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ABSTRACT 
Unmanned Aerial Vehicles (UAVs) are increasingly used in the field of engineering surveys. In 

river engineering, or in general, water resources engineering UAV based measurements have 

a huge potential. Indirect video based velocity measurement methods, e.g. large-scale particle 

image velocimetry (LSPIV) and space-time image velocimetry (STIV), became a real alternative 

for direct flow measurements (Lükő and Baranya, 2016 and Lükő, 2016). These methods deal 

with the Eulerian analysis of the flow. Beyond this I move to the Lagrangian analysis, which is 

based on the particle tracking velocimetry (PTV) method. Zsugyel (2016) in his doctoral 

dissertation has tested the particle tracking methods, where he quantifies the chaotic mixing 

of the flow. He uses GPS mounted floating buoys for his field measurements, the number of 

which is limited and expensive. In present research an UAV is used to capture the tracers 

floating the water surface. Hundreds of intensive yellow tennis balls are used as tracers, which 

is suitable for the image processing method. This way more detailed information can be 

acquired about the track of the particles. After the reconstruction of the tracks, the mixing 

could be estimated as well, which is important in pollutant and cooling water or sediment 

transport analysis.  

In this study an overview will be given about the PTV and other UAV based river flow 

measurement methods with a short review of their applications carried out in the past years. 

Next, attempts will be made to apply PTV at a groyne in the Danube, where there complex 

flow conditions. During the measurement campaign the UAV videos will be collected as well 

as other additional measurements, like acoustic measurement and the geodetic survey. There 

is an old PTV image processing algorithm in Matlab for laboratory measurements, which will 

be further developed to be able to apply for field measurements as well. The new PTV 

algorithm will be tested with the collected UAV videos. The results of the measurements will 

be discussed and future research ideas will be outlined. 
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TARTALMI KIVONAT 
A drónok használata egyre elterjedtebb napjainkban a különböző mérnöki felmérések során. 

A víz és azon belül a folyógazdálkodás területén különösen nagy lehetőségek rejlenek a 

drónokkal hajtott mérésekben. Korábbi kutatásaim során lehetőségem volt a Large-Scale 

Particle Image Velocimetry (LSPIV) és Space-Time Image Velocimetry eljárás (STIV), újszerű 

indirekt videó-alapú sebességmérési eljárások tesztelésére tudományos diákköri dolgozataim 

készítése során (Lükő és Baranya, 2016 és Lükő, 2016), melyek alkalmas alternatívái lehetnek 

a hagyományos vízhozammérési eljárásoknak. Ezen eljárások az áramlások Euler-i 

értelmezésével foglalkoznak. Ezen túllépve, a Lagrange-i szemléletű vizsgálatokra térek át, 

amely alapvetően egy részecskekövető eljárásra, a Particle Tracking Velocimetry-re (PTV) épül. 

Zsugyel (2016) doktori értekezésében a részecskekövető eljárások tesztelésével foglalkozik 

laboratóriumi és kisebb léptékű folyami alkalmazásai során, ahol számszerűsíti az áramlásra 

jellemző kaotikus elkeveredési viszonyokat. Terepi vizsgálataiban GPS-szel felszerelt felszínen 

úszó szárnyas bójákat használt, melyeknek száma limitált, és igen drága. Jelen kutatásban 

ezzel szemben drónról készített videofelvételek és a képelemző eljárás szempontjából 

alkalmas, a folyó felszínén úszó nagyszámú jelzőanyag segítségével jelentősen részletesebb és 

nagyobb kiterjedésű (akár a folyó teljes szélességét lefedő) képet kaphatunk a 

részecskepályákról. A pályák rekonstruálásával képet kaphatunk az áramlási jellemzők mellett 

az elkeveredés jellegére is, melynek ismerete szennyezőanyag, hűtővíz vagy éppen 

hordaléktranszport vizsgálatokban különösen fontos.  

Dolgozatomban először feltárom és áttekintem a jellemzően külföldi irodalmat, amely kitér a 

drón alapú áramlásmérésekre, a PTV eljárásra és a Lagrange-i szemléletű elkeveredési 

vizsgálatokra. Esettanulmányként egy áramlási szempontból összetett folyószakaszt, a Duna 

sarkantyúkkal szabályozott szakaszát választottam ki. A tanszéken elérhető műszerek 

segítségével mérési kampányokat hajtunk végre, hogy begyűjtsük a szükséges 

videóanyagokat, egyéb kiegészítő mérésekkel együtt, pl. akusztikus alapú áramlásmérések és 

geodéziai felmérések. A korábbi laboratóriumi vizsgálatokra alkalmazott tanszéki, Matlab 

környezetben fejlesztett PTV képfeldolgozó algoritmust továbbfejlesztem, hogy a terepi 

mérések során felhasznált jelzőanyagok esetén is alkalmazható legyen. Az esettanulmányi 

helyszínen készített videókat elemzésére és az áramlási pályák jellemzésére kísérletet teszek. 

