevételhez tartozó feszültség-alakváltozás diagramot is (Madocsai, Veress, & Palkovics, 2011). Ez azonban sokszor nem valósághű, és az így kapott eredmények használhatósága kérdéses (pl. adott egytengelyű mérés alapján becsült biaxiális diagram feszültség-alakváltozás görbéje a negatív feszültség-alakváltozás tartományban van). Ennek a hibának a kiküszöbölésére a *4.4 Fejezetben* teszek javaslatot.

4.3.2. Biaxiális eset

A biaxiális modellt 10 %-os alakváltozásig vizsgálom, melyhez nagyjából 1000 N-os erő szükséges mindkét irányban. Ebben az esetben már kis tartományban is sok probléma van, a Neo-Hooke-, a 2 és a 3 paraméteres modellek már kis erő esetén se képesek működni, az 5 paraméteres lefutott 1000 N-ig, a 9 paraméteres pedig 650 N-ig. Ez utóbbi eredménye a *4.11. Ábraán* látható (a modellben "x" és "z" irányokban alkalmaztam a biaxiális terhelést). Az egytengelyű kísérletből nyert görbével biaxiális esetben természetesen már nem kell megegyeznie az kapott görbéknek, ezt a szemléltetés végett tettem be. Az egyes pontok itt már biztosan kéttengelyű feszültségállapotban vannak, melyhez a program a saját (a megadott egytengelyű alapján) becsült biaxiális modelljét használja, mely szemmel láthatóan nem felel

meg a valóságnak, a minta egy sokkal merevebb viselkedést mutat. Ennek javítására szintén a következő fejezetben mutatok egy módszert.

4.11. Ábra A kísérleti, valamint a biaxiális feszültség-alakváltozás diagramok az 5 és 9 paraméteres modellek esetére (saját forrás)

4.4. Modellek javítása

Az ebben a részben leírt módszer inkább numerikus jellegű javítást jelent, a valósághoz nem biztos, hogy közelebb kerülnek az eredmények. Az eljárás lényege, hogy a valós uniaxiális kísérlet mellé megadunk egy általunk generált biaxiális és nyírási kísérletet is, és a paramétereket a megfelelő hiperelasztikus anyagmodell kiválasztása után az Ansys programmal határozzuk meg, az összenyomhatatlansági paraméter zérus értékének feltétele mellett. Jelen tanulmányban az uniaxiális, 9 paraméteres modellt vizsgálom tovább, melynél a biaxiális és a nyírási kísérletre is az egytengelyű görbe kezdeti merevségéből származtatott lineárisan rugalmas egyenest adom meg (4.12. Ábra).

Az ezek alapján kapott anyagi konstansok, az Ansys program által számolva (4.1. Táblázat):

c ₁	c ₂	C 3	C 4	C 5	C 6	C 7	C 8	C9
18,668	-14,695	93,045	-173,46	88,775	8,7038	9,554	-43,517	14,408

4.1. Táblázat A 9 paraméteres Mooney-Rivlin-modell paraméterei a módosított eljárással (saját forrás)

4.13. Ábra Az eredeti és a módosított 9 paraméteres Mooney-Rivlin-modellel kapott feszültség-alakváltozás diagramok az uniaxiális modell esetére (saját forrás)

Az eljárás segítségével a modell már képes az 1000 N-os erő felvételére, azonban érvényessége kérdéses. A kezdetben vizsgált, 20 %-os alakváltozásig a két modell szinte azonosan dolgozik, azonban felette, az eltérések exponenciálisan nőnek az első esetben bevitt (3.1.2 Fejezetben meghatározott) anyagmodell és az új modell között. Az eredmények tovább javíthatóak, ha a keresztirányú alakváltozásra egy lágyabb modellt adunk meg, azonban ez csak "próbálgatás" útján lehetséges.

5. <u>Összefoglaló</u>

Jelen tanulmány célja az inak és ínszalagok felépítésének, mechanikai tulajdonságainak modellezhetőségének megismerése volt. А sokszínű mechanikai és viselkedés eredményeképpen leírásuk igen bonyolult, az irodalmi áttekintés bemutatta, hogy csak közelítő modelleket alkalmaznak, a feladat céljától függően. A gyakori sérülések miatt fontos ismerni a tulajdonságaikat, ennek ellenére viszonylag kevesen foglalkoznak ezzel a területtel, pedig még igen sok a kérdést, kutatási lehetőséget rejt ez a téma. A valós laboratóriumi kísérletek fontossága elengedhetetlen a pontos viselkedés modellezéséhez. Ezen munka a laboratóriumi munka feldolgozásához ad útmutatót a leggyakrabban használt hiperelasztikus anyagmodellek esetére. A mechanikailag helyes viselkedés leírásához célszerű az itt alkalmazott egytengelyű kísérletek mellett biaxiális és nyírási kísérleteket is végrehajtani, ez a pontosság növelése mellett a numerikus modellezésben is fontos előnyökkel jár. Bár négy különböző típusú Mooney-Rivlin-modell is készült, ennek az ínnak a leírásához már elegendően pontos a két paraméteres változat A teljesség kedvéért azonban mindegyik modellt teszteltem a végeselemes programban a numerikus használhatóság ellenőrzésére. Ezek során több probléma is felmerült, mind mechanikai, mind numerikus oldalról. Az első szempontra példa a program által az egytengelyű modell alapján becsült biaxiális és nyírási viselkedés, melyek gyakran valótlan eredményekhez vezettek, az utóbbira pedig az összenyomhatatlanságból adódó radikális vastagságcsökkenés, melynek következtében a megoldás nem tudott konvergálni egy adott, kicsiny érték után. Ezek kiküszöbölésére tettem javaslatot a véges elemes szimulációk után. A javasolt módosítás biztosítja a numerikus eredmények stabilitását, a kapott eredmények azonban sokszor eltérhetnek a valóságtól, használhatóságukat minden esetben ellenőrizni kell, így a legjobb megoldáshoz vezető út a többféle típusú és nagyszámú kísérlet alapján létrehozott anyagmodellek használata.

6. Irodalomjegyzék

- A Patient's Guide to Knee Anatomy. (2013. 07 10). Forrás: http://www.eorthopod.com/content/kneeanatomy
- ANSYS. (1999). Theory Reference. Release 5.6.
- Arnheim, D. D., & Prentice, W. E. (2010). The Knee and Related Structures. *Principles of Athletic Training*, 557-562.
- Bojtár, I. (2013). Material Models. Budapest University of Technology and Economics.
- Bojtár, I. (2013). Mechanika MSc. Budapest University of Technology and Economics.
- Convolution. (2013. 08 09). Forrás: http://en.wikipedia.org/wiki/Convolution
- Dr Gunther, T. (2001). A térdizület biomechanikájának változása az unikompartmentális térdprotézis beültetése során. *Semmlweis University of Budapest*, 12-31.
- Dufour, J.-M. (2011). Coefficients of Determination. University of McGill, 1-3.
- *Function of Ligaments*. (2013. 07 03). Forrás: http://www.orthobullets.com/sports/3001/ligamentsof-the-knee
- Gu, Y., Li, J., Ren, X., & Lake, M. (2007). Finite Element Analysis of Achilles Tendon in Jumping Phase. *XXV ISBS Symposium*, 278-281.
- Haghpanahi, M., & Jalayer, F. (2008). Three-dimensional finite element analysis of the human ACL. *Iran University of Technology*, 134-139.

Holzapfel, G. A. (2000). Biomechanincs of Soft Tissue. Graz University of Technology, 1-5.