A dolgozatom végén eredményeimet értékelem és továbbfejlesztési javaslatokat fogalmazok 

meg. 
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1 INTRODUCTION 
The scientific and civilian applications of Unmanned Aerial Vehicles (UAVs) are rapidly 

expanding. The most common scientific uses are in the fields of archaeology, geography, 

mining and civil engineering. In river engineering, or in general, water resources engineering 

UAV based measurements have a huge potential.  

These UAV measurements not only applicable for river flow estimations, but 

topography measurements as well to get more detailed information about the geometry of 

river engineering objects and to complete the geodetic surveys, such as the geometry of the 

flood protection dyke (Lükő, 2016). Topography measurements can be applied for even larger 

scales, like the geometry of a section of a river (at low water) and the detailed geometry can 

be used as the digital terrain model (DTM) for the hydrodynamical models (Lükő et al., 2017). 
 

Back to the flow measurements: indirect video based velocity measurement methods, 

e.g. large-scale particle image velocimetry (LSPIV) and space-time image velocimetry (STIV), 

became a real alternative for direct flow measurements (Lükő and Baranya, 2016 and Lükő, 

2016). These methods deal with the Eulerian analysis of the flow. Beyond this I move to the 

Lagrangian analysis in this study, which is based on the particle tracking velocimetry (PTV) 

method. Zsugyel (2016) in his doctoral dissertation has tested the particle tracking methods, 

where he quantifies the chaotic mixing of the flow. He uses GPS mounted floating buoys for 

his field measurements, the number of which is limited and expensive. In present research an 

UAV is used to capture the tracers floating the water surface. Hundreds of tennis balls are 

used as tracers, which are more cost-efficient and suitable for the image processing method. 

This way more detailed information can be acquired about the flow, since every tennis ball 

would go on a different path. The field measurement for this study was at a groyne pair of the 

Danube River. The flow around the groynes has complex flow structures (Kadota and Suzuki, 

2010), which is best for testing the PTV. Some balls would go with the main flow and some 

would stuck in the dead zone of the groyne after caught in the vortex street. Obviously the 

reconstruction of the tracks is just the starting point of the research. If the measurements and 

the trajectory calculation works robust, many other parameters could be calculated, such as 

the mixing parameters, which are important in pollutant and cooling water mixing or sediment 

transport analysis. The resuspension of fine sediment particles caused by ship induced waves 

have a huge effect to the ecological habitat at groyne fields (Fleit, 2015). The resuspension of 

fine particles can be seen on the UAV images (Figure 1) 
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Figure 1. Resuspension of fine sediment particles can be seen from the UAV 

 

The main goal of this study is to test and assess PTV in a large river. The first step of the study 

is to perform field measurement campaigns to capture videos from UAVs. The applied tracers 

are bright yellow tennis balls, which will be well-visible on the videos. Next, a multi-object 

tracking MATLAB algorithm will be used and improved for the PTV analysis of the video data, 

which has to main parts: (i) the particle detection and (ii) the particle matching. The expected 

results are the reconstructed trajectories of the tennis balls. ADCP control measurements will 

also be carried out to provide large scale flow velocity distributions in the study reach. 
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2 PARTICLE TRACKING VELOCIMETRY (PTV) 
Velocimetry based measurements on particle tracking is one of the oldest measuring 

techniques in fluid mechanics, but the numerical solutions for particle tracking velocimetry 

(PTV) only appeared in the late 80s. (Adamczyk and Rimai (1988), Adrian (1991) and Dracos 

(1996)). Now, almost 30 years later, there are very few river-scale applications of the method 

(for example: Sukhodolov et al., (2007) used surface tea candles on the flow at night). PTV has 

been mostly applied in laboratory environment. This study aims to break this and apply the 

PTV method for a section of a large river, the Danube at a recirculation zone of a groyne field.  

The other particle imaging technique, the Particle Image Velocimetry (PIV) which uses 

the Eulerian analysis of the flow, is way more popular, and already a practice transplanted 

discharge measurement technique called large-scale particle image velocimetry (LSPIV) (Fujita 

et al., 1998, Muste et al, 2008). Originally the PIV method was the “High Image Density PIV” 

and the PTV was the called “Low Image Density PIV”. Obviously both methods have its pros 

and cons. PTV has strong advantages compared to the statistical analysis of an ensemble of 

particle images by means of cross-correlation approaches, like the PIV method (Fuchs, 2017). 

Now PIV is also possible to measure complex flow structures, like the instantaneous velocity 

field of a vortex street (Lükő, 2016) but the Lagrangian method is more suitable and provides 

more information estimating mixing parameters, not just a simple velocity field but the path 

of the particles. 

2.1 METHODOLOGY  
Step zero of the PTV method is to shoot the accurate video for the analysis. The camera 

needs to be orthogonal to the water surface or the images need to be orthorectified 

afterwards. The recorded water surface has to have visible floating small objects to track along 

with the flow. The PTV’s logical structure is built up from the following steps (Figure 2):  

 

Figure 2. Steps of PTV method 
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First, the image sequence is taken. Then, on every frame of the video, each tracer’s 

individual position needs to be found. This is most likely to be done by separating the tracers’ 

color from the background color or looking for the unique shape of the tracers. Then each 

individual tracer’s position needs to be found on every following frames. Knowing the 

particle’s position on the previous frame, the searching for the position on the next frame will 

be done close to the previous one. Sometimes the correlation is varying between the matched 

particles, there will always be miscalculated positions, so some kind of rectification of the 

results is necessary. The result from a video is the path of particles or the velocity vectors at 

the calculated positions.  