Knee Anatomy. (2013. 07 05). Forrás: http://www.activemotionphysio.ca/article.php?aid=337

- Knee Joint Anatomy. (2013. 07 05). Forrás: http://www.joint-pain-expert.net/knee-joint.html
- *Knee Joint Anatomy, Function and Problems*. (2013. 07 04). Forrás: http://healthpages.org/anatomyfunction/knee-joint-structure-function-problems/#ligaments-in-the-knee
- Ligament. (2013. 07 04). Forrás: http://kurser.iha.dk/eit/bim1/Noter/BIOMECHANICS_OF_MUSCULOSKELETAL_TISSUES/CHP 4.PDF
- Madocsai, G., Veress, Á., & Palkovics, L. (2011). Gumialkatrészek Viselkedésének Vizsgálata Járműmechatronikai Rendszerekben. *Intelligens és Fenntartható Felszíni Közlekedés*, 21-33.
- Mooney-Rivlin Models. (2013. 09 11). Forrás: http://www.continuummechanics.org/cm/mooneyrivlin.html
- Neo-Hookean Material Properties. (2013. 08 18). Forrás: http://wikihelp.autodesk.com/Simulation_Mechanical/enu/2014/Help/0328-

User_s_G328/0572-Setting_572/0607-Analysis607/0656-Nonlinea656/0686-Material686/0705-Neo-Hook705

QLV quasilinear viscoelasticity. (2013. 08 09). Forrás: http://silver.neep.wisc.edu/~lakes/QLV.html

- Structure and Function of Ligaments and Tendons. (2013. 07 03). Forrás: http://www.weightrainer.net/physiology/ligten.html
- Untaroiu, C., Darvish, K., Crandall, J., Bing Deng, & Wang, J.-T. (2005). Characterization of the Lower Limb Soft Tissues in Pedestration Finite Element Models. *Proceedings of the 19th International Technical Conference on the Enhanced Safety of Vehicles*, 1-7.
- Vita, R. D. (2005). Structural Constitutive Model for Knee Ligaments. University of Pittsburgh, 4-30.
- Weiss, J. A. (1994). A Constitutive Model and Finite Element Representation for Transversely Isotropic Soft Tissues. *University of Utah*, 46-52.
- Weiss, J. A., & Gardiner, J. C. (2001). Computational Modeling of Ligament Mechanics. *University of Utah*, 13-18.
- Weiss, J. A., & Gardiner, J. C. (2003). Subject specific Finite Element Analysis of the Human Medial Collateral Ligament during Valgus Knee Loading. *Journal of Orthopedic Research 21*, 1098-1106.
- Weiss, J. A., Gardiner, J. C., Ellis, B. J., Lujan, T. J., & Phatak, N. S. (2005). Three-dimensional Finite Element Modeling of Ligaments: Technical Aspects. *Meical Engineering & Physics 27*, 845-861.
- Woo, S. L.-Y., Abramowitch, S. D., Kilger, R., & Liang, R. (2006). Biomechanics of Knee Ligaments: injury, healing, and repair. *Journal of Biomechanics 39.*, 1-20.
- Xie, F., Yang, L., Guo, L., Wang, Z.-j., & Dai, G. (2009). A Study on Construction Three-Dimensional Nonlinear Finite Element Model and Stress Distribution Analysis of Anterior Cruciate Ligament. *Journal of Biomechanical Engineering, Vol. 131*, 1-5.
- Yan-lin, Z., You, W., Hai-peng, W., Ke, R., & Le, X. (2011). Stress Changes of Lateral Collateral Ligament at Different Knee Flexion with or without Displaced Movements: A 3-Dimensional Finite Element analysis. *Chinese Journal of Traumatology*, 79-83.
- Zheng, H. (2004). On the Predictive Capability and Stability of Rubber Material Models. *Jiao Tong* University of Shanghai, 19-22.

7. <u>Függelék</u>

Az uniaxiális tesztek eredményei az egyes anyagmodellek alkalmazásával:

7.1. Ábra A kapott feszültség alakváltozás diagram a Neo-Hooke-modell esetére (saját forrás)

7.2. Ábra A kapott feszültség alakváltozás diagram a 3 paraméteres Mooney-Rivlin-modell esetére (saját forrás)

7.3. Ábra A kapott feszültség alakváltozás diagram az 5 paraméteres Mooney-Rivlin-modell esetére (saját forrás)

7.4. Ábra A kapott feszültség alakváltozás diagram a 9 paraméteres Mooney-Rivlin-modell esetére (saját forrás)