For PTV analysis, the presence of some kind of tracers floating along with the flow are 

essential. Natural tracers like foams are not very suitable because of their intense change of 

shape and size. Particles are needed which can be matched from the first frame till the last 

one. Artificial particles need to be floating with the same speed as the flow and cannot drown 

or be blown away by the wind.  

2.2 RELEVANT LITERATURE  
Ishikawa et al. (2000) crates a new PTV algorithm, which is suitable for calculating the 

velocity vectors of fluid flow subjected to strong deformations such as rotation, shear, 

expansion and compression.  

Nobach and Honkanen (2005) try to increase the accuracy of displacement estimation 

in PTV using 2-dimensional Gaussian regression. This procedure helps to find rotated and 

elliptical particle image shapes. The explicit procedure avoids pixel locking in the case of 

elliptical, non-axially oriented particle images or correlation peaks.  

Sokoray-Varga and Józsa (2008) applied the PTV for surface velocity measurements in 

a conventional laboratory scale model with large vortices and turbulence to take reliable 

measurements in flows exposed to strong deformations. They use a vertical camera axis and 

30 frame per second frame rate. The particles are white small round pieces, the background 

and the flow is black on the images. Their algorithm reconstructed the velocity field. Some 

videos from this laboratory setup was used to test my new PTV algorithm for this study (see 

Chapter 4).  

Thumser et al. (2016) introduces a new methodology for real-time particle tracking in 

rivers (RAPTOR). This technique performs large scale particle tracking velocimetry (LSPTV) 

using a combination of floating, infrared light-emitting particles and a programmable 

embedded color vision sensor in order to simultaneously detect the track of hundreds of 

objects. The main advantage that it is fast and can be done in real-time. The disadvantage is 

that the method requires the use of specialized light-emitting particles which in some cases 

cannot be retrieved from the investigation area. There are quite a lot of articles about the 3D 

PTV.  

Willneff (2003) measures particle motion in small laboratory scale 3D object space, 

which are imaged as a 2D path in image space of an observing camera. If corresponding 
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particle images were found in at least two cameras the 3D particle position can be determined. 

If the temporal assignment over the time is possible, the trajectory can be reconstructed. ETH 

Zürich developed an open source 3D-PTV software, called OpenPTV for laboratory 

experiments.  

Weitbrecht (2001) analyzes dead zone of groyne fields and its effect on the longitudinal 

dispersion in rivers.  

Patalano and Garcia (2016) show us their user friendly toolbox for PIV and PTV 

techniques applied in large scale physical models in laboratories. PIVlab and PTVlab 

implemented in MATLAB environment.  

There are no UAV-based PTV measurements yet in the literature, but UAVs are quite 

popular in LSPIV measurements. The UAV measurement method is the same methodology, 

collecting UAV for image processing. Here are the couple of UAV-based LSPIV applications 

performed in the past years.  

Tauro et al. (2015a) developed a lightweight quadrotor for the LSPIV. A gimbal was 

applied to the vehicle for the camera lens to be orthogonal to the water surface preventing 

the image orthorectification. Field experiments showed that the vehicle is able to stably hover 

an area of 1 * 1 m2 for 4 minutes with a payload of 532 g. The UAV-based LSPIV is 

demonstrated through tests in an outdoor laboratory and over a natural stream.  

A detailed sensitivity analysis has been done by the same researchers (Tauro et al., 

2015b). They analyze the effect of tracers’ visibility, and it is assessed through the index 

𝑍=𝑁0/𝑁𝑇𝑂𝑇, where N0 indicates the number of nodes presenting velocity values less or equal 

to 10 % the average velocity in the entire time-averaged map, and NTOT is the total number of 

nodes is the map. Also analyzed the stability of the experimental platform, and it is assessed 

through the index 𝐷=𝑁𝑑/𝑁𝑇𝑂𝑇, where Nd refers to the number of nodes presenting negative 

velocity values, that is, vectors in the opposite direction of flow. In case of fixed configurations, 

the D index is found to be equal to zero. Structural similarity index (SSIM) is largely used in 

image analysis to quantify differences between images in terms of luminance, contrast, and 

structure. SSIM is computed on the time-averaged velocity maps obtained for each 

experimental replicate. Also, the maximum velocity values were analyzed, so the velocity 

range values for cross-sections.  

Patalano et al. (2015) applied the flying LSPIV because of the wide rivers at flood events 

and too high angles for the fixed LSPIV. The tests have been done during a river flood of the 

Suquia River in Argentina. Accurate velocity measurements were also been carried out at the 

same time with an acoustic Doppler current profiler (ADCP). The UAV was equipped with a 

camera (recording 30 frames per second), and it was placed on a gimbal that absorbs 

vibrations of the vehicle. The discharge measured with the LSPIV was 73 m3/s versus 74 m3/s 

with ADCP, which represents a difference of 1.35 %.  

The same researchers introduced a new toolbox (RIVeR) used in rivers, channels and 

also large physical models (Patalano and García, 2016). The toolbox uses the results from 

conventional 2D large-scale image-based flow velocimetry techniques orthorectifying them 
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instead of orthorectifying the images first, which reduce dramatically the computational cost. 

RIVeR is fully operational and has already been used in many applications with extreme 

conditions such as stream gauging during flash-flood events and low water level.  

Detert and Weitbrecht (2015) proved the applicability of a low-cost airborne 

velocimetry system to measure large-scale velocity field. The measurement equipment 

consisted of an ultra-light action-cam and a ready-to-fly low-cost quadcopter. Video 

recordings were performed from heights between 45-74 m covering a total length of 310 m, 

while spruce chips were added as tracer particles. Each lens-corrected frame was 

automatically orthorectified to riparian ground reference points. The positional error of each 

point was computed to be within 0.17-0.39 m, so that the magnitude of the related descaling 

error was below ±2%, and the error of apparent found velocity is approximately 0.03 m/s. 

These values describe the uncertainty added to the subsequently calculated particle image 

velocity profiles measured by ADCP indicates that the proposed new type of velocimetry 

system is capable of measuring with relatively high accuracy.  

Also an optimized application of a low-cost airborne surface velocity system has been 

developed by Detert (Detert et al., 2016). At Surb Creek, Switzerland, on a reach length of 650 

m surveying flights and PIV analysis had been performed. The remaining velocity error due to 

orthorectification for the example given was estimated to <0.01 m/s, and the total error was 

estimated to be <0.1 m/s. The raster resolution was 0.5*0.5 m with 50% overlap. The 

optimized system was capable to provide flow fields with high resolution in time and space, a 

high potential tool for data acquisition in the field.  

There is a specifically-developed UAV system to remotely and safely gain high-

resolution images of the water surface (Blois et al., 2016). It presents details of a Scale 

Invariant Feature Transform (SIFT) that permits accurate rectification of the images. These 

data are key to informing and calibrating predictive tools that can reconstruct potential 

emergency scenarios. They discuss the concept and technology employed to render these 

measurement systems effective, and provide examples of applications that show the fidelity 

of the data that can be extracted from aerial images, and thus the vast potential of this 

technology.  

Several helicopter based measurements were also performed in the past years (e.g. 

Detert and Weitbrecht, 2014; Fujita and Hino, 2003; Fujita and Kunita, 2011). These prove the 

robustness of the aerial LSPIV methods again, but the helicopters cannot be included in the 

group of cheap or cost-efficient measurements.  

It is assumed that if UAV-based LSPIV works robust, the UAV-based river-scale PTV 

application will too. Of course the presence of the essential visible, trackable particles are 

essential in this case too. 
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3 UAV MEASUREMENT CAMPAIGNS 

3.1 MEASUREMENT FIELD  
The official measurement campaigns took place on the 6th and the 20th of October 

(after many UAV testing) at a groyne pair of the Danube, at Göd (Figure 3). The river flow was 

1360 m3/s (10/06/2017) and 1080 m3/s (10/20/2017), which are both low water, the water 

levels were below the top of the groyne. On the second measurement campaign about the 

half of the dead zone was fully dry because of the very low water. The complex flow structures 

were captured at the nose of the groyne and the dead zone between the two groynes. 

 

Figure 3. Measurement field 

3.2 MEASUREMENT METHOD 
The measurement was carried out in two separate parts. First, the UAV measurements 

have been done to capture the river surface for the PTV analysis. Second, the river discharge 

was measured along with the 3D velocity distribution using ADCP (Baranya, 2009) as control 

measurement.  

Each UAV measurement had the following steps (Figure 4): 
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Figure 4. Steps of UAV measurement 

 A video of the measurement campaign had 3 UAV positions while following the tennis 

balls (Figure 5). The #1 video position is usually next to the groyne, right after releasing the 

balls from the boat (Figure 6). First the balls are very close to each other, then they get more 

scattered while moving down with the flow. During the #2-#3 UAV positions, almost the whole 

image is full of balls floating far from the other balls. Figure 6 is also here to show that the 

balls are visible perfectly on the images. The view of an image from the UAV is about 128 x 85 

m from 60 m high altitude. 
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Figure 5. UAV measurements with the rectangles standing for the collected UAV videos 
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Figure 6. Tennis balls almost reaching the groyne, after releasing them from the boat 

3.3 UAV 
In this study the UAV which have been deployed is a DJI Phantom 3 Standard UAV 

(Figure 7). It is a low-cost, lightweight and user-friendly tool for the airborne PTV analysis. The 

main features of the Phantom 3 Standard are shown in Table 1. The UAV has factory-mounted 

2.7K camera with a gimbal. The vehicle can be remote controlled while using DJI Go App with 

a tablet or a smartphone. There are different flight settings and functions in the application, 

as well as on the UAV. The pilot communicates with the UAV via the DJI Go interface. The 

camera position and the video recordings are also controlled from the tablet or phone. The 

flight routes are saved and available for further analysis on the SD card as well as the recorded 

videos in MOV file format. 
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Figure 7. DJI Phantom 3 Standard /www.dji.com/ 

Diagonal size (excluding propellers) 350 mm 

Total weight (including the camera). 1216 g 

Intelligent flight battery LiPo 4S (4480 mAh, 15.2 V) 

Hovering time 25 min 

Table 1. The main features of the DJI Phantom 3 Standard 

The camera’s image resolution is 2704 x 1520 pixels and the focal length is 2.9 mm, 

which means if the drone is 50 m high in the air, the recorded surface will be 107 x 60 m2.  

Experiences showed that in usual weather conditions the highest safe flying altitude is 

about 70 m. Flying higher then this level results in unstable connection between the pilot and 

the UAV. However, during the second measurement campaign which was happened in sunny 

and calm weather conditions, the connection was stable even at 90 m high.   
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4 IMAGE PROCESSING IN MATLAB 
For the image processing of the PTV videos there were attempts made to use Sokoray’s 

(Sokoray-Varga and Józsa, 2008) MATLAB algorithm but it cannot run with the new MATLAB 

versions, some serious changes will be necessary to renew it. Instead of doing that, a new 

ideas were searched and finally Student Dave’s (2013) multi-object tracking tutorial video was 

used as a start. His algorithm can track the path of a bunch of flies flying overlapped as well. 

The algorithm was completed with some features to be able to use it at our conditions and 

detect our tennis balls.  

For testing the algorithm I used some old video data from the laboratory of the 

Hydraulic and Water Resources Engineering Department originally recorded for Zsugyel’s 

(2016) measurements. This way I could compare my results with his trajectories. The 

laboratory environment avoids the noisy image data and let me concentrate on the accuracy 

of the particle matching algorithm and the correctness of the calculated particle paths. One 

of the first frames of the analyzed video can be seen on Figure 8. There were only 8 white 

particles on the dark background, so they are easily recognizable. There is a built in groyne in 

the channel, so some of the particles are going with the main flow, some of them are trapped 

in the vortex street and the dead zone behind the groyne.  
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Figure 8. Testing the new algorithm with old labor videos with very few number of particles 
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Figure 9. Trajectories by Zsugyel (2016) (on the left) and with the new algorithm (on the 

right) 

The reconstructed trajectories of Zsugyel’s (2016) and with the new algorithm can be 

seen on Figure 9. The algorithm calculates the trajectories good enough to use it for the UAV 

videos from the field measurements. The structure of the algorithm will be shown with 

illustrations from the UAV video processing. 

4.1 STRUCTURE OF PTV ALGORITHM  
The structure of the algorithm can be seen on Figure 10 which has 2 main parts, the 

image detection and the particle matching.  
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Figure 10. Structure of the algorithm 

4.1.1 PART 1 (PARTICLE DETECTION) 
The next steps need to be done on each frame of the image sequence, so the particle 

positions will be known on every frame. 

4.1.1.1 MASKING WITH MATLAB IMAGE THRESHOLDER APP 

In the case, masking means some color dimensions will be blacked out, so most likely 

only the tennis balls will be seen on the image. This helps decreasing the number of failed 

detections, like shimmering on the water surface. Not only we’ll get less bad detections, but 

the algorithm is not even searching for detections there either, the processing will be faster 

using masks. The MATLAB image thresholder application was used for this task. Obviously it is 

not likely that no other pixels than tennis balls will be on the mask image, some of the picture 

might have similar colors too. The mask image can be seen on Figure 11. The image is not fully 

homogeneous black, but mostly just the area of the balls can be seen, and the other bright 

pixel arrangement are different from the balls. 
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Figure 11. Mask image 

4.1.1.2 GAUSSIAN FILTER (BLOB IMAGE) 

 First the parameters of the Gaussian filters need to be set. This means that the size of 

the balls is needed, which can be estimated from the image resolution and by zooming in the 

image and calculating the diameter on the image. Of course the center of the ball will be 

brighter, then by the edge it is starting look like the water surface more greyish colors. Figure 

12 shows this so called “blob” size setting.  
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Figure 12. Parameter of the Gaussian filter: blob (tennis ball) size = 7 pixel diameter 

 This Gaussian “blob” filter is calculated over the whole image to detect the tennis balls. 

Where there is a ball recognition, the blob image has a maximum value there.   

 

Figure 13. Blob image 

4.1.1.3 COLOR INTERVAL OF TENNIS BALLS ON THE BLOB IMAGE 

 On the blob image pretty much where the pixels are blue that is the water, which will 

not be needed, and the yellow pixels are what we need, the tennis balls. There are also other 

less yellow, i.e. greenish pixels, which we do not want to count as our particles. In Figure 13 
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the colorbar shows us which values need to be set, so this blob image will be blanked, and 

only those “tennis ball” high values will matter. 

4.1.1.5. MAXIMUM OF BLOBS WILL BE PARTICLE POSITIONS 

 A local 2D minimum/maximum finder is used to find the maximum of the blobs on the 

image. Every maximum values will be stored as the XY coordinates of the tennis ball positions, 

which can be seen on Figure 14. However, the blob image automatically recognized maximum 

values all over the edge of the image, as the applying of the filter results in local maximums at 

the edges which indicates false tracer positions. These wrong particles positions are removed 

before the particle matching. 

 

Figure 14. Particle positions 

4.1.2 PART 2 (PARTICLE MATCHING) 
Now the particle positions are known on every frame, they just need to be matched 

together.  

4.1.2.1 KALMAN FILTER 

 The algorithm needs to have changing number of estimates because balls might float 

in and out of the image at some point, and the algorithm may loses it at some point then it 
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finds again, but that does not mean they are bad tracks. The main variables of the Kalman 

filter are given, for example the particles estimated positions from their expected velocity. 

The variates are calculated in 3D originally and meant to track overlapping particles as well, 

so there is a 2D updating step. Then comes the initialization of the 2D variables, such as 

creating a large matrix full of “NaN” for the XY positions, and the good values will be filled in 

here later on. The next state is that the next positions of the balls are predicted from the last 

state and the predicted motion. Then the next covariance is predicted then the Kalman Gain 

is done.  

4.1.2.2 ASSIGNMENT OF DETECTIONS TO THE ESTIMATED MATCHES 

 The detections are assigned to the estimated track positions by making a distance 

(cost) matrix between all pairs, the rows are estimated tracks and columns are detections. The 

track number is limited by the number of frames. If the detection is too far from the estimated 

position it will be rejected. The covariance estimation will be updated with the assignment.  

4.1.2.3 ADDING NEW TRACKS AND DELETING BAD TRACKS 

 Found tracks are already stored and filled in the matrix. The next step is finding new 

detections. The tracks which did not get assigned is basically a new tracking. If the tracking did 

not get matched up, it gets a strike, and if a track has a strike greater than X, the tracking will 

be deleted from the matrix.  

4.1.2.3 GOOD TRAJECTORIES 

 Now we have only the good trajectories stored in XY matrices. Plotting so many 

trajectories are not the most convenient in MATLAB environment, so the results will be shown 

using MS Excel and Tecplot 360 softwares.  

4.2 CONVERSION OF COORDINATES 
The image data and the trajectories calculated by the PTV algorithm are in pixel units. 

The exchange to meter units is straightforward. Knowing: 

 the flight altitude (h),  

 the size of the camera lens (c), 

 and its focal length (f), 

 and image resolution, 

the size of a pixel can be calculated (Figure 15). For example, if the Phantom 3 UAV is at 60 m 

altitude, the size of image seen will be 128 · 85 m, using 2704 · 1520 px image resolution, a 

size of a pixel will be 0.047 meter. 
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Figure 15. Size of image recorded from UAV 

Also the flight records are stored in the UAV’s DJI account, so the XYZ coordinates of 

every flight route is available. This way the flight altitude and the UAV positions are known. 

Flight altitude is necessary for pixel size calculation, and the UAV positions will be used when 

the resulted trajectories need to be georeferenced, since we do not use any reference points. 

A simple coordinate transformation is done from the image’s own coordinate system to the 

Hungarian EOV system as the last step. 
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5 SENSITIVITY ANALYSIS 
There are a few parameters of the image processing method, which required some 

kind of sensitivity analysis. There are probably many more parameters, but the following ones 

should be the most important ones to be analyzed:  

 Image resolution 

 Image distorsion 

 Frame rate 

5.1 IMAGE RESOLUTION 
This is obviously an important parameter, since the computational time of the image 

processing is significantly more when we have high image resolution. But since we have kind 

of short videos and a tennis ball takes only a few pixels, now the maximum image resolution 

was chosen.  

5.1 IMAGE DISTORSION 
 It is assumed that since the camera is orthogonal to the water surface, there is no need 

of orthorectification of the UAV images. Maybe the camera is not 100% orthogonal due to bad 

gimbal work or too high wind or other conditions. Analysis have been done to see how much 

the same objects change on different images. 8 random images were chosen when the boat 

has different positions (Figure 16). The length of boat in pixels were measured manually in 

AutoCad software. The results of the boat sizes on every image can be seen in Table 3. The 

relative deviation is about 4%. This 4% might be coming from the uncertainty of the boat size 

measurement, and low enough to say that the images do not need any orthorectification. 

 

Figure 16. The boat on different frames 
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Table 3. Size of the boat on different frames 

5.2 FRAME RATE 
 The original frame rate is 30 frames per second (fps), in case of a 10 second long video 

section this already means 300 images to process. This should be reduced as long as the 

resulted frames are still usable for the particle matching and reconstructing trajectories. 

Particles cannot be too far from each other, if they change too much between image pairs, 

the results will be messed up. Frame rates = 1 and 15 fps have been analyzed. The analyzed 

video was 24 second long, which means there are 360 images at 15 fps, and there are 24 

images at 1 fps to process. The resulted trajectories can be seen on Figure 17. Results from 

using 1 fps is unacceptable, the algorithm loses too many tracks. Using 15 fps results very good 

trajectories but the number of images to process is a little bit high. For the image processing 

5 fps was chosen to reduce the calculation time but they are definitely more detailed than 

1fps. 

Image ID Boat size (px)

1 175

2 174

3 176

4 174

5 173

6 169

7 170

8 170

Average: 173

Deviation: 7

Relative deviation: 4%
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Figure 17. Trajectories using frame rate = 1 fps (on the left) and 15 fps (on the right) 
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6 RESULTS 
 First, the ADCP measurements from the second field campaign are shown in Figure 18, 

because the PTV results from the same campaign will be analyzed later on. The orange 

rectangle represents an analyzed UAV image. The black dots show where the moving boat 

ADCP measurements took place. The spatially interpolated velocity distribution closest to the 

free surface can be seen, where the color indicates the velocity magnitude. The increasing 

flow velocities due to the groynes can be well detected, moreover, the recirculation zone with 

low velocities can also be observed. Between these two zones the flow can be characterized 

with high shear, which leads to the formation of vortices. Despite the fact that the vortex 

street can easily be seen by eye at such locations, streamlines fitted to a steady flow field will 

not indicate the spatially complex behavior of the flow. The figure shows streamlines at the 

tip of the groyne, which, in general, show well the flow acceleration (denser lines) and main 

flow directions. ADCP measurements provide large scale information on the flow field, but 

due to the measurement method and the procedure, it is not capable to reveal the fine scales, 

both space and time wise, of the flow field. 

 

Figure 18. Spatially averaged velocity distribution from the ADCP measurements 
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Figure 19. Comparison of trajectories calculated from PTV (left) and ADCP (right) 

measurements 

 Figure 19 shows the trajectories reconstructed from PTV analysis together with the 

streamlines fitted on the ADCP based flow velocity distribution. The difference between the 

two images can be very well seen as the PTV based trajectories show a more complex pattern. 

The transversal movements of the tracers indicate the mixing effect of the vortices, which 

means that a quantitative assessment on the mixing can most probably be performed based 

on the calculated trajectories.  

The PTV results of the analyzed UAV videos are shown in Figure 20 and 21. PTV 

provides more fine scale and more detailed flow structures. Zsugyel (2016) was able to 

reconstruct 3 trajectories with floating buoys to quantify these complex structures. Using the 

PTV algorithm and hundreds of tracers, much more detailed information was gained about 

the same flow structures. The mixing calculation will be more accurate as well if there are 

more data available. Figure 20 shows that the particles move and spread like a plume while 

floating. In Figure 20, the trajectories from all 3 UAV positions are shown. The trajectories are 

not continuous since some time is lost when the UAV was moving to another position, usually 

about 10-30 seconds. The UAV could track the tracers further too, but later on the tracers will 

spread out too much. Figure 20 shows the displacements of the tracers through their positions 

at every 4 seconds from a video, T = 12, 16, 20 and 24 sec. Once the tracers reached the end 

of the frame, the UAV moved to another place. 
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Figure 20. Trajectories calculated from PTV measurements 
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Figure 21. Result of the PTV measurement: Animation of detected and matched tracers 

It is possible to identify the zones of strong shear based on the ADCP measurements 
where the vortex structures and the consequent strong mixing is expected. There are several 
methods exist to identify eddies in flows (e.g. Nyers et al., 2008; Holmén, 2012). One of the 
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simpler methods is to the calculation of the so called vorticity (around the vertical axis) 
according to the following formula:  
 

Ω =  
∂v

∂x
−

∂u

∂𝑦
 

  

 where:  Ω is the Z vorticity  
 u and v are velocity vector components of x and y directions.  

 
The Z vorticity distribution calculated from the ADCP results can be seen in Figure 22. 

The vorticity field indicates high values at the tips of both groynes. Again, these are the 
locations where the formation of vortices is expected leading to an increased mixing behavior. 
Indeed, this mixing effect can be captured looking at the tracer trajectories from PTV (see the 
right image). In contrast with the streamlines reconstructed from the ADCP based flow velocity 
field a much stronger transversal spreading if the tracers appears. 

 
 

 

Figure 22.  Calculated vorticity field from ADCP measurements and tracer trajectories from 

PTV. 

A possible way to quantitatively describe the spatially and temporally complex nature 

of the flow at such locations using the PTV results is to reveal the chaotic nature of the flow. 

As Zsugyel et al. (2012) said “The most characteristic feature of chaotic motion is its 

(exponential) sensitivity to initial conditions. The traditional way to characterize this feature 

is the determination of the standard Lyapunov exponent of chaotic advection (see e.g. Tél and 

Gruiz, 2006). In a fluid dynamical application, chaotic motion manifests itself in an exponential 

growth of the distance between nearby fluid particles; if the initial distance ∆𝑟0 is small, the 

growth of the distance in time t is proportional to an exponential factor: 
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∆𝑟 =  ∆𝑟0 ∙ 𝑒λ𝑡 

where: 

 ∆𝑟 is the distance between particles at 𝑡 instant, 

 𝑟0 is the initial distance and λ is the Lyapunov exponent.  

This rule implies a very rapid increase resulting in strong spreading of particles and 

stretching of pollutant patches. The growth rate λ is called the local Lyapunov exponent, which 

can serve as a quantitative measure of the strength of particle dispersion to characterize 

mixing. The reciprocal of the Lyapunov exponent can be interpreted as the local prediction 

time: the characteristic time scale under which information on the initial conditions is being 

lost in a system. After this time, the prediction of the fluid particle positions is not possible 

with traditional tools.” 

Zsugyel et al. (2012) use the same finite-size Lyapunov exponent to understand more 

of the chaotic motion. They used 3 particles to analyze, compared to which the hundreds of 

trajectories in this study mean a significant improvement of the analysis. In the referred study 

the distance of the 3 particles was also analyzed. Here, 4 particles were chosen randomly from 

the resulted trajectories, with ID #3, #5, #15 and #36, and all possible combination of pairs 

were analyzed how far they went from each other along their routes (Figure 23). Lyapunov 

exponents were calculated for the straightest sections too. The great advantage of the herein 

introduced tracer based PTV method is that this sort of analysis could be performed for a high 

number of tracers resulting in thousands of such functions. Once the estimation of the local 

Lyapunov exponent values can be automatized, the method can provide much detailed 

description of chaotic parameters than before. 
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Figure 23. Distance of particles #3, #5, #15, #36 from each other with the Lyapunov 

exponents 

 In Figure 23, particles at #5-#15 and #5-#36 are not very close to each other but the 

distance is growing slowly, same as #3-#5, but that pair is a little closer at the start. #3-#15 

and #15-#36 both start being quite far from each other, then the distance is getting smaller 

for a while then they start moving away from each other. #3-#36 is the most exemplary, where 

they are almost next to each other at the start and then the distance is growing exponentially 

with very similar Lyapunov exponent value as the buoys’ in  Zsugyel et al.’s (2012) work. If 

every pairs and their Lyapunov exponents were calculated, the spatial distribution of 

Lyapunov exponent values could be shown over the whole analyzed area, which means PTV 

can help to characterize these coherent structures and understand more of the chaotic 

motion. 
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7 SUMMARY AND CONCLUSIONS 
 UAV based river flow measurements have been carried out with Lagrangian approach 

and an algorithm was further developed to perform the image processing in MATLAB 

environment in this study. Detailed literature research was performed of the relevant topic as 

well including the applied Lagrangian flow measurements and other Eulerian flow 

measurements which use images from UAV measurements. No UAV based particle tracking 

velocimetry (PTV) have been applied before, so this study is testing if it is applicable. During 

the field measurements UAV videos have been collected of a hundred tennis balls floating in 

the area of a groyne. These videos were then analyzed using the new PTV algorithm and about 

a hundred trajectories have been reconstructed, after the sensitivity analysis have been done 

to some image processing parameters. Application of the river scale PTV is a huge step in the 

Lagrangian approach of river flow measurements. Compared to the previous methods, where 

a limited number intelligent buoys could be applied as tracers, in this study hundreds of 

second hand tennis balls were used which are much more cost-efficient, considering the 

increased spatial information. Besides the PTV measurements, ADCP measurements have also 

been carried out around at the study reach and the results have been compared. It was shown 

that flow velocity field reconstructed from ADCP survey contains significant information on 

the flow field, but cannot be applied for the analysis of fine scale, unsteady nature of the flow 

which can be seen from the PTV measurements. PTV can reveal those very fine spatiotemporal 

scale flow structures. The developing plume at the end of the groyne cannot be seen from the 

ADCP streamlines of the velocity distribution, but the reconstructed trajectories by PTV can 

detect and quantify these chaotic natures of dynamic flow structures too. The chaotic 

structures are usually characterized by the finite-size Lyapunov exponents, so few random 

particles were chosen to analyze their distance from each other, and the trajectory pairs’ 

Lyapunov exponents have been calculated. The exponents match to the other’s results in 

relevant literature, but the novel approach which was presented in this study contributes to 

the characterization of the complex flow structures very detailed and quite cost-efficiently.   
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8 FUTURE RESEARCH IDEAS 
UAV-based measurements have huge potential for future research generally in river 

engineering, since very valuable videos can be collected from places where it would not be 

possible any other way manually. The application of the introduced techniques in this study 

need to be further analyzed since this was a first attempt in this field. The applied MATLAB 

algorithm can be improved while getting closer to the automatization of the processing. Also, 

follow-up UAV measurements need to be carried out considering the already gained 

experiences. As introduced above, the chaotic characterization of the flow field can be well 

described with parameters like the Lyapunov exponent and the analysis of which can be 

applied to the trajectories calculated in this study.  

 The PTV method could be used for assessing sediment resuspension caused by the 

breaking of ship induced waves (Fleit, 2015) and littoral erosion, since the phenomenon is 

visible from the UAV videos. PTV is able to reveal the eddy structures in the vicinity of different 

structures, such as river groynes applied in this study, but this needs further research to 

quantitatively assess the chaotic nature, which is important cooling water and pollutant water 

mixing. 

 The calculation of instantaneous flow velocity vectors based on the revealed 

trajectories could also contribute to the better understanding of flow structures. In fact, this 

information is inherently consisted in the trajectories as the displacement of the tracer and 

the time step is known. The calculation of temporally varying flow velocity fields would mean 

a significant step towards the quantitative description of mixing processes in rivers.  
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